

Bosh ilmiy-metodik markaz FARG'ONA DAVLAT UNIVERSITETI HUZURIDAGI PEDAGOG KADRLARNI QAYTA TAYYORLASH VA ULARNING MALAKASINI OSHIRISH MINTAQAVIY MARKAZI

"MATEMATIKADA AXBOROT TEXNOLOGIYALARI" MODULI BO'YICHA

O'QUV –USLUBIY MAJMUA

Mazkur oʻquv-uslubiy majmua Oliy va oʻrta maxsus ta'lim vazirligining 2020 yil dekabrdagi 648-sonli buyrugʻi bilan tasdiqlangan oʻquv reja va dastur asosida tayyorlandi FarDU Ilmiy kengashining 2021 yil «30» dekabrdagi 5-sonli qarori bilan tasdiqlangan

Tuzuvchi:

Taqrizchilar:

K.Raximov – FarDU Axborot texnologiyalari kafedrasi katta oʻqituvchisi E.Azizov – FarDU Matematika kafedrasi dotsenti, f.m.f.n.

MUNDARIJA

I. ISHCHI DAS	STUR			4
II.MODULNI	O'QITISHDA	FOYDALANILADIGAN	INTREFAOL	TA'LIM
METODLARI				3
III. NAZARIY	MASHGʻULOT	MA'LUMOTLARI		2
III. AMALIY N	MASHG'ULOT	MA'LUMOTLARI		9
IV. MUSTAQI	L TA'LIM MAV	ZULARI		160
V. GLOSSARI	Y		•••••••••••••••••••••••••••••••••••••••	162
VI. ADABIYO	TLAR RO'YXA	ΤΙ		164

KIRISH

Dastur O'zbekiston Respublikasining 2020 yil 23 sentabrda tasdiqlangan "Ta'lim toʻgʻrisida"gi Qonuni, Oʻzbekiston Respublikasi Prezidentining 2017 yil7 fevraldagi "O'zbekiston Respublikasini yanada rivojlantirish bo'yicha Harakatlar strategiyasi toʻgʻrisida"gi PF-4947-son, 2019 yil 27 avgustdagi "Oliy ta'lim muassasalari rahbar va pedagog kadrlarining uzluksiz malakasini oshirish tizimini joriy etish toʻgʻrisida"gi PF-5789-son,2019 yil 8 oktabrdagi "O'zbekiston Respublikasi oliy ta'lim tizimini 2030 vilgacha rivojlantirish konsepsiyasini tasdiqlash toʻgʻrisida"giPF-5847-sonli Farmonlarihamda O'zbekiston Respublikasi Vazirlar Mahkamasining 2019 yil 23 sentabrdagi "Oliy ta'lim muassasalari rahbar va pedagog kadrlarining malakasini oshirish tizimini yanada takomillashtirish boʻyicha qoʻshimcha chora-tadbirlar toʻgʻrisida"gi 797-sonli Qarorlarida belgilangan ustuvor vazifalar mazmunidan kelib chiqqan holda tuzilgan boʻlib, u oliy ta'lim muassasalari pedagog kadrlarining kasb mahorati hamdainnovatsion kompetentligini rivojlantirish, sohaga oid ilg'or xorijiy tajribalar, yangi bilim va malakalarni oʻzlashtirish, shuningdekamaliyotga joriy etish koʻnikmalarini takomillashtirishni maqsad qiladi.

Mazkur dastur zamonaviy talablar va rivojlangan xorijiy davlatlarning oliy ta'lim sohasida erishgan yutuqlar hamda orttirilgan tajribalar asosida «Matematika» qayta tayyorlash va malaka oshirish yoʻnalishi uchun tayyorlangan namunaviy oʻquv reja hamda dastur mazmunidan kelib chiqqan holda tuzilgan boʻlib, u qayta tayyorlash va malaka oshirish jarayonlarining mazmunini takomillashtirish hamda oliy ta'lim muassasalari pedagog kadrlarining kasbiy kompetentligini muntazam oshirib borishda xizmat qiladi.

Modulning maqsadi va vazifalari

"Matematikada axborot texnologiyalari" modulining maqsadi: pedagog kadrlarni innovatsion yondoshuvlar asosida oʻquv-tarbiyaviy jarayonlarni yuksak ilmiymetodik darajada loyihalashtirish, sohadagi ilgʻor tajribalar, zamonaviy bilim va malakalarni oʻzlashtirish va amaliyotga joriy etishlari uchun zarur boʻladigan kasbiy bilim, koʻnikma va malakalarini takomillashtirish, shuningdek ularning ijodiy faolligini rivojlantirishdan iborat.

"Matematikada axborot texnologiyalari" modulining vazifalariga куйидагилар киради:

"Matematika" yoʻnalishida pedagog kadrlarning kasbiy bilim, koʻnikma, malakalarini takomillashtirish va rivojlantirish;

-pedagoglarning ijodiy-innovatsion faollik darajasini oshirish;

-mutaxassislik fanlarini oʻqitish jarayoniga zamonaviy axborot-kommunikatsiya texnologiyalari va xorijiy tillarni samarali tatbiq etilishini ta'minlash;

-mutaxassislik fanlari sohasidagi oʻqitishning innovatsion texnologiyalari va ilgʻor

xorijiy tajribalarini oʻzlashtirish;

"Matematika" yoʻnalishida qayta tayyorlash va malaka oshirish jarayonlarini fan va ishlab chiqarishdagi innovatsiyalar bilan oʻzaro integratsiyasini ta'minlash.

Modul yakunida tinglovchilarning bilim, koʻnikma va malakalari hamda kompetensiyalariga qoʻyiladigan talablar:

Matematika fanlari boʻyicha tinglovchilar quyidagi yangi bilim, koʻnikma, malaka hamda kompetensiyalarga ega boʻlishlari talab etiladi:

Tinglovchi:

- integral va o'lchov tushunchalarini;

- geometriyaning chiziqli fazo va chiziqli akslantirishlar yordamida bayon etilishi, vektor algebrasidan foydalanishni;

- matematik masalalarni matematik tizimlarda yechishni va standart funksiyalardan foydalanishni;

- matematikani oʻqitishda uning tatbiqlari bilan tushuntirishni, hayotiy va sohaga oid misollarni;

- matematik fanlarni oʻqitishning zamonaviy usullarini bilishi kerak.

Tinglovchi:

- ўлчовлар назариясидан математика, физика ва биология масалаларида кенг foydalanish;

- matematik analizning biomatematika, mexanika, ommaviy xizmat nazariyasi, iqtisodiy sohalar va boshqa sohalarda keng qoʻllash;

- matematik fanlarni oʻqitishda innovatsion ta'lim metodlari va vositalarini amaliyotda qoʻllash;

- talabaning oʻzlashtirish darajasini nazorat qilish va baholashning nazariy asoslari hamda innovatsion yondashuv uslublarini toʻgʻri qoʻllay olish koʻnikmalariga ega boʻlishi lozim.

Tinglovchi:

- o'lchovlar nazariyasi va uning tatbiqini turli fazolarda qo'llay olish;

- geometriyaning chiziqli fazo va chiziqli akslantirishlar yordamida bayon etilishi, vektor algebrasidan foydalanish;

- matematikani oʻqitish innovatsion jarayonini loyihalashtirish va tashkillashtirishning zamonaviy usullarini qoʻllash malakalariga ega boʻlishi lozim.

Tinglovchi:

- matematikani oʻqitishda foydalaniladigan zamonaviy (matlab, mathcad, maple, GeoGebra va boshqalar) matematik paketlarini oʻquv jarayoniga tatbiq etish;

-matematikaning xorij va respublika miqyosidagi dolzarb muammolari, yechimlari, tendensiyalari asosida oʻquv jarayonini tashkil etish;

- matematikani turli sohalarga tatbiq etish;

- oliy ta'lim tizimida matematik fanlar mazmunining uzviyligi va uzluksizliginitahlil qila olish kompetensiyalariga ega bo'lishi lozim.

Modulning oliy ta'limdagi o'rni

Modulni oʻzlashtirish orqali tinglovchilar ilgʻor xorijiy mamlakatlarda biologiya oʻqitishni tashkil qilishning xorijiy tajribalarni oʻrganish, amalda qoʻllash va baholashga doir kasbiy kompetentlikka ega boʻladilar. Soʻnggi yillarda matematika sohasidagi yutuqlar va istiqbollar oliy oʻquv yurtlaridagi ta'lim jarayonining mazmunini boyitishga xizmat qiladi.

			Tinglovchining oʻquv yuklamasi, soat			
			Auditoriya oʻquv yuklamasi			t
N⁰	Modul mavzulari	nasi		juml	adan	ma ulo
		Hamn	Jami	Nazariy	Amaliy mashgʻulot	Ko'ch mashg'
1.	MathCAD va Maple tizimi.	4	4	2	2	
2.	Algebra va sonlar nazariyasi masalalarini yechish.	4	4	2	2	
3.	ODT uchun Koshi va aralash masalalarni yechish.	4	4	2	2	
4.	MatLab tizimi.	4	4	2	2	
5	LATEX sistemasida matnlarni formatlash, jadval va grafiklar tuzish, matematik formulalar yozish va taqdimotlar tayyorlash.	2	2		2	
	Jami:	18	18	8	10	0

modulining soatlar bo'yicha taqsimoti

NAZARIY MASHGʻULOT MATERIALLARI

1-Mavzu: MathCAD va Maple tizimi.

Matematik ifodalar va funksiyalar.

MathCAD va Maple tizimida ifodalash.

2-Mavzu: Algebra va sonlar nazariyasi masalalarini yechish.

1. MathCAD va Maple tizimida matematik analiz masalalarini yechish.

2. Differensial tenglamalarni umumiy yechimini topish.

3-Mavzu: ODT uchun Koshi va aralash masalalarni yechish.

Oddiy differensial tenlamalar uchun Koshi va aralash masalalarni MathCADda echish

Oddiy differensial tenlamalar uchun Koshi va aralash masalalarni Mapleda echish MathCad va Mapleda grafiklar qurish.

4-Mavzu: MatLab tizimi.

Matlab dasturi

MATLABda matematik hisoblashlar

Vektor va matritsalarni shakllantirish

Vektorlar va matritsalar ustida bajariladigan funksiyalar

Matlabda funksiya grafiklarini tasvirlash.

AMALIY MASHG'ULOTLAR

1-Amaliy mashgʻulot.MathCAD va Maple tizimi.

2-Amaliy mashgʻulot. Algebra va sonlar nazariyasi masalalarini yechish.

3-Amaliy mashgʻulot. ODT uchun Koshi va aralash masalalarni yechish.

4-Amaliy mashgʻulot. MatLab tizimi.

5-Amaliy mashgʻulot.LATEX sistemasida matnlarni formatlash, jadval va grafiklar tuzish, matematik formulalar yozish va taqdimotlar tayyorlash.

ADABIYOTLAR RO'YXATI

I. O'zbekiston Respublikasi Prezidentining asarlari

1. Mirziyoyev Sh.M. Niyati ulugʻ xalqning ishi ham ulugʻ, hayoti yorugʻ va kelajagi farovon boʻladi. 3-JILD / Sh.M. Mirziyoyev. – T.: "Oʻzbekiston", 2019. – 592 b.

2. Mirziyoyev Sh.M. Xalqimizning roziligi bizning faoliyatimizga berilgan eng oliy bahodir. 2-JILD / Sh.M. Mirziyoyev. – T.: "O'zbekiston", 2019. – 400 b.

3. Mirziyoyev Sh.M. Milliy taraqqiyot yoʻlimizni qat'iyat bilan davom ettirib, yangi bosqichga koʻtaramiz. 1-JILD / Sh.M. Mirziyoyev. – T.: "Oʻzbekiston", 2018. – 592 b.

4. Mirziyoyev Sh.M. Buyuk kelajagimizni mard va olijanob halqimiz bilan birga quramiz. – T.: "O'zbekiston". 2017. – 488 b.

5. Mirziyoyev Sh.M. Milliy taraqqiyot yoʻlimizni qat'iyat bilan davom ettirib, yangi bosqichga koʻtaramiz – T.: "Oʻzbekiston". 2017. – 592 b.

II. Normativ-huquqiy hujjatlar

6. Oʻzbekiston Respublikasining Konstitutsiyasi. – T.: Oʻzbekiston, 2018.

7. Oʻzbekiston Respublikasining "Ta'lim toʻgʻrisida" gi Qonuni.

8. Oʻzbekiston Respublikasi Prezidentining 2015 yil 12 iyun "Oliy ta'lim muasasalarining rahbar va pedagog kadrlarini qayta tayyorlash va malakasini oshirish tizimini yanada takomillashtirish chora-tadbirlari toʻgʻrisida"gi PF-4732-sonli Farmoni.

9. Oʻzbekiston Respublikasi Prezidentining 2017 yil 7 fevral "Oʻzbekiston Respublikasini yanada rivojlantirish boʻyicha Harakatlar strategiyasi toʻgʻrisida"gi 4947-sonli Farmoni.

10. Oʻzbekiston Respublikasi Prezidentining 2017 yil 20 aprel "Oliy ta'lim tizimini yanada rivojlantirish chora-tadbirlari toʻgʻrisida"gi PQ-2909-sonli Qarori.

11. Oʻzbekiston Respublikasi Prezidentining 2018 yil 21 sentabr "2019-2021 yillarda Oʻzbekiston Respublikasini innovatsion rivojlantirish strategiyasini tasdiqlash toʻgʻrisida"gi PF-5544-sonli Farmoni.

12. Oʻzbekiston Respublikasi Prezidentining 2019 yil 27 may "Oʻzbekiston Respublikasida korrupsiyaga qarshi kurashish tizimini yanada takomillashtirish chora-tadbirlari toʻgʻrisida"gi PF-5729-son Farmoni.

13. Oʻzbekiston Respublikasi Prezidentining 2019 yil 17 iyun "2019-2023 yillarda Mirzo Ulugʻbek nomidagi Oʻzbekiston Milliy universitetida talab yuqori boʻlgan malakali kadrlar tayyorlash tizimini tubdan takomillashtirish va ilmiy salohiyatini rivojlantiri chora-tadbirlari toʻgʻrisida"gi PQ-4358-sonli Qarori.

14. Oʻzbekiston Respublikasi Prezidentining 2019 yil 27 avgust "Oliy ta'lim muassasalari rahbar va pedagog kadrlarining uzluksiz malakasini oshirish tizimini joriy etish toʻgʻrisida"gi

PF-5789-sonli Farmoni.

15. Oʻzbekiston Respublikasi Prezidentining 2019 yil 8 oktabr "Oʻzbekiston Respublikasi oliy ta'lim tizimini 2030 yilgacha rivojlantirish konsepsiyasini tasdiqlash toʻgʻrisida"gi

PF-5847-sonli Farmoni.

Ш. Махсус адабиётлар

16. Andrea Prosperetti, Advanced Mathematics for Applications, Cambridge University Press, 2011.

17. Bauer, H. Measure and Integration Theory, Berlin: de Gruyter, ISBN-13: 978-3110167191, 2001.

18. Bear, H.S. A Primer of Lebesgue Integration, San Diego: Academic Press, 2nd Edition, 2001.

19. Bobenko A.I. (Ed.) Advances in Discrete Differential Geometry//Springer, 2016. — 439 p. — (Mathematics). — ISBN: 3662504464

20. Bogachev, V. I. Measure theory, Berlin: Springer, 2006.

21. David Spencer "Gateway", Students book, Macmillan 2012.

22. English for Specific Purposes. All Oxford editions. 2010. 204.

23. Evan M. Glazer, John W. McConnell Real-Life Math: Everyday Use of Mathematical Concepts//2013, ISBN-13: 978-0313319983

24. Georgii H.O. Gibbs measures and phase transitions. Berlin:de Gruyter, 657 p., 2011.

25. H.Q. Mitchell "Traveller" B1, B2, MM Publiciations. 2015. 183.

26. H.Q. Mitchell, Marileni Malkogianni "PIONEER", B1, B2, MM Publiciations. 2015. 191.

27. I. M. Rikhsiboev and N. S. Mohamed, Engineering Mathematics 2, Malaysia, 2019.

28. Jim Libby, Math for Real Life: Teaching Practical Uses for Algebra, Geometry and Trigonometry// 2019, 234p. ISBN: 978-1476667492

29. Karl Berry, The TEX Live Guide—2020

30. Lindsay Clandfield and Kate Pickering "Global", B2, Macmillan. 2013. 175.

31. Manfredo P. Do Carmo. Differential geometry of Curves and surface // Dover publications, Inc. Mineola, New York, 2016. – 529 pp.

32. Maple 15 user manual, Maplesoft, 2016, 462 p.

33. Margaret L. Lial, Thomas W. Hungerford, John P. Holcomb, Bernadette Mullins, Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition), Pearson6 2018.

34. Rao, M. M. Random and Vector Measures, Series on Multivariate Analysis, 9, World Scientific, 2012.

35. Steve Taylor "Destination" Vocabulary and grammar", Macmillan 2010.

36. Tao, Terence. An Introduction to Measure Theory. Providence, R.I.: American Mathematical Society, 2019.

37. Weaver, Nik Measure Theory and Functional Analysis. World Scientific, 2013, 423 p.

38. Авилова Л.В., Болотюк В.А., Болотюк Л.А. Аналитическая геометрия и линейная алгебра// 2013. Издание: 1-е изд. 421 с.

39. Александров А.Д., Нецветаев Н.Ю. Геометрия, М.: Наука, 1990. – 672 с.

40. Белогуров А.Ю. Модернизация процесса подготовки педагога в контексте инновационного развития общества: Монография. — М.: МАКС Пресс, 2016. — 116 с. ISBN 978-5-317-05412-0.

41. Гулобод Қудратуллоҳ қизи, Р.Ишмуҳамедов, М.Нормуҳаммедова. Анъанавий ва ноанъанавий таълим. – Самарқанд: "Имом Буҳорий ҳалқаро илмий-тадқиқот маркази" нашриёти, 2019. 312 б.

42. Ибраймов А.Е. Масофавий ўкитишнинг дидактик тизими. методик кўлланма/ тузувчи. А.Е.Ибраймов. – Тошкент: "Lesson press", 2020. 112 бет.

43. Ишмуҳамедов Р.Ж., М.Мирсолиева. Ўқув жараёнида инновацион таълим технологиялари. – Т.: «Fan va texnologiya», 2014. 60 б.

44. Кирянов Д. Mathcad 15/Mathcad Prime 1.0. - СПб.: БХВ-Петербург, 2012. — 432 с.

45. Муслимов Н.Ава бошқалар. Инновацион таълим технологиялари. Ўқувметодик қўлланма. – Т.: "Sano-standart", 2015. – 208 б.

46. Образование в цифровую эпоху: монография / Н. Ю. Игнатова; М-во образования и науки РФ; ФГАОУ ВО «УрФУ им. первого Президента России Б.Н.Ельцина», Нижнетагил. технол. ин-т (фил.). – Нижний Тагил: НТИ (филиал) УрФУ, 2017. – 128 с. <u>http://elar.urfu.ru/bitstream/10995/54216/1/978-5-9544-0083-0_2017.pdf</u>

47. Олий таълим тизимини ракамли авлодга мослаштириш концепцияси. Европа Иттифоки Эрасмус+ дастурининг кўмагида. <u>https://hiedtec.ecs.uni-ruse.bg/pimages/34/3._UZBEKISTAN-CONCEPT-UZ.pdf</u>

48. Современные образовательные технологии: педагогика и психология: монография. Книга 16 / О.К. Асекретов, Б.А. Борисов, Н.Ю. Бу-гакова и др. – Новосибирск: Издательство ЦРНС, 2015. – 318 с. <u>http://science.vvsu.ru/files/5040BC65-273B-44BB-98C4-CB5092BE4460.pdf</u>

49. Усмонов Б.Ш., Ҳабибуллаев Р.А. Олий ўқув юртларида ўқув жараёнини кредит-модуль тизимида ташкил қилиш.–Т.: "ТКТИ" нашриёти, 2019.

IV. Интернет сайтлар

50. Ўзбекистон Республикаси Олий ва ўрта махсус таълим вазирлиги: www.edu.uz.

51. Бош илмий-методик марказ: www.bimm.uz

52. www. Ziyonet. Uz

53. Открытое образование. <u>https://openedu.ru/</u>

54. https://www.ucl.ac.uk/ioe/courses/graduate-taught/mathematics-education-

ma

55. https://www.onlinestudies.com/Courses/Mathematics/Europe/

56. <u>https://online-learning.harvard.edu/catalog?keywords=mathematics-</u>

&op=Search

57. https://www.msu.ru/en/projects/proekt-vernadskiy/news/math-teachers-advanced-training.html

58. https://english.spbu.ru/education/graduate/master-in-english/90-program-master/2455-advanced-mathematics.

II. MODULNI O'QITISHDA FOYDALANILADIGAN INTREFAOL TA'LIM METODLARI.

"SWOT-tahlil" metodi.

Metodning maqsadi: mavjud nazariy bilimlar va amaliy tajribalarni tahlil qilish, taqqoslash orqali muammoni hal etish yo'llarni topishga, bilimlarni mustahkamlash, takrorlash, baholashga, mustaqil, tanqidiy fikrlashni, nostandart tafakkurni shakllantirishga xizmat qiladi.

S – (strength)	• кучли томонлари
W – (weakness)	• заиф, кучсиз томонлари
O – (opportunity)	• имкониятлари
T – (threat)	• тўсиқлар

Namuna: Xorijiy tillarni o'qitishda multiedia ilovalarini qo'llash, yaratish va foydalanishda SWOT tahlilini ushbu jadvalga tushiring.

	Ijtimoiy - gumanitar fanlarni o'qitishda	Multimedia ilovalarini yaratish
S	multiedia ilovalarini qo'llash, yaratish va	texnik va dasturiy vositalarining
	foydalanishning kuchli tomonlari	turli tumanligi
	Ijtimoiy - gumanitar fanlarni o'qitishda	Ba'zi texnik nosozliklar, texnikadan
W	multiedia ilovalarini qo'llash, yaratish va	foydalanish imkoniyatlarining
	foydalanishning kuchsiz tomonlari	chegaralanganligi
	Ijtimoiy - gumanitar fanlarni o'qitishda	Multimedia ilovalarini yaratishda
0	multiedia ilovalarini qo'llash, yaratish va	rag'batlantiruvchi davlat
	foydalanishning imkoniyatlari (ichki)	grantlarning mavjudligi
	To'siqlar (tashqi)	Mualliflik xuquqini olmagan holda
Т		ilovaning o'zgalar tomonidan
		o'zlashtirilishi

Xulosalash» (Rezyume, Veer) metodi

Metodning maqsadi: Bu metod murakkab, ko'ptarmoqli, mumkin qadar, muammoli xarakteridagi mavzularni o'rganishga qaratilgan. Metodning mohiyati shundan iboratki, bunda mavzuning turli tarmoqlari bo'yicha bir xil axborot beriladi va ayni paytda, ularning har biri alohida aspektlarda muhokama etiladi. Masalan, muammo ijobiy va salbiy tomonlari, afzallik, fazilat va kamchiliklari, foyda va zararlari bo'yicha o'rganiladi. Bu interfaol metod tanqidiy, tahliliy, aniq mantiqiy fikrlashni muvaffaqiyatli rivojlantirishga hamda o'quvchilarning mustaqil g'oyalari, fikrlarini yozma va og'zaki shaklda tizimli bayon etish, himoya qilishga imkoniyat yaratadi.

"Xulosalash" metodidan ma'ruza mashg'ulotlarida individual va juftliklardagi ish shaklida, amaliy va seminar mashg'ulotlarida kichik guruhlardagi ish shaklida mavzu yuzasidan bilimlarni mustahkamlash, tahlili qilish va taqqoslash maqsadida foydalanish mumkin.

Методни амалга ошириш тартиби:
тренер-ўқитувчи иштирокчиларни 5-6 кишидан иборат кичик гуруҳларга ажратади;
тренинг мақсади, шартлари ва тартиби билан иштирокчиларни таништиргач, ҳар бир гуруҳга умумий муаммони таҳлил қилиниши зарур бўлган қисмлари туширилган тарқатма материалларни
ҳар бир гуруҳ ўзига берилган муаммони атрофлича таҳлил қилиб, ўз мулоҳазаларини тавсия этилаётган сҳема бўйича тарқатмага ёзма баён қилади;
навбатдаги босқичда барча гурухлар ўз тақдимотларини ўтказадилар. Шундан сўнг, тренер томонидан тахлиллар умумлаштирилади, зарурий ахборотлр билан тўлди <u>рилади ва мавзу</u>

Namuna:

Multimediali taqdimot yaratuvchi dasturlar							
Microsoft		Course	elab Kingsoft	Prezi			
Powe	rPoint						
afzalligi	kamchiligi	afzalligi	kamchiligi	afzalligi	kamchiligi		
Xulosa:							

"Keys-stadi" metodi

«Keys-stadi» - inglizcha so'z bo'lib, («case» – aniq vaziyat, hodisa, «stadi» – o'rganmoq, tahlil qilmoq) aniq vaziyatlarni o'rganish, tahlil qilish asosida o'qitishni amalga oshirishga qaratilgan metod hisoblanadi. Mazkur metod dastlab 1921 yil Garvard universitetida amaliy vaziyatlardan iqtisodiy boshqaruv fanlarini o'rganishda foydalanish tartibida qo'llanilgan. Keysda ochiq axborotlardan yoki aniq voqeahodisadan vaziyat sifatida tahlil uchun foydalanish mumkin. Keys harakatlari o'z ichiga quyidagilarni qamrab oladi: Kim (Who), Qachon (When), Qaerda (Where), Nima uchun (Why), Qanday/ Qanaqa (How), Nima-natija (What).

Ish	Faoliyat shakli		
bosqichlari	va mazmuni		
1-bosqich: Keys va uning axborot ta'minoti bilan tanishtirish	 ✓ yakka tartibdagi audio-vizual ish; ✓ keys bilan tanishish(matnli, audio yoki media shaklda); 		
	 ✓ axborotni umumiashtirish; ✓ axborot tahlili; ✓ muammolarni aniqlash 		
2-bosqich: Keysni	\checkmark individual va guruhda ishlash;		
aniqlashtirish va o'quv	✓ muammolarni dolzarblik		
topshirig'ni belgilash	ierarxiyasini aniqlash;		
	🗸 asosiy muammoli vaziyatni		
	belgilash		
3-bosqich: Keysdagi	\checkmark individual va guruhda ishlash;		
asosiy muammoni tahlil etish	✓ muqobil yechim yo'llarini ishlab		
orqali o'quv topshirig'ining	chiqish;		
yechimini izlash, hal etish	\checkmark har bir yechimning imkoniyatlari		
yo'llarini ishlab chiqish	va to'siqlarni tahlil qilish;		
	 muqobil yechimlarni tanlash 		
4-bosqich: Keys yechimini	✓ yakka va guruhda ishlash;		
yechimini shakllantirish va	🗸 muqobil variantlarni amalda		
asoslash, taqdimot.	qo'llash imkoniyatlarini asoslash;		
	✓ ijodiy-loyiha taqdimotini		
	tayyorlash;		
	🗸 yakuniy xulosa va vaziyat		
	yechimining amaliy aspektlarini yoritish		

"Keys metodi" ni amalga oshirish bosqichlari

Keys. Biror bir mavzuni o'rgatuvchi multimediali o'quv darsini yaratish.

«FSMU» metodi

Texnologiyaning maqsadi: Mazkur texnologiya ishtirokchilardagi umumiy fikrlardan xususiy xulosalar chiqarish, taqqoslash, qiyoslash orqali axborotni o'zlashtirish, xulosalash, shuningdek, mustaqil ijodiy fikrlash ko'nikmalarini shakllantirishga xizmat qiladi. Mazkur texnologiyadan ma'ruza mashg'ulotlarida, mustahkamlashda, o'tilgan mavzuni so'rashda, uyga vazifa berishda hamda amaliy mashg'ulot natijalarini tahlil etishda foydalanish tavsiya etiladi.

Texnologiyani amalga oshirish tartibi:

- qatnashchilarga mavzuga oid bo'lgan yakuniy xulosa yoki g'oya taklif etiladi;

- har bir ishtirokchiga FSMU texnologiyasining bosqichlari yozilgan qog'ozlarni tarqatiladi:

- ishtirokchilarning munosabatlari individual yoki guruhiy tartibda taqdimot qilinadi.

FSMU tahlili qatnashchilarda kasbiy-nazariy bilimlarni amaliy mashqlar va mavjud tajribalar asosida tezroq va muvaffaqiyatli o'zlashtirilishiga asos bo'ladi.

"Assesment" metodi

Metodning maqsadi: mazkur metod ta'lim oluvchilarning bilim darajasini baholash, nazorat qilish, o'zlashtirish ko'rsatkichi va amaliy ko'nikmalarini tekshirishga yo'naltirilgan. Mazkur texnika orqali ta'lim oluvchilarning bilish faoliyati turli yo'nalishlar (test, amaliy ko'nikmalar, muammoli vaziyatlar mashqi, qiyosiy tahlil, simptomlarni aniqlash) bo'yicha tashhis qilinadi va baholanadi.

Metodni amalga oshirish tartibi:

"Assesment" lardan ma'ruza mashg'ulotlarida talabalarning yoki qatnashchilarning mavjud bilim darajasini o'rganishda, yangi ma'lumotlarni bayon qilishda, seminar, amaliy mashg'ulotlarda esa mavzu yoki ma'lumotlarni o'zlashtirish darajasini baholash, shuningdek, o'z-o'zini baholash maqsadida individual shaklda foydalanish tavsiya etiladi. SHuningdek, o'qituvchining ijodiy yondashuvi hamda o'quv maqsadlaridan kelib chiqib, assesmentga qo'shimcha topshiriqlarni kiritish mumkin.

Namuna. Har bir katakdagi to'g'ri javob 5 ball yoki 1-5 balgacha baholanishi mumkin.

"Insert" metodi

Metodning maqsadi: Mazkur metod o'quvchilarda yangi axborotlar tizimini qabul qilish va bilmlarni o'zlashtirilishini yengillashtirish maqsadida qo'llaniladi, shuningdek, bu metod o'quvchilar uchun xotira mashqi vazifasini ham o'taydi.

Metodni amalga oshirish tartibi:

> o'qituvchi mashg'ulotga qadar mavzuning asosiy tushunchalari mazmuni yoritilgan input-matnni tarqatma yoki taqdimot ko'rinishida tayyorlaydi;

> yangi mavzu mohiyatini yorituvchi matn ta'lim oluvchilarga tarqatiladi yoki taqdimot ko'rinishida namoyish etiladi;

➢ ta'lim oluvchilar individual tarzda matn bilan tanishib chiqib, o'z shaxsiy qarashlarini maxsus belgilar orqali ifodalaydilar. Matn bilan ishlashda talabalar yoki qatnashchilarga quyidagi maxsus belgilardan foydalanish tavsiya etiladi:

Belgilar		2-	3-
	matn	matn	matn
"V" – tanish ma'lumot.			
"?" – mazkur ma'lumotni tushunmadim, izoh			
kerak.			
"+" bu ma'lumot men uchun yangilik.			
"– " bu fikr yoki mazkur ma'lumotga qarshiman?			

Belgilangan vaqt yakunlangach, ta'lim oluvchilar uchun notanish va tushunarsiz bo'lgan ma'lumotlar o'qituvchi tomonidan tahlil qilinib, izohlanadi, ularning mohiyati to'liq yoritiladi. Savollarga javob beriladi va mashg'ulot yakunlanadi.

"Tushunchalar tahlili" metodi

Metodning maqsadi: mazkur metod talabalar yoki qatnashchilarni mavzu buyicha tayanch tushunchalarni o'zlashtirish darajasini aniqlash, o'z bilimlarini mustaqil ravishda tekshirish, baholash, shuningdek, yangi mavzu buyicha dastlabki bilimlar darajasini tashhis qilish maqsadida qo'llaniladi.

Metodni amalga oshirish tartibi:

• ishtirokchilar mashg'ulot qoidalari bilan tanishtiriladi;

• o'quvchilarga mavzuga yoki bobga tegishli bo'lgan so'zlar, tushunchalar nomi tushirilgan tarqatmalar beriladi (individual yoki guruhli tartibda);

• o'quvchilar mazkur tushunchalar qanday ma'no anglatishi, qachon, qanday holatlarda qo'llanilishi haqida yozma ma'lumot beradilar;

• belgilangan vaqt yakuniga yetgach o'qituvchi berilgan tushunchalarning tugri va tuliq izohini uqib eshittiradi yoki slayd orqali namoyish etadi;

• har bir ishtirokchi berilgan tugri javoblar bilan uzining shaxsiy munosabatini taqqoslaydi, farqlarini aniqlaydi va o'z bilim darajasini tekshirib, baholaydi.

Tushunchalar	Sizningcha bu tushuncha qanday ma'noni anglatadi?	Qo'shim cha ma'lumot
Animatsiya	tasvirlar ketma-ketligi natijasida xarakat hosil qilinadi	
Axborot texnologiyalari	axborotni yig'ish, qayta ishlash, chiqarish va tarqatishda qo'llaniladigan dasturiy-apparat va usullar majmui	
	o'lchovli muhit bo'lib, muhit va o'zaro muloqotni o'rnatib beruvchi	
o'quv resurs	Ta'lim jarayonida qo'llaniladigan o'quv materiali	
Multimedianing apparat vositasi	multimedia komponentalari bilan ishlashga mo'ljallangan katta xotiraga ega kompyuter apparat vositalari	

Namuna: "Moduldagi tayanch tushunchalar tahlili"

Izoh: Ikkinchi ustunchaga qatnashchilar tomonidan fikr bildiriladi. Mazkur tushunchalar haqida qo'shimcha ma'lumot glossariyda keltirilgan.

Venn Diagrammasi metodi

Metodning maqsadi: Bu metod grafik tasvir orqali o'qitishni tashkil etish shakli bo'lib, u ikkita o'zaro kesishgan aylana tasviri orqali ifodalanadi. Mazkur metod turli tushunchalar, asoslar, tasavurlarning analiz va sintezini ikki aspekt orqali ko'rib chiqish, ularning umumiy va farqlovchi jihatlarini aniqlash, taqqoslash imkonini beradi.

Metodni amalga oshirish tartibi:

• ishtirokchilar ikki kishidan iborat juftliklarga birlashtiriladilar va ularga ko'rib chiqilayotgan tushuncha yoki asosning o'ziga xos, farqli jihatlarini (yoki aksi) doiralar ichiga yozib chiqish taklif etiladi;

• navbatdagi bosqichda ishtirokchilar to'rt kishidan iborat kichik guruhlarga birlashtiriladi va har bir juftlik o'z tahlili bilan guruh a'zolarini tanishtiradilar;

• juftliklarning tahlili eshitilgach, ular birgalashib, ko'rib chiqilayotgan muammo yohud tushunchalarning umumiy jihatlarini (yoki farqli) izlab topadilar, umumlashtiradilar va doirachalarning kesishgan qismiga yozadilar.

•

"Blits-o'yin" metodi

Metodning maqsadi: o'quvchilarda tezlik, axborotlar tizmini tahlil qilish, rejalashtirish, prognozlash ko'nikmalarini shakllantirishdan iborat. Mazkur metodni baholash va mustahkamlash maksadida qo'llash samarali natijalarni beradi.

Metodni amalga oshirish bosqichlari:

1. Dastlab ishtirokchilarga belgilangan mavzu yuzasidan tayyorlangan topshiriq, ya'ni tarqatma materiallarni alohida-alohida beriladi va ulardan materialni sinchiklab o'rganish talab etiladi. SHundan so'ng, ishtirokchilarga to'g'ri javoblar tarqatmadagi «yakka baho» kolonkasiga belgilash kerakligi tushuntiriladi. Bu bosqichda vazifa yakka tartibda bajariladi.

2. Navbatdagi bosqichda trener-o'qituvchi ishtirokchilarga uch kishidan iborat kichik guruhlarga birlashtiradi va guruh a'zolarini o'z fikrlari bilan guruhdoshlarini tanishtirib, bahslashib, bir-biriga ta'sir o'tkazib, o'z fikrlariga ishontirish, kelishgan holda bir to'xtamga kelib, javoblarini «guruh bahosi» bo'limiga raqamlar bilan belgilab chiqishni topshiradi. Bu vazifa uchun 15 daqiqa vaqt beriladi.

3. Barcha kichik guruhlar o'z ishlarini tugatgach, to'g'ri harakatlar ketma-ketligi trener-o'qituvchi tomonidan o'qib eshittiriladi, va o'quvchilardan bu javoblarni «to'g'ri javob» bo'limiga yozish so'raladi.

4. «To'g'ri javob» bo'limida berilgan raqamlardan «yakka baho» bo'limida berilgan raqamlar taqqoslanib, farq bulsa «0», mos kelsa «1» ball quyish so'raladi. SHundan so'ng «yakka xato» bo'limidagi farqlar yuqoridan pastga qarab qo'shib chiqilib, umumiy yig'indi hisoblanadi.

5. Xuddi shu tartibda «to'g'ri javob» va «guruh bahosi» o'rtasidagi farq chiqariladi va ballar «guruh xatosi» bo'limiga yozib, yuqoridan pastga qarab qo'shiladi va umumiy yig'indi keltirib chiqariladi.

6. Trener-o'qituvchi yakka va guruh xatolarini to'plangan umumiy yig'indi bo'yicha alohida-alohida sharhlab beradi.

7. Ishtirokchilarga olgan baholariga qarab, ularning mavzu bo'yicha o'zlashtirish darajalari aniqlanadi.

«Elektron o'quv resurslarini yaratish» ketma-ketligini joylashtiring.

O'zingizni tekshirib ko'ring!

Harakatlar mazmuni	Yakka baho	Yakka xato	To'g'ri javob	Guruh bahosi	Guruh xatosi

"Brifing" metodi

"Brifing"- (ing. briefing-qisqa) biror-bir masala yoki savolning muhokamasiga bag'ishlangan qisqa press-konferentsiya.

O'tkazish bosqichlari:

- 1. Taqdimot qismi.
- 2. Muhokama jarayoni (savol-javoblar asosida).

Brifinglardan trening yakunlarini tahlil qilishda foydalanish mumkin. SHuningdek, amaliy o'yinlarning bir shakli sifatida qatnashchilar bilan birga dolzarb mavzu yoki muammo muhokamasiga bag'ishlangan brifinglar tashkil etish mumkin bo'ladi. Talabalar yoki tinglovchilar tomonidan yaratilgan mobil ilovalarning taqdimotini o'tkazishda ham foydalanish mumkin.

"Portfolio" metodi

"Portfolio" – (ital. portfolio-portfel, ingl. hujjatlar uchun papka) ta'limiy va kasbiy faoliyat natijalarini autentik baholashga xizmat qiluvchi zamonaviy ta'lim texnologiyalaridan hisoblanadi. Portfolio mutaxassisning saralangan o'quv-metodik ishlari, kasbiy yutuqlari yig'indisi sifatida aks etadi. Jumladan, talaba yoki tinglovchilarning modul yuzasidan o'zlashtirish natijasini elektron portfoliolar orqali tekshirish mumkin bo'ladi. Oliy ta'lim muassasalarida portfolioning quyidagi turlari mavjud:

Faoliyat	Ish shakli				
turi	Individual	Guruhiy			
Ta'limiy	Talabalar portfoliosi, bitiruvchi,	Talabalar guruhi, tinglovchilar			
faoliyat	doktorant, tinglovchi portfoliosi	guruhi portfoliosi va boshq.			
	va boshq.				
Pedagogik	O'qituvchi portfoliosi, rahbar	Kafedra, fakultet, markaz, OTM			
faoliyat	xodim portfoliosi	portfoliosi va boshq.			

III. NAZARIY MASHGULOTLAR

1-mavzu: MathCAD ва Maple тизими.

- 1. Математик ифодалар ва функциялар.
- 2. MathCAD ва Maple тизимида ифодалаш.

Tayanch so'zlar: matematik paket, matematik masalalar echich, interfeys,

Matematik ifodalar va ichki funksiyalar.

Ichki funksiyalarning ko`plari bir nechta argumentga ega, ularning parametrlari va nomlarini esda saqlash qiyin. Shuning uchun quyidagicha ish yuritish ma'qul:

Ifodalardagi ichki funksiyalarni kiritish uchun:

1) ifodaga funksiyani qo`yish kerak bo`lgan joyni aniqlash.

2) f(x) yozuvli tugmani bosish.

3) function category (funksiya kategoriyasi) ro`yxati paydo bo`ladi, insert function (funksiyani qo`yish) muloqot oynasidan kerakli funksiya kategoriyasini tanlash.

4) function name (funksiya nomi) ro`yxatidan ichki funksiyaning nomini tanlash.

5) ok tugmasini bosish.

7) yetishmayotgan argumentlarni kiriting va natijani olish uchun = yoki > belgisini kiritish zarur.

Ko`pgina matematik ifodalarni Calculator paneli yordamida kiritish mumkin.

MathCad interfeysi

Mathcad turli-tuman ilmiy va muxandislik hisoblashlarni bajaruvchi matematik redaktordir. Mathcad vositasida elementar arifmetik amallardan tortib murrakkab sonli metodlar realizastiyasini amalga oshirish mumkin. Sodda interfeysi, matematik hisoblashlarning ko`rgazmaliligi,keng standart funkstiyalar va sonli metodlar kutubxonasi mavjudligi, simvolli hisoblash xamda natijalarni turli shakllarda taqdim etish imkoniyatlari Mathcad dasturini eng ommaviy matematik dasturiy ta'minot darajasiga chiqishiga sabab bo`ldi. Mathcad tarkibiga bir-biri bilan integrallashgan bir necha kompanent kiradi. Bular:

• Matematik ifoda va matnlarni kiritish, taxrirlash va formatlash imkonini beruvchi matnli muxarrir;

• Standart sonli metodlardan foydalanib, kiritilgan formulalar bo`yicha hisoblashlarni bajaruvchi prostessor;

• Analitik hisoblarni bajarishga imkon beruvchi simvolli prostessor;

• Interaktiv elektron kitob ko`rinishida matematik va muxandislik ma'lumotnomasi;

Mathcad dasturi muhitida quyidagi masalalarni hal etish mumkin:

• Mathcad formula redaktori yordamida matematik formulalar kiritish. Ushbu redactor imkoniyatlari Microsoft Word formula redaktoridan qolishmaydi;

• Kiritilgan formulalar bo`yicha matematik hisoblashlar birdaniga bajariladi;

- Turli tipdagi grafiklarni xujjatga joylashtirish;
- Turli formatdagi fayllarga ma'lumotlarni kiritish va chiqarish;
- Xujjatlarni Mathcad da bosmaga chiqarish;

• Yaratilgan xujjatlarni elektron kitob ko`rinishida birlashtirish; Mathcad dasturi komponentlari turli-tuman matematik xisoblashlar uchun qulay muxit bo`lib, bir vaqtning o`zida bu xisoblashlar natijalarini xujjatlashtirish imkonini beradi.

Dasturni yuklash buyrug`idan keyin Mathcad dasturi oynasi ekranga chiqariladi. Uning ko`rinishi rasmda ifodalangan.

Mathcad - [Без названия:1]	Формат Инструменты Символы	Окно Справка	_ <u>-</u> -
□ • □ □ <th>□ "" ↓ ftŷ ₽ = 8; 10 ▼ B I U ≡ Ξ My Site</th> <th>↓ 100% ▼ (2) ★ Ξ Ξ Ξ ×² ×; ▼ \$</th> <th></th>	□ "" ↓ ftŷ ₽ = 8; 10 ▼ B I U ≡ Ξ My Site	↓ 100% ▼ (2) ★ Ξ Ξ Ξ × ² ×; ▼ \$	
$\frac{1}{\frac{Apx\phimetrika}{\pi}} = \frac{2}{2}$ sin cos tan ln log nl i x $\Gamma^{n}\Gamma^{n}$ $e^{x} \frac{1}{x} () x^{2} x^{2}$ $\pi 7 8 9 /$ $\mathbf{r}_{i}^{2} 4 5 6 x$ $\div 1 2 3 +$ $\coloneqq 0 - =$	2 3 Графики № № <i>₩ ₩</i> № <i>₩ ₩</i> № <i>₩ ₩</i> № <i>№</i> №	4. 5 Base . X $= := \frac{d}{dx} \frac{d^2}{dx^3}$ $= \Rightarrow \qquad 0, \int_{a}^{b} > \leq \frac{d}{dx}$ x f x f y $x^f y$ $x^f y$ $\prod_{n \to a} \sum_{n \to a} V \oplus$	A
7 Tporpamerpobance ⊠ Add Line ← if otherwise for while break continue return on error	8 β γ δ ε ζ α β γ δ ε ζ γ θ ε κ λ μ ν ξ o π ρ σ τ v ϕ χ ψ ω Λ B Γ Δ E Z H Θ I K Λ M N Ξ O Π P Σ T Y Φ X Y Ω	9 + \frown \bullet Modifiers float complex assume solve simplify substitute factor expand coeffs collect series parfrac fourier laplace ztrans invfourier invlaplace invztrans $h^{T} \rightarrow h^{-1} \rightarrow h \rightarrow$	

Quyida Mathcad dasturi asosiy menyusi bo`limlari keltirilgan.

• Mathcad dasturi oynasi tizimi menyusini chiqaruvchi tugma.

• File- fayl va xujjatlarni yaratish, saqlash, electron pochtadan jo`natish yoki printerda chop etish bilan bog`liq buyruqlar to`plami;

• Edit- matnlarni tahrirlash uchun mo`ljallangan bo`yruqlar to`plami;

•View- mathcad ishchi oynasida xujjatlarning tashqi ko`rinishini boshqaruvchi buyruqlar to`plami;

•Insert- xujjatga turli ob'ektlarni joylashtirish uchun xizmat qiluvchi buyruqlar to`plami;

• Format- matn, formula va grafiklarni formatlovchi buyruqlar to`plami;

- Math- hisoblash jarayonini boshqaruvchi buyruqlar to`plami;
- Symbolics- simvolli hisoblashlar bo`yruqlari to`plami;
- Windows- turli xujjat oynalarini ekranda jaylashtirish buyruqlari to`plami;
- Help- yordamchi axborotlarni chiqarish buyruqlari;

Uskunalar paneli

Uskunalar paneli ko`p ishlatiluvchi buyruqlarga tez murojat etish imkoniyatini beradi. Bu yerda "Standart uskunalar paneli", "matematik uskunalar paneli" va "formatlash uskunalar paneli" niajratish mumkin.

MathCad da algebraik hisoblashlar

Operatorlar. Mathcad dasturidagi har bir operator biror matematik amalni misol

ko`rinishida ifodalaydi. Ular quyidagi turlarga bo`linadi: Arifmetik operatorlar, Hisoblash operatorlari, Mantiqiy operatorlar, Matritsa operatorlari, Ifoda operatorlari.

Арифметика				×
sin	cos	tan	In	log
n!	i	×	r	",
e ^X	$\frac{1}{\times}$	()	\times^2	$\times^{\!$
π	7	8	9	1
t_1^1	4	5	6	×
÷	1	2	З	+
:=		0		=

Arifmetik operatorlar. Asosiy arifmetik amallarni ifodalovchi operatorlar Calculator bo`limida joylashgan (Rasm 1).

- 1. Qo`shish va ayirish: +/-;
- 2. Ko`paytirish va bo`lish: *,/;
- 3. Factorial: !;
- 4. Sonning moduli:;
- 5. Kvadrat ildiz: ;
- 6. n-darajali ildiz ;
- 7. x ni y darajaga ko`tarish: x^y;
- 8. Qavslar;
- 9. O`zlashtirish operatori;

Mathcad da koʻphadning ildizlarini topish

Koʻphad ildizlarini topish uchun Polyroot funksiyasidan foydalaniladi. U bir paytning oʻzida kuphadning barcha ildizlarini topadi. Bunda **k** polinomning (kupxadning) ozod hadidan boshlab barcha koeffitsientlaridan iborat vektor. Nol koeffitsientlarni tashlab ketish mumkin emas.

Agar ko`phad **n** ta ildizga ega bo'lsa **b K** vektor **n+1** ta koeffitsientni o'z ichiga boshlangʻich yaqinlashishni kiritish oladi. Bunda kerak emas. **Polyroot** funksiyasi uchun ikki hil metoddan birini tanlash mumkin. Ulardan biri bo`yicha bo`lib. Lagerra metodi sukunat shu tanlanadi. metod Ushbu metodlarni tanlash uchun quyidagi amallarni bajarish kerak:

1. **Polyroots** soʻzi ustida sichqoncha oʻng tugmasi bosiladi natijada kontekst menyu chaqiriladi.

2. Lagerra yoki Matritsa usullaridan biri tanlanadi.

3. Funksiyadan tashqarida sichqonchaning chap tugma bosiladi. Shunda tanlangan usul bo`yicha ildizlar hisoblanadi.

Hisoblash natijalarini vektor koʻrinishida yoki grafik koʻrinishida chiqarish mumkin. Bunda boshlangich yaqinlashish faqat bir marta beriladi, keyingi qadamlarda

oldingi hisoblashlarda boshlangʻich yaqinlashish deb olinadi. $F(b,c,x)=x^2-bx-c$ tenglamani yechishni koʻraylik. Uning yechimlari **b** va **c** parametlarning boshlangʻich qiymatlariga bogʻliq.

Parametlardan biriga biror sonli qiymat berib, ikkinchisini diskret oʻzgaruvchi sifatida olsak, **root** funksiyasi yordaimda **b** va **c** parametlarning berilgan qiymatlariga mos yechimlarni topish mumkin. Buni c=4 boʻlganda b diskret oʻzgaruvchining bir nechta qiymatlari uchun ildizlar koʻrsatilgan.

Mathcad da tenglama yoki sistemalar iteratsion(yaqinlashish) usulda yechiladi. Shuning uchun yechishdan oldin barcha ildizlarning boshlangʻich yaqinlashishlarini berish kerak.

Mathcad da **ROOT** funksiyasi

Bu funksiya bitta noma'lumli bitta tenglamani yechishda ishlatiladi. Bu funksiyaga quyidagicha murojaat qilinadi:

root (f(x),x) bu erda f(x)-nolga teng bo`lgan ifoda, x argument. Bunda x ning boshlang'ich qiymatiga yaqin bo'lgan ildiz hisoblanadi. Agar ildizlar bir nechta bo'lsa, ularni topish uchun har biriga boshlang'ich qiymat berish kerak. Tenglamani yechishdan oldin uning ildizlari bor yo'qligini bilish uchun uning grafigini taqriban chizib ko'rib qurish va boshlangich yaqinlashishlarni grafikka qarab tanlash maqul.

Mathcad boshlang'ich yaqinlashishning oʻrniga izlanayotgan yechim yotgan oraliqni koʻrsatish imkonini beradi. Bunday xolda **roo**t funksiyasi toʻrtta parametrga ega boʻladi:

Root(f(x),x,a,b). Bu erda a va b tenglamaning ildizlari yotgan intervalning Intervalning ichida bittadan ildiz boʻlmasligi kerak. chegaralari. ortiq Chunki Mathcad shu intervaldagi faqat bitta ildiznigina ekranga chiqaradi. Intervalning chegaralarida funksiya turli qiymatlar qabul qilishi kerak, aks holda ildiz topilmaydi.

Masalan, **x³-5x-1=0**. buni **root** funksiyasiga qoʻyamiz:

root(x3-5x-1,x)=-0,202

x=0 dagi qiymati root (f(x),x)=-0,202 ga teng x ning oʻrniga bir nechta qiymat berib, boshqa yechimlarni ham topish mumkin.

Tenglamani foydalanuvchi funksiyasi yordamida yechish. Agar tenglamani undagi bitta yoki bir nechta parametrlarning turli qiymatlarida koʻp marta yechishga to`gʻri kelsa, oʻz funksiyamizni yaratishimiz zarur. Uni yechish uchun koʻrsatilgan funksiya kamida parametr qiymatini yoki bu parametrlarning oʻzgarish diapazonini bilish kerak.

Masalan $f(x,y)=x^2-y^2x+2$ funksiyada u oʻzgaruvchini parametr deb qarasak, uning xar bir qiymatiga mos tenglamaning ildizini topamiz. (f(x)=0).

Mathcad matematik paketi

Mathcad paketi hisobchi-muxandislar uchun mo`ljallangan. Matematik mutaxassislari uchun boshqa sistemalar, masalan, Mathlab sistemasi mavjud bo`lib u murakkab masalalarni dasturlach uchun mo`ljallangan. Bu dastur PSE (problem solution envirorment-masalalar yechish uchun dasturli muhit) deb ataluvchi ifodalar sinfiga kiradi. Uning ishlashi tadqiqotchi nazari tushmaydigan ichki algoritm ishi bilan bog`liq.

Mathcad paketi injenerning amaliyotida har kuni uchraydigan ko`p vaqt talab qiluvchi masalalarni oson hal etishga imkon beruvchi kuchli mikrokalkulyator kabi ishlaydi. Bunga doimiy va o`zgaruvchi parametrli algebraik va differensial tenglamani yechish, funksiyani tekshirish, ekstremumni izlash, analitik va sonli differensiallash va integrallash kabilarni misol keltirish mumkin.

Shu kabi sistemalar orasida Mathcadning afzallik tomonlari quyidagilar:

- masalalarni dasturlash yengil va ko`rgazmali
- matematik ifodalar injenerlar qog`ozda yozgani kabi kiritiladi
- foydalanish uchun qulay
- ichki vositalar yordamida yuqori sifatli jadvallar, grafiklar va matnlar bilan taminlangan texnik hisobotlar yaratish imkoniyati.

Umuman, uning yordamida turli-tuman matematik masalalarni yechish va natijalarni yuqori saviyada olish mumkin. Mathcaddan foydalanmaydigan zamonaviy matematikni tasavvur etish qiyin. Ushbu paket yordamida nafaqat soda va yordamchi hisoblashlarni, balki, yetarlicha murakkab hisob-kitoblar va ilmiy tadqiqotlar amalgam oshirish mumkin.

Mathcad butun dunyoga tanilgan. Undan 5mln. dan ortiq kishi foydalanadi. Har yili uning yangi versiyalari chiqariladi. Oxirgi paytlarda programmalarning takomillashishi kosmetik harakter kasb etadi. Interfeys yaxshilanadi, alohida funksiyalarning imkoniyatlari kengaytiriladi, internetda ishlash vositalari takomillashtiriladi.

Paket haqidagi barcha ma'lumotlarni internetdagi *http://www. mathcad. com* saytidan, Mathcadning Rossiyadagi distribyuteri sayti ("Exponenta" kompaniyasi) <u>https://exponenta.ru/</u> dan olish mumkin.

Mathcadning foydalanuvchilari bular – talabalar, olimlar, injenerlar, turli texnik mutaxassislar va umuman matematik hisob-kitoblar bilan shug`ullanuvchiga foydalanish qulayligi, matematik amallarning ko`rgazmaliligi, sonli metodlarning va ichki funksiyalar kutubxonasining boyligi, natijalarni ifodalashda kuchli apparatga ega ekanligi kabi imkoniyatlari Mathcadning eng ommaviy matematik ilovaga aylanishiga sabab bo`ldi.

Mathcad tarkibiga bir qancha integrallashgan komponentlar kiradi:

- kuchli matn redaktori matn va matematik ifodalarni kiritish, tahrirlash va formatlashga imkon beradi
- ichki sonli metodlardan foydalangan holda kiritilgan formulalar bo`yicha hisob-kitoblarni amalga oshiruvchi hisoblash protsessori
- sun'iy intellekt tizimiga kiruvchi, analitik hisob-kitoblarni o`tkazish imkonini beruvchi simvolli protsessor
- interaktiv elektron kitob ko`rinishda tashkil etilgan matematik va muxandislik bo`yicha ma'lumotlar saqlanuvchi katta kutubxonaga ega.

Boshqa matematik ilovalardan muhim farqi u "nimani ko`rsang, shuni olasan" (WYSIWY6) prinsipida ishlashi. Shuning uchun u foydalanish uchun juda qulay. Unda oldin dastur tuzish, keyin natija olish uchun uni bajarishga berish zarur emas. Buning o`rniga ichki formulalar redaktori yordamida matematik ifodani umumqabul qilingan ko`rinishda kiritiladi va shu zahoti natija olinadi. Bundan tashqari hujjatni printerda chop etish yoki uni elektron kitob tarkibiga qo`shish mumkin. Mathcadni

ishlab chiqaruvchilar dasturlash bo`yicha mazsus bilimga ega bo`lmagan foydalanuvchiga zamonaviy hisoblash fanlari va kompyuter texnologiyalari yutuqlaridan to`liq foydalana olishlari uchun barcha imkoniyatlarni yaratdilar.

Mathcad ishga tushgach uning asosiy oynasi ochiladi. Uning tuzilishi Windowsning boshqa ilovalari kabi yuqoridan pastga qarab oyna sarlavhasi, menyu satri, uskunalar paneli, ish varag`I va eng pastda holatlar satri joylashgan. Oddiy matn redaktorlari bilan birga yana matematik belgilarni kiritish va tahrirlash uchun mo`ljallangan Math nomli uskunalar paneli joylashgan. U va unga o`xshash qator yordamchi panellar vositasida tenglamalarni qulay kiritish imkoni mavjud.

Mathcad interfeysini tashkil etuvchi elementlar:

menyu satri

uskunalar panellari (Standard (standart), Formatting (formatlash), Resources (resurslar) va Controls (boshqarish elementlari))

Math uskunalar paneli va uning yordamida ishga tushishi mumkin bo`lgan qisqacha matematik uskunalar paneli

- ishchi soha
- holatlar satri
- kontekst menyu
- muloqot oynalari
- Marhcadning qisqacha ma'lumotlari va ichki namunalaridan iborat resurslar oynasi

Ko`plab buyruqlarni menyu yordamida ham, uskunalar paneli yordamida ham bajarish mumkin.

Uskunalar paneli tez-tez ishlatiladi, buyruqlarni bajarisahni tezlashtiradi.

Asosiy panellarga quyidagilar kiradi:

- Standard fayllar ustida boshqarish, tahrirlash, ob'yektlarni qo`yish, ma'lumotnomadan foydalanish kabi ko`plab amallarni bajaradi
- Formatting –matnlar va formulalarni formatlaydi
- Math –matematik belgilar va operatorlarni qo`yadi
- Resources –Mathcad resurslarini tez chaqirish (namunalar, darsliklar, elektron kitoblar va h. k)
- Controls –hujjatlarga foydalanuvchi interfeysidagi standart boshqarish elementlarini qo`yish (tekshirish bayroqlari, kiritish maydonlari)

Math paneli yordamida ekranga yana 9 ta panelni chiqarish mumkin Ulardan birini chaqirish uchun Math panelidan mos tugmani bosish yetarli.

Matematik panellarning vazifalari:

- Calculator(kalkulyator) –asosiy matematik amallarni qo`yish uchun hizmat qiladi. Oddiy kalkulyator tugmalari kabi joylashgani uchun shunday nomlangan.
- Graph(grafik) grafiklar joylashtirish.
- Matrix(matritsa) –matritsa va matritsa uchun operatorlarni qo`yish.
- Evaluation(ifoda) –boshqarish va hisoblash operatorlarini qo`yish.

- Calculus(hisoblash) –integrallash va differensiallash, qo`shish operatorlarini qo`yish.
- Boolean(bul operatorlari) –mantiqiy operatorlarni qo`yish.
- Programming(programmalash) Mathcad vositalari bilan programmalash.
- Greek(grek simvollari) grek simvollarini qo`yish.
- Symbolic(simvolika) –simvolli operatorlarni qo`yish.

Matematik panelning ko`plab tugmalariga sichqoncha ko`rsatkichi keltirilganda suzib chiquvchi yordam paydo bo`ladi, unda qaynoq tugmalar ham ko`rsatiladi. Istalgan panelni Вид (View) menyusining Toolbars (uskunalar paneli) punkti yordamida chaqirish yoki yashirish mumkin.

Formula bo`yicha sodda hisoblashlarni bajarish uchun quyidagicha bajariladi:

1. ifoda yoziladigan joyni aniqlang va shu joyga sichqonchani bosiladi.

- 2. ifodaning chap qismini kiritiladi.
- 3. = belgisini yoki belgili tenglik > belgisini kiritiladi.

1-holda ifodaning sonli qiymati, 2-holda analitik qiymati (agar mumkin bo`lsa) hisoblanadi. Masalan, arccos(0) ni hisoblash uchun klaviaturadan arccos(o)= yoki arccos(o)> yozuvini kiritish yetarli, o`ng tomonda natija paydo bo`ladi.

arccos(o)=1. 571 arccos(o)>pi/2

Dasturda hisoblashlar o`sha zahoti amalga oshiriladi. Murakkab va uzun hisoblarda uni **Esc** tugmasi orqali to`xtatib turgan foydali, kerak bo`lganda esa F9 orqali hisoblashni bajarish mumkin.

Maple tizimining asosiy imkoniyatlari va interfeysi

Maple tizimida quyidagi imkoniyatlar mavjud:

- 1. **Maple** sistemasida ham juda koʻp matematik va statistik funksiyalar asosida ma'lumotlarni tahlil qilishning grafikli integrallashgan muhiti mavjud;
- 2. murakkab funksiyalarning 2 oʻlchamli, 3 oʻlchamli fazolarda grafiklarini chizib berishi mumkin;
- 3. **Maple** ning programmalashtirish tili asosida murakkab matematik, texnik va boshqa sohalardagi masalalarni echish imkoniyatini beradi;
- 4. oʻquv jarayonini tashkil qilishda kerakli mavzularning mashq va masalalar ob'ektlarining harakatini namoyish qilish uchun animatsion grafik muhit mavjud;
- 5. talabalar matematik usullarni oʻrganishda juda murakkab hisoblarga vaqtini sarflamasdan, faqat usullarning mohiyatini, qoʻllanilish sohalarini oʻrganishlari uchun maxsus **Student** paketi mavjud;
- 6. Maple Windows, MacOS, Unix, Linux kabi operation muhitlarda joriy qilingan;

- 7. Windows operatsion tizimidagi MS Office ning turdosh tizimlari uchun integrallashgan muhitga ega;
- 8. Barcha bajariladigan ishlari ishchi varaq sifatida tashkil qilinib, muloqot interaktiv rejimda amalga oshiriladi;
- 9. **Excel** muhitida turib **Maple** ning grafikaga doir paketlariga murojaat qilish mumkin (**Excel** muhitida grafik chizish uchun funksiyaning qiymatlar jadvalini tuzish kerak);
- 10. Ishchi varaqlarni **RTF Word, LaTex, HTML** formatlariga oʻtkazib saqlash mumkin;
- 11. Maple muhitida «ob'ektlar» hosil qilish mumkin;
- 12. **Maple** dasturidagi xatoliklarni bartaraf qilish uchun **Java** imkoniyatlaridan foydalanish mumkin;
- 13. **Maple** vositasida yaratilgan dasturlardan elektron jadvallarga murojaat qilish mumkin.

Ixtiyoriy dasturiy tizimdan foydalanish uchun uning foydalanuvchilar bilan muloqot muhiti (**interfeys**) ni yaxshi bilish kerak.

Maple tizimining **Windows** operatsion muhitida joriy qilingan interfeysi haqida toʻxtalamiz. Tizim ishga tushurilgandan keyin quyidagi rasmda koʻrsatilgan interfeys oynasi paydo boʻladi.

Oyna olti qismdan tashkil topgan:

- 1. sarlavha;
- 2. asosiy menyular satri;
- 3. asosiy instrument(vosita)lar paneli;
- 4. kontekstli instrumentlar paneli;
- 5. ishchi varaqning maydoni;
- 6. holatlar satri.

Sarlavhada Maple tizimining belgisi va joriy ishchi varaq faylining nomi koʻrsatiladi.

Asosiy menyular satrining holati ishchi varaqqa aks ettirilgan hujjatning mazmuniga qarab oʻzgarib turadi. Ishchi varaqda grafik tasvirlangan boʻlsa, u holda

asosiy menyular satrining holati rasmda tasvirlangan koʻrinishda boʻladi

Asosiy menyular satrining pastki qismida amalda tez-tez qoʻllanilib turiladigan komandalarga biriktirilgan knopkalar koʻrsatilgan asosiy instrumentlar paneli joylashgan. Bu knopkalar sichqoncha yordamida faollashtirilsa, ularga biriktirilgan komandalar bajariladi. Panelning holati ishchi varaqdagi hujjatga bogʻliq emas. Bu panelning pastki qismida kontekstli instrumentlar paneli joylashgan. Kursor ishchi varaqning qanday qismida joylashganligiga va qanday ma'lumotni koʻrsatib turishiga qarab, kontekstli instrumentlar panelining holati oʻzgarib turadi. Panelning besh xil holati mavjud: ikki oʻlchamli, uch oʻlchamli, animatsiyali grafiklar aks ettirilgan paytdagi holati va kursorni ishchi varaqning ma'lumot kiritish yoki chiqarish maydonida turishiga mos holatlari. Kursor ma'lumotlarni kiritish maydonida turgan boʻlsa, kontekst menyuning holati komandalarni standart **Maple** yoki standart matematik yozuvlar koʻrinishida yozilishiga qarab oʻzgaradi.

C:\Users\Admin\Documents\Akbarov\gl	31_16	310.mw - [Server 4] - Maple 18	
ile Edit View Insert Format Table Drav	wing	Plot Spreadsheet Iools Window Help	
ර්ෂ්මම්ම් දිමාඩ් රේද	ż.	🗟 T 🕨 🔀 巨 亘 🗧 🖨 🔿 📶 🗜 🔿 🏇 也 🛷 🔍 및 및 🛱 💾 🔯 Search for help, tasks, apps	
Favorites		Start.mw 🕲 *Unkkled (2) 🕲 gl31_1610.mw 🕲 *qwer.mw 🕲	
MapleCloud (Off)		Text Mall Drawing Plot Animation	Hide
T Expression			
$a+b$ $a-b$ $a\cdot b$ $\frac{a}{b}$		Исследование явления флаттера крыла по аналитически	Ē
$a^b \sqrt{a} \sqrt[n]{a} a!$	Е	заданным характеристикам жесткости. Рахимов	
$ a $ e^a $\ln(a)$ $\log_{10}(a)$			
$\log_b(a) \sin(a) \cos(a) \tan(a)$			
$\begin{pmatrix} a \end{pmatrix}$ and $\begin{pmatrix} a \end{pmatrix}$		> with(FDEtools, casespiit, declare)	
(b) a_n a_n $f(a)$	ш		(1)
$f(a,b) f:=a \to y f:=(a,b) \to z$		> with(DEtools, gensys)	
$f(x) = \begin{cases} -x & x \le a \\ x & x \le a \end{cases}$		[Genzia]	(2)
$x = a$ $x \ge a$ $i = k$		$\sum_{n=1}^{n} \left(e^{inx} - e^{inx} e^{inx} \right) \left(e^{inx} - e^{inx} e^{inx} \right) \left(e^{inx} e^{inx} + e^{inx} \right)$	
$\prod_{i=1}^{n} d_{i} f_{i} f_{i}$		$J_k(\lambda) = (Cn\alpha_k \lambda - COS\alpha_k \lambda)(\sin\alpha_k + sn\alpha_k) = (sn\alpha_k \lambda - \sin\alpha_k \lambda)(COS\alpha_k + cn\alpha_k),$	
$\prod_{i=k}^{j} \frac{dx}{dx} \int \int dx$		$\phi_{\xi}(x) = \sin \frac{\pi \sigma_{\xi} x}{2}.$	
🐺 Calculus	i I	2	
$\lim_{x \to a} f \frac{\mathrm{d}}{\mathrm{d}x} f \frac{\mathrm{d}^2}{\mathrm{d}x^2} f \frac{\mathrm{d}^n}{\mathrm{d}x^n} f$		$\left[> \text{ for } i \text{ from } 1 \text{ to } 2 \text{ do } \alpha[i] := \frac{\pi}{2} \cdot (2 \cdot i - 1) \text{ end } do \right]$	
$f'(x) = f''(x) = f'''(x) = f^{(n)}(x)$			
\dot{A} \ddot{A} \ddot{A} \ddot{A} $\frac{\partial}{\partial u}f$		$\alpha_1 := \frac{1}{2}\pi$	
O.C		3	
$\partial^2 = \partial^2 = \int dx = \int dx$		$\alpha_2 := \frac{1}{2}\pi$	(3)
$\frac{1}{\partial x^2} \int \frac{1}{\partial x \partial y} \int \int dx \int_{x_1} \int dx$		> for <i>i</i> from 1 to 2 do	
x ₂ y ₂		$\phi[i] := \sin\left(\frac{\operatorname{Pi} \cdot \alpha[i] \cdot x}{2}\right); f[i] := \left(\cosh\left(\alpha[i] \cdot x\right) - \cos\left(\alpha[i] \cdot x\right)\right) \cdot \left(\sin\left(\alpha[i]\right) + \sinh\left(\alpha[i]\right)\right) - \left(\sinh\left(\alpha[i] \cdot x\right) + \sin\left(\alpha[i] \cdot x\right)\right) \cdot \left(\sin\left(\alpha[i] \cdot x\right) + \sin\left(\alpha[i] \cdot x\right)\right) + \operatorname{Sinh}\left(\alpha[i] \cdot x\right) + \operatorname{Sinh}\left(\alpha[i] \cdot$	
$\iint \int dy dx \iint \int f dy dx$		$-\sin(\alpha[i]\cdot x)) \cdot (\cos(\alpha[i]) + \cosh(\alpha[i]))$ end do	
×1 ×1		(1,2)	
x ₂ y ₂ z ₂		$\phi_1 := \sin\left(\frac{1}{4}\pi x\right)$	-
III ca- au av I I Ca- au av	-		>

Maple ning interfeysida bir nechta oynadagi ishchi varaqlar bilan ishlash va giperlavhalar yordamida ishchi varaqlarning biridan ikkinchisiga oʻtish mumkin.

Maple tizimida muloqot interaktiv rejimda amalga oshiriladi. Foydalanuvchi ishchi varaqning kiritish maydoniga kerakli komanda yoki komandalar guruhini kiritib, «Enter» tugmachasini bosish orqali ularning bajarilishini amalga oshirishi Komandalar > belgisidan keyin kiritiladi va ularning qizil rangda aks mumkin. ettirilishi Maple ning standart talqinida (notatsiyasida) amalga oshirilayotganini bildiradi. Agar bir nechta komandani bir guruhga birlashtirish kerak bo'lsa, oxirgi komandadan tashqari barcha komandalardan keyin **«Shift»+«Enter**» juftlik tugmachalarni bosish kerak. Oxirga komanda kiritilgandan keyin «Shift» tugmachani bosish kerak. Komandalar guruhi tashkil qilingandan keyin guruhning ixtiyoriy bir komandasidan keyin «Enter» tugmasini bosish ularning barchasini bajarilishini ta'minlaydi. Komandalar guruhi chap tomonidan umumiy «[» belgi bilan qamrab olinadi. Agar har bir komandani alohida «[» belgi qamrab olgan bo'lsa, ularning har biri mustaqil bajariladi. Agar komanda «;» belgi bilan tugasa, u bajarilgandan keyin albatta natija chiqarish maydonida aks ettiriladi va «:» belgi bilan tugasa, komanda bajariladi, lekin natija aks ettirilmaydi.

Ishchi varaqning foydalanuvchi tomonidan ma'lumotlar kiritiladigan qismiga kiritish maydoni deyiladi. Kiritish maydoniga Maple ning komandalarini, operatorlarini va izohlar uchun matn kiritish mumkin. Yangi ishchi varaq yaratilganda, jimlik qoidasi bo'yicha Maple ning komanda va operatorlarini kiritish rejimi o'rnatiladi. Bu rejimning belgisi «>» hisoblanadi. Agar komanda yoki operator to'g'ri kiritilsa chiqarish maydonida natija qayd qilinadi, aks holda xatolik sababi ko'rsatiladi. Kiritish maydonida komandalarni Maple talqinida

[> for i to 2 do f2[i] := diff(f[i], x, x) end do;

yoki odatdagi matematik yozuv talqinida

> for *i* to 2 do
$$f_{i}^{2} := \frac{\partial^{2}}{\partial x^{2}} f_{i}$$
 end do

aks ettirish mumkin.

Nazorat uchun savollar:

- 1. MathCad qanday so'zlardan tashkil topgan?
- 2. MathCad va Maple dasturini ishga tushirish tartibini ayting?
- 3. MathCad va Maple interfeysining oyna tuzilishi qanday?
- 4. MathCad va Mapleda matematik panel vositalarini sanab o'ting?
- 5. Arifmetik amallar qanday bajariladi?
- 6. Mantiqiy amallarni sanab o'ting?

Foydalanilgan adabiyotlar ro'yxati:

1. Алексеев Е. Р., Чеснокова О. В. Решение задач вычислителной математики в пакетах MathCad 12, MATLAB 7, Maple 9. – М. : НТ Пресс, 2006. – 496 с. : ил. – (Самоучител).

2. Дащенко А. Ф., Кириллов В. Х., Коломиец Л. В., Оробей В. Ф. МАТLАВ в инженерных и научных расчетах. Монография. Одесса «Астропринт», 2003. – 214 с.

3. Плис А. И., Силвина Н. А. MathCad 2000: Математический практикум для экономистов и инженеров: Учеб. пособие. – М. Финансы и статистика, 2000 г.

4. Макаров Е. Г. Инженерные расчеты в MathCad. Учебный курс. СПб. : Питер, 2003.

5. В. П Дяконов MathCad 2000: Учебный курс. Питер 2002 г.

6. О. А. Сдвижков Дашков И. К. MathCad - 2000: Введение в компютерную математику. 2002 г.

7. Д. А Гурский. Вычисление в MathCad. Новое знание 2003 г.

8. Ne'matov A., Oxunboev M., Sobirov N. MathCad tizimida matematik masalalarni yechish. Uslubiy qo'llanma. Toshkent, 2009 y. 50 b.

2-mavzu. Algebra va sonlar nazariyasi masalalarini echish. Reja:

1. MathCAD ва Maple тизимида математик анализ масалаларини ечиш.

2. Дифференциал тенгламаларни умумий ечимини топиш.

Tayanch iboralar: interfeys, o'zlashtirish operatori, matematik ifoda, simvolli yechish, hisoblash paneli, simvolli amallarni dasturlash, analitik ko'rinish

1. Algebra va sonlar nazariyasi masalalarini echish(MatCAD).

MathCad interfeysining ish maydonida kursor qizil rangdagi plyus belgisi (krestik) ko`rinishda bo`ladi. Ifodalarni kiritishda bu belgi kiritilayotgan ifodani egallab olgan ko`k burchakli holatga aylanadi. Ifodada turli matematik funksiyalar asosiy matematik shablondan olinadi.

O'zgauvchilarga qiymat berish uchun o'zlashtirish operatori ":=" ishlatiladi. Hisoblashlarni amalga oshirish uchun oldin formuladagi o`zgaruvchi qiymatlari kiritiladi, keyin matematik ifoda yozilib tenglik "=" belgisi kiritiladi, natijada ifoda qiymati hosil bo`ladi.

Masalan: ushbu $\frac{1}{\sqrt{125}} + \frac{2}{3}$ ifodani kiritish tartibi Calculator (Kalkulyator) – asosiy matematik operatsiyalar shablonidan foydalanib quyidagicha amalga oshiriladi:

1. $\frac{1}{\times}$ bosiladi va hosil bo'ladi.

$$\frac{1}{125} + \frac{2}{3}$$

o'rniga 2 raqami teriladi va $\sqrt{125}$ ³ hosil bo'ladi.

6. = belgisini terish orqali ifodaning natijasi hosil

$$\frac{1}{\sqrt{125}} + \frac{2}{3} = 0.756$$

qilinadi, yani: 💜

Boshqa hisoblashlarni ham xuddi shu tarzda amalga oshiriladi.

Oddiy va matematik ifodalarni tahrirlashda menyu standart

buyruqlaridan foydalaniladi. Tahrirlashda klaviaturadan ham foydalanish mumkin, masalan

➤ [Ctrl]+[X] – kesib olish;

➤ [Ctrl]+[C] – nusxa olish;

 \succ [Ctrl]+[V] – qo`yish;

[Ctrl]+[Z] – bajarishni bekor qilish.

Xuddi elektron jadvallaridagidek MathCaddagi hujjatga ixtiyoriy o'zgarish kiritsangiz bu o'zgarishga bog'liq bo'lgan barcha natijalar yangilanadi. MathCad o'ta murakkab matematik formulalarni hisoblashga mo'jallangan bo'lsa ham, uni oddiy kalkulyator sifatida ishlatish mumkin.

	Klavish	U ² qilishi	
•	*	Ko'paytirish	
+	+	Qo'shish	
-	-	Ayirish	
:	/	Bo'lish	

Arifm	atil	amal	la
	euk	amai	la

Amal	Klavish	O'qilishi	
>	>	Katta	
<	<	Kichik	
=	Ctrl =	Teng	
2	Ctrl)	Katta yoki teng	
\leq	Ctrl (Kichik yoki teng	
<i>≠</i>	Ctrl #	Teng emas	

Munosabat amallar

Mantiqiy amallar

Not ¬	And \land	Or ∨	Xor ⊗
0=1	0 ~ 0=0	0 \sigma 0=0	$0 \otimes 0 = 0$
1 =0	0∧1=0	0∨1=1	$0 \otimes 1 = 1$
	1 \land 0=0	$1 \lor 0 = 1$	$1 \otimes 0 = 1$
	1 ^ 1=1	$1 \lor 1 = 1$	$1 \otimes 1=0$

MathCadda ifodalarning qiymatlarini hisoblash tartibi xuddi matematikadagidek bo'ladi.

MathCadda diskret o`zgaruvchilar deganda sikl operatorini tushunish kerak. Bunday o`zgaruvchilar ma'lum qadam bilan o`suvchi yoki kamayuvchi sonlarni ketma-ket qabul qiladi. Masalan:

x:=0..5. Bu shuni bildiradiki bu o`zgaruvchi qiymati qator bir necha qiymatlardir, ya'ni x=0,1,2,3,4,5.

x:=1,1.1..5. Bunda 1 – birinchi sonni, 1,1 – ikkinchi sonni, 5 - oxirgi sonni bildiradi.

x:=A,A+B..B. Bunda A – birinchi, A+B – ikkinchi, B - oxirgi sonni bildiradi.

Izoh! O`zgaruvchi diapazonini ko`rsatishda ikki nuqta o`rniga klaviaturadan (;) nuqta vergul kiritiladi yoki Matrix (Matritsa) panelidan Range Variable (Diskret o`zgaruvchi) tugmasi bosiladi. Hisoblangan qiymatni chiqarish uchun esa o`zgaruvchi va tenglik belgisini kiritish kifoya. Natijada o`zgaruvchi qiymati ketma-ket jadvalda chiqadi. Masalan, x:=0..5 deb yozib, keyin x= kiritish kerak.

Foydalanuvchi funksiyaning uning argumentiga mos qiymatlarini hisoblab chiqarish va bu qiymatlarni jadval yoki grafik ko`rinishda tasvirlashda diskret o`zgaruvchilardan foydalanish qulaylikni keltiradi. Masalan, $f(x)=\sin(x)\cdot\cos(x)$ funktsiya qiymatlarini x ning 0 dan 5 gacha bo`lgan qiymatlarida hisoblash kerak bo`lsa, u holda quyidagi kiritishni amalga oshirish kerak: $f(x)=\sin(x)\cdot\cos(x) x:=0..5 f(x)=javob.$ Ifodalarni soddalashtirish va ko'phadlarni ko'paytuvchilarga ajratish, almashtirishlar (Laplas, Fure va h.k.)ni bajarish buyruqlari quyidagi jadvalda keltirilgan:

Vosita	Shablon	Ta'rifi
float	• Float, • \rightarrow	Siljuvchi nuqtali shaklda
		hisoblash
complex	• complex, • \rightarrow	Kompleks son shakliga
	_	o`tkazish
expand	• expand, • \rightarrow	Bir necha oʻzgaruvchili yigʻindi,
	_	ko`paytma va darajani ochish
simplify	• simplify, • \rightarrow	Ifodalarni ixchamlash,
		soddalashtirish
substitute	• substitute, $\bullet \rightarrow$	Ifodalarni hisoblash
collect	• collect, • \rightarrow	Oddiy yig`indida tasvirlangan
		polinom ko`rinishdagi ifodani
		soddalashtirish
series	• series, • \rightarrow	Darajali qatorga yoyish
assume	• assume, • \rightarrow	Aniq qiymat bilan yuborilgan
		o`zgaruvchini hisoblash
parfrac	• parfrac, • \rightarrow	Oddiy kasrga ifodalarni yoyish
coeffs	• coeffs, • \rightarrow	Polinom koeffitsienti vektorini
		aniqlash
factor	• factor, • \rightarrow	Ifodalarni ko`paytuvchilarga
		yoyish
fourier	• fourier, • \rightarrow	Fure to`g`ri almashtirishi
laplace	• laplace, • \rightarrow	Laplas to`g`ri almashtirishi

ztrans	• ztrans, • \rightarrow	To`g`ri z – almashtirish
invfourier	• invfourier, • \rightarrow	Fure teskari almashtirishi
invlaplac	• invlaplace, • \rightarrow	Laplas teskari almashtirishi
e	-	
invztrans	• invztrans, • \rightarrow	Teskari z - almashtirish

Tenglamalarni sonli va simvolli yechish

MathCad har qanday tenglamani, hamda ko`pgina differentsial va integral tenglamalarni yechish imkoniyatini beradi. Misol uchun kvadrat tenglamanining oldin simvolli yechimini topishni keyin esa sonli yechimini topishni qarab chiqamiz.

<u>Simvolli yechish</u>. Tenglamaning simvolli yechimini topish uchun quyidagi protsedurani bajarish kerak:

1. Tenglamani kiritish va tenglama yechimi boʻlgan oʻzgaruvchini kursorning koʻk burchagida ajratish.

2. Bosh menyudan Symbolics \rightarrow Variable \rightarrow Solve (Simvolli ifoda \rightarrow O`zgaruvchi \rightarrow Yechish) buyrug`ini tanlash. (16-rasmda keltirilgan)

Sonli yechish. Algebraik tenglamalarni yechish uchun MathCadda bir necha funktsiyalar mavjud. Ulardan Root funktsiyasini ko`rib chiqamiz. Bu funktsiyaga murojaat quyidagicha:

Root(f(x),x).

Rathcad Professional - [Untitled:1]	1		
🗿 File Edit View Insert Format Math	Symbolics Window Help	_	- 8 ×
$\boxed{\begin{array}{c} \hline & \bullet & \rightleftharpoons & \blacksquare \\ \hline & \bullet & \bullet & \blacksquare \\ \hline & \blacksquare & A \neq \\ \hline & \blacksquare & A \neq \\ \hline & \blacksquare & A \neq \\ \hline & \hline & x = \int \frac{2}{32} & \langle \frac{\pi}{2} & \frac{\pi}{3} \\ \hline & \alpha \beta & \Rightarrow \\ \hline & x^2 - 2 \cdot x + b \\ \hline & 1 \\ \hline & 1 \\ \hline \end{array}}$	Evaluate Simplify Expand Eactor Collect Polynomial Coefficients) = 🗟 🏶 100% 🔽 8	<u>, 19</u>
$\begin{bmatrix} 1 + (1 - b)^{\frac{1}{2}} \\ 1 + (1 - b)^{\frac{1}{2}} \\ 1 - (1 - b)^{\frac{1}{2}} \end{bmatrix}$	⊻ariable Matrix Iransform Evaluation Style	Substitute Differentiate Integrate Expand to Series Convert to Partial Fraction	×
			>
Solve for the selected variable		AUTO NUM Pa	ige 1 🥢

Root funktsiyasi iteratsiya usuli sekuhix bilan yechadi va sabab boshlang`ich qiymat oldindan talab etilmaydi. Quyida berilgan rasmda tenglamani sonli yechish va uning ekstremumini topish keltirilgan.

Tenglamani yechish uchun odlin uning grafigi quriladi va keyin uning sonli yechimi izlanadi. Funktsiyaga murojaat qilishdan oldin yechimga yaqin qiymat beriladi va keyin Root funktsiya kiritilib, x0= beriladi.

Root funktsiyasi yordamida funktsiya hosilasini nulga tenglashtirib uning ekstremumini ham topish mumkin. Funksiya ekstremumini topish uchun quyidagi protsedurani bajarish kerak:

1. Ekstremum nuqtasiga boshlang`ich yaqinlashishni berish kerak.

2. Root funktsiyasini yozib uning ichiga birinchi tartibli differentsialni va o`zgaruvchini kiritish.

3. O'zgaruvchini yozib teng belgisini kiritish.

4. Funktsiyani yozib teng belgisini kiritish.

Tenglamalar sistemasini yechish

MathCadda tenglamalar tizimini yechish

Given...Find

hisoblash bloki yordamida amalga oshiriladi. Tenglamalar tizimini yechish uchun iteratsiya usuli qo`llaniladi va yechishdan oldin boshlang`ich yaqinlashish barcha noma'lumlar uchun beriladi.

Tenglamalar tizimini yechish uchun quyidagi protsedurani bajarish kerak:

1. Tizimga kiruvchi barcha noma'lumlar uchun boshlang`ich yaqinlashishlarni bernish.

2. Given kalit so`zi kiritiladi.

3. Tizimga kiruvchi tenglama va tengsizlik kiritiladi. Tenglik belgisi qalin bo`lishi kerak, buning uchunCtrl+= klavishilarini birgalikda bosish kerak bo`ladi yoki Boolean (Bul operatorlari) panelidan foydalanish mumkin.

4. Find funktsiyasi tarkibiga kiruvchi o`zgaruvchi yoki ifodani kiritish.

Funktsiyaga murojaat quyidagicha bajariladi: Find(x,y,z). Bu erda x,y,z – noma'lumlar. Noma'lumlar soni tenglamalar soniga teng bo`lishi kerak.

Find funktsiyasi funktsiya Root ga o`xshab tenglamalar tizimini sonli yechish bilan bir qatorda, yechimni simvolli ko`rinishda ham topish imkonini beradi.
A Mathcad Professional - [Untitled:1]								
File Edit View Inse	rt F <u>o</u> rmat <u>N</u>	<u>1</u> ath <u>S</u> ymbo	lics <u>W</u> indow	Help			_ ć	7 ×
0 • 🖨 🖬 🖨 🕻	₩ 🖓 🐰 🛙	à 🛍 🗠	C4 10	<i>f</i> (v) 🗉) = b , i	100%	- 💭 🔋	
] 🖬 A∀ [:::] x= ∫왔 <፻	ξ] αβ 😸	h						
	Symbolic							
Given $x^{2} + y = n$ x + y = k	→ solve collect invfourier	•→ simplify series invlaplace	Modifiers substitute parfrac invztrans	float factor fourier M ^T →	complex expand laplace M ⁻¹ →	assume coeffs ztrans M →		
Find(x,y) $\rightarrow \begin{bmatrix} \frac{1}{2} \\ k - \frac{1}{2} \end{bmatrix}$	$\frac{1}{2} \cdot (-4 \cdot \mathbf{k} + 1) + \frac{1}{2} \cdot (-4 \cdot \mathbf{k} + 1)$	$(1+4\cdot n)^{\frac{1}{2}}$ $(1+4\cdot n)^{\frac{1}{2}}$	$\frac{1}{2} + \frac{1}{2} \cdot (-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \cdot (-\frac{1}{2} - \frac{1}{2} \cdot (-\frac{1}{2} - \frac{1}{2} \cdot (-\frac{1}{2} - \frac{1}{2} \cdot (-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \cdot (-\frac{1}{2} - \frac{1}{2} - $	4·k + 1 + 4 (-4·k + 1 +	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{4 \cdot n} \end{bmatrix}$			
+								~
Press F1 for help.					4		JM Page 1	

Limitlarni hisoblash. MathCadda limitlarni hisoblashning uchta operatori bor.

1. Matematika panelidan Calculus Toolbar (Hisoblash paneli) tugmasi basilsa, Calculus (Hisoblash) paneli ochiladi. U yerning pastki qismida limitlarni hisoblash operatorlarini kiritish uchun uchta tugmacha mavjud. Ularning birini bosish kerak.

2. lim so`zining o`ng tomonidagi kiritish joyiga ifoda kiritiladi.

3. lim so`zining ostki qismiga o`zgaruvchi nomi va uning intiladigan qiymati kiritiladi.

4. Barcha ifodalar burchakli kursorda yoki qora ranga ajratiladi.

5. Symbolics \rightarrow Evaluate \rightarrow Symbolically (Simvolli hisoblash \rightarrow Baholash \rightarrow Simvolli) buyruqlari beriladi. MathCad agar limit mavjud bo`lsa, limitning intilish qiymatini qaytaradi.

Read Professional - [limit]		
🗿 Eile Edit View Insert Format Math	<u>Symbolics Window H</u> elp	_ 8 ×
] D • ☞ 🖬 🖨 🗛 🍼 ጰ 🖻 🛍	9 (M) = " M P	= 🕹 😳
] 🖬 A+ [:::] x= ∫ĝ ≤ 🖏 αβ 🖘		
$\lim_{x \to 2} x^2 + 4$ 8 $\lim_{x \to 2} \frac{\sqrt{x^2 + 2}}{2x + 6}$	Calculus Image: second symplectic symplecti symplectic symplecti symplectic symplectic symplectic sym	
$x \to \infty^{-5 \cdot x + 0}$ $\frac{1}{3}$ $\lim_{x \to \infty} \sin(x)$		
$ \begin{array}{c} \text{Imm} \\ x \to 0 \\ \end{array} $ 1 Press F1 for help.	AUTO	M Page 1

Limit	$\lim_{x\to a} f(x)$	[Ctrl] L	Funksiyani x aga intilgandagi limitini hisoblaydi.(simvolik rejimda)
Limit	$\lim_{x\to a^-} f(x)$	[Ctrl] B	Funksiyani x aga chapdan intilgandagi limitini hisoblaydi. (simvolik rejimda)
Limit	$\lim_{x\to a^+} f(x)$	[Ctrl] A	Funksiyani x aga o'ngdan intilgandagi limitini hisoblaydi. (simvolik rejimda)

2. Algebra va sonlar nazariyasi masalalarini echish(Maple). Ifodalarni soddalashtirish

Ifodalarni soddalashtirish uchun simplify funktsiyasidan foydalaniladi. Ushbu funktsiya quyidagi ko'rinishlarda ishlatiladi:

simplify(expr) — soddalashtirilgan exrr ifodani yoki Maple qoidalari doirasida soddalashtirish imkoniyati bo'lmasa uning o'zini qaytaradi;

simplify(expr, nl, n2, . . .) — nl, n2 parametrlarni hisobga olgan holda soddalashtirilgan yexrr ifodani qaytaradi;

simplify(exrg,assume=prop) — hamma ko'rsatilgan shartlarni hisobga olgan holda soddalashtirilgan yexrr ifodani qaytaradi.

```
Quyidagi misollarni ko'raylik:
> simplify((3*x*y^3)^2);
9 x^2 y^6
> simplify((x^y)^x+3^(3));
(x^{y})^{x} + 27
> simplify(sin(x)^2+cos(x)^2);
1
> e := cos(x)^{5} + sin(x)^{4} + 2 cos(x)^{2} - 2 sin(x)^{2} - cos(2x);
e \coloneqq \cos(x)^5 + \sin(x)^4 + 2\cos(x)^2 - 2\sin(x)^2 - \cos(2x)
> simplify(e);
\cos(x)^5 + \cos(x)^4
>w:=(-5*b^2*a)^(1/2);
w \coloneqq \sqrt{-5 b^2 a}
> simplify(w,radical);
\sqrt{5} \sqrt{-b^2 a}
> simplify(w,radical,symbolic);
b\sqrt{5}\sqrt{-a}
Ayrim hollarda soddalashtirish amalga oshmasligi mumkin, masalan:
> simplify(sqrt(x^4*v^2));
\sqrt{x^4 y^2}
Bunday hollarda kerakli aniqliklarni kiritib soddalashtirishga erishish mumkin
```

```
> simplify(sqrt(x^4*y^2),assume=real);
x^2|y|
```

```
> simplify(sqrt(x^4*y^2),assume=positive);
x<sup>2</sup> y
```

Bu yerda o'zgaruvchilar birinchi holda real deb, ikkinchi holda musbat deb aniqlashtirildi.

Simvolli amallarni dasturlash

Simvolli amallarni dasturlashni f(x)=0 ko'rinishidagi chiziqsiz tenglamalarni Nyutonning iteratsiyalar usuli bilan yechish misolida ko'raylik.

Ma'lumki Nyuton usuli quyidagi formulaga asosan iteratsion hisoblashlarga asoslangan:

```
x_{i+1} = x_1 + f(x_1)/f'(x_1).
```

Uni simvolli ko'rinishda dasturlaymiz:

```
> NI := proc( f,x )
    description "Chiziqsiz tenglamalarni yechish";
    local i;
> i:=x-f/diff(f,x);
> unapply(i,x) end;
NI := proc(f, x)
local i;
description"Chiziqsiz tenglamalarni yechish";
    i := x - f/diff(f, x); unapply(i, x)
end proc
```

```
> print( NI );

proc(f, x)

local i;

description"Chiziqsiz tenglamalarni yechish";

i := x - f/diff(f, x); unapply(i, x)
```

end proc

Bu yerda iteratsion formulani analitik ko'rinishda olish uchun unapply funktsiyasi ishlatilgan. Endi yechilishi zarur bo'lgan ifoda berilsa yechimning analitik ifodasini olish mumkin:

> f:=sin(x)^2-0.5; $f := sin(x)^2 - .5$ > T:=NI(f,x); $T := x \rightarrow x - \frac{1}{2} \frac{sin(x)^2 - .5}{sin(x) cos(x)}$

So'ngra x uchun boshlang'ich yaqinlashishni x=x0 ko'rinishida berib qator iteratsiyalar uchun hisoblash natijalarini olish mumkin:

```
> x0:=0. 2;
x0 := .2
> to 8 do x0:=T(x0);od;
x0 := 1.382611210
x0 := .117460944
x0 := 2.206529505
x0 := 2.360830634
x0 := 2.356194357
x0 := 2.356194490
x0 := 2.356194490
x0 := 2.356194490
```

Bu misoldan boshlang'ich sakrashlardan keyin tezlik bilan aniq yechimga yaqinlashilganligini ko'rish mumkin. Ushbu usul yordamida tenglamaning faqat bitta ildizini topish mumkin. Boshqa ildizlar boshlang'ich shartni o'zgartirish yo'li bilan aniqlanadi, masalan:

```
> x0:=5.0;
x0 := 5.0
> to 8 do x0:=T(x0);od;
x0 := -1.797189560
x0 := -1.192931138
x0 := -1.280714861
x0 := -1.284021145
x0 := -1.284025417
x0 := -1.284025416
x0 := -1.284025416
```

Yuqorida olingan dastur yordamida boshqa funktsiyalarni (tenglamalarni) ham yechish mumkin. Masalan $\ln(x^2)$ -0. 5=0 chiziqsiz tenglamani yechishni ko'raylik:

```
> f:=ln(x^2)-0.5;

f := \ln(x^2) - .5

> T:=NI(f,x);

T := x \rightarrow x - \frac{1}{2}(\ln(x^2) - .5)x

> x0:=0.2;

x0 := .2

> to 8 do x0:=T(x0);od;

x0 := .5718875825

x0 := 1.034437603

x0 := 1.258023119

x0 := 1.284025389

x0 := 1.284025417

x0 := 1.284025416

x0 := 1.284025417
```

Bu yerda itaratsiya formulasi boshqacha ko'rinishga ega bo'ldi (bunday bo'lishi tabiiy), lekin bunga qaramasdan bir necha iteratsiyalardan keyin aniq ildizga yaqinlashildi.

Tenglama va tengsizliklarni yechish

Tenglamalarni analitik koʻrinishda yechish

CHiziqli va chiziqli bo'lmagan tenglamalarni analitik ko'rinishda yechish uchun universal bo'lgan solve funktsiyasidan foydalaniladi. U quyidagi shakllarda bo'lishi mumkin:

solve(eqn, var) solve(eqns, vars)

Parametrlari

eqn - tenglama, tengsizlik yoki protsedura

eqns - tenglamalar yoki tengsizliklar to'plami

var - o'zgaruvchi (unga nisbatan yechim izlanadi)

vars - o'zgaruvchilar (ularga nisbatan yechim izlanadi)

Agar eqn ni yozishda tenglik yoki tengsizlik belgisi ishlatilmasa solve funktsiyasi eqn=0 tenglamaning ildizlarini izlaydi.

Tenglamalar sistemasini yechishda tenglamalar va o'zgaruvchilar ko'plik shaklida, yaoni figurali qavs ichida beriladi. Natijalar ham ko'plik shaklida bo'ladi. Ularni odatdagi ko'rinishga keltirish uchun assign funktsiyasi ishlatiladi. U ko'plikdan (figurali qavs ichidan) olingan qiymatlarni o'zgaruvchilarga beradi.

Tenglamalarning yechimlari analitik ko'rinishda bo'ladi. Ularni sonli ko'rinishga o'tkazish uchun evalf yoki convert funktsiyalaridan foydalaniladi:

```
> z = x y
> x = solve(z = x*y, x);
x = \frac{z}{y}
```

```
> y=solve( z=x*y, y );

y = \frac{z}{x}

> x^3 - 4x = 8

> x=evalf(solve(x^3-4*x=8,x));

x = (2.649435914, -1.324717958 + 1.124559025 I, -1.324717958 - 1.124559025 I)
```

Natijani evalf funktsiyasi yordamida yaqqol ko'rinishga o'tkazish

Quyidagi misolda RootOf funktsiyasi orqali ifodalangan natijani evalf funktsiyasi yordamida yaqqol ko'rinishga o'tkazilgan:

> $x - \cos(x) = 0$ > $f := \operatorname{proc}(x) x - \cos(x)$ end proc:

solve(f(x),x); RootOf($_Z - cos(_Z)$)

> x=evalf(%);

x = .7390851332

Keyingi misolda funktsiya ko'rinishida berilgan tenglamani yechish ko'rsatilgan: $> eq := x^4-5*x^2+6*x=2;$

 $eq = x^4 - 5x^2 + 6x = 2$

> x[1,2,3,4]=evalf(solve(eq,x)); $x_{1,2,3,4}=(1., 1., .732050808, -2.732050808)$

Tenglamalar sistemasini yechishga misollar:

 $x_1 + x_2 + x_3 = 1$ $3 x_1 + x_2 = 3$ $x_1 - 2 x_2 - x_2 = 0$

> tenglamalar := {x1+x2+x3=1, 3*x1+x2=3, x1-2*x2-x3=0}; tenglamalar := {3x1+x2=3, x1-2x2-x3=0, x1+x2+x3=1}

```
> yechimlar:= solve( tenglamalar );
```

yechimlar:= $\{x2 = \frac{3}{5}, x3 = \frac{-2}{5}, x1 = \frac{4}{5}\}$

> evalf(solve(tenglamalar)); { x2 = .6000000000, x3 = -.4000000000, x1 = .8000000000 }

Tenglamalar sistemasi grafik yoʻl bilan yechish

Quyidagi misolda tenglamalar sistemasi grafik yo'l bilan yechilgan. Buning uchun avval bibliotekadan grafiklarni qurish funktsiyasi plots chaqiriladi:

```
> restart:with(plots):
```

Warning, the name changecoords has been redefined

> sys:={3*x+5*y=15, y=x-1}:

> solve(sys,{x,y});

 $\{x = \frac{5}{2}, y = \frac{3}{2}\}$

Quriladigan grafik abtsissa va ordinata o'qlarining chegaralari ko'rsatiladi: > implicitplot(sys,x=-6..6,y=-5..5);

Uchta tenglamadan iborat sistemani yechish va uning uch o'lchamli grafigini qurishga misol:

> restart:with(plots):

Warning, the name changecoords has been redefined

> sys:={z=4,x+y=10,x-y=5}:

$$\{z=4, y=\overline{2}, x=\overline{2}\}$$

> display(implicitplot3d(sys,x=-10. . 10,y=-10. . 10,z=-10. . 10));

Qurilgan grvfikning ustiga sichqonchaning ko'rsatkichini olib kelib, uning chap tugmasi bosilgan holatda aylantirib, grafikni kerakli ko'rinishga kelguncha aylantirish mumkin:

Quyidagi misolda to'rtta tenglamadan iborat sistemaning yechilishi ko'rsatilgan: > sys:={4*x1+7*x2-x3+3*x4=11, > -2*x1+2*x2-6*x3+x4=4,

> x1-3*x2+4*x3-x4=-3, > 3*x1-5*x2-7*x3+5*x4=8}: > solve(sys,{x1,x2,x3,x4}); { $x2 = \frac{8}{19}, x1 = \frac{135}{19}, x3 = \frac{-81}{19}, x4 = \frac{-156}{19}$ }

Maple to'liq bo'lmagan tenglamalar sistemasini ham yechishi mumkin:

> restart:sys:={4-x1+x2=5,x1=7,x1+x4-x3=8}:

> solve(sys,{x1,x2,x3,x4});

 $\{x^2 = 8, x^4 = 1 + x^3, x^3 = x^3, x^1 = 7\}$

CHiziqli bo'lmagan va trantsendent tenglamalarni yechish

CHiziqli bo'lmagan va trantsendent tenglamalarni yechish uchun tenglamalar sistemasi va noma'lumlar to'plam ko'rinishida beriladi:

> restart: > solve({x*y=a,x+y=b},{x,y}); { y = RootOf(_Z² - _Zb + a), x = -RootOf(_Z² - _Zb + a) + b } > allvalues(%); allvelues({ y = $\frac{1}{2}b + \frac{1}{2}\sqrt{b^2 - 4a}, x = \frac{1}{2}b - \frac{1}{2}\sqrt{b^2 - 4a}$ }), allvelues({ y = $\frac{1}{2}b - \frac{1}{2}\sqrt{b^2 - 4a}, x = \frac{1}{2}b + \frac{1}{2}\sqrt{b^2 - 4a}$ })

Yuqoridagi tenglamaning a=2 va b=3 qiymatlar uchun yechimi:

> s:=solve({x*y=2,x+y=3},{x,y});

 $s := \{ y = 1, x = 2 \}, \{ y = 2, x = 1 \}$

Keyinchalik boshqa tenglamalarni yechishda x va y noma'lumlardan foydalanadigan bo'lsak xatoliklar yuzaga kelmasligi uchun, ularni aniqlanmagan holatga unassing funktsiyasi yordamida yoki qo'shtirnoqlarning ichiga olish yo'li bilan o'tkazamiz:

```
> unassing('x');y:='y';
unassing(x)
y := y
> x;y;
x
y
```

RootOf funktsiyasi

Tenglamalarni yechishda RootOf funktsiyasi hosil bo'lib qolishi mumkin. U tenglama ildizlarini radikallar yordamida ifodalab bo'lmasligini ko'rsatadi. RootOf funktsiyasi mustaqil holda ham RootOf(expr) yoki RootOf(expr,x) (bu yerda expralgebraik ifoda, x-o'zgaruvchi) ko'rinishlarida qo'llanilishi mumkin. Yechim x o'zgaruvchiga nisbatan izlanadi. Agar x ko'rsatilmagan bo'lsa z o'zgaruvchi bo'yicha umumiy yechim izlanadi. RootOf ko'rinishdagi yechimni yaqqol holda olish uchun all values funktsiyasidan foydalaniladi:

> RootOf(a*x^2=a/x,x); RootOf($\underline{Z}^3 - 1$) > allvalues(%); allvaleus(1), allvaleus $\left(-\frac{1}{2} + \frac{1}{2}I\sqrt{3}\right)$, allvaleus $\left(-\frac{1}{2} - \frac{1}{2}I\sqrt{3}\right)$ > restart:RootOf(x^2-16,x); RootOf($\underline{Z}^2 - 16$) > x[1,2]:=allvalues(%); $x_{1,2} := 4, -4$

Demak, RootOf funktsiyasi tenglamalarni ixcham ko'rinishda yechishning samarali usuli ekan.

Tarkibida maxsus funktsiyalar boʻlgan tenglamalarni yechish

Maple tizimining afzalliklaridan biri tarkibida maxsus funktsiyalar bo'lgan tenglamalarni yechish hisoblanadi:

```
> solve(max(x,3*x-12)=min(10*x+8,22-x),{x});
```

```
 \{x = \frac{-8}{9}\}, \{x = \frac{17}{2}\} 
 > solve(x..9=sin(x/25), \{x\}); 
 \{x = .9374908456\} 
 > solve(ln(x)=sqrt(8), \{x\}); 
 \{x = e^{(2\sqrt{2})}\} 
 > solve(3*x=ln(x), \{x\}); 
 \{x = -\frac{1}{3} LambertW(-3)\} 
 > evalf(\%); 
 \{x = ..1556659526 - .6072466076 I\} 
Tenglamaning aniqlangan ildizlarini o'rniga qo'yib tekshirib ko'ramiz:
```

> 3*(. 1556659526-. 6072466076 *I);

```
.4669978578 – 1.821739823 I
```

```
> ln(-. 1556659526-. 6072466076*I);
```

-.4669978580 - 1.821739823 I

Tengsizliklarni yechish

Tengsizliklarni yechish uchun ham solve funktsiyasidan foydalaniladi. Tengsizliklar tenglamalar singari beriladi. Maple tengsizlikning aniqlanish sohasini beradi. Bunda tengsizlik o'rinli bo'lmagan qiymat *Open* so'zi bilan ko'rsatiladi:

```
> solve(7*x-3>67,x);

RealRange (Open(10), \infty)

> solve(7*x-3>=67,x);

RealRange (10, \infty)

> solve(x^2-3*x-5>0,x);

RealRange(-\infty, Open(\frac{3}{2} - \frac{1}{2}\sqrt{29})), RealRange(Open(\frac{3}{2} + \frac{1}{2}\sqrt{29}), \infty)

> plot(x^2-3*x-5,x=-4..8);
```


Tengsizliklar sistemasini yechish namunasi: > solve($\{x^*y^*z>0,x>-1,y+z>10\},\{x,y,z\}$); $\{-1 < x, y = 0, 10 < z\}, \{-1 < x, z = 0, 10 < y\}$

Echish natijalarida bir necha o'zgaruvchining aniqlanish sohalari ko'rsatilgan.

Tenglamalarni sonli ko'rinishda yechish

CHiziqli bo'lmagan tenglamalar yoki tenglamalar sistemasining yechimini haqiqiy sonlar shaklida olish uchun

fsolve(eqns, vars, option)

funktsiyadan foydalanish mumkin:

```
> x=fsolve(sin(x)=Pi/4,x);
```

x = .9033391108

```
> x=fsolve(sin(x)=1/2,x);
```

```
x = 6.806784083
```

```
> x[1,2]=fsolve(2*x^2+x-1=9,x);
```

 $x_{1,2} = (-2.500000000, 2.000000000)$

- > fsolve(x^5-x,x);
- -1.00000000, 0., 1.00000000

Kompleks ildizlarni ham olish uchun fsolve funktsiyasida complex parametri ham ko'rsatiladi:

> fsolve(x^5-x,x,complex);

-1.000000000, -1.000000000 *I*, 0., 1.000000000 *I*, 1.000000000

Ma'lum oraliqdagi ildizlarni olish uchun kerakli oraliq ko'rsatiladi (masalan - 0,1dan 1,5gacha):

```
> fsolve(x^5-x,x=-0. 1. . 1. 5);
```

```
0., 1.00000000
```

Tenglamalar sistemasini yechish namunasi:

- > **f:=sin**(**x**+**y**)-**exp**(**x**)***y**=**0**:
- >q:=x^2-y=2:
- > fsolve({f,q},{x,y},{x=-1..1,y=-2..0});
 - $\{y = -1.552838698, x = -.6687012050\}$

Nazotrat uchun savollar:

- 1. MathCad va Mapleda matematik hisoblashlar qanday bajariladi?
- 2. MathCad va Mapleda algebraik amallar bajarish uchun qaysi buyruqlardan foydalaniladi

3. MathCad va Mapleda tenglamalarni sonli yechishda qaysi buyruqdan foydalaniladi?

4. Tenglamalar sistemasi qanday yechiladi?

5. Limitlarni hisoblash qanday amalga oshiriladi?

Foydalanilgan adabiyotlar ro'yxati:

1. Алексеев Е. Р., Чеснокова О. В. Решение задач вычислителной математики в пакетах MathCad 12, MATLAB 7, Maple 9. – М. : НТ Пресс, 2006. – 496 с. : ил. – (Самоучител).

2. Дащенко А. Ф., Кириллов В. Х., Коломиец Л. В., Оробей В. Ф. МАТLАВ в инженерных и научных расчетах. Монография. Одесса «Астропринт», 2003. – 214 с.

3. Плис А. И., Силвина Н. А. MathCad 2000: Математический практикум для экономистов и инженеров: Учеб. пособие. – М. Финансы и статистика, 2000 г.

4. Макаров Е. Г. Инженерные расчеты в MathCad. Учебный курс. СПб. : Питер, 2003.

5. В. П Дяконов MathCad 2000: Учебный курс. Питер 2002 г.

6. О. А. Сдвижков Дашков И. К. MathCad - 2000: Введение в компютерную математику. 2002 г.

7. Д. А Гурский. Вычисление в MathCad. Новое знание 2003 г.

8. Ne'matov A., Oxunboev M., Sobirov N. MathCad tizimida matematik masalalarni yechish. Uslubiy qo'llanma. Toshkent, 2009 y. 50 b.

3-mavzu. Oddiy differensial tenlamalar uchun Koshi va aralash masalalarni echish

- 1. Oddiy differensial tenlamalar uchun Koshi va aralash masalalarni MathCADda echish
- 2. Oddiy differensial tenlamalar uchun Koshi va aralash masalalarni Mapleda echish
- 3. MathCad va Mapleda grafiklar qurish.

Tayanch iboralar: differensial tenglamalar, Odesolve funksiyasi, boshlang'ich shartlar, analitik ko'rinishda yechish, yaqqol ko'rinishda yechish, differentsial tenglamalar sistemasini yechish, darajali ko'pxad ko'rinishida yechish, Laplas, Furg'e va boshqa integral o'zgartirishlar, funksiya grafiklarini hosil qilish.

1. Oddiy differensial tenlamalar uchun Koshi va aralash masalalarni MathCADda echish

Differensial tenglamalarni echish ancha murakkab. SHu sabab Mathcadda barcha differensial tenglamalarni ma'lum chegaralanishlarsiz to'g'idan-to'g'ri echish imkoniyati mavjud emas. Mathcadda differensiallar tenglama va tizimlarini echishning bir necha usullari mavjud. Bu usullardan biri Odesolve funksiyasi yordamida echish bo'lib, bu usul boshqa usullarga nisbatan eng soddasidir. Bu funksiya Mathcad 2000 da birinchi bor yaratildi va u birinchi bor differensial tenglamani echdi. Mathcad 2001da bu funksiya yanada kengaytirildi. Odesolve funksiyasida differensial tenglamalar tizimini ham echish mumkin. Mathcad differensial tenglamalarni echish uchun yana koʻpgina qurilgan funksiyalarga ega. Odesolve funksiyasidan tashqari ularning barchasida, berilgan tenglama formasini yozishda ancha murakkablik mavjud. Odesolve funksiyasi tenglamani kiritish blokida oddiy differensial tenglamani oʻz shaklida, xuddi qogʻozga yozgandek yozishga imkon yaratadi. Odesolve funksiyasi yordamida differensial tenglamalarni boshlang'ich shart va chegaraviy shartlar bilan ham echish mumkin.

Differensial tenglamalarni echish.

Berilgan tenglamani yozishda xuddi differensiallash operatorini ishlatgan holda ham yoki shtrixlar bilan ham yozish mumkin. Boshlangʻich shartni yozishda esa faqat shtrix bilan yozish kerak va uni kiritish uchun Ctrl+F7 klavishilarni baravar bosish kerak.

Odesolve funksiyasiga murojaat uch qismdan iborat hisoblash bloki yozuvini talab qiladi:

Given kalit soʻzi;

Differensial tenglama va boshlangʻich yoki chegaraviy shart yoki differensial tenglamalar tizimi va unga shartlar;

Odesolve(x,xk,n) funksiya, bu erda x – oʻzgaruvchi nomi, xk – integrallash chegarasi oxiri (integrallashning boshlangʻich chegarasi boshlangʻich shartda beriladi); n – ichki ikkinchi darajali parametr boʻlib, u integrallash qadamlar sonini aniqlaydi (bu parametr berilmasa ham boʻladi. Unda qadamni Mathcad avtomatik ravishda tanlaydi).

Differensial tenglamalar tizimini echish uchun Odesolve funksiyasi koʻrinishi quyidagicha: Odesolve(<noma'lumlar vektori>, x, xk, n)

2. Oddiy differensial tenlamalar uchun Koshi va aralash masalalarni Mapleda echish

Differentsial tenglamalarni yeyish matematik hisoblarda muxim o'rinlardan birini egallaydi va jumladan ular fizik va texnik ob'ektlar hamda tizimlarni modellashda katta ahamiyatga ega. Maple tizimi differentsial tenglamalarni ham analitik ham sonli ko'rinishda yeyish imkoniyatini beradi. Oddiy differentsial tenglamalarni (Koshi masalasini) yechish uchun dsolve funktsiyasining quyidagi ko'rinishlaridan foydalanish mumkin:

```
dsolve(ODE)
dsolve(ODE, y(x), extra_args)
```

dsolve((ODE, ICs}, y(x), extra_args)

dsolve({sysODE, ICs}, {funcs}, extra_args)

Bu yerda ODE — boshlang'ich shartlari ko'rsatilgan yakka oddiy differentsial tenglama yoki birinchi tartibli differentsial tenglamalar sistemasi , u(x) — bir o'zgaruvchining funktsiyasi, Ics — boshlang'ich shartlarni beruvchi ifoda, {sysODE} — differentsial tenglamalar, {funcs} — aniqlanmagan funktsiyalar, extra_argument — yechilish usulini beruvchi optsiya. Yechilayotgan tenglamalar klassi extra_argument parametri yordamida ko'rsatiladi. Ushbu parametrning asosiy qiymatlari quyidagilar:

- exact analitik ko'rinishda yechish (sukut holati uchun qabul qilingan);
- explicit yaqqol ko'rinishda yechish;
- system differentsial tenglamalar sistemasini yechish;
- ICs boshlang'ich shartlari berilgan differentsial tenglamalar sistemasini yechish;
- formal series darajali ko'pxad ko'rinishida yechish;
- integral transform Laplas, Furg'e va boshqa integral o'zgartirishlar asosida yechish;
- series Order o'zgaruvchining qiymati ko'rsatiladigan darajali qator ko'rinishida yechish (qatorning eng yuqori darajasining qiymati Order o'zgaruvchisi yordamida ko'rsatiladi, masalan **Order:=10**);
- numeric sonli ko'rinishda yechish.

Koshi masalasini yechishda boshlang'ich shartlarni yoki chegaraviy masalalarni yechishda chegaraviy shartlarni dsolve parametrlari tarkibiga qo'shish kerak. Agar Maple tizimi differentsial tenglamaning tartibiga qaraganda kamroq boshlang'ich yoki chegaraviy shartlarda yechimni topa olsa yechimda S1, S2 va h. k. aniqlanmagan konstantalar paydo bo'ladi. Bunday konstantalar sistemani analitik yechishda ham bo'lishi mumkin. Agar yechim yaqqol bo'lmagan ko'rinishda topilsa, unda T parametr ham hosil bo'ladi.

Sukut bo'yicha dsolve funktsiyasi differentsial tenglamalarni yechishning eng maqbul deb topgan usulini avtomatik ravishda tanlaydi. Lekin dsolve funktsiyasining parametrlarida kvadrat qavslar ichida boshqa maqbul usulni ko'rsatish mumkin. Buning uchun quyidagi usullar mavjud:

quadrature	linear	Bernoulli	separable
inverse linear	homogeneous	Chini	lin_sym
exact	Abel	pot_sym	

Differentsial tenglamalarni yozishda hosila diff funktsisi yoki D operatori orqali ko'rsatiladi va sysODE ifodasida tenglamalar sistemasidan tashqari boshlang'ich shartlar ham ko'rsatilishi kerak.

Differentsial tenglamalarni Maple tilida yozish va **dsolve** buyrug'idan foydalanish bo'yicha misol ko'raylik:

$$>$$
 deqn:=diff(y(x),x\$2)+3*diff(y(x),x)+2*y(x);

$$deqn \coloneqq \left(\frac{\partial^2}{\partial x^2} \mathbf{y}(x)\right) + 3\left(\frac{\partial}{\partial x} \mathbf{y}(x)\right) + 2 \mathbf{y}(x)$$

> dsolve(deqn,y(x)); $y(x) = _CI e^{(-x)} + _C2 e^{(-2x)}$ Bu yerda C1 va_C2 – ixtiyoriy konstantalar. CHegaraviy shartlarni berib tenglamani qaytadan yechib ko'raylik > bvp:=y(0)=0,y(1)=1; bvp := y(0) = 0, y(1) = 1> dsolve({deqn,bvp},y(x)); $y(x) = \frac{e^{(-x)}}{e^{(-1)} - e^{(-2)}} - \frac{e^{(-2x)}}{e^{(-1)} - e^{(-2)}}$

Agar yaqqol yechim topilmasa **dsolve** buyrug'idan yechimni qatorlarga yoyilgan ko'rinishda (**series** optsiyasi), Laplas o'zgartirishlari usuli bilan (**laplace** optsiyasi) yoki sonli ko'rinishda topish uchun foydalanish mumkin. Agar **dsolve** buyrug'i **numeric** optsiyasi bilan ishlatilsa protsedura hosil qilinadi. Bunday protseduraga yechimning ayrim qiymatlarini hisoblash uchun murojaat qilish mumkin.

> init:=y(0)=0,D(y)(0)=1; *init* := y(0) = 0, D(y)(0) = 1> F:=dsolve({deqn,init},y(x),numeric); $F \coloneqq \mathbf{proc}(rkf45_x) \dots \mathbf{end} \mathbf{proc}$ > F(. 5): $\left[x = .5, \, \mathbf{y}(x) = .238651241090805128, \frac{\partial}{\partial x} \, \mathbf{y}(x) = .129228176968825880\right]$ >**F(2)**; $\left[x = 2., y(x) = .117019668786085982, \frac{\partial}{\partial x}y(x) = -.0987040583766135572\right]$ Quvidagi $\frac{\partial}{\partial x}y(x) - \sin(x) = 0$ differentsial tenglamaning uch xil yo'l bilan yechilishini ko'raylik: > dsolve(diff(v(x),x)-sin(x)=0); $y(x) = -\cos(x) + Cl$ > dsolve(diff(y(x),x)-sin(x)=0,[linear]); $\mathbf{y}(x) = -\mathbf{cos}(x) + _Cl$ > dsolve(diff(y(x),x)-sin(x)=0,y(x)); > $y(x) = -\cos(x) + Cl$ Uchala holda ham yechim bir xil chiqdi. Keyingi misolda > $M \coloneqq \sin(x) \left(\frac{\partial}{\partial x} y(x) \right) - \cos(x) y(x) = 0$

tenglamaning har-xil usullar bilan yechilishi ko'rsatilgan:

> M:=sin(x)*diff(y(x),x)-cos(x)*y(x)=0; $M \coloneqq sin(x) \left(\frac{\partial}{\partial x} y(x)\right) - cos(x) y(x) = 0$

> dsolve(M,[linear],useInt); $\int \frac{\cos(x)}{\sin(x)} dx$ $\mathbf{v}(x) = Cl \mathbf{e}$ > value(%); $y(x) = Cl \sin(x)$ > dsolve(M); > $y(x) = Cl \sin(x)$ > dsolve(M,[linear]); $y(x) = Cl \sin(x)$ > dsolve(M,[linear],useInt); $\left(\int \frac{\cos(x)}{\sin(x)} dx\right)$ y(x) = Cle> value(%); $y(x) = Cl \sin(x)$ > dsolve(M,[separable],useInt); $\int \frac{\cos(x)}{\sin(x)} dx - \int \frac{1}{a} d_a d_a d_b d_b d_b dx = 0$ > value(%); $\ln(\sin(x)) - \ln(y(x)) + Cl = 0$ > dsolve(M,[lin sym]); $\mathbf{y}(x) = \frac{\sin(x)}{-CI}$ > dsolve(M,[lin_sym],useInt); $\mathbf{y}(x) = \mathbf{e}^{\left(\int \frac{\cos(x)}{\sin(x)} dx\right)} CI$

Ikkinchi tartibli differentsial tenglamalarni yechish

Differentsial tenglama tarkibiga kiruvchi yuqori tartibli hosilalarni ko'rsatish uchun \$ simvolidan foydalaniladi. Quyidagi

$$\left(\frac{\partial^2}{\partial x^2}\mathbf{y}(x)\right) - \left(\frac{\partial}{\partial x}\mathbf{y}(x)\right) = \sin(x)$$

ikkinchi tartibli differentsial tenglamaning yechilishini ko'raylik: > dsolve(diff(y(x),x\$2)-diff(y(x),x)=sin(x),y(x));

$$y(x) = -\frac{1}{2}\sin(x) + \frac{1}{2}\cos(x) + e^{x}Cl + C2$$

Keyingi misolda berilgan

$$\frac{\partial^2}{\partial x \,\partial x} y(x) - 2 y(x) = 0$$

ikkinchi tartibli differentsial tenglamaning

boshlang'ich shartlarga asosan sonli (numeric) yechimini olish ko'rsatilgan:

> d := dsolve({diff(y(x),x,x)-2*y(x)=0, y(0)=1. 2, y(1)=0. 9},numeric);
d := proc(bvp_x) ... end proc
> d(0);

$$\left[x=0., y(x)=1.199999999999990, \frac{\partial}{\partial x}y(x)=-1.25251895272789948\right]$$

> d(1);
 $\left[x=1., y(x)=.899999999999999912, \frac{\partial}{\partial x}y(x)=.555701111490339850\right]$
> d(0. 52);
 $\left[x=.52, y(x)=.827746847196821122, \frac{\partial}{\partial x}y(x)=-.243173630695110749\right]$

Tenglamaning analitik yechimini olish uchun **dsolve funktsiyasi tarkibidagi numeric so'zi yozilmaydi:**

> d := dsolve({diff(y(x),x,x)-2*y(x)=0, y(0)=1. 2, y(1)=0. 9});
>
$$(\sqrt{2}) = \frac{3}{4} (4 e^{(2\sqrt{2})} - 2 e^{(\sqrt{2})}) e^{(-\sqrt{2}x)}$$

$$d \coloneqq \mathbf{y}(x) = \frac{3}{10} \frac{(3 \, \mathbf{e}^{(\sqrt{2})} - 4) \, \mathbf{e}^{(\sqrt{2} \, x)}}{\mathbf{e}^{(2 \, \sqrt{2})} - 1} + \frac{\frac{3}{10} \, (4 \, \mathbf{e}^{(2 \, \sqrt{2})} - 3 \, \mathbf{e}^{(\sqrt{2})}) \, \mathbf{e}^{(-\sqrt{2} \, x)}}{\mathbf{e}^{(2 \, \sqrt{2})} - 1}$$

Olingan analitik yechimni Maple tilida quyidagicha yozish mumkin:

> d := $y(x) = \frac{3}{10*(3*exp(sqrt(2))-4)/(exp(2*sqrt(2))-1)*exp(sqrt(2)*x)+3/10*(4*exp(2*sqrt(2))-3*exp(sqrt(2)))/(exp(2*sqrt(2))-1)*exp(-sqrt(2)*x);$

$$d \coloneqq \mathbf{y}(x) = \frac{3}{10} \frac{(3 \, \mathbf{e}^{(\sqrt{2})} - 4) \, \mathbf{e}^{(\sqrt{2} \, x)}}{\mathbf{e}^{(2\sqrt{2})} - 1} + \frac{\frac{3}{10} (4 \, \mathbf{e}^{(2\sqrt{2})} - 3 \, \mathbf{e}^{(\sqrt{2})}) \, \mathbf{e}^{(-\sqrt{2} \, x)}}{\mathbf{e}^{(2\sqrt{2})} - 1}$$

Echimning x=0 nuqtadagi qiymati: > d(0):

$$y(x)(0) = \frac{3}{10} \frac{(3 e^{(\sqrt{2})} - 4) (e^{(\sqrt{2}x)})(0)}{e^{(2\sqrt{2})} - 1} + \frac{\frac{3}{10} (4 e^{(2\sqrt{2})} - 3 e^{(\sqrt{2})}) (e^{(-\sqrt{2}x)})(0)}{e^{(2\sqrt{2})} - 1}$$

> x=0:

$$y(x) = \frac{3}{10} \frac{(3 e^{(\sqrt{2})} - 4) e^{(\sqrt{2}x)}}{e^{(2\sqrt{2})} - 1} + \frac{\frac{3}{10} (4 e^{(2\sqrt{2})} - 3 e^{(\sqrt{2})}) e^{(-\sqrt{2}x)}}{e^{(2\sqrt{2})} - 1}$$

> evalf(%); y(x) = .1571676780 e^(1.414213562x) + 1.042832322 e^(-1.414213562x)</sup>

Funktsiyaning x=0 nuqtadagi qiymati: $v(0)=0.1571+1.0428\approx1.2$

bo'lib berilgan boshlang'ich shartga mos. Boshang'ich shartlar berilganligi uchun yechimda _SN ko'rinishidagi ixtiyoriy doimiylar mavjud bo'lmaydi.

Differentsial tenglamalar sistemasini yechish

Oddiy differentsial tenglamalar (ODT) sistemasining aniq yechimlarini topish uchun dsolve funktsiyasi ishlatiladi.

Funktsiya quyidagi ko'rinishda chaqiriladi

dsolve(ODE_sys, optional_1, optional_2,...)

Parametrlari

ODE_sys - ODT sistemasi, o'z ichiga tengsizliklarni (inequations) ham olishi mumkin;

optional_i - (qo'shimcha) argumentlar, ular har qanday tartibda berilishi mumkin va quyidagicha tavsif qilinadi:

funcs - funktsiyalarning nomlari

explicit - chiziqli bo'lmagan ODT sistemasining yechimida hosil bo'ladigan to'plamlar tarkibi;

useInt - yechimni hosil qilishda inert integrallardan foydalanish:

singsol=false - chiziqli bo'lmagan ODT sistemasining yechishda faqat birgina yechim hosil bo'lishining oldini olish;

rif - chiziqli bo'lmagan tenglamalarni yechishda DEtools[Rif] paketidan foydalanib differentsial qadamni tanlash.

Quyida berilgan

 $sys := \frac{\partial}{\partial x} y(x) = 2 z(x) - y(x) - x,$ $\frac{\partial}{\partial x} z(x) = y(x)$ differentsial tenglamalar sistemasini

y(0)=0,z(0)=1

boshlang'ich shartlar bo'yicha yechish turlicha usullar bilan amalga oshirilgan: 1) yaqqol ko'rinishda

sys:=diff(y(x),x)=2*z(x)-y(x)-x,diff(z(x),x)=y(x); $fcns:=\{y(x),z(x)\};$ $dsolve(\{sys,y(0)=0,z(0)=1\});$ $\{z(x) = \frac{5}{12}e^{(-2x)} + \frac{1}{3}e^{x} + \frac{1}{4} + \frac{1}{2}x, y(x) = -\frac{5}{6}e^{(-2x)} + \frac{1}{3}e^{x} + \frac{1}{2}\}$ $2) \quad qatorlarga yoyilgan ko'rinishda$ $Order:=4:dsolve(\{sys,y(0)=0,z(0)=1\}, fcns, series);$ $\{y(x) = 2x - \frac{3}{2}x^{2} + \frac{7}{6}x^{3} + O(x^{4}), z(x) = 1 + x^{2} - \frac{1}{2}x^{3} + O(x^{4})\}$ $Order:=10:dsolve(\{sys,y(0)=0,z(0)=1\}, fcns, series);$ $\{y(x) = 2x - \frac{3}{2}x^{2} + \frac{7}{6}x^{3} - \frac{13}{24}x^{4} + \frac{9}{40}x^{5} - \frac{53}{720}x^{6} + \frac{107}{5040}x^{7} - \frac{71}{13440}x^{8} + \frac{61}{51840}x^{9} + O(x^{10}), z(x) = 1 + x^{2} - \frac{1}{2}x^{3} + \frac{7}{24}x^{4} - \frac{13}{120}x^{5} + \frac{3}{80}x^{6} - \frac{53}{5040}x^{7} + \frac{107}{40320}x^{8} - \frac{71}{120960}x^{9} + O(x^{10})\}$

```
3) Laplas o'zgartirishlaridan foydalanib

dsolve({sys,y(0)=0,z(0)=1},fcns,laplase);

{y(x) = -\frac{5}{6}e^{(-2x)} + \frac{1}{3}e^{x} + \frac{1}{2}, z(x) = \frac{1}{3}e^{x} + \frac{5}{12}e^{(-2x)} + \frac{1}{2}x + \frac{1}{4}}
```

Bu yerda shuni takidlash kerakki, qatorlar ko'rinishida olingan yechim taqribiydir. U yaqqol yechim va Laplas o'zgartirishlari yordamida olingan yechimlardan farq qiladi.

Maple tizimi keng imkoniyatlarga ega bo'lishiga qaramasdan ayrim differentsial tenglamalarni analitik ko'rinishda yecha olmasligi mumkin. Bunday hollarda yechimni sonli ko'rinishda olishga urinib ko'rish kerak.

Differentsial tenglamalarni sonli ko'rinishda yechish

Ko'pchilik chiziqli bo'lmagan differentsial tenglamalar analitik yechimga ega bo'lmaydi. Bundan tashqari, ayrim hollarda analitik yechim kerak ham emas. Lekin javobni grafik bog'lanishlar ko'rinishida olish zarur bo'ladi.

Bunday hollarda numeric yoki type=numeric parametriga ega bo'lgan dsolve funktsiyasidan foydalanib differentsial tenglama sonli ko'rinishda yechiladi. Bunda yechim 4 va 5 tartibli Runge—Kutta—Felberg usulini amalga oshiruvchi maxsus protsedura ko'rinishida qaytariladi. Ushbu protsedura rkf45 deb ataladi va uning yordamida har qanday nuqtadagi yechimni topish yoki yechimning grafigini qurish mumkin.

Quyidagi misolda yechimni grafik ko'rinishda aks ettirish uchun odeplot paketidagi plot[odeplot] funktsiyadan foydalanilgan:

```
> sis:=diff(y(x),x)-2*z(x)-y(x)-x, diff(z(x),x)-y(x);

sis:=\left(\frac{\partial}{\partial x}y(x)\right)-2z(x)-y(x)-x, \left(\frac{\partial}{\partial x}z(x)\right)-y(x)

> fens:=\{y(x),z(x)\}:

> F:=dsolve(\{sys,y(0)=0,z(0)=1\}, fens, numeric);

F := proc(rkf45_x) ... end proc

> F(2); [x=2., y(x) = 2.94775557620857454, z(x) = 3.72064994303630758]

> plots[odeplot](F,[x,z(x)],0..2.5, labels=[x,z], color=black);
```

Differentsial tenglamalarni yechishga mo'ljallangan dsolve funktsiyasi parametrlarining ro'yhatiga yechish usulini yaqqol ko'rinishda ham kiritish mumkin.

Masalan mathod=dverk78 optsiyasi kiritilsa tenglama 7 yoki 8 tartibli uzluksiz Runge—Kutta usuli bilan yechiladi.

Umuman olganda, differentsial tenglamalarni sonli yechishda quyidagi usullardan foydalanish mumkin:

• classical — klassik usulning 8 ta versiyasidan biri (agar yechish usuli yaqqol ko'rsatilmasa);

• rkf45 — Filberg tomonidan takomillashtirilgan 4 yoki 5 tartibli Runge— Kutta usuli;

- dverk78 7 yoki 8 tartibli uzluksiz Runge—Kutta usuli;
- gear bir qadamli ekstrapolyatsion Gir usulining ikkita versiyasidan biri;
- mgear ko'p qadamli ekstrapolyatsion Gir usulining uchta versiyasidan biri;

• lsode — qattiq differentsial tenglamalarni yechuvchi Livenmorsk yechkichlarining sakkizta versiyasidan biri;

• taylorseries — Teylor qatoriga yoyish usuli.

Yuqorida ko'rsatilgan usullar tartiblari yoki versiyalarining eng maqbuli Maple tizimi tomonidan avtomatik tarzda tanlab olinadi.

Differentsial tenglamalarni yechishda 'abserr' =aerr parametri yordamida yechimning absolyut xatoligini, 'minerr'=mine parametri yordamida esa minimal xatoligini berish mumkin. Lekin ko'pchilik hollarda ushbu kattaliklarning sukut bo'yicha Maple tizimi tanlaydigan qiymatlari qoniqarli bo'ladi.

Maple differentsial tenglamani yechishni hisoblash jarayoniga moslashgan holda amalga oshiradi, yahni oldindan baholanadigan xatolik katta bo'lsa yechish qadami h avtomatik tarzda kamaytiriladi, kichik bo'lsa orttiriladi.

Quyidagi misolda

y''+sin(t)=0

ikkinchi tartibli differentsial tenglama sonli usulda yechilgan

> PDEtools[declare]((x,y,z,f,g)(t), prime=t);

derivatives with respect to: t of functions of one variable will now be displayed with $\$

```
x(t) will now be displayed as x

y(t) will now be displayed as y

z(t) will now be displayed as z

f(t) will now be displayed as f

g(t) will now be displayed as g

> t1:=diff(y(t),t,t)+sin(t)=0;

t1 := y'' + sin(t) = 0

> bsh1:=y(0)=0,D(y)(0)=1;

bsh1 := y(0) = 0, D(y)(0) = 1

> ech1:=dsolve({t1,bsh1},numeric);

ech1 := proc(rkf45_x) ... end proc

> ech1(0);

[t = 0., y = 0., y' = 1.]

> ech1(3. 14/2);

[t = 1.570000000, y = .99999954780836698, y' = .000796357849325357582]
```

> ech1(3. 14);

[t = 3.14, y = .00159168755423910736, y' = -.99999877570356010]

bu yerda **PDEtools[declare]** paketidan foydalanish tenglamalarni kompakt ko'rinishda ko'rsatish uchun xizmat qiladi, **x,y,z,f,g-funktsiyalar va prime=t** yordamida differentsiallash o'zgaruvchisi ko'rsatiladi. Endi funktsiyalarning hosilalari ' bilan belgilanadi hamda x(t) ning o'rniga x, y(t) ning o'rniga u va h. k. yoziladi.

Differentsial tenglamalarni kompakt ko'rinishga o'tkazish

Tenglamalarni kompakt ko'rinishga o'tkazish uchun PDEtools paketi ishga tushirilgan bo'lishi kerak:

PDEtools[declare] – kompakt ko'rsatish funktsiyasini e'lon qilish;

PDEtools[undeclare] – indeksli kompakt ko'rsatish funktsiyasini ishga tushirish.

Kompakt ko'rinishga o'tkazish funktsiyasi quyidagi ko'rinishlarda chaqirilishi mumkin

```
declare(f(x), g(x,y), '...')
declare(expr )
declare()
declare(prime=x )
declare(prime )
undeclare(f(x), '...')
undeclare(expr )
undeclare(all )
ON
OFF
```

show

Uning parametrlari quyidagilar:

- f(x) kompakt ko'rinishga o'tkazilishi kerak bo'lgan funktsiya
- expr kompakt ko'rinishga o'tkazilishi kerak bo'lgan ifodalar
- prime = x birinchi bo'lib ko'rsatiladigan differentsiallash o'zgaruvchisi.

Misollar:

PDEtools paketi

with(PDEtools):

buyrug'i yordamida ishga tushiriladi

declare(y(x), prime=x);

y(x) will now be displayed as y derivatives with respect to: x of functions of one variable will now be displayed with \setminus

Endi u(x) funktsiya u ko'rinishida bo'ladi.

Deklaratsiyani tekshirish:

> declare();

Declared :

y(x) to be displayed as y

derivatives with respect to: x of functions of one variable are being displayed with '

> declare(prime);`

derivatives with respect to: x of functions of one variable are being displayed with '

Quyida differentsial tenglamani kompakt ko'rinishga o'tkazishga misol

```
ko'rsatilgan:

> ode := diff(diff(y(x),x),x)*diff(y(x),x)*y(x)*f(x)-2*diff(y(x),x)^3*x^6

+ 2*diff(y(x),x)^2*y(x)*diff(g(x),x) + y(x)^5;

ode := y''y'y f(x) - 2y^3 x^6 + 2y^2 y g' + y^5
```

OFF buyrug'i yordamida **declare** funktsiyasining ishlashini to'xtatib differentsial tenglamaning birlamchi ko'rinishga o'tkazaylik va ON buyrug'i yordamida **declare** funktsiyasini qaytadan ishga tushirib olingan natijalarni taqqoslaylik:

> **OFF;**

ode;

$$\left(\frac{\partial^2}{\partial x^2} y(x)\right) \left(\frac{\partial}{\partial x} y(x)\right) y(x) f(x) - 2 \left(\frac{\partial}{\partial x} y(x)\right)^3 x^6 + 2 \left(\frac{\partial}{\partial x} y(x)\right)^2 y(x) \left(\frac{\partial}{\partial x} g(x)\right) + y(x)^5$$

$$> ON;$$
ode;

$$y'' y' y f(x) - 2 y^8 x^6 + 2 y^2 y g' + y^5$$

Differentsial tenglamani standart ko'rinishga o'tkazish uchun show buyrug'idan ham foydalanish mumkin:

> show;

$$\left(\frac{\partial^2}{\partial x^2} \mathbf{y}(x)\right) \left(\frac{\partial}{\partial x} \mathbf{y}(x)\right) \mathbf{y}(x) \mathbf{f}(x) - 2\left(\frac{\partial}{\partial x} \mathbf{y}(x)\right)^3 x^6 + 2\left(\frac{\partial}{\partial x} \mathbf{y}(x)\right)^2 \mathbf{y}(x) \left(\frac{\partial}{\partial x} \mathbf{g}(x)\right) + \mathbf{y}(x)^5$$

> ode;

 $y''y'yf(x) - 2y^3x^6 + 2y^2yg' + y^5$

Bog'lanmagan o'zgaruvchini indeksga o'tkazish uchun undeclare funktsiyasidan foydalaniladi.

> undeclare(prime);`

There is no more prime differentiation variable; all derivatives will be displayed as \ *indexed functions*

> ode;

$$y_{x,x} y_x y_f(x) - 2 y_x^3 x^6 + 2 y_x^2 y_g g_x + y^5$$

> undeclare(all); y(x) will now be displayed *as is*

> declare();
Nothing declared

> OFF; > pde := x*diff(f(x,y),y)-diff(f(x,y),x)-f(x,y)^2*g(x)/h(y); $pde \coloneqq x \left(\frac{\partial}{\partial y} f(x, y)\right) - \left(\frac{\partial}{\partial x} f(x, y)\right) - \frac{f(x, y)^2 g(x)}{h(y)}$ > ON; pde; $xf_y - f_x - \frac{f(x, y)^2 g(x)}{h(y)}$ declare(f(x,y));

f(x,y) will now be displayed as f

Endi f(x,y) funktsiya f ko'rinishida bo'ladi:

> pde;

$$xf_y - f_x - \frac{f^2 g(x)}{h(y)}$$

> declare(pde); g(x) will now be displayed as g f(x,y) will now be displayed as f h(y) will now be displayed as h

Endi hamma funktsiyalar ixcham indeksli ko'rinishda bo'ladi:

> pde;

 $xf_y - f_x - \frac{f^2g}{h}$

Funktsiyalarning faqat bittasini yoki hammasini oddiy ko'rinishga o'tkazish mumkin:

undeclare(g);

g(x) will now be displayed *as is*

Endi g(x) funktsiya "qanday bo'lsa shunday" ko'rinishga o'tadi

> pde;

 $xf_y - f_x - \frac{f^2 g(x)}{h}$

> undeclare(all);

f(*x*, *y*) will now be displayed *as is* *h*(*y*) will now be displayed *as is*

> pde;

 $xf_{y} - f_{x} - \frac{f(x, y)^{2} g(x)}{h(y)}$

OFF buyrug'i **undeclare** funktsiyasining ishlashini to'xtatadi: > **OFF**;

pde;

```
x\left(\frac{\partial}{\partial y}f(x,y)\right) - \left(\frac{\partial}{\partial x}f(x,y)\right) - \frac{f(x,y)^2 g(x)}{h(y)}
```

Natijada differentsial tenglama standart ko'rinishga o'tdi.

3. MathCad va Mapleda grafiklar qurish.

MathCad dasturida ixtiyoriy funksiyaning yoki diskret o'zgaruvchilarga bog'liq bo'lgan ifodalarni grafiklarini chizish imkoniyatiga ega. Bundan tashqari bir nechta funsiyaning grafigini bitta grafikda tasvirlash mumkin. Chizmada har bir grafik diskret o'zgaruvchiga bog'liq bo'ladi. Bu diskret o'zgaruvchi ham absisalar o'qi uchun ham ordinatalar o'qlari uchun ifodada qatnashishi kerak. MathCad diskret o'zgaruvchilarning har bir qiymati uchun bitta nuqtani tasvirlaydi.

MathCad da ikki o'lchovli grafik hosil qilish uchun sichqonchani bo'sh joyga qo'yib grafik soha tanlanadi. Bu quyidagicha amalga oshiriladi.

- Sichqoncha bilan grafik yasash joyini belgilang.
- Menyu qatorining Insert bo'limidam Graph ga kirib X Y

Plot ni tanlang yoki @ tugmasini bosing yoki matematik belgilar panelidan grafik belgisiga kirib ikki o'chovli grafik belgisini tanlang.

Ikki oʻchovli grafikni hosil qilish.

Grafikdagi bo'sh joylarni to'ldiring. Gorizontal o'qning o'rtasidagi bo'sh joyga argumentning qiymati kiritiladi. Vertikal o'qning o'rtasidagi bo'sh joyga funksiyning qiymati kiritiladi. MathCad dasturida bir nechta funksiyani bitta grafikda chizish uchun o'zgaruvchi va funksiyalar "," bilan ajratiladi.

Misol:

Rasmdan ko'rinadiki koordinata o'qlarini va grafikni ko'rinishini grafikni ustiga sichqonchani ikki marta bosib o'zgartirish mumkin va xuddi ifoda kabi grafikni siljitish, katta-kichik qilish, qirqish, nusxalash mumkin.

Funksiyani [a,b] oraliqda grafigini chizish.

Biror f funksiya berilgan bo'lsin va bu funksiyani grafigini [a,b] oraliqni n ta bo'lakka bo'lib chizish uchun i diskret o'zgaruvchi olib [a,b] kesmani quyidagicha n ta bo'lakka bo'lamiz. h qadam sifatida $\frac{b-a}{n}$ ni olamiz va i diskret o'zgaruvchini quyidagicha aniqlaymiz i:= 0..n x_i ni quyidagicha aniqlaymiz x_i:=a+h*i va bizga x_i va f(x_i) nuqtalar hosil bo'ladi. Bu nuqtalarga mos funksiyaning grafigini chizish mumkin. Funksiyaning grafigi 23rasmda keltirilgan.

Uch o'lchovli grafiklar qurish.

Math Cad dasturida uch o'chovli grafiklarni ham qurish mumkin. Uch o'lchovli grafik sohani hosil qilish uchun Insert (Вставка) menyusidan foydalaniladi. Unda Graph (График) buyrug'i ichidan Surface Plot (График Поверхности) tanlanadi.

Uch o'lchovli grafik sohani hosil qilish.

Uch o'lchovli grafik sohani matematik panel vositalaridan grafik shablondan foydalanib ham hosil qilish mumkin. U quyidagi rasmda keltirilgan:

Uch o'lchovli grafikaga misollar:

Mapleda grafika

Maple har qanday murakkablikdagi matematik grafiklarni qurish imkoniyatiga ega. Uning yadrosiga cheklangan miqdordagi grafiklarni qurish funktsiyalari biriktirilgan. Ular yoddamida eng ko'p qo'llaniladigan ikki o'lchamli (plot) va uch o'lchamli (plot3d) grafiklarni qurish mumkin.

Maxsus grafiklarni (masalan, gradientlarning vektor maydonlarini, differentsial tenglamalar yechimlarining grafiklarini, fazaviy portretlarni va h. k) qurish uchun Maple paketlariga ko'p miqdordagi grafik funktsiyalar kiritilgan. Ularni ishga tushirish uchun tegishli ko'rsatmalar beriladi (masalan with buyrug'i yordamida).

Grafik funktsiyalar yordamida xech qanday boshlang'ich tayyorgarliksiz tipik grafiklarni qurish mumkin. Buning uchun faqat grafik quradigan funktsiya va mustaqil o'zgaruvchining o'zgarish chegaralarini ko'rsatish yetarli. Lekin majburiy bo'lmagan qo'shimcha parametrlardan foydalanish grafikning ko'rinishini o'zgartirish imkoniyatini beradi – masalan, masalan chiziqlarning turi va rangini o'zgartirish, yozuvlarni kiritish, koordinata o'qlarini o'zgartirish va h. k. Ikki o'lchamli grafiklarni qurish uchun plot funktsiyasi quyidagi ko'rinishlarda berilishi mumkin:

plot(f, h, v)

plot(f, h, v, ...)

bu yerda f — vizuallashtirilayotgan funktsiya (yoki funktsiyalar), h — o'zgarish chegaralari bilan ko'rsatiladigan o'zgaruvchi, v — o'zgarish chegaralari bilan ko'rsatiladigan ko'rsatilishi majburiy bo'lmagan o'zgaruvchi , ... — grafikni qurish usulini qo'rsatuvchi parametr yoki parametrlar (chiziqlarning qalinligi va rangi, chiziqlarning turi va h. k.).

Ikki o'lchamli grafiklar uchun quyidagi parametrlarni ko'rsatish mumkin:

• axes — koordinatalar turi (axes=NORMAL — odatdagi o'qlar, sukut bo'yicha chiqariladi, axes=BOXES — grafik shkalali o'qlardan iborat ramkaga olinadi, axes=FRAME — kesishadigan chiziqlar ko'rinishidagi o'qlar, axes = NONE — grafik koordinata o'qlarisiz quriladi);

• axes font — koordinata o'qlaridagi yozuvlarning shriftini beradi;

• color — chiziqlarning rangini beradi;

• coords — koordinata sistemasining turi;

• discont — uzluksiz grafik qurish (qiymati true yoki false bo'lishi mumkin);

• filled — agar filled=true bo'lsa qurilgan chiziq va gorizontal koordinata o'qi bilan chegaralangan soha color parametri bilan berilgan rangga bo'yaladi;

• font — shrift [turi, uslubi, o'lchami] ko'rinishida beriladi;

• labels — koordinatalar oʻqlaridagi yozuvlar [X, Y] koʻrinishida beriladi, bu yerda X va Y — grafikning x va u oʻqlaridagi yozuvlar;

• label directions — koordinata o'qlaridagi [X, Y] yozuvlarning yo'nalishlari, bu yerda X va Y satriy qiymatlarga (HORISONTAL -gorizontal va VERTICAL- vertikal) ega bo'ladi;

• label font — yozuvlar shriftining turi;

• legend — legendalarni (chiziqlarning belgilari) chiqaradi;

• linestyle — chiziqning turi (1 — uzluksiz, 2 — nuqtali, 3 — punktir va 4 — shtrixpunktir);

• numpoints — grafikdagi nuqtalarning minimal miqdori (sukut bo'yicha numpoints=49);

• scaling — grafikning masshtabi: CONSTRAINED (siqilgan) yoki UNCONSTRAINED (siqilmagan — sukut bo'yicha);

• size— shriftning o'lchami;

• style — grafikni qurish usuli (POINT — nuqtali, LINE — chiziqli);

• symbol — grafik nuqtalari uchun simvolning ko'rinishi (BOX — to'g'ri to'rtburchak, CROSS — krest, CIRCLE — aylana, POINT — nuqta, DIAMOND — romb);

• symbolsize — grafik nuqtalari uchun simvollarning o'lchamlari, punktlarda (sukut bo'yicha10);

• title — grafikning sarlavxasi (title="string", bu yerda string — satr);

• titlefont — sarlavxa uchun shrift);

• thickness — grafikdagi chiziqlarning qalinligi (0, 1, 2, 3, sukut bo'yicha qiymati— 0);

• view=[A, V] — ekranda aks etadigan grafikning minimal va maksimal koordinatalari, A = [xmin. . xmax], B=[ymin. . ymax] (sukut bo'yicha grafikdagi chiziqlar to'liq aks etadi);

- xtickmarks x o'qidagi belgilarning minimal soni;
- ytickmarks u o'qidagi belgilarning minimal soni.

Umuman olganda grafikning parametrlarini o'rnatishda sezilarli qiyinchiliklar yuzaga kelmaydi, faqat titul yozuvlarda kirillitsa simvollari qabul qilinmasligi mumkin - bu holda muammo shrift tanlash yo'li bilan hal qilinishi mumkin.

YAkka funktsiyaning grafigi

YAkka funktsiyaning grafigini qurishda funktsiya yaqqol ko'rinishda f shablonning o'rniga yoziladi:

> plot(sin(x^2)/x,x=-10. . 10,color=black);

Ayrim funktsiyalar, masalan tan(x) uzilishlarga ega va uzilish nuqtalarida $+\infty$ yoki $-\infty$ ga intiladi. Bunday funktsiyalarning grafigini qurishda Maple tizimining grafik protsessori hamma vaqt ham ordinata o'qi bo'yicha optimal diapazonni to'g'ri tanlay olmaydi:

> plot(ln(1+tan(x)),x=-10..10);

Bitta rasmda bir necha funktsiyaning grafigini qurish uchun grafiklari quriladigan funktsiyalarni va ular uchun umumiy intervalni ko'rsatish yetarli:

> plot([sin(x),sin(x)/x,sin(x^3/100)],x=-10. . 10, color=[blue,black,red],style=[point,line,line]);

Odatda turli funktsiyalarning grafiklari avtomatik ravishda har xil ranglarda quriladi.

Funktsiyalarning grafiklarini nuqtalar bo'yicha qurish uchun nuqtalar to'plamidagi har bir nuqtaning koordinatalari ko'rsatiladi:

$$>> \mathbf{p}:=[[\mathbf{i}, \sin(\mathbf{i}'3)] \\ \mathbf{j}:=[[1, \sin(\frac{1}{3})], [2, \sin(\frac{2}{3})], [3, \sin(1)], [4, \sin(\frac{4}{3})], [5, \sin(\frac{5}{3})], [6, \sin(2)], \\ [7, \sin(\frac{7}{3})], [8, \sin(\frac{8}{3})], [9, \sin(3)], [10, \sin(\frac{10}{3})], [11, \sin(\frac{11}{3})], [12, \sin(4)], \\ [13, \sin(\frac{13}{3})], [14, \sin(\frac{14}{3})], [15, \sin(5)], [16, \sin(\frac{16}{3})], [17, \sin(\frac{17}{3})], \\ [18, \sin(6)], [19, \sin(\frac{19}{3})], [20, \sin(\frac{20}{3})], [21, \sin(7)], [22, \sin(\frac{22}{3})], \\ [23, \sin(\frac{23}{3})], [24, \sin(8)], [25, \sin(\frac{25}{3})], [26, \sin(\frac{26}{3})], [27, \sin(9)], \\ [28, \sin(\frac{28}{3})], [29, \sin(\frac{29}{3})], [30, \sin(10)]] \end{bmatrix}$$

plot(p,x=0..30,color=black,style=point,symbol=circle,symbolsize=20);

Odatda protseduralar ko'rinishida berilgan funktsiyalarning grafigini qurishda deyarli muammolar yuzaga kelmaydi:

> u:=proc(x) if sin(x)>0 then sin(x) else -sin(x) fi end; u := proc(x) if 0 < sin(x) then sin(x) else -sin(x) end if end proc

> plot(u,-15..15,axes=framed);

Ayrim hollarda funktsional bog'lanishlarni berish uchun parametrik tenglamalardan foydalaniladi, masalan $x = f_1(t)$ i $u = f_2(t)$. Ularning grafiklarini qurish uchun (x, u) nuqtalar dekart koordinatalar sistemasidagi grafikda ko'rsatiladi va to'g'ri chiziq kesmalari bilan birlashtiriladi. Buning uchun quyidagi ko'rinishdagi plot funktsiyasidan foydalaniladi:

plot([fl(t),f2(t),t-tmin. . tmax],h,v,p)

bu yerda abtsissa va ordinata o'qlari bo'yicha diapazonlarni hamda r parametrni ko'rsatish majburiy emas.

Agar $f_1(t)$ va $f_2(t)$ funktsiyalar tarkibida davriy funktsiyalar (masalan trigonometrik) bo'lsa yopiq figuralarni hosil qilish uchun t o'zgaruvchining o'zgarish diapazoni 0. . 2*Pi yoki -Pi. . Pi olinishi kerak. Masalan, $f_1(t)$ i $f_2(t)$ funktsiyalar sifatida sin(t) i cos(t) funktsiyalar olinsa aylananing grafigi quriladi:

> plot([sin(t),cos(t),t=-Pi. . Pi],thickness=3);

Yuqoridagi grafikning ma'lum qismini olish uchun h (masalan t=-0.5..1.5) va v (masalan y=-1..1) diapazonlar ko'rsatiladi:

> plot([sin(t),cos(t),t=-Pi. . Pi],t=-0. 5. . 1. 5,y=-1. . 1,thickness=3);

Funktsiyalarning grafiklarini qutbli koordinatalar sistemasida qurish (coords-polar) uchun plot funktsiyasi quyidagi ko'rinishda yoziladi:

plot([r(t),theta(t),t=tmin. . tnrax],h,v,p,coords-polar)

Bunda t burchakning o'zgarishiga mos bo'lgan r(t) radius-vektorning o'zgarishini ifodalovchi chiziqning grafigi hosil bo'ladi:

> plot([1-sin(t),t,t=0..2*Pi],color=blue,coords=polar);

Ikki va uch o'lchamli grafiklarni qurish imkoniyatlarini kengaytiruvchi plots paketi besh yuzga yaqin grafik funktsiyalarga ega. U quyidagicha ishga tushiriladi:

> with(plots);

[animate, animate3d, animatecurve, changecoords, complexplot, complexplotSd, conformal, contourplot, contourplotSd, coordplot, coordplotd, cylinderplot, densityplot, display, displayed, fteldplot,fieldplot3d, gradplot, gmdplotSd, implicitplot, implicitplot3d, inequal, listcontplot, HslcontplotSd, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, odeplot>pareto,pointplot, pointplotSd, polarplot, polygonplotSd, palyhedrajsupported, polyhedraplot, replot, rootlocus, semilogplot, setoptions, setoptionsSd, spacecurve, sparsematrixplot, sphereplot, surfdata, textplot, textplotSd, tubeplot]

Ushbu paket quyidagi funktsiyalarga ega:

- animate ikki o'lchamli grafiklarning animatsiyasi;
- animate3d uch o'lchamli grafiklarning animatsiyasi;
- animatecurve chiziqlarning animatsiyasi;
- changecoords koordinatalar sistemalarini almashtirish;
- complexplot kompleks tekislikda ikki o'lchamli grafiklarni qurish;
- complexplot3d kompleks tekislikda uch o'lchamli grafiklarni qurish;
- conformal kompleks funktsiyaning konform grafigi;
- contourplot konturli grafikani qurish;
- contourplot3d uch o'lchamli konturli grafikani qurish;
- coordplot ikki o'lchamli grafiklarning koordinatlar sistemasini qurish;

• coordplot3d — uch o'lchamli grafiklarning koordinatlar sistemasini qurish;

- cylinderplot tsilindrik koordinatalarda sirtning grafikasini qurish;
- densityplot zichlikning ikki o'lchamli grafigini qurish;
- display grafik ob'ektlarning ro'yhati uchun grafik qurish;

• display3d — uch o'lchamli grafik ob'ektlarning ro'yhati uchun grafik qurish;

• fieldplot — ikki o'lchamli vektor maydonining grafigni qurish;

• fieldplot3d — uch o'lchamli vektor maydonining grafigini qurish;

• gradplot — gradientning ikki o'lchamli vektor maydoni grafigini qurish;

• gradplot3d — gradientning uch o'lchamli vektor maydoni grafigini qurish;

• implicitplot — yaqqol bo'lmagan funktsiyaning ikki o'lchamli grafigini qurish;

• implicitp1ot3d — yaqqol bo'lmagan funktsiyaning uch o'lchamli grafigini qurish;

• inequal — tengsizliklar sistemasi yechimining grafigini qurish;

• listcontplot — qiymatlar to'ri uchun ikki o'lchamli konturli grafik qurish;

• Iistcontplot3d — qiymatlar to'ri uchun uch o'lchamli konturli grafik qurish;

• listdensityplot — qiymatlar to'ri uchun ikki o'lchamli zichlik grafigini qurish;

- listplot qiymatlar ro'yhati uchun ikki o'lchamli grafik qurish;
- listplot3d qiymatlar ro'yhati uchun uch o'lchamli grafik qurish;
- loglogplot funktsiyaning logarifmik ikki o'lchamli grafigini qurish;
- logplot funktsiyaning yarim logarifmik ikki o'lchamli grafigini qurish;

• matrixplot — matritsa orqali berilgan qiymatlarga asosan uch o'lchamli grafik qurish;

• odeplot — differentsial tenglamalar yechimining ikki yoki uch o'lchamli grafigini qurish;

• pareto — diagrammalar qurish (gistogrammalar va grafika);

- pointplot nuqtalar bilan ikki o'lchamli grafik qurish;
- poi ntplot3d nuqtalar bilan uch o'lchamli grafik qurish;

• polarplot — qutbli koordinatalar sistemasida ikki o'lchamli egri chiziqning grafigini qurish;

• polygonplot — bir yoki bir necha ko'pburchaklarning grafigini qurish;

• polygonplot3d — bir yoki bir necha ko'pburchaklarning uch o'lchamli grafigini qurish;

• polyhedraplot — uch o'lchamli ko'pyoqlikni qurish;

- replot grafikni qaytadan qurish;
- rootlocus kompleks noma'lumli tenglama ildizlarining grafigini qurish;

• semilogplot — funktsiyaning abstsissa o'qidagi masshtab logarifmik bo'lgan grafigini qurish;

• setoptions — ikki o'lchamli grafik uchun sukut bo'yicha parametrlarni o'rnatish;

• setoptions3d — uch o'lchamli grafik uchun sukut bo'yicha parametrlarni o'rnatish;

• spaeecurve — uch o'lchamli egri chiziqlarni qurish;

• sparsematrixplot — qiymatlari nolga teng bo'lmagan matritsaning ikki o'lchamli grafigini qurish;

• sphereplot — uch o'lchamli sirtning grafigini sferik koordinatalarda qurish;

• surfdata — sirtning uch o'lchamli grafigini sonli ma'lumotlar bo'yicha qurish;

• textplot — matnni ikki o'lchamli grafikning ko'rsatilgan nuqtasiga chiqarish;

• textplot3d — matnni uch o'lchamli grafikning ko'rsatilgan nuqtasiga chiqarish;

• tubeplot — «truba» turdagi uch o'lchamli grafikni qurish.

Teng satxli chiziqlar bilan grafik qurish (konturli grafiklar) kartografiyada keng ishlatiladi. Bunday grafiklarni qurish uchun contourplot funktsiyasidan foydalaniladi. Undan quyidagi formatlarda foydalanish mumkin:

contourplot(exprl,x=a. . b,y=c. . d) contourplot(f,a. . b,c. . d) contourplot([exprf ,exprg,exprh] S=a. . b,t=c. . d) contourplot([f. g. h],a. . b,c. . d) contourplot3d(exprl,x=a. . b,y=c. . d) contourplot3d(f,a. . b,c. . d) contourplot3d([exprf,exprg,exprh],s=a. . b,t=c,. d) contourplot3d([f. g. h],a. . b,c. . d) Bu verda f. g i h — funktsivalar: exprl — vuza baland

Bu yerda f, g i h — funktsiyalar; exprl — yuza balandligi va x,u koordinatalar orasidagi bog'lanishni ko'rsatuvchi ifoda; exprf, exprg va exprh — yuzaning s va t ga bog'liq bo'lgan parametrik shakldagi ifodalari; a va b — haqiqiy turdagi konstantalar; s va d — haqiqiy turdagi konstantalar; s va d — haqiqiy turdagi konstantalar; s va t — mustaqil o'zgaruvchilarning nomlari.

Nazorat uchun savollar:

1. ODT echishda nimalarga e'tibor berish zarur?

2. MathCAD va Maple dasturlarida differensial tenglamalarni echish uchun qaysi funksiyalardan foydalanamiz.

3. MathCad va Maple dasturlarida necha o'lchovli grafiklar bilan ishlash mumkin?

4. MathCad va Maple dasturlarida ikki o'lchovli grafik qanday quriladi?

5. MathCad va Maple dasturlarida uch o'lchovli grafik qanday quriladi?

Foydalanilgan adabiyotlar ro'yxati:

1. Алексеев Е. Р., Чеснокова О. В. Решение задач вычислителной математики в пакетах MathCad 12, MATLAB 7, Maple 9. – М. : НТ Пресс, 2006. – 496 с. : ил. – (Самоучител).

2. Дащенко А. Ф., Кириллов В. Х., Коломиец Л. В., Оробей В. Ф. МАТLАВ в инженерных и научных расчетах. Монография. Одесса «Астропринт», 2003. – 214 с.

3. Плис А. И., Силвина Н. А. MathCad 2000: Математический практикум для экономистов и инженеров: Учеб. пособие. – М. Финансы и статистика, 2000 г.

4. Макаров Е. Г. Инженерные расчеты в MathCad. Учебный курс. СПб. : Питер, 2003.

5. В. П Дяконов MathCad 2000: Учебный курс. Питер 2002 г.

6. О. А. Сдвижков Дашков И. К. MathCad - 2000: Введение в компютерную математику. 2002 г.

7. Д. А Гурский. Вычисление в MathCad. Новое знание 2003 г.

8. Ne'matov A., Oxunboev M., Sobirov N. MathCad tizimida matematik masalalarni yechish. Uslubiy qo'llanma. Toshkent, 2009 y. 50 b.
4-mavzu. MatLAB tizimi Reja:

- 1. Matlab dasturi
- 2. MATLABda matematik hisoblashlar
- 3. Vektor va matritsalarni shakllantirish
- 4. Vektorlar va matritsalar ustida bajariladigan funksiyalar
- 5. Matlabda funksiya grafiklarini tasvirlash.

Tayanch iboralar: matritsali laboratoriya, vektor-satr, vektor-ustun, Gragik qurish, Simulink, matematik hisoblash, konstantalar va o'zgaruvchilar, massivlar va matritsalar, Matritsalarni shakllantirish, matritsa ustida amallar, ikki va uch o'lchovli grafik.

1. Matlab dasturi

MATLAB so'zi **MAT**rix **LAB**oratory – matritsali laboratoriya so'zlarining boshlang'ich harflaridan tuzilgan. Uning nomidan MATLABning mohiyatni anglash mumkin. Bu haqiqatdan matritsali laboratoriya oddiy konstanta yoki o'zgaruvchi emas, ya'ni matritsa va uning xususiy holi vektor-satr, vektor-ustundir.

MATLAB R2014a		×
HOME PLOTS APPS EDITO	PUBLISH VEW	<mark>,</mark> 🔺
Prot Protect P	Construction C	 ▶
Current Folder (Editor - Ci/Users/Admin/Documents/MATLA8/GI3/UntitledI711.m	⊙ ×
Name * Vapolm UntitedBUUm UntitedBUZD39 m UntitedBUZD30 m SampleSam sampleSam sampleSam	0 meteral /Lm >> Unified >> + 1 % 3 глава 2 % 3.6. Исследование явления флаттера крыла 3 % по аналитически заданным характеристикам жесткости 4 clear all; 5 l=1; 6 T=100; 7 x=linspace(0,I,T); 8 alfa1=pi/2; 9 alfa2=3*pi/2; 10 alfa3=5*pi/2; 11 f1=f_fun(alfa1, x);	
Details	$12 - f2=f_{fun}(alfa2, x);$	
Workspace (10 f)=f fun(alfa) x).	*
Name∸ Value Min I	$f_{\tilde{X}} >>$	
< m		
A Ready	In 1 Co	1

MATLABda yangi fayl yaratish uchun **Fayl** menyusining **New** bandidan foydalaniladi. Yaratilayotgan faylning mazmuniga ko'ra M-fayl, Figure, Model, GUI buyruqlaridan biri tanlanadi.

M-fayl – tahrirlash oynasini ochish, M-fayllarni otladka qilish;

Figure – Gragik qurish bo'sh oynasini ochish;

Model – Simulink modelini yaratish uchun bo'sh oyna ochish;

GUI – Foydalanuvchining grafik interfeysini elementlarini qayta ishlash oynasini ochish;

Open – Fayllarni yuklash oynasini ochish;

Close Command Wiindows – Buyruq rejimida ishlash oynasini yopish;

Import Data – Fayllar ma'lumotlarini import oynasini ochish;

Save Workspace As... – Ishchi sohada berilgan nom bilan fayl ko'rinishida yozish oynasini ochish;

Set Path – Faylli tizimlarga o'rnatish yo'llariga ruxsat berish oynasini ochish;

Preferences ... – Interfeys elementlarini sozlash oynasini ochish;

Print . . . – Barcha hujjatlarni chop etish oynasini ochish; **Exit** – Sistema bilan ishlashni yakunlash.

2. MATLABda matematik hisoblashlar

MATLABda arifmetik va mantiqiy amallar

MATLABda	a arifmetik amallar
Funksiya	Belgilanishi (sintaksisi)
Qo'shish	+(M1+M2)
Ayirish	-(M1-M2)
Matritsali ko'paytirish	*(M1*M2)
Massivlarning elementlari	
bo'yicha ko'paytirish	.*(M1.*M2)
Matritsani darajaga ko'tarish	$(M1^{x})$
Massivlarning elementlari	
bo'yicha darajaga ko'tarish	$(M1.^{x})$
Matritsani chapdan o'ngga bo'li	sh /(M1 / M2)
Massivlarning elementlari bo'yi	cha
chapdan o'ngga bo'lish.	/ (M1 ./ M2)
Matritsani o'ngdan chapga bo'li	sh \ (M1 \ M2)
Massivlarning elementlari bo'yi	cha
o'ngdan chapga bo'lish.	\ (M1 .\ M2)

Matematik ifodalarda operatorlarni bajarish aniq bir qoidaga ega. MATLAB tizimida mantiqiy operatorlar arifmetik amallarga nisbatan yuqori turadi, darajaga ko'tarish esa ko'paytirish va bo'lish amallaridan yuqori, shu bilan bir qatorda ko'paytirish va bo'lish qo'shish va ayirishga nisbatan yuqori mavqega ega.

Munosabatlar operatori vektor yoki matritsa, ikkita qiymatni taqqoslash uchun xizmat qiladi. Taqqoslash belgilari quyidagi jadvalda keltirilgan.

Funksiya	Belgilanishi (sintaksisi)
Teng	==(x==y)
Teng emas	$\sim = (x \sim = y)$
Kichik	< ($x < y$)
Katta	>(x>y)
Kichik yoki teng	$\leq = (x \leq = y)$
Katta yoki teng	>=(x>=y)

Dasturlash MATLAB tizimida uning imkoniyatlarini kengaytirishi mumkin. Uning foydalanish imkoniyatlarini yanada oshiradi. Yuqorida dasturlashning ma'lum elementlari bilan tanishdik. Bu yerda MATLAB tilining toʻldiruvchi qoidalarini koʻrib oʻtamiz. Dasturlash tilida konstantalar va oʻzgaruvchilar ishlatiladi. Oʻzgaruvchi bu ob'ekt nomlariga ega bo'lib, oʻzida turli ma'lumot qiymatlarini saqlash xususiyatiga ega. Oʻzgaruvchining bu ma'lumot qiymatlari sonlar yoki simvollar, vektorlar yoki matritsalar bo'lishi mumkin. O'zgaruvchining aniq bir qiymatini berish uchun o'zlashtirish operatori ishlatiladi: Uning umumiy ko'rinishi quyidagicha:

O'zgaruvchi_nomi = ifoda;

O'zgaruvchining tipi oldindan e'lon qilinmasligi mumkin.

Ular o'zgaruvchining o'zlashtirayotgan ifoda qiymatiga qarab aniqlanadi. O'zgaruvchining nomi bir nechta simvollardan tashkil topishi mumkin, lekin boshlang'ich 31 ta simvol identifikatsiya qilinadi. O'zgaruvchining nomi harf bilan boshlanadi. Bundan tashqari harf, raqam, simvol va ostiga chiziqlar bo'lishi mumkin. Nomda probel va maxsus belgilar ishlatish mumkin emas.

Satrni ko'chirish

Matematik ifodalarda monitor ekraniga joylashmagan holda uning ma'lum qismini keyingi qatorga ko'chirish maqsadga muvofiq. Buning uchun ko'p nuqta (...) simvoli ishlatiladi. Buyruq rejimida bitta satrdagi simvollar soni 4096 ta bo'lishi mumkin. M-faylda esa cheklanmagan, lekin bunday uzun satrlar bilan ishlash noqulay. Shuning uchun satrdagi simvollarni ko'chirish dasturni sifatini yaxshilaydi.

MATLAB tilida oshkor ma'lumotlarni kiritish va chiqarish operatorlari yoʻq. Bu muammo oʻzlashtirish operatori orqali hal etiladi. Buning uchun matematik ifodalarning oxirida nuqtali vergul (;) belgisi qoʻyilmaydi.

Tizim konstantalariga quyidagilar kiradi:

<i>Pi</i> = 3,1415	- "PI" soni;
<i>i</i> yoki <i>j</i>	. kichik birlik;
NaN -	$\frac{0}{0}$ ko'rinishdagi aniqmaslik;

Inf

_ a/o cheksizlik tipi;

ans

3. Vektor va matritsalarni shakllantirish.

MATLAB – massivlar va matritsalar, vektorlar bilan murakkab hisoblashlarni bajarish uchun maxsus mo'ljallangan tizimdir. Har bir berilgan o'zgaruvchi bu vektor, matritsa va massiv deb tushuniladi. Agar vektorning uch elementi berilgan bo'lsa, uni kvadrat qavs ichida bir-biri bilan probel yoki vergul orqali ajratilib qiymatlari beriladi. Masalan:

>> V=[1 2 3] V = 1 2 3>> V=[1; 2; 3] V = 1 23

Masalan, agar x=1 berilgan bo'lsa, u holda bu x 1 ga teng bitta elementdan iborat vektordir. Agar vektor 4 ta elementdan iborat desak, ularning qiymatlarini kvadrat qavs ichida probellar bilan ajratilgan holda yozish mumkin.

>>V = [2 4 6 8] V = 2 4 6 8

MATLABda matritsa va vektorlar ustida amallar bajarish bir vaqtning o'zida barcha arifmetik amallarni bajarish imkonini beradi. Buning uchun amal belgisi oldidan nuqta qo'yiladi. MATLABda vektor va matritsalarni berish uchun maxsus funksiyalar mavjud. Bu funksiyalar bir o'lchovli va ko'p o'lchovli massivlar yaratish uchun xizmat qiladi. *ones* funksiyasi massivning

birlik elementini tuzadi. >> a = ones (3, 2) a =1 1 1 1 zeros funksiya nol elementli massivni yaratadi. >> b = zeros (2, 3) b =0 0 0 Matritsani berish bir nechta satr ya bir nechta

Matritsani berish bir nechta satr va bir nechta ustunlarni ko'rsatishni talab etadi. Satr chegaralari nuqtali vergul bilan ajratiladi. Masalan:

>> M=[1 2 3; 4 5 6; 7 8 9]; >> M M = 1 2 3 4 5 6 7 8 9 Matritsalarni shakllantirish va matritsa ustida amallar bajarish uchun matritsaning alohida satr va ustunlarini o'chirish zarur bo'lishi mumkin. Buning uchun bo'sh kvadrat qavs, yani [] dan foydalaniladi. Masalan, M matritsa bilan shu bajarib ko'raylik:

>> M=[1 2 3;4 5 6; 7 8 9]; >> M M =1 2 3 5 4 6 8 7 9 >> M(:,2)=[] $\mathbf{M} =$ 3 1 4 6 7 9

Bunda ikkinchi ustun o'chirildi.

Chiziqli algebra masalalarini yechish sohasida MATLAB keng imkoniyatlarga ega.

Matritsalar ustida elementar amallar bajarish quyidagicha bo'lishi mumkin:

>> % matritsa elementlarini songa ko'paytirish >> A=[1 -1 3;-1 2 0;3 -2 1]; >> B=2*A B = 2 -2 6

-2 4 0

6 -4 2 >> % matritsa elementlari bo'yicha amallar bajarish >> A/3+2*(B-A)

ans = 2.3333 -2.3333 7.0000 -2.3333 4.6667 0 7.0000 -4.6667 2.3333 >> % matritsani transponerlash A' >> A' ans =1 -1 3 2 -1 -2 3 0 1 >> % matritsani matritsaga ko'paytirish >> A*Bans =22 -18 12 -6 10 -6 16 -18 20

>> % matritsani kvadratga ko'tarish $>> B^{2}$ ans =44 - 36 24 -12 20 -12 32 - 36 40 >> % Matritsani elementlarini ko'paytirish >> A. *B ans =2 2 18 2 8 0 8 2 18 >> % Matritsa elementlari bo'yicha darajaga ko'tarish >> B. ^3 ans = 8 -8 216 -8 64 0 216 -64 8 A·x=b chiziqli sistemani vechish uchun MATLABda teskari bo'lish belgisi ishlatiladi. >> % Ax=b chiziqli sistemani yechish >> A=[1 2 5; 1 -1 3; 3 -6 -1]; >> b=[-9;2;25]; $>> x = A \setminus b$ $\mathbf{x} =$ 2.0000 -3.0000 -1.0000 >> % Ax=b ni tekshirish >> A*x ans =-9.0000 2.0000

4. Vektorlar va matritsalar ustida bajariladigan funksiyalar

Length(V) – V vektorning uzunligini aniqlaydi.

25.0000

Prod(V) yoki prod(A,k) – V vektor elementlarining ko'paytmasi yoki k ga ko'paytirish

Sum(V) yoki sum(A,k) – V massiv elementlarining yig'indisini hisoblaydi yoki k ning qiymatiga bog'liq matritsa satrlari yoki ustunlarining yig'indisini hisoblaydi.

dot(v1,v2) – bu v1 va v2 vektorlarning skalyar ko'paytmasini hisoblaydi. (yoki sum(v1. *v2) funksiya qiymatini chiqaradi).

cross(v1,v2) – v1 va v2 vektorlarning vektor ko'paytmasini aniqlaydi.

min(V) – V massivning kichik elementini aniqlaydi.

max(V) - V massivning katta elementini aniqlaydi.

sort(V) – V massivni tartiblaydi (o'sish tartibi bo'yicha saralaydi).

-sort(-V) – V massivni tartiblaydi (kamayish tartibi bo'yicha saralaydi).

det(M) – M kvadrat matritsani hisoblaydi.

rank(M) – M matritsa rangini aniqlaydi.

norm(M, p) - p (p=1, 2, inf, fro) ga bog'liq holda M matritsaning normasini turli ko'rinishlarda qaytaradi.

cond (M, p) – p normaga asoslangan M matritsa shartli qiymat sonini qaytaradi.

eye (n, m) yoki eye (n) – kvadrat birlik matritsa yoki bosh diagonali bo'yicha birlik to'g'ri to'rtburchakli matritsani qaytaradi.

cat (n, A, B) yoki cat (n, A, B, C, \dots) – A va B matritsalarni birlashtiradi.

inv(M) – M matritsaga teskari matritsani qaytaradi.

magic(n) – funksiyasi n*n o'lchamli sirli matritsani beradi, yani barcha ustun elementlari yig'indisi, barcha satr elementlari yig'indisi va hatto diagonal bo'yicha elementlar yig'indisi bir xil songa teng bo'ladi.

linsolve(A, b) - A·x=b ko'rinishdagi chiziqli tenglamalar sistemasi yechimini, linsolve(A, b, options) formatida tenglama yechish metodini berish imkonini chaqiradi.

5. Matlabda funksiya grafiklarini tasvirlash.

Matlab tizimining eng ajoyib xususiyatlaridan biri, unda ikki va uch o'lchovli grafik chizish imkoniyatining mavjudligidir. Matlabda grafiklarni har xil koordinata sistemalarida qurish mumkin. Bulardan to'g'ri burchakli dekart koordinatalari sistemasi, polyar koordinatalari, sferik va silindrik sistemalarni keltirish mumkin.

Biror bir sistemada grafik chizish uchun umumiy bo'lgan ba''zi grafik chizish buyruqlarini keltiramiz:

- plot(x,y)-x va y vektorlarning dekart tekisligidagi grafigini hosil qiladi;
- plot(y)-y ning y -vektor elementlari nomerlarga nisbatan grafigini yasaydi;
- semilogx(x,y)- "x"ni logarifmi grafigini "y" ga nisbatan yasaydi;
- semilogy(x,y)-"x"ning grafigini "y" ning logarifmiga nisbatan yasaydi;
- loglog(x,y)-"x"ni logarifmini "y" ni logarifmiga nisbatan grafigini yasaydi;
- grid -koordinatalar sistemasida to'rni hosil qiladi;
- title ('matn")- grafik tepasiga matn yozadi;
- xlabel ('matn'')- "matn"ni "x" o'qi ostiga yozadi;
- ylabel ('matn'')- "matn"ni " y " o'qining chap tomoniga yozadi;
- text(x,y,"matn")- "matn"ni (x, y) nuqtaga yozadi;
- polar(theta, r)- r va theta vektorlarning polyar koordinatalar sictemasida grafigini yasaydi (bu erda theta faqat radianlarda beriladi);
- bar(x) yoki stairs(x)- "x" vektorning gistogrammasini yasaydi;
- bar(x,y) yoki stairs(x,y)-"u" vektor elementlarini gistogrammasini "x" vektorning elementlariga mos to'plamga joylashtirib chizadi;

Masalan, funksiyaning $x \in [0;2]$ sigmentdagi grafigini chizish kerak bo'lsa, quyidagi Matlab buyruqlari ketma-ketligi yetarli bo'ladi:

>> x=0:. 1:2;

>> y=exp(x); plot(x,y)

>>

plot(x,y)- buyrug'i grafik oynani ochadi va unda kerakli funksiya grafigini tasvirlab beradi.

Ko'pincha grafik buyruqlar M-faylga joylashtiriladi (Ishchi fayl yoki fayl funksiyalar). Bu usul xatoliklarni

to'g'rilash uchun yaxshi imkoniyat beradi. Yana quyidagi misollarni ko'raylik: % x ni logarifmini sin(x) ni logarifmiga nisbatan chizilgan grafigi.

```
x=0:. 1:10;
```

```
loglog(x,sin(x),'—ob');
grid on
```


Bu yerda"--" -liniya turi,"0"-aylana tugun nuqta turi,"b"-havorang liniya rangi. Endi boshqa grafik funksiyadan foydalanib ko'ramiz:

>> x=0:0. 5:10; >> semilogy(x,sin(x),'--or') >> grid on

Bu misollardan ko'rinib turibdiki, Matlab tizimida grafik chiziqlarini rangini, turini, tugun nuqtalarini ko'rsatish va boshqa imkoniyatlar mavjud.

Gistogrammalar. Polyar koordinatalarda grafika. Amaliy hisoblarda biror vektor tarkibini tasvirlaydigan ustunli diagrammalar deb ataluvchi gistogrammalar ko'p uchraydi. Bunda vektorning har bir elementi balandligi uning qiymatiga mos bo'lgan ustun shaklida ko'rsatiladi. Ustunlar tartib raqamlariga va eng baland ustunning maksimal qiymatiga nisbatan ma''lum masshtabga ega bo'ladi. Bunday grafiklar masalan, iqtisodiy o'zgarish va boshqa jarayonlarni ifodalashi mumkin. Ular **bar(a)** buyrug'i yordamida quriladi.

Masalan:

```
>> a=[2:2:50];
>> bar(a)
>> a=[2:2:50;50:-2:2];
>> bar(a)
```


Bundan tashqari gistogramma qurishning yana boshqa usuli ham mavjud bo'lib, bu hist funksiyasi yordamida amalga oshiriladi:

h =

Columns 1 through 13

2 3 4 5 4 12 20 22 30 32 39 56 73

Columns 14 through 26

4 66 71 72 88 81 60 47 33 35 25 20 12

Columns 27 through 31 3

8 7 3 3

Qutbli koordinatalar tizimida ixtiyoriy nuqta xuddi radius vektor oxiri kabi, koordinatalar tizimining boshlang'ich nuqtasidan chiqib, RHO uzunlikka va THETA burchakka egaligini ko'rsatadi. RHO(THETA) funksiya grafigini qurish uchun quyida keltirilgan buyruqlardan foydalaniladi. THETA burchak odatda 0 dan 2* pi gacha o'zgaradi. Qutbli koordinatalar tizimida funksiya grafigini qurish uchun quyidagi buyruqlardan foydalaniladi:

✓ polar(THETA,RHO)- qutbli koordinatalar tizimida radius-vektor oxirining o'z holatidagi RHO uzunlik bilan va THETA burchakni ko'rsatuvchi grafikani quradi;

✓ polar(THETA,RHO, S)- analogli avvalgi buyruqda ishtirok etgan, lekin S qatorli konstanta yordamida qurish uslubini analogli

plot buyrug'i asosida ruxsat beradi.

Quyidagi misolni ko'ramiz:

>> angle=0:. 1*pi:3*pi; >> r=exp(angle/10); >> polar(angle,r); >> polar(angle,r);

>> title('polyar koordinatida grafik');

>> grid on

Uch o'lchovli grafika. Uch o'lchovli fazoda grafik chizish uchun plot3(x,y,z) buyrug'idan foydalaniladi. Bunda x,y,z-vektorlar bir xil sondagi koordinatalarga ega bo'lishi kerak, aks holda sistema xatolik beradi. Masalan,

>> t=0:pi/50:10*pi;

>> plot3(sin(t),cos(t),t)

Bundan tashqari uch o'lchovli fazoda sirtlarni grafigini hosil qiluvchi quyidagi buyruqlar mavjud:

mesh-bu fazoda uch o'lchovli "to'r"ni chizadi; **surf**-fazoda uch o'lchovli sirtni chizadi;

fill3-fazoda uch o'lchovli to'ldirilgan ko'pburchakni chizadi.

Meshgrid funksiyasi x,y larning qiymatlaridan [x,y] matrisalar hosil qiladi.

Agar x, y larning qiymatlari bir xil to'plamda bo'lsa meshgrid funksiyaning argumentida 1 ta argument qiymati ko'rsatilsa yetarli.

Masalan, Z= sinR/R, $R = \sqrt{x^2 + y^2}$, x,y ϵ [-8,8] bo'lsin. >> [x,y]=meshgrid(-8:. 5:8); >> R=sqrt(x. ^2+y. ^2)+eps; >> z=sin(R). /R; >> mesh(z)

Ko'rinib turibdiki, bu sirt grafigi to'r ko'rinishida ifodalangan. R ni hisoblashda sistema o'zgaruvchisi **eps** ni qo'shishdan maqsad, z=sin(R). /R ni hisoblashda nolga bo'lishdan saqlanishdir.

surf funksiyasining ishlatilish:

>> [x,y]=meshgrid(-7:0. 1:7);

Agar x, y argumentlarning o'zgarish oraliqlari har-xil bo'lsa, ular meshgrid funksiyasida aloxida-aloxida yoziladi.

Bir oynada bir necha grafiklarni hosil qilish. Matlabda bir grafik oynasida bir necha grafiklar hosil qilish uchun grafik oynasini ochiq holda saqlash kerak. Bu **hold** (yoki **hold on**) buyrug'i yordamida amalga oshiriladi. hold buyrug'i har bir grafik qurilgandan so'ng ishlatiladi. Masalan, y1=sin(x), y2=cos(x), xc[0, 5π] funksiyalar grafigini bir oynada chizilsin:


```
>> x=0:pi/100:5*pi;
>> y1=sin(x);
>> plot(x,y1,'--. r')
>> hold
>> y2=cos(x);
>> plot(x,y2,'--b')
```

Shundan keyin **hold off** buyrug'ini **hold** ni ishlashini to'xtatuvchi sifatida ishlatish mumkin. Matlabda grafiklarni faqat nuqtalar orqali ham chiqarish mumkin. U holda nuqtalar uchun quyidagi belgilar ishlatiladi: . , +, *,o va boshqalar. Masalan, plot(x,y,"o') har bir nuqtani o kabi belgilab, grafikni nuqtalar ketma-ketligi shaklida tasvirlaydi. Chiziqlarni rangli qilib ham chiqarsa bo'ladi. Buning uchun **r-qizil, g-yashil, b-ko'k, w-oq rang, k-qora va x. k.** ishlatiladi.

Hisoblashlarda to'xtashlar (pauza) hosil qilish

Dasturning ishlashini vaqtincha to'xtatib turish uchun pause operatoridan foydalaniladi. U quyidagi shakllarda ishlatilishi mumkin:

- ✓ pause −hisoblashlar biror klavisha bosilguncha to'xtab turadi;
- ✓ pause(N)-hisoblashlar N sekundga to'xtaydi;
- ✓ pause on pauzani qayta ishlash rejimini ulaydi;
- pause off-pauzani qayta ishlash rejimini uzadi;
 Quyidagi pausa. m deb nomlangan m-faylni yaratamiz:

```
x=0:0. 1:10;
pause(0. 5)
pause
y2=x. ^2
y=sin(x);
plot(x,y2)
plot(x,y2)
plot(x,y2)
plot(x,y1)
pause(2)
plot(x,y3)
plot(x,y1)
```

pauza. m nomli funksiyani ishlatamiz: >> pauza

Bu buyruqlar oynasida ishga tushirilgandan keyin pauza operatori ta"sirida biror klavisha bosilguncha kutib turadi. Klavisha bosilgandan keyin sin(x) ning grafigi quriladi. Keyingi grafiklar pause(N) operatorlarning ishlashiga asosan ma'lum vaqt oraliqlardan keyin ketma-ket quriladi, ya'ni 2 sekunddan keyin $\cos(x)$ ning, 0. 5 sekunddan keyin x^2 ning va 3 sekunddan keyin 1/x-2 ning grafigi ekranda paydo bo'ladi.

Silindrni uch o'lchovli fazoda qurish

-[x,y,z]=cylinder(R,N)-x,y,z massivlarni hosil qiladi. Bu massivlar R radiusli silindr hosil qiladi. N tugun nuqtalar sonini bildiradi. Shunday silindrni aurish uchun surf(x,y,z)buyrug'i ishlatiladi.

-[x,y,z]=cylinder(R,N)voki [x,y,z] =cylinder xuddi yuqoridagi kabi bo'lib, bunda R=11, N=[20]

Masalan, [x,y,z]=cylinder(10,30);surf(x,y,z,x). Bunda surf buyrug'i x vektor orqali aniqlanuvchi ranga funksional bo'yoq berish imkoniyatini beradi

- Fi 3. 2、 1. 0、 -1

Sferani uch o'lchovli fazoda qurish

x,y,z sfera koordinatalarni aniqlash uchun **sphere** funksiyasi ishlatiladi.

-[x,y,z]=sphere(N) x,y,z-matrisalar hosil qiladi. Ular(N+1)x(N+1) o'lchovli bo'ladi. Sfera uchun surf(x,y,z)qurish yoki surf(x,y,z,x)buyruqlarni ishlatish mumkin.

-[x,y,z]=sphere xuddi avvalgidek, N=20. Masalan: >> [x,y,z] =sphere(30);

>>surf(x,y,z,z)

Bir necha shakllarni bir oynada tasvirlash

Bir oynada bir nechta sferalarni yaratish uchun quyidai funksiyalarni yozamiz >> [x,y,z] = sphere; >> surf(x,y,z,z); >> hold on >> surf(x-3,y-2,z+3); >> surf(x-1,y+1,z-1);

Bunda vektor rangi z bilan berilyapdi, u x yoki y bilan ham berilishi mumkin. Slindr ichida -0.5 0 0.5 -1.5 -1 -2 sferani tasvirlash uchun quyidagi buyruqlarni kiritamiz >> [x,y,z]=cylinder(1,20); surf(x,y,z,x); hold on [x,y,z] = sphere; surf(x,y,z,x)Natijada quyidagi tasvir hosil bo'ladi Turli grafiklar bilan sferani tasvirlash. Masalan $z=x^2-y^2$ funksiya grafigi ichida sferani tasvirlash >>[x,y]=meshgrid(-2:0, 1:2);>>z=x. ^2-y^2; >>surf(x,y,z); >> hold Current plot held >> [x,y,z] =sphere; >> surf(x,y,z+2)

Bu ishni vaqt oralatib pause funksiyasi yordamida yaratamiz va fazoviy shakllarning ma"lum vaqtlar oralig'ida paydo bo'lishi kuzatamiz. Buning uchun m-fayl funksiya yaratab olamiz va Editor oynasida quyidagi buyruqlarni yozamiz

[x,y]=meshgrid(-2:0. 1:2); pause(3) z=x. ^2-y^2; surf(x,y,z); hold pause(5) [x,y,z]=sphere; surf(x,y,z+2) va faylni sfera. m nomi bilan saqlab olamiz. Yaratilgan funksiyani Matlab oynasida ishlatamiz va shakllar vaqt oralab hosil bo'lishini kuzatamiz.

Nazorat savollari

- 1. Vektor uzunligini aniqlash qanday funksiya yordamida amalga
- 2. oshiriladi?
- 3. Vektor elementlarining ko'paytmasi qanday bajariladi?
- 4. Vektor elementlarining yig'indisi qanday bajariladi?
- 5. Vektorlar qanday shakllantiriladi?
- 6. Vektorlar ustida qanday amallar bajarish mumkin?
- 7. Matritsalar qanday shakllantiriladi?`
- 8. Matritsalar ustida qanday funksuyalar bajarish mumkin?
- 9. Teskari matritsa qanday aniqlanadi?
- 10.Matlabda qanday grafiklarni qurish mumkin?
- 11. Matlabda funksiya grafiklarini qurishning qanday funksiyalarini bilasiz?
- 12.Funksiya grafiklarining chiziqlarini turini va rangini tanlash qanday bajariladi?
- 13. Gistogrammalar qanday tasvirlanadi?
- 14. Matlabda uch o'lchovli grafiklarni qurish qanday amalga oshiriladi?
- 15.Uch o'lchovli grafiklarni qurishda ishlatiladigan qanday funksiyalarni bilasiz?

Foydalanilgan adabiyotlar ro'yxati:

- 1. Алексеев Е. Р., Чеснокова О. В. Решение задач вычислителной математики в пакетах MathCad 12. MATLAB 7. Maple 9. – М. НТ Пресс 2006. – 496 с. : ил. – (Самоучител)
- МаthCad 12, MATLAB 7, Maple 9. М.: НТ Пресс, 2006. 496 с. : ил. (Самоучител). 2. Дащенко А. Ф., Кириллов В. Х., Коломиец Л. В., Оробей В. Ф. МАТLAB в инженерных и научных расчетах. Монография. Одесса «Астропринт», 2003. – 214 с.
- 3. T. Dadajonov, M. Muxitdinov. MATLAB asoslari. Toshkent. OʻzFA Fan nashriyoti. 2008 y.

IV.AMALIY MASHG'ULOT

1- AMALIY MASHG'ULOT: MathCAD va Maple tizimi.

- 1. Sonli qiymatlar bilan ishlash.
- 2. Arifmetik ifodalarni hisoblash.

I. Maple da elementar matematika masalalarini yechish

§1. 1. Maple oynasining tuzilishi.

Maple kompyuterga o'rnatilgandan so'ng, uni standart 2 yo'l bilan ishga tushirish mumkin: 1) Windows OT ning bosh menyusi orqali yoki 2) Ish stolida yaratilgan yorliq orqali. Biz Maple 9. 5 versiya bilan ishlaymiz.

Maple oynasi Windows OT ning standart oynasiga o'xshash bo'lib, oynaning nomi satri, menyu satri, qurollar paneli, ishchi maydon, holat satri, lineyka va o'girish liftlaridan iborat:

Asosiy menyu punktlari:

File(Fayl)- fayllar bilan ishlaydigan standart komandalar, masalan, faylni saqlash, ochish, yangisini yaratish va hokazo, to'plamidan iborat.

Edit(Pravka)- fayllarni tahrirlovchi standart komandalar, masalan, nusxalash, ajratilgan matn qismini buferga olish, komandani bekor qilish va hokazo, to'plamidan iborat.

View (Vid)- oynani ko'rinishini o'zgartiruvchi standart komandalar to'plamidan iborat.

Insert (Vstavka)- oynaga matnli, komandali maydonlar, grafiklarni qo'yish uchun mo'ljallangan komandalar to'plamidan iborat.

Format (Format)- hujjatni bezash uchun ishlatiladigan komandalar to'plamidan iborat.

Options (Parametrы)- ma'lumotni ekoanga kiritish va chiqarish bilan bog'liq komandalar to'plamidan iborat.

Windows (Okno)- bir ishchi oynadan ikkinchi ishchi oynaga o'tish uchun mo'ljallangan komandalar to'plamidan iborat.

Help (Spravka)- Maple haqida batafsil ma'lumotlarni oʻz ichiga oladi.

Maple da ishlash muloqat (sessiya) tarzida olib boriladi: foydalanuvchi Maple ga ekranda komanda bilan murojaat qiladi, Maple uni qayta ishlab ekranda komandadan keyingi satrga javob qaytaradi (quyidagi rasmga qarang). SHunga asoasn, ishchi maydon shartli ravishda uch qismga bo'linadi:

(komanda) maydoni-komandalardan 1)Kiritish iborat. Komandalar >sommand(p1,p2,...); (yoki :) ko'rinishga ega, qizil rangli, chapga tekislangan;

2)CHiqarish (javob) maydoni- Maple ning kiritilgan komandaga javobidan iborat bo'lib, analitik ifoda, sonli qiymat, to'plam, grafik ob'ekt, xatolik haqidagi xabardan iborat bo'lishi mumkin va ko'k rangda. Javob komandadan keyingi satrga chiqariladi, markazga tekislangan bo'ladi;

3)matn (komentariya) maydoni- foydalanuvchi tomonidan kiritiladigan ixtiyoriy matndan iborat va u ma'lumotni qayta ishlashga ta'sir etmaydi, va uning mohiyatini tushuntirish uchun ishlatiladi, va **qora** rangli.

va komanda maydoniga o'tish qurollar panelidagi (yoki Insert (Vstavka) Matn menyusidagi ularga mos komandalar orqali)

Т [> tugmalarni bosish orqali bajariladi.

📕 Mapl	le 9.5	5 - Untitled (1) - [Server 1]	_ 8 X
File Edit	t View	w Insert Format Tools Window Help	
D 🖉	8 4) 御 愛 愛 愛 愛 雪 戸 三 三 三	
Х 🅸 [C 2D O	Output 💌 Times New Roman 💌 12 💌 B I 🖳 💷 🕮 💭 📰 🗮 🗏 🗄	
Express	ion 🖡	«⊨ * ["Амалий иш №1"	
Symbo	ol	"Бажарди НамДУ ФМ факультети 305 гуруд талабаси студент Олимов Зафар"	_
Matrix		"Қабул қилди доц. А.Имомов"	
Vecto			
+ 0010	~	<pre>/ (sqrt(0+2*sqrt(3))- sqrt(0-2*sqrt(3)))/sqrt(3);</pre>	
αβ		$\frac{1}{3}\sqrt{3}$	
γu		> omega=theta/t; abs(f(x)- omega) <epsilon;< td=""><td></td></epsilon;<>	
εζ		$\omega = \frac{\sigma}{t}$	
η θ		$ -f(x)+\alpha \leq d$	
ικ			
		$> \cos(Pi/3) + \tan(14*Pi/3);$	
η κ μ		$\frac{1}{2} - \sqrt{3}$	
νĘ			
ορ			
στ		$ > eq:= (x+1) * (x-1) * (x^2-x+1) * (x^2+x+1);$	
		$eq = (x + 1) (x - 1) (x - x + 1) (x^{-} + x + 1)$	
υφ		> expand(eq);	
χ ψ		x ^o - 1	
ωΑ		$> p:=x^{5}-x^{4}-7*x^{3}+x^{2}+6*x;$	
ВГ		$p := x^{5} - x^{4} - 7x^{3} + x^{2} + 6x$	
		= factor(n):	
ΔΕ		x (x - 1) (x - 3) (x + 2) (x + 1)	
Z H			
ΘΙ	-		F
Ready		Time: 0.43s Memory: (D.18M
# Пуск	8) 🗵 🥺 🐣 🧶 🦲 0 💾 👋 🖳 Маріе да матем 🕅 🐹 Маріе 9.5 - U	🖪 💽 🛒 🕼 🖉 🔶 🚳 8:58

Topshiriq 1. 1.

- 1. Maple ni ishga tushiring.
- Maple ishga tushgandan so'ng birinchi satr komanda satri bo'ladi. Uni matn maydoniga aylantiring. Bu satrda "Amaliy ish №1" deb mavzu nomini kiriting. Enter tugmasini bosib yangi satrga o'ting va "Bajardi: ______ " deb yozing. Enter tugmasini bosib yangi satrga o'ting
- 3. "Qabul qildi: _____" deb yozing va Enter tugmasini bosib yangi satrga o'ting.
- 4. Hosil bo'lgan faylni disk, fleshkada saqlang. Buning uchun File>Save as komandasini berib faylga : Familiya_AT_1 deb nom berib saqlab qo'ying. Enter tugmasini bosib yangi satrga o'ting.
- 5. Keyingi satrda "Amaliy topshiriq AT_1 fayli Familiya_AT_1" nom bilan saqlangan deb yozing. (O'ylab ko'ring bu nimaga kerak).
- 6. Keyingi satrlarda bu topshiriqdan so'ng komandalar va ularning natijalari yoziladi.

§1. 2. Maple sonlar va arifmetik amallar

Asosiy matematik o'zgarmaslar va arifmetik amallar.

Asosiy matematik o'zgarmaslar quyidagilardir: Pi- bu π soni, I-mavhum birlik i, infinity- ∞ , Gamma –Eyler o'zgarmasi, false-yolg'on, true-rost. Arifmetik amallar belgilari: +-qo'shish, -ayirish, *-ko'paytirish, /-bo'lish, ^-darajaga ko'tarish, !-faktorial. Solishtirish belgilari: <,>,>=,<=,<>,= (kichik, katta, katta va teng, kichik va teng, teng emas, teng).

Butun, ratsional va kompleks sonlar.

Maple da sonlar tabiiy ravishda matematikadagi kabi butun (integer), ratsional, haqiqiy (real) va kompleks (complex) bo'lishi mumkin. Ularning ma'nolari bir xil, faqat yozilish qoidalariga aniq itoat qilish kerak. Ratsional sonlar uch xil ko'rinishda tasvirlanadi: 1)oddiy kasr ko'rinishidagi ratsional son, masalan: 28/70; 2)o'nli kasr ko'rinishidagi (float) ratsional son: 2. 3457; 3)daraja ko'rishishidagi ratsional son, masalan, 1,602 *10 ⁻¹⁹ son 1. 602 *10^(-19) ko'rinishda yoziladi.

Ratsional sonni taqribiy o'nli kasr ko'rinishda olish uchun biror butun sonni o'nli nuqta bilan nol sonini qo'shib yozish kerak.

SHartli kelishuv: Maple da javob ,yuqorida ko'rganimizdek, komandadan keyingi satrda ko'rsatiladi. Kompakt yozish uchun javobni biz komanda yonida $\mid \mid belgidan keyin ko'rsatamiz, masalan, >a+b; \mid \mid a+b$.

Komanda satri	>1. 2+3. 4;		
Javob satri		3.6	
Komanda satri	>Sin(Pi/6);		
Javob satri		1/2	
Kelishuvga	>sin(Pi/6. 0);	/	\ 0.
asosan	50000000		

Maple da grek alfavitidan ham foydalanish mumkin. Buning uchun satrda grek harfining nomi yoziladi, katta harflarni yozish uchun grek harfining nomida bosh harf katta qilib yozildi kerak. Masalan,

α -alpha	β -beta	γ-gamma	δ -delta
ε-epsilon	ζ-zeta	η-eta	θ-teta
1-ita	к-kappa	K-Kappa	λ-lambda
µ-mu	v-nu	ξ-xi	o-omikron
π-pi	ρ-rho	Σ-Sigma	σ-sigma
τ-tau	v-uosilon	φ-phi	χ-chi
ψ-psi	ω-omega	Г-Gamma	Ω-Omega

Grek harflarini yozish uchun ekranda maxsus menyu mavjud.

Topshiriq №1. 2.

Test yechishga misollar keltiramiz.

1. Hisoblang $\sqrt{23-8\sqrt{7}} + \sqrt{23+8\sqrt{7}}$ (m: 96-6-28). J-r: A)7 B)6 C)8 D)9

 $> a:= sqrt(23-8*sqrt(7))+sqrt(23+8*sqrt(7)); \a=8$

2. Hisoblang $(\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}+\sqrt{2})/4\sqrt{2}$ (m:V-07) J-r: A)0. 5 B) $\frac{\sqrt{2}}{4}$ C)0. 75 D) $\frac{\sqrt{2}}{2}$

>b:=(sqrt(3+2*sqrt(2))+sqrt(3-2*sqrt(2))+sqrt(2))/(4*sqrt(2));\\0.75

§1.3. Komandalarning ko'rinishi va ularni bajartirish usullari.

Mapleda komandalar nomli va nomsiz bo'ladi. Nomli komanda quyidagicha bo'ladi: >sommand(p1,p2,...); yoki >sommand(p1,p2,...): , ya'ni komanda nomdan va qavslar ichida parametrlardan iborat va ikki nuqta yoki nuqta vergul bilan tugallanadi. Komanda arifmetik ifoda bo'lsagina uning maxsus nomi bo'lmaydi. Agar komanda nuqta vergul (;) bilan tugallansa uning natijasi ekranga chiqariladi, ikki nuqta (:) bilan tugallansa komanda bajariladi natijasi ekranga chiqarilmaydi.

Komandalar ikki xil usul bilan bajartirilishi mumkin:

1-usul-to'g'ri usul. Komanda teriladi; yoki : yoziladi va Enter bosiladi. 2-usul-smart usul. Ifoda teriladi va ; qo'yilib Enter bosiladi, javob ustida sichqoncha o'ng tugmasi bosilib ifoda kontekst menyusidan kerakli komanda tanlanadi. (Qanday ajoyib imkoniyat!).

Protsent % simvoli oldingi komanda natijasini chaqirish uchun ishlatiladi va komandalar yozishni qisqartirish uchun ishlatiladi, masalan, >1+2: >%+3; $\land 6$

O'zgaruvchiga qiymat berish uchun := ishlatiladi.

Maple ishga tushgach operativ xotirada uning birorta ham komandasi bo'lmaydi, ular ishlash davomida operativ xotiraga chaqiriladilar. Komandalar operativ xotiraga chaqirilishiga qarab uch turga bo'linadi. 1) Maple ishga tushgach avtomatik ravishda tushiriladiganlar, readlib(command) komandasi ishga 2) orgali chaqiriladiganlar, 3) maxsus paketlar (package) dan chaqiriluvchi komandalar. Package paketga tegishli barcha komandalarni chaqirish >with(package) komandasi yordamida, paketga tegishli biror command dani chaqirish esa >package[command](options) komandasi yordamida amalga oshiriladi, bu yerda va bundan keyin options so'zi komandaning parametlarini bildiradi. Paketlarga misol sifatida linalg-chiziqli algebra masalalarini yechish, geometri-planimetriya masalalarini yechish, geom3d-stereometriya masadalarini yechish, student-studentlarga masalalarni interaktiv (muloqat) tarzida analitik ko'rinishda qadam ba qadam oraliq natijalarni namoyish qilgan holda yechish imkoniyatlarini beruvchi paketlarni keltirish mumkin.

Standart funktsiyalar.

Ν	funktsiya	Maple da	Ν	funktsiya	Maple da
1	e^{x}	exp(x)	12	cosecx	cosec(x)
2	lnx	ln(x)	13	arcsinx	arcsin(x)
3	lgx	lg10(x)	14	arccosx	arcos(x)
4	$\log_a x$	$\log[a](x)$	15	arctgx	arctg(x)
5	\sqrt{x}	sqrt(x)	16	arcctgx	arcctg(x)
6	<i>x</i>	abs(x)	17	shx	sh(x)
7	sinx	sin(x)	18	chx	ch(x)
8	COSX	$\cos(x)$	19	thx	th(x)
9	tgx	tg(x)	20	cthx	cth(x)
10	ctgx	ctg(x)	21	$\delta(x)$ -Dirak funktsiyasi	Dirac(x)
11	secx	sec(x)	22	$\theta(x)$ -Xevisayd funktsiyasi	Heaviside(x)

Maple da standart funktsiyalarning ayrimlarini ro'yxatini keltiramiz:

Maple ga juda katta miqdorda maxsus funktsiyalar ham kiritilgan. Ular Bessel, Eylerning beta-, gamma-funktsiyalari, xatoliklar integrali, elliptik integrallar, har xil ortogonal ko'phadlar va hokazo. Eyler soni ye=2. 718281828.... exp(x) orqali quyidagicha hisoblanadi: exp(1).

Topshiriq №1. 3.

1. Matnli rejimda

Amaliy topshiriq №2 deb yozing.

2. $a = \cos(\frac{12\pi}{8}(\log_2 0.25 + \log_{0.25} 2))$ ni hisoblang. \\(t. 10-2-58; j:0; 1; -1; 0. 5; -0. 5)

Komandani 1-to'g'ri usul bilan bajaramiz:

> a:=cos(12*Pi*(log[2](0.25)+log[0.25](2))/5);\\a:=1.

3. $\sin^4(\frac{\pi}{8}) + \cos^4(\frac{3\pi}{8}) + \sin^4(\frac{5\pi}{8}) + \cos^4(\frac{7\pi}{8})$ ifodani hisoblang.

Komandani smart usul (o'ngdagi jadval kontekst menyu)bilan bajaramiz:

>b:=(sin(Pi/8))^2+(cos(3*Pi/8))^2+(sin(5*Pi/8))^2+(cos(7*Pi/8))^2;

Сору	Ctrl+C
Approximate	•
Complex Maps	•
Conversions	•
Integer Functions	•
Plots	•

 $b := \sin \bigotimes_{e}^{e} \frac{1}{8} p := \cos \bigotimes_{o}^{2} \frac{1}{8} p := \cos \bigotimes_{e}^{2} \frac{1}{8} p := \cos \bigotimes_{o}^{2} \frac{1}{8} p := \sin \bigotimes_{o}^{2} \frac{$

>R3 := evalf[5](sin(1/8*Pi)^2+cos(3/8*Pi)^2 +sin(3/8*Pi)^2+cos(1/8*Pi)^2); \\R3:=2.0000

Komandani to'g'ri usul bilan tekshirib ko'ramiz: > simplify(b); /\2

§1. 4. Matematik ifodalarni shaklini almashtirish. Testlar yechish.

	Komanda	Ma'nosi	Parametrlaning ma'nosi
1	expand(eq)	Qavslarni ochib yoyish	eq-ifoda
2	fastor(eq)	Ko'phadni	
		ko'paytuvchilarga	
		ajratish	
3	normal(eq)	Kasrni normal	
		ko'rinishga keltirish	
4	collect(eq, var)	O'xshash hadlarni	var-o'zgaruvchi
		ixchamlash	
5	simplify(eq	Ifodalarni	option-parametr
	{,option})	soddalashtirish	
6	combine(eq, param)	Darajalarni birlashtirish	param=trig,
		yoki trigonometrik	param=power,
		ifodalarni darajalarini	
		pasaytirish	
7	radnormal(eq)	Ildiz, darajali ifodalarni	
		soddalashtirish	
8	convert(eq,param)	Ifoda param tipli	param- tip parametr
		ifodaga almashtiriladi	param=sincos,
			param=tan,
			param=vector,
			param=string,
			param=termin
9	subs(g(x)=t, f)	f(x) da $g(x)=t$ deb	
		o'zgaruvchini	
		almashtirish	

Ayrim ko'p uchraydigan komandalar va ularga doir misollar keltiramiz.

Topshiriq 1.4.

1. Qavslarni ochib yoyish.

>eq:= $(x+1)*(x-1)*(x^2-x+1)*(x^2+x+1);$ \\eq := $a^5+a^4-2*a^3-2*a^2+a+1$ **x^6-1** >expand(eq); 2. Ko'phadni ko'paytuvchilarga ajratish (99-10-7)

> p:=a^5+a^4-2*a^3-2*a^2+a+1;

>p:=factor($a^5+a^4-2*a^3-2*a^2+a+1$); $p := (a-1)^2 (a+1)^3$

3. Kasrni normal ko'rinishga keltirish (96-3-74)

>q:= $(x^3+2*x^2+x)/(x+1)^2$; $y := (x^3+2x^2+x)/(x+1)^2$ \\ **x**

> normal(%);

4. Ifodalarni soddalashtirish

> simplify((a^3-b^3)/(a^2+a*b+b^2)); \\a-b $a^3 + b^3$ > expand((a+b)*(a^2-a*b+b^2));

> normal (y/x+1/x^2); $(yx+1)/x^2$ > collect (x^2+3*x^2+4*x+4*x+y,x); (x^4x^3+8x+y) > simplify (2*a/sqrt(a^2), assume (a<0)); $(x^2+1)/x^2$ > combine ((x^(1/2))*x^(3/2)); (x^4x^3)

5. Irratsional ifodalarni ratsionallashtirib soddalashtirish

> f:=((sqrt(x)+1)/(x*sqrt(x)+x+sqrt(x)))*(x^2-sqrt(x));

 $f := \frac{(\sqrt{x}+1)(x^2 - \sqrt{x})}{x^{(3/2)} + x + \sqrt{x}}$

> g:=subs(sqrt(x)=a,x^2=a^4,x^(3/2)=a^3,x=a^2,f); $g := \frac{(a^2+1)(a^4-a^2)}{a^2+a^2}$

$$q := \frac{(a^{2} + 1)(a^{2} - a^{2})}{a^{2} + a^{2} + a^{2}}$$

> R2 := simplify((a+1)*(a^4-a)/(a^3+a^2+a), 'assume=real'); $R2 := a^{2} - 1$

Oldingi o'zgaruvchiga qaytib x-1 javobni olamiz.

```
6. Trigonometrik ifodalarni soddalashtirish
```

```
> simplify(cos(x)^2+sin(x)^2); \\1
> expand(cos(x+y)); \\cos(x)cos(y)-sin(x)sin(y)
> expand(cos(2*x)); \\ 2\cos^2(x)-1
> expand(sin(2*x)); \\ 2\sin(x)cos(x)
> combine(4*cos(x)^3); \\ \cos(3x)+3\cos(x)
> combine(8*sin(x)^4); \\ 3+\cos(4x)-4\cos(2x)
> expand(cos(5*x)); \\ 16\cos^5(x)-20\cos^3(x)+5\cos(x)
```

```
>combine(4*sin(x)^3,trig);
```

```
\underline{\-\sin(3x)+3\sin(x)}
```

```
7. Ildiz, darajali ifodalarni soddalashtirish
```

```
> a:=sqrt(3+sqrt(3)+(10+6*sqrt(3))^(1/3)):
```

```
> a1:=radnormal(a);\\ a1 := 1 + \sqrt{3}
```

$$8. > b:=(m^2-(2+m^4)/(m^2-1))/((m^2+2)/(m-1)):$$

$$>$$
 b1:=simplify(b);\\b1:=-1/(m+1)

9. > c:=
$$(a^{(3/2)}-b^{(3/2)})/(a^{(1/2)}-b^{(1/2)})-(a^{(3/2)}+b^{(3/2)})/(a^{(1/2)}+b^{(1/2)});$$

$$c \coloneqq \frac{a^{(3/2)} - b^{(3/2)}}{\sqrt{a} - \sqrt{b}} - \frac{a^{(3/2)} + b^{(3/2)}}{\sqrt{a} + \sqrt{b}}$$

> c1:=simplify(c); $\cl:=2\sqrt{a}\sqrt{b}$ > a:=8*sqrt(2):b:=4*sqrt(2): > c1:=simplify(c); $\cl:=16$ 10. > a:=(sqrt(192)-sqrt(108)+sqrt(243)/3);\\a:=5\sqrt{3} (99-6-36)

§1. 5. Sonlar ustida ba'zi bir amallar.

Maple da sonlardan yangi sonlar hosil qiladigan amallar mavjud. Haqiqiy sonlar ustida quyidagi amallar mavjud:

frac(expr)- expr ifodaning kasr qismini hisoblash,

trunc(expr)- expr ifodaning butun qismini hisoblash,

round(expr)- expr ifodani yaxlitlash.

Kompleks sonlar z=x+iy ustida quyidagi amallar mavjud: Re(z)- z –sonining haqiqiy qismini hisoblash, Im(z)-z- sonining mavhum qismini hisoblash, conjugate(z)-z – sonining qo'shmasi hisoblash, polar(z)-z – sonining trigonometrik ko'rinishini hisoblash evalc(Re(z)), evalc(Im(z)), -z – sonning haqiqiy va mavhum qismini hisoblash.

Topshiriq 1.5.

1. a=57/13 son berilgan. Uning butun x va u kasr qismini toping. x+y=a ekanligini tekshirib ko'ring.

>a=57/13;	\\ 57/13
~xuunc(a),	\\ 4
>y:=frac(a);	$\parallel \frac{5}{13}$
>x+y;	$\setminus \setminus \frac{57}{13}$

2. $z = \frac{2-3i}{1+4i} + i^6$ kompleks son berilgan. Uning haqiqiy, mavhum va kompleks qo'shmasi w ni toping va w + z = 2Re(z) ekanligini tekshiring.

>z:=(2-3*I)/(1+4*I)+I^6:

>Re(z); Im(z);	$ -\frac{27}{17}$
	$\left -\frac{11}{17} \right $
>w:=conjugate(z);	$\forall w \coloneqq -\frac{27}{17} - \frac{11}{17}I$
>z+w;	$\left \left -\frac{54}{17}\right \right $

3. $z = -1 - i\sqrt{3}$ kompleks son berilgan. Uning moduli, argumentini hisoblang va z^4 ni toping. >z:=-1-I*sqrt(3):

>readlib(polar):polar(z);
$$\land polar(2, -\frac{2}{3}\pi)$$

>evalc(z^4);

§1. 6. Maple da funktsiyalarni aniqlash.

Funktsiyalar Maple da 4 xil usulda beriladi:1) := qiymat berish operatori yordamida;2) f:=(x1,x2,...) ->f(x1,x2,...) funktsional operator yordamida;
3)unapply(expr,x1,x2,...) komandasi yordamida; 4)piceewise(s1,f1,s2,f2,...) komandasi yordamida.
Misollar 1

$$>f:=sin(x)+cos(x); \qquad \qquad || f:=sin(x)+cos(x) \\ >x:=\pi; \qquad \qquad || x:=\frac{\pi}{4} \\ >f; \qquad \qquad || \sqrt{2}$$

Maple da barcha hisoblashlar simvollli ko'rinishda olib boriladi, ya'ni natijada ildizlar, irratsional konstantalar e, π va hokazolar ishtirok etadi. Natijani o'nli ko'rinishda olish uchun evalf(f, ε) komandasi

ishlatiladi, bu yerda f-qiymati hisoblanayotgan ifoda, ε-aniqlik.

Misollar. 2. $f = xe^{-t}$ ifodani x=2, t=1 dagi qiymati quyidagicha hisoblanadi: >f:=x*exp(-t):

>evalf(f,0. 000000001); $\[\] 0. 735788824$ Misol 3. >f:=(x,y)->sin(x+y); $\[\] f:=sin(x+y)$ >f($\pi/2,0$); $\[\] 1$ Misol 3. >f:=unapply(x^2+y^2,x,y); $\[\] f:=(x,y)->x^2+y^2$ >f(7,5); $\[\] 74$ Misol 4. Maple da $\[\] 74$

$$f(x) = \begin{cases} f_1(x), x < a_1 \\ f_2(x), a_1 < x < a_2 \\ \dots \\ f_n(x), x > a_n \end{cases}$$

kabi funktsiyalar quyidagi komanda orqali beriladi: >piecewise(x<a1,f1,a1<x<a2,f2,...,x>an,f2); Masalan,

$$f(x) = \begin{cases} 0, \ x < 0 \\ x, \ 0 \le -x \ and \ x - 1 < 0 \\ .\sin(x), x \ge 1 \end{cases}$$

funktsiya quyidagicha beriladi:

>f:=piecewise(x<0,0,0<=x and x<1,x, x>=1, sin(x);

Topshiriqlar 1. 6.

1. $f = \sqrt{1 - x^2 - y^2}$ funktsiyani aniqlang va qutb koordinatalar sistemasi $x = \rho \cos \varphi$, $y = \rho \sin \varphi$ ga o'ting. Hosil bo'lgan ifodani soddalashtiring: >f:=sqrt(1-x^2-y^2); $\downarrow f = \sqrt{1 - x^2 - y^2}$ >f:=subs({x=rho*cos(phi),y=rho*sin(phi)},f); \\ $f = \sqrt{1-\rho^2 \cos(\varphi)^2 - \rho^2 \sin(\varphi)^2}$ $\langle \langle f \rangle = \sqrt{1 - \rho^2}$ >f:=simplify(%); 2. $f(x) = \begin{cases} x, x < -1 \\ -x^2, -1 - x \le 0 \text{ and } x - 1 < 0 \text{ funktsiyani tuzib va unga x ni qo'shing.} \\ -x, x \ge 1 \end{cases}$ >f:= piecewise(x<-1, x, -1<x and x<1, -x^2, x>=1,-x); >%+x: simplify(%); Natija quyidagicha bo'lishi kerak: f(x)+x. 3. $p = x^3 + 4x^2 + 2x - 4$ ko'phadni ko'paytuvchilarga ajrating. $\langle \langle (x+2)(x^2+2x+2) \rangle$ >factor(x^3+4*x^2+2*x-4): 4. Ifodani soddalashtiring $\frac{1+\sin 2x + \cos 2x}{1+\sin 2x - \cos 2x}$ $f:=(1+\sin(2^*x)+\cos(2^*x))/(1+\sin(2^*x)-\cos(2^*x))$ >convert(f,tan); $\int \frac{1+\sin 2x + \cos 2x}{1+\sin 2x - \cos 2x} = \frac{1}{\tan(x)}$ >f=normal(%); 5. Ifodani soddalashtiring $3(\sin^4 x + \cos^4 x) - 2(\sin^6 x + \cos^6 x)$. $>g:=3*(\sin(x)^4+\cos(x)^4)-2*(\sin(x)^6+\cos(x)^6):$ >g:=combine(g,trig); $\langle | 3\sin(x)^4 + 3\cos(x)^4 - 2\sin(x)^6 + \cos(x)^6 = 1 \rangle$ $\sin 56 \sin 124 - \sin 34 \cos 236$ 6. Ifodani soddalashtiring(97-3-54) $\cos 28\cos 88 + \cos 178\sin 208$ > a:= $(\sin(56)*\sin(124)-\sin(34)*\cos(236))/(\cos(28)*\sin(88)+\sin(178)*\cos(242));$ $a := \frac{\sin(56)\sin(124)-\sin(34)\cos(236)}{\cos(28)\sin(88)+\sin(178)\cos(242)}$ > a1:=evalf(a); \\a1=-1. 113543764 $\cos(\alpha + \beta) + 2\sin\alpha\sin\beta$ 7. Ifodani soddalashtiring(96-1-57) $\sin(\alpha + \beta) - 2\sin\alpha\cos\beta$ > b:=(cos(alpha+beta)+2*sin(alpha)*sin(beta))/(sin(alpha+beta)-

2*cos(beta)*sin(alpha));

 $b := \frac{\cos(\mathbf{a} + \mathbf{b}) + 2\sin(\mathbf{a})\sin(\mathbf{b})}{\sin(\mathbf{a} + \mathbf{b}) - 2\cos(\mathbf{b})\sin(\mathbf{a})}$

> combine(%); $(ctg(-\alpha+\beta))$

8. Ifodani soddalashtiring(967-10-54)

 $\frac{\cos 18\cos 28 + \cos 108\sin 208}{\sin 18\sin 78 + \sin 108\sin 1688}$ $\frac{\sin \alpha + \cos \beta}{\sqrt{2}\cos(\pi/4 - \alpha)}$

9. Ifodani soddalashtiring(01-11-24)

10. > b:=1/(3-sqrt(8))-2*sqrt(2)+6:simplify(b); (96-6-50)

1.7. Topshiriqlar va savollar

- 1. Hisoblang: $(-1+i)^5$.
- 2. Hisoblang: $e^{i\pi/2}$.

3. Aniq qiymatni hisoblang: $arctg3 - \arcsin\frac{\sqrt{5}}{5}$.

4. Formulani yozing: $\omega(k) = \alpha k^2 + \beta k^4$.

5. $p = x^3 - 4x^2 + 5x - 2$ ko'phadni ko'paytuvchilarga ajrating.

1. Ifodani soddalashtiring: $\sin^2 3x - \sin^2 2x - \sin 5x \sin x$

$$> c:=(sin(3*x))^2-(sin(2*x))^2-sin(5*x)*sin(x):simplify(c);)^0$$

7. > e:=(3-sqrt(5))/(3+sqrt(5))+(3+sqrt(5))/(3-sqrt(5));

$$:= \frac{3 - \sqrt{5}}{3 + \sqrt{5}} + \frac{3 + \sqrt{5}}{3 - \sqrt{5}}$$

> simplify(e); $\sqrt{7}$

8. > a:=(sin(3*Pi/2-2*alpha)+cos(Pi/2+alpha)*sin(alpha))/(sin(3*Pi/2+alpha));

(96-7-24)

$$a := -\frac{-\cos(2\mathbf{a}) - \sin(\mathbf{a})^2}{\cos(\mathbf{a})}$$

> simplify(a); <u>\\cos(alpha)</u>

(05-120-23)

Savollar

- 1. Maple nima va u nima maqsadda ishlatiladi?
- 2. Maple oynasining asosiy elementlarini bayon eting.
- 3. Maple oynasining qismlarini va ularning vazifalarini tushuntiring.
- 4. Komanda satridan matnli satrga va teskarisiga qanday o'tiladi. ?
- 5. Maple bilan ishlash seansi qanday rejimda bajariladi. ?
- 6. Maple menyusining asosiy aunktlarini ayting.
- 7. Maple dagi fayliga qanday kengaytma beriladi. ?
- 8. Maple da qanday asosiy matematik konstantalar mavjud. ?
- 9. Maple da ratsional sonlar qanday ko'rinishlarda tasvirlanadi. ?
- 10. Maple da ratsional sonning taqribiy qiymati qanday hosil qilinadi. ?
- 11. Maple da komandalar qanday simvollar bilan tugallanadi?
- 12. Qism programmalar bibliotekasidan komandalar qanday chaqiriladi?

13. factor, expand, normal, simplify, combine, convert, radnormal komandalarni ma'nosi?

2- AMALIY MASHG'ULOT: Algebra va sonlar nazariyasi masalalarini yechish.

1. MathCAD va Maple tizimida matematik analiz masalalarini yechish.

2. Differentsial tenglamalarni umumiy yechimini topish.

Ν	komanda	komanda ma'nosi
1	roots(Pn(x))	Pn(x)=0 ko'phadli tenglama
2	solve(eq,x)	eq(x)=0 , universal komanda
3	solve($\{eq1, eq2,\}, \{x1, x2,\}$)	$eq_i(x_1,,x_n) = 0, i = 1,,n$, teng-r sistemasi
4	fsolve(eq,x)	eq(x)=0 tenglamani taqribiy yechimi
5	rsolve(eq,x)	eq(x)=0 rekkurent tenglamani yechimi
6	fsolve({eq1, eq2,},{x1,	$eq_i(x_1,,x_n) = 0, i = 1,,n, t. s. taqr-y$
	x2,})	yechish
7	_EnvAllSolution:=true :	eq(x)=0,trigonometrik tenglama barcha
	solve(eq,{x})	yechimi
8	_EnvExplicit:=true :	$eq_i(x_1,,x_n) = 0, i = 1,,n$, trantsendent teng-r
	solve(eq, $\{x, y, z\}$)	

Sonli tenglama va tengsizliklarni yechish.

§3. 1. Sonli tenglamalarni yechish

Maple da tenglamalarni yechish uchun universal komanda mavjud: solve(eq,x), bu yerda eq-tenglama, x-tenglama yechilishi lozim bo'lgan o'zgaruvchi, fsolve(eq,x)- eq-tenglamani x ga nisbatan taqribiy yechadi.

Ko'phadlar uchun **roots(Pn(x))**komanda mavjud,javob [[r1,m1],...,[rn,mn]] ko'rinishda chiqadi, bu yerda ri-ildiz,mi-uning karrasi. solve(eq,x) komandasi tenglamaning barcha yechimlarini topadi. **r:=solve**(eq,x) komandasi r vektorga ildizlarning qiymatlarini beradi.

Misol 1.

> p:= $2*x^3+11*x^2+12*x-9:roots(p); \ [[0.5],[-3,2]]$

> solve(p=0,{x});\\{x=1/2},{x=-3},{x=-3}

> r:=solve(p=0,{x});r:= {x=1/2},{x=-3},{ x=-3}

> plot(p,x=-4. . 4,labels=[x,y],labelfont=[TIMES,ITALIC,12]);

Sonli tenglamalarning sistemalarini yechish.

Tenglamalar sistemasi ushbu komandalar

solve({eq1, eq2,...},{x1, x2,...}), fsolve({eq1, eq2,...},{x1, x2,...}) bilan yechiladi, bu yerda birinchi figurali qavslarda tenglamalar ro'yxati, ikkinchi figurali qavslarda o'zgaruvchilar ro'yxati berilgan. Agar keyinchalik, yechimlar ustida biror amallar bajarish kerak bo'lsa solve komandasiga biror nom name berish kerak, so'ng nomni qabul qilish uchun assign(name) komandasini berish kerak. SHundan so'ng yechimlar ustida ixtiyoriy mumkin bo'lgan amallarni bajarish mumkin.

Biz quyida 2 bobda o'tiladigan grafik chizish operatorlari

plot(p,x=-4. . 4,labels=[x,y],labelfont=[TIMES,ITALIC,12]); with(plots):implicitplot(e,x=-10. . 10,y=-10. . 10);

dan ko'rgazmalilik uchun foydalandik.

Misol. 1. CHiziqli tenglamalar sistemasini yechish. > s1:={2*x+y=6,x+2*y=6}:solve(s1,{x,y}); \\{y=2,x=2} > with(plots):implicitplot(s1,x=-10..10,y=-10..10);

Misol 2. Tenglamalar sistemasini yechish. $\{x^3 - y^2 - 1 = 0, xy^3y - 4 = 0\}$. > e:={x^3-y^2-1=0,x*y^3-y-4=0}; \\{ $x^3 - y^2 - 1 = 0, xy^3y - 4 = 0$ } > s:=fsolve(e,{x,y}); \\ s={x=1. 502039049,y=1. 545568601} > with(plots):implicitplot(e,x=-10. . 10,y=-10. . 10);

Misol 3. CHiziqli tenglamalar sistemasini yechish. > s1:={z=3,x-z=0,x+y+2*z=12}:solve(s1,{x,y,z});\\{z=3,x=3,y=3} > display(implicitplot3d(s1,x=-10..10,y=-10..10,z=-10..10));

Misol 4. f(x)=exp(x)-10x-2=0 tenglamani yechish. > fsolve(exp(x)-10*x-2,x);

-0.1104575676

> plot({ exp(x),10*x+2},x=-4..4,y=-4..4,colour=[green,red]);


```
Misol 5. Ko'phadli tenglamani yechish.
> eq := x^5-7*x^3+4*x^2-5=0; \ x^5-7x^3+4x^2-5=0
> fsolve({eq},{x});\ x=-2.8608..}, {x=-0.7521..}, {x=2.3857..}
> plot({ x^5, 7*x^3-4*x^2+5}, x=-4..4, y=-10..10, colour=[green, red]);
```


Tenglamalarni taqribiy yechish

Tenglamalarni taqribiy yechish uchun fsolve(eq,x) komanda ishlatiladi. Uning parametrlari solve(eq,x) komandasining parametrlariga o'xshash. >x:=fsolve(cos(x)=x,x); \\x:=0. 7390851332 (10 ta o'nli raqam bilan). > r:=solve(4*x+0. 8*exp(x)-7. 4561=0,x);\\ x:=1. 200000971 >x:=fsolve(4*x+0. 8*exp(x)-7. 4561=0,x);\\ x:=1. 200000971 >y:=fsolve(y^3-2. 8*exp(y)+2. 5713=0,y);\\ y:=-0. 08545049502 >q:=solve(y^3-2. 8*exp(y)+2. 5713=0,{y});\\ q:=-0. 08545049502

Rekkurent va funktsional tenglamalarni yechish.

rsolve(eq,f) komanda rekkurent eq tenglamani butun tipli f funktsiyaga nisbatan yechadi. Agar f(n) tenglama uchun biror boshlang'ich shart berilsa xususiy yechim kelib chiqadi. Masalan,

>eq:=2*f(n)=3*f(n-1)-f(n-2);
>rsolve({eq,f(1)=0,f(2)=1},f);
$$(2-4(\frac{1}{2})^n)$$

Tenglamalarni yechuvchi universal komanda solve(eq,f) funktsional tenglamalarni ham yecha oladi. Masalan,

>F:= solve(f(x)^2-3*f(x)+2*x,f); $\F:=$ proc(x)RootOf(_Z^2-3*Z+2*x) end Echim oshkormas ko'rinishda hosil bo'ldi. Maple bunday ko'rinishdagi tenglamalar bilan ham ishlay oladi. Buning uchun funktsional tenglamani convert komandasi orqali almashtirishga harakat qilish kerak. Masalan,

>f:=convert(F(x),radical);

$$\backslash\!\backslash f \coloneqq \frac{3}{2} + \frac{1}{2}\sqrt{9 - 8x}$$

Trigonometrik tenglamalarni yechish.

Universal komanda solve(eq,x) bilan trigonometrik tenglamalarni ham yechish mumkin. Bu holda $[0,2\pi]$ kesmadagi bosh yechim kelib chiqadi. Barcha yechimlarni olish uchun _EnvAllSolution:=true qo'shimcha komandani berish kerak. Masalan,

1) solve(sin(x)=cos(x),x);

 $\backslash \pi/4$

2)>_EnvAllSolution:=true :solve(sin(x)=cos(x),x); $\backslash \pi/4 + \pi_Z \sim$

3) > _EnvAllSolution:=true :solve(sin(2*x)/(tg(x)-1)=0,x);\\0 Maple da _Z~ simvoli butun tipli o'zgarmasni bildiradi. Odatiy holda yuqoridagi yechim x:= $\pi/4+\pi n$ yozuvni bildiradi.

Trantsendent tenglamalar va ularning sistemalarini yechish.Trantsendent tenglamalarni yechishda yechimni oshkor ko'rinishda olish uchunsolve krmandasidan avval _EnvExplicit:=true komandasini berish kerak.1-usul. >eqs:= $\{x^2+y^2=1,x-y=0\}$:

>r:=solve(eqs,{x,y});\\r:={y=RootOf(2*_Z^2-1,label=_L1),x=RootOf(2*_Z^2-1,label=_L1)}

> **r1:=convert(r,radical);**\\ $r1 = \{y = \sqrt{2} / 2, x = \sqrt{2} / 2\}$

2-usul. > _EnvExplicit:=true:

> s:=solve(eqs,{x,y});\\ $s := \{y = \sqrt{2}/2, x = \sqrt{2}/2\}, \{y = -\sqrt{2}/2, x = -\sqrt{2}/2\}$

Topshiriq 2.1.

1. Sistemani yeching $x^2 - y^2 = 1, x^2 + xy = 2$. >eq:={x^2-y^2=1, x^2+x*y=2}: >_EnvExplicit:=true: >s:=solve(eq,{x,y}); \\S:={ $x = \frac{2}{3}\sqrt{3}, y = \frac{1}{3}\sqrt{3}$ }, { $x = -\frac{2}{3}\sqrt{3}, y = -\frac{1}{3}\sqrt{3}$ } 2. $x^2 = \cos(x)$ tenglamani barcha yechimlarini topmng. >x:=fsolve(x^2=cos(x),x); \\x=0,8241323123/ 3. $f(x)^2 - 2f(x) = x$ tenglamani yeching. >F:=solve(f(x)^2-2*f(x)=x,f); \\F:=proc(x)RootOf(_Z^2-2*Z-x) end >f:=convert(F(x), radical); $\land f := 1 + \sqrt{1 + x}$

4. 5sinx+12cosx=13 tenglamani barcha yechimlarini toping.

>_EnvAllSolution:=true : >solve(5*sin(x)+12*cos(x)=13,x); \\ $\arctan(\frac{5}{12})+2\pi_Z \sim$. 5. > f:=exp(x)+2*x-4=0;\\ f(x):=exp(x)+2x-4=0 > r:=fsolve(f,{x});\\ r:={x=0. 8408414954 6. > e:={x^3-y^2-1=0, x*y^3-y-4=0}; \\e:={x^3-y^2-1=0,xy^3-y-4=0} > s:=fsolve(e,{x,y}); \\ s:={x=1. 502039049,y=1. 545568601} 7. >eq:={exp(x*y)=x^2-y+1,(x+0. 5)^2+y^2=1}: > s1:=fsolve(eq,{x,y}); \\s1:={y=0. 9804510724, x=-0. 6967630417} 8. > eqs:={sin(x+1)+y+2=0,cos(y-1)+x-2=0}: > r:=fsolve(eqs,{x,y});\\r:={x=2. 754100085,y=-1. 425079132}

§3. 2. Sonli tengsizliklar va ularning sistemalarini yechish. Sodda tengsizliklarni yechish

Universal solve komandasi tengsizliklarni yechish uchun ham ishlatiladi. Echim o'zgaruvchining intervallari ko'rinishida beriladi:

N⁰	Maple da yechim ko'rinishi	Ma'nosi
1	$RealRange(-\infty, Open(a))$	$x \in (-\infty, a)$
2	RealRange(- ∞ ,a)	$x \in (-\infty, a]$
3	RealRange(Open(a), ∞)	$x \in (a, \infty)$
4	RealRange(a,∞)	$x \in [a, \infty)$
5	RealRange(Open(a), Open(b))	$x \in (a,b)$
6	RealRange(a,b)	$x \in [a,b]$
7	a <x,x<b< td=""><td>$x \in (a,b)$</td></x,x<b<>	$x \in (a,b)$
8	a<=x,x<=b	$x \in [a,b]$

Misol1.

>s:=solve(sqrt(x+3)<sqrt(x-1)+sqrt(x-2),x):

>convert(s,radical); $(RealRang (Open(\frac{2}{3}\sqrt{21}),\infty) = (\frac{2}{3}\sqrt{21}),\infty)$

Misol 2. Agar tengsizlik yechilishi kerak bo'lgan o'zgaruvchi {} qavslar ichiga olinsa yechim interval ko'rinishda tasvirlanadi. Masalan, >solve(1-1/2*ln(x)>2,{x}); \setminus {0 < x, x < e⁽⁻²⁾}

Tengsizliklar sistemasini yechish

Universal solve komandasi tengsizliklar sistemasini yechish uchun ham ishlatiladi. Echim o'zgaruvchining intervallari ko'rinishida beriladi: >solve({x+y})=2, x-2*y<=1,x-y>=0,x-2*y>=1},{x,y}); \\{x=1+2y,1/3<=y}

Topshiriq 4.1.

Misol 1. Tengsizlikni yeching: $13x^3 - 25x^2 - x^4 - 129x + 270 > 0$ > solve($13*x^3-25*x^2-x^4-129*x+270>0,\{x\}$);\\{-3<x<2},{5<x<9}

```
Misol 2. Tengsizlikni yeching: e^{(2x+3)} < 1.
```

> solve(exp(2*x+2)<1,{x});\\{x<-1}

§3. 3. Tenglamalarni interaktiv usulda yechish

Bu yerda f(x)=0 tenglama Nyuton usuli bilan yechilmoqda. Nyuton usulida $\xi: f(\xi)=0$ yechim ushbu iteratsiyalar yordamida hisoblanadi:

$$\xi = \lim_{k \to \infty} x^k, x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}, \quad , \left| \xi - x^k \right| < \frac{1}{q} \{ q \left| \xi - x^0 \right|^{2^k} \}^k, \ f(x^0) f''(x^0) > 0.$$

Muloqot darchasida f(x)=0 tenglama, iteratsiyalar soni, boshlang'ich iteratsiya x^0

larni kiritiladigan maydonlar va iteratsiyalar uchun maydonlar mavjud. Ajoyib imkoniyatli, tezkor interaktiv sahifa.

3.4. Topshiriqlar va savollar

1. $z = (2e^{i\pi/6})^5$ kompleks son berilgan. Uning haqiqiy, mavhum qismlari, algebraik ko'rinishi, moduli, argumenti topilsin.

2. $f(x, y) = (\frac{arctg(x + y)}{arctg(x - y)})^2$ funktsiyani bering, uning qiymatlarini ushbu $x = 1, y = 0; x = (1 + \sqrt{3})/2, y = (1 - \sqrt{3})/2$ nuqtalarda hisoblang.

3. $f(x, y) = \frac{x^3 y^2 - x^2 y^3}{(xy)^5}$ funktsiyaning fiymatini x=a, y=1/a nuqtada subs

komandasidan foydalanib hisoblang.

4. Sistemaning barcha yechimi analitik ko'rinishda topilsin:

 $x^2 - 5xy + 6y^2 = 0, x^2 + y^2 = 10.$

- 5. Trigonometrik tenglamaning barcha yechimlari topilsin: $\sin^4 x \cos^4 x = 1/2$.
- 6. Tenglamaning xususiy yechimi topilsin: $e^x = 2(1-x)^2$.
- 7. Tengsizlik yechilsin: $2\ln^2 x \ln x < 1$.
- 8. $f(x) = e^{\alpha x} + 2x 4\beta = 0, \alpha = 0.1k, \beta = 1 + 0.01k, k \in N.$

9. $f(x) = x^3 + 4x - \beta = 0, \beta = 1 + 0.01k, k \in N.$

10. $\alpha x^3 - y^2 - 1 = 0, xy^3 - y - 4 = 0, \alpha = 1 + 0.5k, k = 0, ..., 5.$

11.
$$e^{xy} = x^2 - y + \alpha, (x + 0.5)^2 + y^2 = k, x.0, y > 0, \alpha = 1 + 0.1m, k = 0.6 + 0.1m, m = 0, ..., 5.$$

12. $\alpha x^3 - y^2 - 1 = 0, xy^3 - y - 4 = 0, \alpha = 1 + 0.5k, k = 0, ..., 5.$

13. $tg(xy+k) = x^2, \alpha x^2 + 2y^2 = 1, x > 0, y > 0, \alpha = 0.5 + 0.1m, k = 0.1m, m = 0, ..., 5.$

Savollar

- 1. Maple da funktsiyalarni berish usulini bayon eting.
- 2. Maple da haqiqiy ifodalarni baholash uchun qanday amallar mavjud.
- 3. evalf komandasini vazifasini tushuntiring.
- 4. evals komandasini vazifasini tushuntiring.
- 5. solve komandasini vazifasini tushuntiring.

6. Tenglamalar va rekkurent tenglamalarni yechish uchun qanday komanda ishlatiladi.

7. Tenglamalarni barcha yechimlarini aniq hosil qilish uchun solve komandasidan oldin qanday komandalarni yozish kerak.

8. Tengsizliklar qanday komanda bilan yechiladi. Javobda intervallar qanday beriladi.
3-АМАЛИЙ-МАШҒУЛОТ: ODT ucun Koshi va aralash masalalarni echish.

Reja:

- 1. Fundamental (bazis) yechimlar sistemasi
- 2. Koshi yoki chegaraviy masalani yechish
- 3. ODT sistemasi
- 4. ODT ni qator yordamida taqribiy yechish
- 5. ODT ni sonli usulda yechish
- 6. ODTni yechishda interaktiv usullar.

Maple da ODT ni analitik usulda yechish uchun dsolve(eq,var,options) komandasi ishlatiladi, bu yerda eq-tenglama, var-no'malum funktsiya, optionsparametrlar. Parametrlar ODT ni yechish usulini ko'rsatishi mumkin, masalan, sukut saqlash printsipiga asosan, analitik yechim olish uchun type=exact parametri beriladi. ODT da hrsilani berish uchun diff komandasi ishlatiladi. Masalan, y'' + y = x tenglamasi diff(y(x),x\$2)+y(x)=x ko'rinishda yoziladi. ODT ning umumiy yechimi o'zgarmas sonlarni o'z ichiga oladi, masalan, yuqoridagi tenglama ikkita o'zgarmasni o'z ichiga oladi. O'zgarmaslar Maple da _C1, _C2 ko'rinishda belgilanadi.

Ma'lumki, chiziqli ODT bir jinsli (o'ng tomon 0) va bir jinsli bo'lmagan (o'ng tomon 0 emas) ko'rinishda bo'ladi. Bir jinsli bo'lmagan tenglama yechimi mos bir jinsli tenglamaning umumiy yechimi va bir jinsli bo'lmagan tenglamaning xususiy yechimlari yig'indisidan iborat bo'ladi. Maple da ODT ning yechimi ana shunday ko'rinishda chiqariladi, ya'ni o'zgarmaslarni o'z ichiga olgan qism bir jinsli tenglamaning umumiy yechimi bo'ladi, va o'zgarmas son ishtirok etmagan qismi bir jinsli bo'lmagan tenglamaning xususiy yechimi bo'ladi.

dsolve komandasi bergan yechim hisoblanmaydigan formatda beriladi. Yechim bilan kelajakda ishlash uchun, masalan grafik chizish uchun, uning o'ng tomonini rhs(%) komanda bilan ajratish kerak.

Misollar. 1.
$$y' + y\cos x = \sin x\cos x$$
 tenglama yechilsin.
> restart;
> de:=diff(y(x),x)+y(x)*cos(x)=sin(x)*cos(x);
 $\langle de:=(\frac{\partial}{\partial x}y(x))+y(x)\cos(x)=\sin(x)*\cos(x)$
> dsolve(de,y(x)); $\langle y(x)=\sin(x)-1+e^{(-\sin(x))}-C1$.
Ya'ni tenglamaning yechimi matematik tilda ushbu ko'rinishga ega:
 $y(x) = C_1 e^{(-\sin(x))} + \sin(x) - 1$.
2. $y'' - 2y' + y = \sin x + e^{-x}$ tenglamaning umumiy yechimi topilsin.
> restart;
> deq:=diff(y(x),x\$2)-2*diff(y(x),x)+y(x) = sin(x)+exp(-x);
 $\langle deq:=(\frac{\partial^2}{\partial x^2}y(x))-2(\frac{\partial}{\partial x}y(x))+y(x) = sin(x)+e^{(-x)}$
> dsolve(deq,y(x)); $\langle y(x) = -C1e^x + -C2e^xx + \frac{1}{2}\cos(x) + \frac{1}{4}e^{(-x)}$

3. $y'' + k^2 y = \sin(qx)$ tenglamaning umumiy yechimi $q = k, q \neq k$ hollar uchun topilsin.

> restart; de:=diff(y(x),x\$2)+k^2*y(x)=sin(q*x);\\

$$de:=(\frac{\partial^2}{\partial x^2}y(x))+k^2y(x) = sin(qx)$$

> dsolve(deq,y(x));\\
 $y(x) = \frac{1}{k}(-\frac{1}{2}\frac{\cos(k+q)x}{k+q} + \frac{1}{2}\frac{\cos(k-q)x}{k-q})\sin(kx) - \frac{1}{k}(\frac{1}{2}\frac{\sin(k-q)x}{k-q} - \frac{1}{2}\frac{\sin(k+q)x}{k+q})\cos(kx) + C1\sin(kx) + C2\cos(kx)$
Rezonans holatdagi yechim (q=k) ni topamiz:
> q:=k: dsolve(de,y(x)); \\
 $y(x) = -\frac{1}{2}\frac{\cos(kx)^2\sin(kx)}{k} - \frac{1}{k}(-\frac{1}{2}\cos(kx)\sin(kx) + \frac{1}{2}kx)\cos(kx) + C1\sin(kx) + C2\cos(kx)$

1. Fundamental (bazis) yechimlar sistemasi

dsolve komandasi ODT ning bazis yechimlar sistemasini ham topishda ishlatiladi. Uning uchun parametrlar bo'limida output=basis deb ko'rsatish kerak . Masalan, $y^{(4)} + 2y' + y = 0$ ODT ning bazis yechimlar sistemasini topaylik.

> de:=diff(y(x),x\$4)+2*diff(y(x),x\$2)+y(x)=0; \\

$$de := (\frac{\partial^4}{\partial x^{24}} y(x)) + 2 \frac{\partial^2}{\partial x^2} y(x) + y(x) = 0$$

> dsolve(de, y(x), output=basis); \\[cos(x), sin(x), xcos(x), xsin(x)]

2. Koshi yoki chegaraviy masalani yechish

dsolve komandasi yordamida Koshi yoki chegara masalani ham yechish mumkin. Buning uchun blshlang'ich yoki chegara shartlarni qo'shimcha ravishda berish kerak. Qo'shimcha shartlarda hosila differentsial operator D bilan beriladi. Masalan, y''(0) = 2 shart (D@@2)(y)(0) = 2 ko'rinishda, y'(0) = 0 shart D(y)(1) = 0ko'rinishda, $y^{(n)}(0) = k$ shart (D@@n)(y)(0) = k ko'rinishda yozilishi kerak.

Misollar 1. $y^{(4)} + y'' = 2\cos x$, y(0) = -2, y'(0) = 1, y''(0) = 0, y'''(0) = 0 Koshi masalasi yechilsin.

> de:=diff(y(x),x\$4)+diff(y(x),x\$2)=2*cos(x);
> cond:=y(0)=-2, D(y)(0)=1, (D@@2)(y)(0)=0,
(D@@3)(y)(0)=0;
$$\langle de:=(\frac{\partial^4}{\partial x^4}y(x))+(\frac{\partial^2}{\partial x^2}y(x))=2\cos(x)$$

> dsolve({de,cond},y(x)); $\langle y(x)=-2\cos(x)-x\sin(x)+x$
2. $y^{(2)} + y = 2x - \pi, y(0) = 0, y(\frac{\pi}{2}) = 0$ chegara masala yechilsin.
> restart; de:=diff(y(x),x\$2)+y(x)=2*x-Pi; $\langle de:=(\frac{\partial^2}{\partial x^2}y(x))+y(x)=2x-\pi$
> cond:=y(0)=0,y(Pi/2)=0; $\langle cond:=y(0)=0, y(\frac{\pi}{2})=0$
> dsolve({de,cond},y(x)); $\langle y(x)=2x-\pi+\pi\cos(x)$

Echim grafigini chizish uchun tenglama щng tomonini ajratib olish kerak: > y1:=rhs(%):plot(y1,x=-10..20,thickness=2);

3. ODT sistemasi

dsolve komandasi yordamida LN sistemasini ham yechish mumkin. Buning uchun uni dsolve($\{sys\}, \{x(t), y(t), ...\}$), ko'rinishda yozib olish kerak, sys-ODT lar sistemasi, x(t), y(t), ...-no'malum funktsiyalar sistemasi.

Misollar 1. $\begin{cases} x' = -4x - 2y + \frac{2}{e^t - 1}, \ y' = 6x + 3y - \frac{3}{e^t - 1} \end{cases}$

> sys:=diff(x(t),t)=-4*x(t)-2*y(t)+2/(exp(t)-1), diff(y(t),t)=6*x(t)+3*y(t)-3/(exp(t)-1): > dsolve({sys},{x(t),y(t)}); $\{x(t) = -3_{C1}+4C1_{e^{(-t)}}-2C2_{+}+2C2_{e^{(-t)}}+2e^{(-t)}\ln(e^{t}-1),$ $\{y(t) = 6_{C1}-6C1_{e^{(-t)}}+4C2_{+}+3C2_{e^{(-t)}}-3e^{(-t)}\ln(e^{t}-1)$

4. ODT ni qator yordamida taqribiy yechish

dsolve komandasi yordamida ODT yechimini taqribiy usulda qator yordamida topish mumkin. Buning uchun dsolve komandasida output=series va Order:=n parametrlarni kiritish kerak . Bishlang'ich qiymatlar y(0)=u1, D(y)(0)=u2, (D@@2)(y)(0)=u3 i hokazo ko'rinishda beriladi. Yechimni ko'phadga aylantirish uchun convert(%,polynom) komandasini berish kerak. Yechimning grafik ko'rinishda chiqarish uchun tenglama o'ng toioning rhs(%) komandasi bilan ajratib olish kerak.

Misollar 1. $y' = y + xe^x$, y(0) = 0 Koshi masalasining taqribiy yechimi 5-darajali ko'phad ko'rinishda olinsin.

> restart; Order:=5:
> dsolve({diff(y(x),x)=y(x)+x*exp(y(x)), y(0)=0}, y(x), type=series);

$$\langle y(x) = \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{6}x^4 + O(x)$$

2. $y''(x) - y^2(x) = e^{-x} \cos x, y(0) = 1, y'(0) = 0$ Koshi masalasining taqribiy yechimi 4-tartibli qator uo'rinishda topilsin.

> restart; Order:=4: de:=diff(y(x),x\$2)- $y(x)^3=exp(-x)*cos(x)$:

> f:=dsolve(de,y(x),series);

$$\langle f(x) \coloneqq y(x) + D(y)(0)x + (\frac{1}{2}y(0)^3 + \frac{1}{2})x^2 + (\frac{1}{2}y(0)^2D(y)(0) - \frac{1}{6})x^3 + O(x^4)$$

3. $y''(x) - y'(x) = 3(2 - x^2)\sin(x), y(0) = 1, y'(0) = 1, y''(0) = 1$ Koshi masalasining

taqribiy yechimi 6 tartibli ko'phad ko'rinishda topilsin.

> restart; Order:=6:
> de:=diff(y(x),x\$3)-diff(y(x),x)= 3*(2-x^2)*sin(x);

$$\langle de:=(\frac{\partial^3}{\partial x^3}y(x))-(\frac{\partial}{\partial x}y(x))=3(2-x^2)sin(x)$$

> cond:=y(0)=1, D(y)(0)=1, (D@@2)(y)(0)=1;
 $\langle cond:=y(0)=1, D(y)(0)=1, D(2)(y)(0)=1$
> dsolve({de,cond},y(x)); $\langle y(x) = \frac{21}{2}cos(x) - \frac{3}{2}x^2cos(x) + 6xsin(x) - 12 + \frac{7}{4}e^x + \frac{3}{4}e^{-x}$

> y1:=rhs(%):

>dsolve({de,cond},y(x),series);\\
$$y(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{7}{24}x^4 + \frac{1}{120}x^5 + O(x^6)$$

Aniq va taqribiy yechim grafigini chiqarish uchun quyidagi komandalarni berish kerak:

> convert(%,polynom): y2:=rhs(%):

> p1:=plot(y1,x=-3..3,thickness=2,color=black):

> p2:=plot(y2,x=-3..3, linestyle=3,thickness=2, color=blue):

> with(plots): display(p1,p2);

5. ODT ni sonli usulda yechish

dsolve komandasi ODT ni taqribiy yechish uchun ham ishlatiladi, faqatgina parametrlar safida type=numeric deb ko'rsatish kerak, undan tashqari options bo'limida sonli usullar turini ham ko'rsatish kerak: dsolve(eq, vars, type=numeric, options). Quyidagi sonli usullar ishlatilishi mumkin:

method=rkf45- 4-5-tartibli Runge-Kutta usuli,

method=dverk78-,7-8-tartibli Runge-Kutta usuli,

mtthod=classical-,3-4-tartibli klassik Runge-Kutta usuli,

method=gear- Girning bir qadamli usuli,

method=mgear- Girning ko'p qadamli usuli.

ODT ning yechimini grafik usulda yechish uchun odeplot(dd, [x,y(x)], x=x1..x2), komandasi ishlatiladi, bu yerda dd:=dsolve({eq,cond}, y(x), numeric).

Topshiriqlar.

1. $y'' - x\sin(y) = \sin 2x$, y(0) = 0, y'(0) = 1 Koshi masalasi sonli va 6-darajali qator ko'rinishda topilsin.

> restart; Ordev=6:

> eq:=diff(y(x),x\$2)-x*sin(y(x))=sin(2*x):

> cond:=y(0)=0, D(y)(0)=1:

>de:=dsolve({eq,cond},y(x),numeric);

 $\ensuremath{\columnwidth\columnwidth\c$

> de(0.5);

> with(plots):

> odeplot(de,[x,y(x)],-10..10,thickness=2);

> dsolve({eq, cond}, y(x), series);

> convert(%, polynom):p:=rhs(%):

> p1:=odeplot(de,[x,y(x)],-2..3, thickness=2, color=black):

> p2:=plot(p,x=-2..3,thickness=2,linestyle=3, color=blue): display(p1,p2);

2. $x'(t) = 2y(t)\sin(t) - x(t) - t$, y'(t) = x(t), x(0) = 1, y(0) = 2 ODT sistemasi grafik usulda bilsin

yechilsin.

> restart; cond:=x(0)=1,y(0)=2:

> sys:=diff(x(t),t)=2*y(t)*sin(t)-x(t)-t, diff(y(t),t)=x(t):

> F:=dsolve({sys,cond},[x(t),y(t)],numeric):

> with(plots):

> p1:=odeplot(F,[t,x(t)],-3..7, color=black, thickness=2,linestyle=3):

> p2:=odeplot(F,[t,y(t)],-3..7,color=green, thickness=2):

> p3:=textplot([3.5,8,"x(t)"], font=[TIMES, ITALIC, 12]):

> p4:=textplot([5,13,"y(t)"], font=[TIMES, ITALIC, 12]):

> display(p1,p2,p3,p4);

6. ODTni yechishda interaktiv usullar.

Tools>Assistants>ODE analizer komandasi yordamida ODT uchun Koshi yoki chegara masalanini interaktiv usulda analitik yoki sonli yechish mumkin.

🗱 ODE Assistant		x
Differential Equations	Conditions	Parameters
$\frac{\mathrm{d}}{\mathrm{d}x}y(x)+y(x)=2x-\pi$	γ(0) = 0	
	-	
Edit	Edit	Edit
Solve Numerically Solve Symbolically		Help

Topshiriqlar

1. $y'' - 2y' - 3y = xe^{4x} \sin x$ ODT ning umumiy yechimi topilsin.

2. $y''' + y'' = 1 - 6x^2 e^{-x}$ ODT ning funlamaental yechimlar sistemasi topilsin.

3. y''' - y' = tgx, y(0) = 3, y'(0) = -1, y''(0) = 1 Koshi masalasi yechilsin.

4. x'' + 5x' + 2y' + y = 0, 3x'' + 5x + y' + 3y = 0, x(0) = 1, x'(0) = 0, y(0) = 1 ODT lar sistemasi yechilsin.

5. $y'' + y = y^2$, y(0) = 2a, y'(0) = a nochiziq ODT yechimi 6-darajagacha qator ko'rinishda topilsin.

6. $y' = \sin(xy), y(0) = 1$ Koshi masalasi yechimining grafigi chizilsin.

7. $y'' = xy' - y^2$, y(0) = 1, y'(0) = 2 Koshi masalsining yechimi 6-darajagacha qator ko'rinishda topilsin.

8. $y'' - xy' + y^2 = 0$, y(0) = 1, y'(0) = -4 -1.5, 3 kesmada Koshi masalasining taqribiy yechimining grafigi chizilsin .(Deplot komandasi yordamida).

9. x'=3x-y, y'=x-y ODTlar sistemasi yechimining fazoviy portreti bir necha boshlang'ich shartlar uchun chizilsin.

Savollar

1. ODT qanday komanda yordamida yechiladi ?

2. ODT da boshlang'ich va chegara shartlar qanday komanda yordamida yechiladi ?

3. dsolve komandasida qanday parametr fundamental yechimlar sistemasini aniqlash uchun xizmat qiladi ?

4. dsolve komandasida qanday parametr yechimni qator ko'rinishda olishga xizmat qiladi ?

5. ODT yechimini grafik usulda olish uchun dastlab qanday komandalarni kiritish kerak ?

6. dsolve komandasida qanday parametr yechimni sonli usulda olish uchun xizmat qiladi ?

7. ODT yechimini biror nuqtada qanday olish mumkin?

8. dsolve komandasida qanday parametr taqribiy yechimni grafik usulda chiqarish uchun xizmat qiladi ?

9. ODT yechimni grafik usulda olish uchun qanday paket xizmat qiladi.

10. odeplot va Deplot komandalarining farqi nimada?

11. ODT lar sistemasi yechimilarining fzoviy portreti qanday hosil qilinadi

4- AMALIY MASHG'ULOT: MATLAB tizimi

REJA:

1. Matritsa ustida amallar.

2. CHiziqli tenglamalarini yechish.

1. Matritsa ustida amallar

MATLAB tizimi vektor va matritsalar ustida murakkab amallarni bajaradi. Undan arifmetik va algebraik amallardan tashqari matritsalarni inventirlash. Ularning xususiy qiymatlarini hisoblash, chiziqli tenglamalar sistemasini yechish, ikki va uch o'lchamli funktsiyalarning grafiklarini olish va boshqa ko'plab amallarni bajaruvchi kuchli kalkulyator sifatida ham foydalanish mumkin.

Oddiy son va o'zgaruvchilarga ham MATLAB da 1x1 o'lchmli matritsa ko'rinishida qaraladi. SHu sababli, oddiy sonlar va massivlar ustida bajariladigan amallarning shakli va usullarida bir xillikka erishilgan. Zarur hollarda vektor va matriqalar massivlarga aylantiriladi va ularning qiymatlari har bir element uchun hisoblanadi.

MATLAB dasturining asosiy afzalliklari:

Matritsaviy amallarga yo'naltirilganligi

Tizimning kengayuvchanligi

Kuchli dasturlash vositalari

Dialog rejimida ishlashlik

MATLAB superkalkulyator rolida.

MATLAB matematik tizimida ishlashdan oldin matritsalar bilan ishlashni bilish zarur.

Matritsa bu – to'g'rito'rtburchakli massiv elementlarining to'plamidir. Masalan 1x1 ko'rinishidagi matritsa skalyar matritsa bo'lib, u bir ustur va bir qatordan iboratdir. Uning qiymati oddiy sondir.

MATLAB tizimida matritsalarning kiritishning bir necha yo'llari mavjud: Matrits elementining to'liq kiritish;

Matritsaning tashqi fayllardan yuklash;

Funkiyalar orqali shakllantirish;

M-fayl orqali hosil qilish.

Matrits elementining to'liq kiritishning quyidagicha shartlari mavjud:

- 1) Elementlarni alohida probel bilan kiritish;
- 2) Qatorlarni ";" bilan ajratish;
- 3) Kiritilgan elementlarni [] olish.

Misol:

Kiritilayotgan martitsaning yozilishi:

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

Natija:

	A =		
16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Yuqorida kiritilayotgan martitsa A o'zgaruvchiga yuklatib olindi, endi siz A orqali matritsani chaqirib olishingiz mumkin.

Matritsa ustun elementlarini yig'indisini topish uchun **sum()** standart funktsiyasidar foydalarish mumkin.

```
sum (A)
MATLAB dagi natija:
ans =
34 34 34 34
```

MATLAB tizimi tugʻridan toʻgʻri hisoblash rejimida ishlash xususiyatligiga ega ekanligi ishning tezkor bajarilishini osnlashtiradi. CHiqayotgan natija doimo ans oʻzgaruvchisida yuklatiladi. sum(A) orqali A matritsaning faqat ustun elementlarining yigʻindisini topdik xolos, uning qator elementlarining yigʻindisini topish uchun esa, matritsani transponirlash kerak. MATLAB transponirlash " ' orqali bajariladi.

```
Kiritilayotgan ifoda:

sum (A')

MATLAB dagi natija:

sum(A')

ans =

34 34 34 34 34
```

 $Diag()\,funktsiyasi\,orqali$ matritsaning dioganal elementlarini chiqarish mumkin.

```
Kiritilayotgan ifoda:

diag (A)

MATLAB dagi natija:

ans =

16

10

7

1

Kiritilayotgan ifoda:

sum (diag (A) )

MATLAB dagi natija:

ans = 34
```

fliplr funktsiyasi orqali matritsaning dioganaliga nisbatan teskari matritsa xosil qilib beradi.

Kiritilayotgan ifoda: fliplr(A) MATLAB dagi natija: ans = 13 2 3 16 8 11 10 5 12 7 6 9 1 14 15 4

Matritsaning alohida elementlarining yig'indisini topish uchun matritsaning alog'ida elementi olinadi, ya'ni A(i,j) ko'rinishida.

Kiritilayotgan ifoda: A(1,4) + A(2,4) + A(3,4) + A(4,4)MATLAB dagi natija: ans = 34 Matritsaga yangi qator yoki ustun qo'shish uchun quyidagicha ish qilinadi.

Kiritilayotgan ifoda: X=A; X(4,5)=17MATLAB dagi natija: X =16 3 2 13 0 5 10 11 8 0 9 6 7 12 0 4 15 14 1 17

Ayrim xollarda tartibga solingan sonlar ketma-ketliklarini formatlash talab qilinadi. Bunday ketma-ketliklar vektorlarni yoki grafiklarni qurish vaqtida abtsissalarning qiymatlarini hosil qilish uchun zarur bo'ladi. Sonlar ketma ketligini formatlash uchun MATLAB tizimida : (ikki nuqta) operatori ishlatiladi.

Kiritilayotgan ifoda:

1:10

MATLAB dagi natija: 1 2

2 3 4 5 6 7 8 9

10

Tartibga solingan ketma-ketlikning oraliq qiymatini ham berish mumkin.

Kiritilayotgan ifoda:

100:-7:50 MATLAB dagi natija: 100 93 86 79 72 65 58

SHunday qilib, : (ikki nuqta) operator onlarning muntazam ketma-ketligini olish uchun qulay vosita hisoblandi. U grafiklarni qurish vositalari bilan ishlashda keng qo'llaniladi.

funktsiyasi har tomonlama kvadrat bo'lgan matritsa xosil qilib beradi. U sexrgar

Kiritilayotgan ifoda: B=magic(4) MATLAB dagi natija:

			B =
16	2	3	13
5	11	10	8
9	7	6	12
4	14	15	1

7. CHiziqli tenglamalarini yechish. Matritsalar va uning tenglamalar sistemasiga bog'lash.

 $\begin{vmatrix} a_{11} & a_{12} \cdots & a_{1n} \\ a_{21} & a_{22} \cdots & a_{2n} \\ a_{m1} & a_{m2} \cdots & a_{mn} \end{vmatrix}$ Bunday jadval **n x m o'lchamli to'g'ri burchakli**

matritsa deb ataladi. Bu jadvaldagi a_{ij} matritsa elementlari deyiladi.

Agar m=n bo'lsa, bunday matritsa **n-tartibli kvadrat matritsa** deyiladi.

Har bir n-tartibli A kvadrat uchun shu matritsaning elementlaridan tashkil topgan n-tartibli diterminantni hisoblash mumkin.

Bosh dioganalida turmagan barcha elementlari 0 ga teng bo'lgan matritsa diaganal matritsa deyiladi.

Diaganalidagi elementlari noldan farqli diaganal matritsa skalyar matritsa deyiladi.

Bosh diagonalidagi barcha elementlari 1 ga teng dioganal matritsa birlik matritsa deyiladi.

Barcha elementlari nolga teng matritsa nol matritsa deyiladi.

CHiziqli tenglamalar sistemasini yechish

n ta noma'lumli n ta chiziqli tenglmalar sistemasi berilgan bo'lsin.

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1, \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2, \\ \dots & \dots & \dots \\ a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n = b_n. \end{cases}$$

Quyidagi belgilashlar kiritilgan bo'lsin.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Natijada quyidagicha chiziqli tenglama xosil bo'ladi.

AX=B

Bu yerda:

A – noma'lumlar oldidagi koeffitsentlardan tuzilgan matritsa;

V – ozod hadlardan tuzilgan ustun matritsa;

X – noma'lumlardan tuzilgan ustun matritsa.

Agar A matritsaning diterminanti det $A \neq 0$ bo'lsa, u holda A matritsaga A^{-1} matritsa mavjud.

$$A^{-1}AX = A^{-1}V$$

 $(A^{-1}A)X = A^{-1}V$

Bu yerda $A^{-1}A = Ye$ ya'ni, Ye=1 natijada:

$$\mathbf{X} = \mathbf{A}^{-1} \mathbf{V}$$

MATLAB tizimida matritsaga teskari matritsa inv() funktsiyasi orqali amalga oshiriladi.

Umumiy olib qaraganda tenglamalar sitemasining matlabda yechishning 3 xil usuli mavjud.

 $\mathbf{X} = \mathbf{V}/\mathbf{A} - \mathbf{b}\mathbf{u}$ yerda, V (n x k) o'lchamli matritsa A bo'lsa, (m x n) o'lchamli matritsa.

 $X = V^*A^{-1} - bu$ yerda, V (n x k) o'lchamli matritsa A bo'lsa, (m x n) o'lchamli matritsa.

 $\mathbf{X} = \mathbf{V}^* \mathbf{inv}(\mathbf{A}) - \mathbf{bu}$ yerda, V (n x k) o'lchamli matritsa A bo'lsa, (m x n) o'lchamli matritsa.

Nazorat savollari

- 1. MATLAB tizimida matritsalar iblan ishlash?
- 2. MATLAB da matritsalar kiritish tartibi?
- 3. MATLAB da matritsa kiritishga qo'yilgan talablar?
- 4. Matritsalar bilan ishlovchi funktsiya va operatorlar?
- 5. Ikki nuqtaning vazifasi?
- 7. MATLAB tizimida matritsalar bilan ishlash?
- 8. MATLAB da matritsalar kiritish tartibi?
- 9. MATLAB da matritsa kiritishga qo'yilgan talablar?

10. Matritsalar bilan ishlovchi funktsiya va operatorlar?

11. Tenglamalar sitemasini yechish?

5-AMALIY MASHG'ULOT: LATEX sistemasida matnlarni formatlash, jadval va grafiklar tuzish, matematik formulalar yozish va taqdimotlar tayyorlash.

- 1. Latex dasturini o'rnatish va sozlash.
- 2. Latex dasturining imkoniyatlari.
- 3. Matematik formulalar bilan ishlash

1. Latex dasturini o'rnatish va sozlash.

Hozirgi kunda ilmiy maqolalar, matematikaga doir qo'llanmalar yaratishda juda ko'p matematik formulalar va turli xil obektlardan foydalanishga to'g'ri keladi. Bunday hujjatlarni yaratish uchun juda ko'p matn muharrirlari mavjud. Bunga Word Word matn muharriri matematik matn muharririni misol keltirish mumkin. formulalarni yozishda, turli xil obektlarni joylashtirishda juda katta imkoniyatga ega, lekin agar matematik formulalar, turli xil obyektlarni soni oshib borsa, yaratilgan hujjatlarni hajmini oshirib yuboradi va ularni qayta ishlashda qiyinchiliklarga uchrab Bundan tashqari yaratilgan hujjat hamma kompyuterlarga, yoki qolish mumkin. hamma sistemalarga to'g'ri kelmasligi mumkin. Masalan Wordda yaratilgan hujjatlar versiyasiga farq qilsa bir biriga to'g'ri kelmasligi mumkin yoki Mathtypeda yozilgan formulalar bo'lsa to bu dasturni o'rnatmasak bu hujjatlarni qayta ishlab bo'lmaydi. Biz yaratgan maqola, qo'llanma yoki boshqa hujjatlarni internet tarmog'ida ham qo'yishimiz mumkin, bundan hamma kompyuterlar foydalanishlari mumkin. Shuning uchun biz hujjatlarni shunday tayyorlashimiz kerakki undan barcha kompyuterlar turli xil bo'lishidan qatiy nazar foydalana olishlari kerak. Shularni hisobga olib yana bir dastur, Latex dasturi yaratildi. Latex dasturi juda ko'p imkoniyatlarga ega. Bu dasturni imkoniyatlari yuqoriligi, jurnallar, kitoblar tayyorlash imkoniyatlari juda yuqori sifatli ekanligini hisobga olib, hozirgi kunda chet ellarda ilmiy jurnallarda ilmiy maqolalarni Latex dasturida yozib yuborishni talab qiladi. Latex dasturida tayyorlangan hujjatlarni hajmi juda kichik bo'ladi, shuning uchun ularni qayta ishlash tez amalgam oshadi. Bu dastur yordamida ilmiy maqolalar, kurs ishlarini, diplom ishlarini, dissertasiyalarni juda chiroyli qilib tayyorlash mumkin. Albatta bu dastur bilan ishlash uchun kompyuterda Latex dasturi o'rnatilgan bo'lishi kerak va biror bir uslubiy qo'llanmadan foydalnishga to'g'ri keladi. Hozirgi kunda Latex dasturida ishlash bo'yicha deyarli o'zbek tilida adabiyotlar yetarli emas, rus tilida yoki ingliz tilida adabiyotlar juda ko'p. Shularni hisobga olib biz Latex dasturi bo'yicha o'zbek tilida kerakli malumotlarni to'plab uslubiy qo'llanma tayyorlashni maqsad qilib qo'ydik.

Amerikalik taniqli matematik va dasturchi Donald Knuth tomonidan Tex dasturi yaratildi. Bu dasturni yaratishda Knut o'z oldiga shunday translyator yaratishni maqsad qilib qo'ydiki, u har xil kompyuterlarda bir xil ishlashi kerak edi. Leslie Lamport Tex bazasi asosida paketlardan foydalanib Latex dasturini yaratdi.

Latex dasturi matematikaga doir ilmiy hujjatlarni juda yuqori darajada sifatli qilib tayyorlash uchun mo'ljallangan dastur hisoblanadi. Kitob, o'quv qo'llanma, ilmiy jurnallarni tayyorlashda ham juda katta imkoniyatlarga ega. Latexda yaratilgan hujjatlarni hajmi juda kichik bo'ladi va ularni qayta ishlash, tahrirlash amallarini juda tez bajarish mumkin. Latex dasturi juda ko'pchilik kompyuterlarga ishlaydi masalan IBM, Mac va boshqalar. Bundan tashqari juda ko'pchilik sistemalarga ham ishlaydi masalan Windows, Unix, VMS va boshqalarni misol keltirish mumkin. Bu dastur bilan ishlash uchun kompyuterda Latex dasturi o'rnatilgan bo'lishi kerak. Shuning uchun biz birinchi bobni Latex dasturini o'rnatish va uning imkoniyatlaridan foydalanishga bag'ishladik.

Latex dasturini o'rnatish uchun birinchi MikTex dasturini o'rnatamiz.

Basic MiKTeX 2.9.4407 Installer (32-bit)	
Copying Conditions Mil MiKTeX is freely redistributable under certain conditions. Image: Condition state in the state in	K X
Redistributing MiKTeX	
COPYING CONDITIONS FOR MiKTeX To the best of our knowledge, all software in this distribu freely redistributable (libre, that is, not necessarily gra within the Free Software Foundation's definition and Debiar Software Guidelines. If you find any non-free files include contact us (references given below).	
That said, MiKTeX has neither a single copyright holder nor $_{\rm v}$	
<pre></pre>	
I accept the MiKTeX copying conditions.	
< <u>Н</u> азад Далее > Отмена	

1- chizma. MikTex dasturini o'rnatish.

Bu yerdan Далее tugmasini bosib o'rnatishni davom etamiz.

Basic MiKTeX 2.9.4407 Installer (32-bit)	x
Shared Installation You have the option to share the MiKTeX installation with other users.	MiK T _E X
Install MiKTeX for: (a) Anyone who uses this computer (all users) () Only for: User	
< <u>Н</u> азад Далее >	Отмена

2-chizma. MikTex dasturini o'rnatish.

Bu yerdan barcha foydalanuvchilar uchunni belgilaymiz.

Basic MiKTeX 2.9.4407 Installer (32-bit)	x
Installation Directory Choose a location for the installation direct	ory.
Install MiKTeX to:	
C:\Program Files\MiKTeX 2.9	<u>B</u> rowse
	< <u>Н</u> азад Далее > Отмена

3-chizma. MikTex dasturini o'rnatish.

Bu yerda MikTex dasturini qayerga o'rnatishni ko'rsatamiz. (Masalan: C diskda)

Basic MiKTeX 2.9.4407 Installer (32-bit)	×
Information Review the settings.	MiK T <u>E</u> X
MiKTeX Setup Wizard has enough information to start the task. If you want to revie change any of the settings, click Back. If you are satisfied with the settings, click S	ew or Start.
Install basic packages to C:\Program Files\MiKTeX 2.90 Install MiKTeX for all users	•
Preferred paper size is A4	
Packages will be installed after confirmation by user	
4	•
< <u>Н</u> азад <mark>Start</mark> (Отмена

4-chizma. MikTex dasturini o'rnatish.

Start tugmasini tanlasak MikTex dasturi o'rnatiladi.

Bu dasturni o'rnatib bo'lgandan keyin WinEdt 6. 0 dasturini o'rnatamiz. Bu dastur quyidagicha ornatiladi.

5- chizma. WinEdt 6. 0 dasturini o'rnatish.

Bu oynadan Next tugmasini bosib o'rnatishni davom etamiz.

winEdt 6 Setup
License Agreement Please review the license terms before installing WinEdt 6.
Press Page Down to see the rest of the agreement.
WinEdt Licensing Agreement and Disclaimer
WinEdt is distributed as shareware (try-before-you-buy software). The program may be used for an evaluation period of 31 days. Any further use requires a license from the author obtained through the Registration Procedure. Details concerning types/cost of licenses, methods of payment and the latest version of the program can be obtained at the Registration page.
If you accept the terms of the agreement, click the check box below. You must accept the agreement to install WinEdt 6. Click Next to continue.
$\boxed{\mathbf{V}}$ I accept the terms of the License Agreement
WinEd: Team

6- chizma. WinEdt 6. 0 dasturini o'rnatish.

Bu oynadan katakchani belgilab Next tugmasini bosib o'rnatishni davom etamiz.

7- chizma. WinEdt 6. 0 dasturini o'rnatish.

Kerakli diskni ko'rsatib dasturni o'rnatamiz.

Latex dasturining imkoniyatlari.

Latex sistemasida tayyorlangan matnli fayl kengaytmasi *. tex ko'rinishda bo'ladi. Keyingi jarayon ikkita etapdan o'tkaziladi. Birinchi dastur translyatori yordamida fayl qayta ishlanadi. Natijada *. dvi kengaytmali fayl olamiz. Endi olingan *. dvi kengaytmali faylni dastur yordamida ekranda ko'rish mumkin, pechatga yuborish mumkin yoki boshqa amallarni bajarish mumkin. Natija foydalanuvchini qanoatlantirmasa faylga o'zgartirish kiritib jarayonni yana takrorlashi mumkin. Latexda yaratilgan fayl matni maxsus belgilar va buyruqlardan iborat bo'ladi. Latex dasturida 10 ta maxsus belgilardan foydalaniladi. Bular quyidagilar: { } \$ & # % _ ^

Bu maxsus belgilarni o'zidan foydalanmoqchi bo'lsak maxsus belgini oldiga $\$ belgini qo'yamiz. Masalan: Oylik 10 % ga oshdi \Box Oylik 10 $\$ ga oshdi. Agar $\$ maxsus belgini qo'ymasdan yozsak, % belgidan keyingi matnni izoh sifatida qaraydi.

Latex buyruqlari *teskari slesh* "\" belgisidan boshlanadi va faqat lotin harflaridan iborat bo'ladi. Buyruq oxirida bo'sh joy ,raqam va ixtiyoriy harf bo'lmagan belgidan foydalanish mumkin.

Latexda bo'sh joy belgisi buyruqdan keyin qo'yiladi. Lekin bu belgi o'rniga boshqa maxsus {} belgisini ham qo'yish mumkin. Masalan: Men ertaga barcha ishchi \TeX{}niklarimiz va \TeX nika mutaxasislarimiz bilan uchrashmoqchiman. Bugun \today

Misollar:

-Bugun 8-mart \textsl{Xalqaro-xotin qizlar bayrami} Natija: Bugun 8-mart *Xalqaro-xotin qizlar bayrami*

-yangi satrga o'tish \newline yangi satr Natija: yangi satrga o'tish

yangi satr

Shuningdek {} belgisini bu belgi oxiriga yozilgan buyruqga turli xil parametrlar berish uchun ham ishlatish mumkin. Bunda bir yoki bir necha parametr berish mumkin. Parametrlarni faqat {} belgisi bilan emas balki [] belgisi orqali ham joylashtirish mumkin.

Kiritiladigan fayl strukturasi

Fayl strukturasi

```
\clines{...}
```

dan boshlanadi. U hujjat qanday tipda yozilishini ko'rsatadi. Bu buyruq dan so'ng hujjat ko'rinishi,paketlarni yuklash va LATEXning qo'shimcha imkoniyatlarini yuklash boshlanadi. Bunday vazufalarni bajarish uchun

 $\ensuremath{\mathsf{usepackage}}\$

buyrug'idan foydalaniladi. Bu buyruqdan so'ng matn tanasi boshlanadi. Bu buyruq quyidagicha yoziladi.

\begin{document}

Endi LATEX buyruqlari yordamida matnni kiritamiz va oxirida

 $\end{document}$

buyrug'I yordamida hujjat yopamiz. Masalan:

\documentclass{article}

\usepackage[russian]{babel}

\begin{document} Latexdagi oddiy hujjat.

\end{document}

Matematik formulalarni yozishda formula \$ maxsus belgi ichida yoziladi.

Masalan:

\$\$ 1+2+\cdots+100=5050;

\$\$

Natija: $1 + 2 + \ldots + 100 = 5050$;

Agar har bir buyruqni bir nechta amallarga ta'sir etmoqchi bo'lsak, amallarni

blokga olamiz. Masalan:

 $x^{1993}+y^{1993}=z^{1993}$

Natijasi: $x^{1993} + y^{1993} = z^{1993}$ agar daraja 1993 blokga olinmasa x ni darajasiga **y**ozib ketadi.

Winedt haqida

Winedt 6 tizimi Texning 2009 yilda taqdim etilgan Miktex 2. 8 versiyasi bilan ishlashga moʻljallangan. Bu Windowsning koʻp qoʻllaniladigan Windows XP, Windows Vista, Windows 7 va boshqalarda muammolarsiz oʻrnatiladi va ishlaydi.

Winedt 6 da interfeysni foydalanuvchi o'ziga moslashtirish imkoniyatlari oldingi versiyalarga nisbatan ancha qulaylashtirilgan.

Winedt tarixiga nazar tashlaydigan bo'lsak bu dastur yaratilganiga hali uncha ko'p vaqt bo'lmaganini ko'rishimiz mumkin. Bu dastur ilk bor 1993-yilning aprel oyida Windows 3. 1 uchun ishlab chiqilgan.

Bu dasturni o'rnatishda Windows Vista va Windows 7 operatsion tizimlarida bu dasturdan foydalanish uchun turli foydalanuvchiga turli imkoniyatlar berish yoki cheklash holatlarini kuzatish mumkin. Bunday cheklashlar fayllar asotsiatsiyasini

ishlatishda ahamiyatlidir. Bunda ma'lum turdagi fayllar bilan ishlashga cheklov qo'yiladi. Buni bu OT larda xavfsizlikka yuqori e'tibor berilganligi bilan tushuntirish mumkin. Bu rasmda matnli(. txt) fayllarga cheklov qo'yilganligini ko'rishimiz mumkin.

1-chizma. Fayllar asotsiatsiyasi oynasi

Endi Winedt dasturi bilan tanishamiz. Bu dastur muvaffaqiyatli o'rnatilgandan so'ng uning yorliq ilovasi agar Пуск menyusida chiqishi ko'rsatilgan bo'lsa uning yorliq ilovasi Пуск menyusida paydo bo'ladi. Ya'ni стандартные \rightarrow пуск \rightarrow Winedt 6. Bu yerda ikkita yorliq bo'lishi mumkin. Birinchisi Uninstall Winedt va ikkinchisi

Winedt. Birinchi yorliq bu dasturni kompyuterdan o'chirish uchun xizmat qiladi. Biz uchun asosiysi bu ikkinchi yorliqdir. Bu yorliq Winedt dasturini ishga tushirish uchun xizmat qiladi. Shuningdek bu dasturni Windowsning ishchi stolidan ham ishga tushirish mumkin. Agar yorliq yaratilmagan bo'lsa uni yaratish kerak albatta. Yorliq yaratish usuli bilan nafaqat ishchi stol balki mantiqiy disklardagi ixtiyoriy joydan ham ishga tushirish mumkin. Winedt ni ishga tushirgandan so'ng bizning ishchi stolimizda quyidagi oyna ochiladi.

💋 👐 WinEdt Configuration Wizard	×
Wizard Filetype Associations Links and Shortcuts User Profiles	
WinEdt Configuration Wizard	
WinEdt is more configurable than you may care to know at this point. This	Uninstall WinEdt!
configuration utility is designed to explain a few important concepts and assist you with some tasks such as creating filetype associations with WinEdt.	Unregister WinEdtl
Whether you are a first time or a seasoned WinEdt user, it is important that you check the Options Interface before you start or resume working on your projects. This way you can quickly configure WinEdt to your standards, while neglecting to do so may result in misunderstandings (pertaining to WinEdt's wrapping / formatting or any other overall behavior) that can be easily be avoided by proper use of the Options interface!	
By default, WinEdt wraps your documents in Soft Mode (like Notepad). This may not be everyone's choice! Read the section on Wrapping in WinEdt's Help. After reading the explanations, you'll be able to make educated Wrapping preferences suitable for your intended use of WinEdt. Note that changes do not affect documents that are	
currently opened. Thus your global Wrapping choices should be made before starting work on real documents!	Browse Install Folder (%B)
	Browse Local Folder (%b)
IMPORTANT: Help in this Wizard and in the Options Interface is there to guide you; please take a few moments to review it!	Using a Personal Profile
%B: C:\Program Files\WinEdt Team\WinEdt 6	
%b: C:\Documents and Settings\User\Application Data\WinEdt Team\WinEdt 6	
Show this Wizard Next Time	<u>C</u> ancel <u>H</u> elp

2-chizma. Winedt 6 ni ishga tayyorlash oynasi

Bu bo'lim joylashgan bo'lib bular:Wizard,Filetype oynada to'rtta Associations, Links and Shortcuts, User Profiles lardir. Birinchi bo'limda Winedt ni Winedt!),Dastur o'rnatilgan papkani ko'rish(Browse o'chirish(Uninstall Install Folder(%B) ...),Dasturda yaratilgan hujjatlarni saqlash papkasi(Browse Local Folder (%b) ...) tugmalari joylashgan. Xoxishga qarab bu manzillarni pastdagi ikkita manzil kiritish qatori orgali o'zgartirish mumkin. Ikkinchi bo'lim ya'ni Filetype Associations da biz yuqorida ta'kidlab o'tgan fayllar asotsiatsiyasi bo'yicha cheklov va imtiyozlar qo'yish amalga oshiriladi. Bunda cheklovlarni amalgam oshirish uchun maxsus tugmalar(masalan:Modify filetype associations ... kabi) ajratilgan. Links and shortcuts bo'limida Winedt dasturini OT ning turli joylaridan ishga tushirish uchun yorliqlar varatish uchun maxsus tugmalar(masalan:Create or Change Links ...) bor. Shuningdek mavjud yorliqlarni

o'chirish, yaratiladigan hujjatlar saqlanadigan manzilni o'zgartirish tugmalari ham shu yerda joylashgan. Oxirgi User profiles bo'limida esa tegishli foydalanuvchiga doir imkoniyatlarni o'zgartirish, yangi foydalanuvchi yaratish, tarmoq bilan ishlash uchun foydalanuvchi ko'rinish sohalarini aniqlash, monitorni tarmoq uchun moslash kabi amallar uchun maxsus tugmalar(masalan:Concurrent License Monitor ...) joylashgan. Barcha sozlashlar bajarilgandan so'ng oynaning chap pastki qismidagi Show this Wizard Next Time tanlagichi orqali dasturning keyingi yuklanishida bu oyna ko'rinish yoki korinmasligini tanlash mumkin. Endi OK tugmasini bossak quyidagi ochiladi.

3-chizma. Winedt 6 asosiy oynasi

Bu oyna Winedt 6 ning bosh oynasidir. Bu oyna Wiindows oynalari bilan deyarli bir xil, ya'ni menyular bo'limi, uskunalar paneli, ishchi soha, holat satridan iborat. Oyna chap tomonida joylashgan panel esa hujjatda ishlatilagan maxsus bog'lanishlarni va boshqa xususiyatlarni ko'rsatish va o'zgartirish uchun xizmat qiladi.

Winedtning menyular qatori quyidagi bo'limlardan tashkil topgan.

File Edit Search Insert Document Project View Tools Macros Accessories TeX Options Window Help

Ular bo'limga qarab turli vazifalarni bajarish uchun xizmat qiladi. Menyu bo'limlari Latexda ishlashni avtomatlashtirish bilan birga bir qator imkoniyatlar beradi. Masalan dastur istalgan qismi natijasini oldindan ko'rish,kerakli qismni tahrirlash va h. k.

Uskunalar paneli ishni tez va sifatli bajarish uchun mo'ljallangan bir necha uskunalardan iborat.

Bunda uskuna piktogramma(rasmcha)siga qarab yoki sichqonchani shu piktogramma ustiga keltirib , piktogramma haqidagi izoh orqali nima vazifani bajarishini aniqlash mumkin. Ko'pchilik uskunlar paneli bilan ishlashini hisobga olsak , bu qism oynaning eng asosiy qismlaridan ekanligini ko'rishimiz mumkin. Bu panelning imkoniyatlaridan yana biri bu Latex asosiy buyruqlar ro'yhati va har bir belgining ASCII kodlash sistemasidagi va O'n oltilik sanoq sistemasidagi kodini ko'ratishidir. Bu jadvallarni ay va piktogrammalar orqali uskunlar paneliga qo'shish mumkin. Latex asosiy buyruqlar ro'yhati quyidagicha:

Math	Gre	ek	Symbols	Ini	ternatio	onal	Typefa	ice	Funct	ions(:	x)	{ }	<>=	+/	>	AMS	AMS =<>	AMS	NOT =	<>
Σ	П	Ш	[]	∮	Π	U	\hat{a}	ă	ă	á	à	\widetilde{abc}	\widehat{abc}	\overleftarrow{abc}	\overrightarrow{abc} \overline{a}	bc a	\widehat{abc} x^k	IN	B	в
Ц	٧	٨	0	\otimes	\oplus	H	\tilde{a}	ā	\vec{a}	à	\ddot{a}	\underline{abc}	\underline{abc}	\sqrt{abc} $\sqrt[n]{v}$	\sqrt{abc}	$f' = \frac{a}{a}$	$\frac{abc}{cyz} = x_k$	С	F	Т

Bu qism ham kerakli bo'limlarga ajratilgan bo'lib kerakli bo'limni tanlash orqali tegishli buyruqni kiritish mumkin. Bunda sichqoncha chap tugmasini kerakli piktogramma ustida bir marta bosish orqali piktogrammada ko'rsatilgan holatni aks ettiruvchi buyruq ishchi sohadagi kursor turgan joyga yoziladi.

Belgilar kodlari jadvali esa quyidagicha:

×		,		3 0	1 0	3 0	3 0	3 0														1 0	1														!	"	ŧ	Ş	đ	6	1		()		*	+	,	-	•	1	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
			0 Z	A E	8 (1	E	5 1	F	G	H	I	J	K	L	М	N	0	P	Q	F	1 2	3	r	U '	V	W	Х	Y	Z	[1	1	^	_	•	a	b	С	d	e	f	g	g 1	1 1	L :	j	k	1	m	n	0	p	q	r	3	t	u	v	W	х	У	z	ł	1	}	~	
	ASCII: 0	< 1	ЪÍ	÷,	1	1			t	ŧ	€	50	Ъ	¢	Ь	Ŕ	ħ	Ų	ħ	,	'			w.	•	-	-		ы	љ	>	њ	Ŕ	ħ	μ		ÿ	ÿ	J	×	ľ	ł	5	5 1	Ē (9 6	2	*	7		8	Ï	۰	±	Ι	i	r	μ	P	•	ë	Ŗ	e	*	j	s	3	ï
	HEX: 0)	A E	B E	3]	1	ĮE	2 2	ĸ	3	Ν	Й	К	Л	М	H	0	П	P	C	I	3	1	ŧ .	X	Ц	ų	Ш	Щ	ъ	Ы	Ь	э	Ю	я	a	б	в	r	д	e	78	: 3	3	a i	i 1	ĸ	л	M	н	0	п	p	с	т	У	ф	x	ц	ч	ш	щ	ъ	ы	ь	э	ю	я

Bu panel asosan Latexning maxsus belgilarini kiritishda va klaviaturada bo'lmagan boshqa belgilarni kiritishda, shuningdek Latexning belgilar kodlari bilan ishlaydigan buyruqlarida foydalaniladi.

Keyingi qism ishchi soha bo'lib unda hujjat matni yoziladi. Menyular va uskunlar panelidagi barcha amallar shu yerda o'z aksini topadi. Uning umumiy ko'rinishi quyidagicha:

4-chizma. Winedt 6 ishchi sohasi

Bunda matematik formulalar yozilgan qism alohida rang bilan ajratilganini ko'rish mumkin.

Endi oxirgi qism bilan tanishamiz. Bu qism Holat satri qismi. Bu qism aktiv hujjat va aktiv qatorga tegishli xususiyatlarni ko'rsatish va o'zgartirish uchun ishlatiladi. Holat satrining umumiy ko'rinishi quyidagicha:

```
?.... A 12:27 277 Modified Wrap Indent INS LINE Spell TeX Πτ 25-maŭ-2012 23:13 --src WinEdt.prj
```

Bu satrning har bir qismiga chapdan o'ngga qarab izoh berib o'tamiz:

-yordam bo'limini chaqirish

-ko'rish(Boshidan – A/Kursor turgan joydan - B)

-kursor turgan joy(Qator:Belgi)

-qatorlar soni

```
-holat(Modified,readonly,etc,...)-masalan modified-yozuvni turiga qarab ranglarga ajaratadi.
```

```
-davomiylik(yoqish/o'chirish)
```

```
-xat boshi(belgilash/belgilamaslik)
```

```
-kursor vaziyati(joyida/oxirida)
```

-belgilash usuli(qator bo'yicha/Blok bo'yicha)
-yozuvlarni tekshirmaslik(yoqish/o'chirish)
-hujjat turi
-joriy sana
-joriy vaqt
-joydalanuvchi haqida ma'lumot
-info A(--src)
-info B(Fayl proyekti)
-asosiy fayl/Holat

Yuqorida ko'rsatilgan xususiyatlarni o'zgartirish uchun tegishli qism ustiga sichqoncha chap tugmasi bir marta bosilishi yetarli. Biz yuqorida ko'rib o'tgan Info A va Info B qismlar biroz tushunarsiz bo'lishi mumkin. Aslida bu qismlar fayl kompilyatori va kompilyatsiyasi haqidagi ma'lumotlardir. Standart holda Miktex kompilyatsiya usuli –src bo'lib, src kompilyatori dvi kengaytmali fayl yaratish uchun xizmat qiladi.

Kontekst menyular

Bu bo'limda biz Winedt ning asosiy kontekst menyulari bilan tanishib o'tamiz. Bularga menyular satri, hujjatlar satri, holat satri va hujjatning chap qismi kiradi. Ularga mos kontekst menyular quyidagilar:

5-chizma. Asosiy kontekst menyular

Bu menyular orqali Winedt ga turli o'zgartirishlar kiritish, uni foydalanuvchiga moslashtirish mumkin. Keyingi va eng asosiy menyular bu ishchi soha menyularidir. Ular ikki xil bo'ladi:Belgilangan qism uchun va belgilanmagan qism uchun.

6-chizma. Qo'shimcha kontekst menyular

Bu menyular Windows kontekst menyulariga o'xshash bo'lib, qolgan buyruqlarini ularga tegishli piktogramma orqali o'rganish mumkin. Bu menyulardan ko'proq ikkinchi menyudan foydalaniladi. Unda satrlar ustida amallar bajarishga doir ko'plab qulay buyruqlar mavjud.

Shuningdek bir qator boshqa kontekst menyular ham mavjud. Masalan uskunalar paneli,holat satri,hujjat nomi paneli kabilarni yashirish va ko'rsatish menyusi va har bir panel uchun maxsus kontekst menyular mavjud. Shuni ta'kidlab o'tish joizki kontekst menyular orqali bajariladigan vazifalarning aksariyati menyular satrining turli bo'limlarida joylashtirilgan bo'lib,kerakli bo'lim orqali bu vazifalarni bajarish mumkin.

Matematik formulalar bilan ishlash

Matematik va munosabat belgilari,oddiy belgilar

Matematikada ko'p hollarda grek harflaridan foydalaniladi. Shu sababli biz ham LATEXda matematik formula kiritishni grek harflarini kiritishdan boshlaymiz. LATEXda grek harflarini kiritish buyrug'i "\" belgisi va shu belgining inglizcha nomini yozish orqali kiritiladi(Masalan:□ harfi \alpha kabi kiritiladi). Shu o'rinda yana bir ma'lumotni aytib o'tish kerak. Grek harflari ro'yhatidan

□ ("omikron" deb o'qiladi) harfini bu usul bilan kiritib bo'lmaydi(Ya'ni \omikron deb yozish no'to'g'ri hisoblanadi). Bu harfni kiritish uchun kursivda

yozilgan lotincha "o" harfi, yoki odatdagidek o harfini kiritish kifoya. Misol tariqasida bir necha grek harflarining LATEXda yozilishini jadvalini keltiramiz.

α	\alpha	3	\beta	γ	\gamma
õ	\delta	e	\epsilon	E	\varepsilon
ς	\zeta	η	\eta	θ	\theta
θ	\vartheta	L	\iota	ĸ	\kappa
λ	\lambda	μ	\mu	ν	\nu
ε	\xi	π	\pi	527	\varpi
ρ	\rho	0	\varrho	σ	\sigma
\$	\varsigma	τ	\tau	U.	\upsilon
ϕ	\phi	φ	\varphi	x	\chi
ψ	\psi	Le?	\omega		

Bu ro'yhatga \sum va \prod larni kiritish noto'g'ri. Bu belgilar yig'indi va ko'paytmani bildirgani bois maxsus buyruqlar yordamida kiritiladi. Lotin harflarini kiritganda katta va kichik harflar bilan kiritish avtomatik tarzda aniqlanadi. Grek harflarini kiritishda esa "\" dan keyin harf nomi yozilayotganda birinchi harf katta harf bilan yoziladi. Bir necha harflar ro'yhati

Γ \Gamma	Δ	\ Delta	Θ	\Theta
$\Lambda \setminus Lambda$	Ξ	\Xi	Π	\Pi
$\Sigma \setminus Sigma$		\Upsilon	Φ	\Phi
$\Psi \setminus Psi$	Ω	\Omega		

Endi binar amallari haqida. Binar amallar(ko'paytirish bo'lish va h. k) ni qo'llashda ayrim amallarni ketma- ket yozish kerak bo'lsa hech qanday probelsiz davomidan yozish mumkin. Binar amallarning to'liq ro'yhati:

+	+		-	*	*
±	\pm	Ŧ	\mp	×	\times
+	\div	1	\setminus	10	\cdot
0	\circ		\bullet	n	\cap
U	\cup	ω	\uplus		\sqcap
Ľ.	\sqcup	V	\vee	Λ.	\wedge
\oplus	\oplus	Θ	\ominus	\otimes	\otimes
•	\odot	0	\oslash	4	\triangleleft
P.	\triangleright	п	\amalg	0	\diamond
2	\wr	*	\star	t	\dagger
\$	\ddagger	0	\bigcirc	Δ	\bigtriangleup
∇	\bigtriangledow	n	221873		- 19253) - 1660 - M

Keyingi jadvalimiz binar amallarning yana bir turi munosabat amallari:

<	<	>	>	=	=
	:	\leq	\le	\geq	\ge
¥	\ne	\sim	\sim	\cong	\simeq
×	\approx	\cong	\cong	\equiv	\equiv
\ll	\11	\gg	\gg	Ė	\doteq
	\parallel	\perp	\perp	\in	\in
¢	\notin	Э	\ni	\subset	\subset
\subseteq	\subseteq	\supset	\supset	⊇	\supseteq
×	\succ	×	\prec		≿ \succeq
\prec	\preceq	×	\asymp		⊆ \sqsubseteq
	\sqsupseteq	=	\models		⊢ \vdash
-	\dashv	\sim	\smile		\frown \frown \
6	\mid	(xd	\bowtie		⋈ \Join
x	\propto				

Keyingi jadvalimiz yo'nalish ko'rsatgichlari(strelkalari). Latex ko'plab ko'rsatgichlarning vertikal va gorizontal variantlarini taqdim etadi.

\rightarrow	\to	\longrightarrow	\longrightarrow	\Rightarrow	\Rightarrow
\Rightarrow	\Longrightarrow	\hookrightarrow	\hookrightarrow		
\mapsto	\mapsto	\longmapsto	\longmapsto	\sim +	\leadsto
\leftarrow	\gets	←	\longleftarrow	\Leftarrow	\Leftarrow
	\Longleftarrow	\leftarrow	\hookleftarrow		
\leftrightarrow	\leftrightarrow	\longleftrightarrow	\longleftrightar	row	
\Leftrightarrow	\Leftrightarrow	\iff	\Longleftrightar	row	
î	\uparrow	1	\Uparrow		
\downarrow .	\downarrow	\downarrow	\Downarrow		
1	\updownarrow	\$	\Updownarrow		
/	\nearrow	\mathbf{i}	\searrow		
1	\swarrow	$\overline{\}$	\nwarrow		
4	\leftharpoonup	<u> </u>	$\ ightharpoonup$		\leftharpoondown
-	\rightharpoondo	in⊨	\rightleftharpoo	ns	

Keyingi jadvalimiz sinus tipli amallar. Matematikada ko'p qo'llanadigan bu tipdagi amallar ya'ni sin,log va h. k lar Latexda ham xuddi shunday yoziladi. Shuningdek istalgan funksiyaning quyi va yuqori indeksidan foydalanish mumkin.

Bu yerda funksiyalar ingliz tilidagi ko'rinishida yozilgan. O'zbek tilida tangens "tg" ko'rinishda qabul qilingan. Shuning uchun tangensni yozish uchun \tg

log	\log	lg	\1g	ln	\ln
arg	\arg	ker	\ker	dim	\dim
hom	\hom	deg	\deg	exp	\exp
\sin	\sin	arcsin	\arcsin	cos	\cos
arcco	s \arccos	tan	\tan	arctan	\arctan
cot	\cot	sec	\sec	csc	\csc
sinh	\sinh	cosh	\cosh	tanh	\tanh
coth	\coth				

yozish kifoya. Lekin odatda agar Latexda yozilayotgan hujjat tili ko'rsatilmasa avtomatik holda inliz tili(english) tanlanadi. Bunday holda Latex \tg buyruqni tanimaydi. Agar biz \tg ni ishlatmoqchi bo'lsak hujjat boshida \usepackage ga russianni kiritib qo'yish yetarli. Chunki rus tilida ham tangens "tg" ko'rinishda qabul qilingan. Latexda tillar paketiga hali o'zbek tili kiritilmagani tufayli rus tili paketidan foydalanish qulay. Xullas natija \usepackage[russian]. Kotangens(ctg) ham xuddi shu ko'rinishda kiritiladi.

Endi oliy matematikada ko'p ishlatiladigan belgilar:

\sum	\sum	П	\prod	U	\bigcup
\cap	\bigcap	Ш	\coprod	\oplus	\bigoplus
\otimes	\bigotimes	\odot	\bigodot	V	\bigvee
\wedge	\bigwedge	÷	\biguplus		\bigsqcup
\lim	\lim	lim sı	1p\limsup	lim ir	of \liminf
max	\max	min	\min	sup	\sup
inf	\inf	det	\det	Pr	\Pr
gcd	\gcd				

Ko'p ishlatiladigan buyruqlardan yana biri integral belgisi uchun qo'llanadigan buyruqdir. Latexda odatiy integral (\int) kiritish uchun \int buyrug'i, konturli integral (\Box) uchun \oint buyrug'i ishlatiladi. Integralning yuqori va pastki indekslari va integral osti funksiya ham

kiritish mumkin. Masalan:

$$\int_0^1 x^2 dx = 1/6 \lim_{x \to 0^{1}x^2, dx = 1/6}$$

Agar integral chegaralari indeksda emas, yuqori va quyi chegarada bo'lishi lozim bo'lsa, u holda \int buyrug'ini \limits buyrug'i bilan birgalikda ishlatishimiz mumkin. Masalan:

$$\int_{0}^{1^{+}} x^{2} dx = \frac{1}{6} dx = \frac{1}{6} dx = \frac{1}{6}$$

Agar chegaralar boshqacha ko'rinishda bo'lsa ya'ni turli xil operatorlar va belgilardan iborat bo'lsa \nolimits dan foydalanish mukin. Masalan:

\$\$

$\prod_{i=1}^{n} i = n!$	\prod\nolimits_{i=1}^ni=n!
\$\$	

Boshqa zarur belgilar

Biz Latexning deyarli barcha asosiy matematik belgilarini ko'rib o'tdik. Keyingi jadvalimizda oldingi biror turdagi jadvalga kirmagan belgilarni ko'rib o'tamiz.

∂	\partial	\triangle	\triangle	L	\angle
∞	\infty	\forall	\forall	Е	\exists
Ø	\emptyset	-	\neg	х	\aleph
1	\prime	\hbar	\hbar	∇	\nabla
ı	\imath	J	\jmath	l	\ell
\checkmark	\surd	b	\flat	#	\sharp
4	\natural	Т	\top	L	\bot
\wp	\wp	R	\Re	3	\Im
\	\backslash	1	NI -	٠	\spadesuit
*	\clubsuit	\diamond	\diamondsuit	\heartsuit	\heartsuit
Ω	\mho		\Box	\diamond	\Diamond
†	\dag	§	\S	©	\copyright
‡	\ddag	ſ	\P	£	\pounds

Oxirgi 6 ta formulani nafaqat formulada balki matn kiritishda ham ishlatish mumkin. Shuningdek bu ro'yhatda bo'lgan \nabla buyrug'i \bigtriangledown bilan bir xil emas. Endi oxirgi jadvalga o'tamiz. Bu jadvalimizda matematik belgilar jadvali keltirilgan:

```
**yoki \ast \neq \ne yoki \neq
```

$\leq \log v $	$\geq $ yoki \geq
[[yoki \lbrack]] yoki \rbrack
{ \{ yoki \lbrace	} \} yoki \rbrace
\rightarrow \to yoki \rightarrow	\leftarrow \gets yoki \leftarrow
\ni yoki \owns	\wedge yoki \land
vee yoki \lor	\neg yoki \lnot

Asosiy buyruqlar Formulaga nomer qo'yish

Matematik matn yozishda odatda qulay bo'lishi uchun formulaga nomer qo'yib , unga yo'llanma(ссылка) orqali o'tiladi. LATEXda yo'llanmalarga avtomatik o'tish mumkin. Formulaga nomer qo'yish faqat formula yozish tugatilgandan so'ng amalga oshiriladi. Bu quyidagicha amalga oshiriladi.

Formula yozish tanasida equation(\$\$ belgisidan foydalanilmaydi)dan foydalanilsa LATEX formula nomerini avtomatik tarzda aniqlaydi va natijaga chiqaradi. Shuningdek begin{equation} va end{equation} buyruqlari orasida formula nomi,qay ko'rinishda va qayerda joylashishini aniqlash uchun \label buyrug'idan foydalaniladi. Oxirida \ref buyrug'i orqali formulaga izohlarni ko'rsatish mumkin. Masalan:

Birinchi sinf o'quvchilari b	uni \begin{equation}		
bilishi kerak		\$\$	Birinchi
sinf			
o'quvchilari buni bilishi ker	rak\$\$		
$7 \times 9 = 63$ (1)	7\times9=63 \end{equation}	(1)	

formuladan quyidagi natija kelib (\ref{trivial}) formuladan quyidagi kelib

chiqadi. 63/9=7 chiqadi. 63/9=7

Bu yerda \ref o'rniga \pageref buyrug'idan ham foydalanish mumkin. Bu buyruq formula nomerini emas formula joylashgan sahifa nomerini qaytaradi. Yuqoridagi misolda agar formula 8 sahifaga yozilgan desak

Bu formula 8 betda yozilgan. Bu formula \pageref{trivial} betda yozilgan.

Formula nomerlari ko'rinishlari bevosita joriy sinflarga bog'liq. Masalan article sinfida formulaga nomer qo'yishda to'g'ridan to'g'ri keyingi nomerga o'tib

ketiladi. book sinfida esa avval mavzu keyin esa nuqtadan keyin shu mavzudagi formula nomeri ko'rinishda bo'ladi. Masalan 2-mavzudagi 7-formula 2. 7 ko'rinishda bo'ladi. Bunda albatta sinfga mos ko'rinishlar hosil bo'ladi.

Albatta bunday standart ko'rinishlar ko'p ishlatiladi va ular ortiqcha harakatni talab etmaydi. Lekin siz formula nomeri ko'rinishini o'zingizga moslashingiz mumkin. Bunda \eqno buyrug'idan foydalanishingiz mumkin. Masalan:

Birinchi sinf o'quvchilari

\$\$

 $7 \times 9 = 63 (3.2)$ 7\times9=63\eqno (3.2) \$\$

ni bilishi kerak.

ni bilishi kerak.

Birinchi sinf o'quvchilari

Bu yerdagi birinchi \$\$ belgi formula boshlanishi va oxirgi \$\$ belgi formula oxirini ko'rsatadi. Shuningdek bu belgilar orasida matematik yozuvlarga tegishli parametrlarni berish mumkin. Masalan:

\$\$

$$7 \times 9 = 63$$
 hisoblash judaoddiy $7 \times 9 = 63$ hisoblash juda oddiy \$\$

Bundan ko'rinib turibdiki matematik formula ichida yozuvni oddiy usulda kiritish mumkin emas. Aks holda Latex kiritilgan yozuvni kursivda chiqaradi. Bu muammoni hal qilish uchun \mbox buyrug'idan foydalanamiz. Bu buyruqni shu misolda qo'llaymiz:

\$7 × 9 = 63 hisoblash juda oddiy 7 × 9 = 63 \mbox{hisoblash juda oddiy} \$

Kutilgan natijaga erishildi. Yozuvdan keyin formula kiritilsa va undan keyin yana yozuv yozish talab etilsa yana shu usulni qo'llash mumkin. Shunga o'xshash boshqa parametrlar ham berish mumkin.

Biz formulaga nomer qo'yishda \eqno buyrug'idan foydalandik. Texda formulaga nomer qo'yishda \leqno buyrug'idan ham foydalanadi. Bu ikki buyruqning bir biridan farqi \eqno formula nomerini o'ng tomonda \leqno esa chap tomonda yozadi. Shunga doir misol ko'ramiz:

Ajoyib o'xshashlik		Ajoyib o'xshashlik \$\$
(*)	$\sin^2 x + \cos^2 x = 1$	$\sin^2x + \cos^2x = 1$
		\leqno (*)
		\$\$

Buni o'ninchi sinflar bilishadi.

Buni o'ninchi sinflar bilishadi.

Garchi \eqno va \leqno buyruqlari orqali siz istagandek nomerlash amalga oshirilsada avtomatik tarzda yo'llanma(ссылка) bermaydi.

Matematik formulalarda odatiy va noodatiy shriftlar

Yuqoridagi misollarda barcha lotin harflarini odatdagi ko'rinishda kiritishda avtomatik tarzda kursiv ko'rinishda chiqarilishini ko'rib o'tdik. Agar boshqa turdagi shriftlarda chiqarmoqchi bo'lsak albatta kerakli buyruqlarni bilishimiz kerak. Matnlarni formulalarda kiritishda quyidagi shriftlarni ko'rib o'tamiz.

\sl-qiya yozuv,bu shrift kursivga o'xshash bo'lsada aslida undan farq qiladi. bf-semizroq yozuv. Microsoft Worddagi **x** tugmasi vazifasini bajaradi.

Bu semizroq shriftda,	Bu \bf semizroq shriftda yozilgan,\\ bu
esa qiyaroq shriftda,	bu esa \sl qiyaroq shriftda yozilgan,\\ bu
esa oddiy shriftda yozilgan.	bu esa \rm oddiy shriftda yozilgan.

Bu misoldagi \rm buyrug'i odatiy standart shrift ("roman") ni bildiradi. Shuningdek agar siz faqat ma'lum so'z yoki ma'lum qismni semizroq shriftda yozmoqchi bo'lsangiz kerakli qismni figurali qavs ichiga olib uni ichiga

\bf yozish mumkin. Masalan:

Bu yozuvda faqat bu	Bu yozuvda faqat {\bf bu}
qism semizroq yozilgan.	qism semizroq yozilgan.
N <i>T</i> (1 1 1 0 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Matnda shriftlarni almashtirishda yana bir qulay usullardan biri ichma-ich guruhlash tushunchasi.

Yozishni avval qalinroq yozuvdan	Yozishni {avval \bf qalinroq yozuvdan
boshlaymiz,endi vaqtincha kursivga	boshlaymiz,endi vaqtincha \it kursivga
o'tamiz va yana qalin shriftga o'tib	o'tamiz va yana {\bf qalin} shriftga
o'tib}	

ilk holatga qaytamiz.

ilk holatga qaytamiz.

Bu misoldagi \it buyrug'i kursivni bildiradi. Endi misolimizga izoh bersak:Birinchi ochiluvchi figurali qavs undan keying birinchi so'zni tashlab keyingi so'zdan boshlab \bf ni yozdik,aslida \bf dan oldin yozish ham mumkin edi. Har ikkala holda ham bir xil natija qaytariladi. bu yozgan \bf imiz to \it gacha ta'sir qiladi. \it esa { gacha va }dan keyin }gacha. Chunki } shriftlarni ichki guruhlashning oxiri. Oxirgi yopiluvchi figurali qavsdan keyin esa Latex sinf bilan e'lon qilingan standart shriftga qaytadi. Yana bir oddiyroq misol ko'ramiz:

Quyidagi \mathbf{P}^n da	Quyidagi ${ \Phi P}^n $ da
<i>n</i> nomalumlar soni	\$n\$ nomalumlar soni

Endi yana bir buyruq \mit buyrug'i haqida. Bu buyruq standart "matematik kursiv"ga o'tish uchun xizmat qiladi. Bu buyruqdan kamdan kam foydalanilsada ayrim masalalarda juda qo'l keladi. Masalan formulalarda ko'p ishlatiladigan grek harflarini qiya yozishda. Buni \mit buyrug'ini ichki guruhlash orqali yozish mumkin.

 $\Sigma_{a|}^{X} = C \qquad \qquad \text{(mit)Sigma}^X_a = C$

Endi LATEXning keyingi shrifti "Kalligrafik shrift"ga o'tamiz. Bu turdagi shriftni faqat matematik formulalarga qo'llash mumkin. Shuningdek bu shrift faqat lotin harflarini tushuna oladi. Bu shriftni ishlatish uchun \cal buyrug'idan foydalaniladi. Misol:

Urinma egri chiziqni X ta	Urinma egri chiziqni \$X\$ ta
bo'lakka bo'lsa	bo'lakka bo'lsa
demak: T_{v} yoki T_{v}	demak:~\${\cal T}_X\$ yoki \$T_X\$

Bu yerda ~ belgisi agar yozuvlar bir qatorga sigʻmasa keyingi qator boshidan formula boshlanmasligi uchun qoʻllaniladi. Agar shunday vaziyat boʻlib qolsa formuladan oldingi soʻzni keyingi qatorga tushiradi yoki soʻzni bir qismini oʻtkazadi. Yuqoridagi misolda "de-" yuqori qatorda qolib "mak: yoki " pastki qatorga tushadi.

Hujjatdagi barcha lotin harflari yoki matematik formulalar va grek harflariga birdaniga bir xil parametr berish mumkin.

Odatda matematik formulalar kursiv holda chiqarilishini bilamiz,agar barcha matematik formulalar va grek harflariga qalin shriftni bermoqchi bo'lsak

\boldmath buyrug'idan foydalanamiz.

Latexda formulaga matn kiritishni to'g'ridan to'g'ri amalga oshirib

bo'lmaydi.

barchaxlaruchun $\sqrt{x^2} = x$ \$\$ $\frac{x^2}{x^2} = x$ \$\$ $\frac{x^2}{x^2} = x$ \$\$

Bu yerda \rm matn shriftini kerakli ko'rinishga keltirsada, lekin so'zlar

orasidagi bo'sh joy(пробел) larni yo'qota olmaydi.

Formulada matn yozish

Matematik formulada matn yozish \mbox buyrug'i orqali amalga oshiriladi. Formula va matn orasida bo'sh joylar hosil qilish uchun esa \qquad dan foydalaniladi.

barcha x lar uchun $\sqrt{x^2} = x$ \mbox{barcha \$x\$ lar uchun}\qquad \sqrt{x^2} = x \$\$

Bu yerda \mbox buyrug'i matn kursivda chiqmasligi,so'zlar orasidagi bo'sh joylar va odatiy shriftda chiqishini ta'minlaydi. Shuningdek \mbox da shrift turini ham berish mumkin.

Qavslar o'lchamini o'zgartirish

Odatiy murakkab bo'lmagan formulalarda qavslar o'lchami avtomatik tarzda aniqlanadi. Lekin murakkab formulalarda maxsus buyruqlardan foydalanishga to'g'ri keladi. Masalan quyidagi

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

formulada.

Agar biz odatdagidek qavs yozmoqchi bo'lsak quyidagicha yozamiz.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \underset{e = \lim_{n \to \infty} \{n \in \{1\} \leq n\}}{\overset{\$\$}{=} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n}$$

Ko'rinib turibdiki bunday ko'rinish uncha qulay emas. Qavslar o'lchami bilan qavslar ichidagi formula o'lchami orasidagi farq juda katta. Bunday vaziyatlarda qavs ichidagi formula bilan moslab olish uchun ochiluvchi qavsda \left, yopiluvchi qavsda esa \right dan foydalaniladi. Yuqoridagi misolimizda bu buyruqlarni qo'llasak

$$e = \lim_{n \to \infty} \left(\frac{1}{1 + \frac{1}{n}} \right)^{n}$$

$$e = \lim_{n \to \infty} \left(\frac{1}{1 + \frac{1}{n}} \right)^{n}$$

$$ss$$

Bu yerda \frac buyrug'i kasrlarni yozish uchun ishlatiladi. Yuqoridagi misolimizdagi \left va \right buyruqlari orasiga yana bir necha \left va \right larni yozish mumkin. \left va \right buyruqlarini nafaqat (va) ko'rinishdagi qavslarda

balki , boshqa bir necha ko'rinishdagi belgilarda ham ishlatish mumkin. Quyida

\left va \right buyruqlari yordamida o'lchami avtomatik o'zgaradigan belgilar ro'yhati TEXdagi buyruq kodlari bilan keltirilgan:

Bu	yerdagi	\left\lang	gle	o'rniga	\left<	y	ozish
(] \	(] \lfloor \rceil \backslash) {] () \{ \rfloo: \langle \	r	[} /	[\} \lceil \rangle /	
mu	mkin. Xuddi	shunday					

\right\rangle o'rniga ham \right> yozish mumkin. Lekin boshqa vaziyatlarda < bilan \langle bir ma'noda kelmaydi. Ayrim misollarda bitta qavs qatnashadi. Ularni formulaga moslash uchun \left yoki \right buyruqlaridan keyin nuqta qo'yiladi, bunda nuqta natijaviy sahifada ko'rinmaydi. Ikki va undan ortiq nuqtalar esa natijaviy sahifaga chiqariladi. Masalan:

\$\$

```
M(f) = \left| \text{left. } \left| \text{int} \right| = a^b f(x), \qquad M(f) = \int_a^b f(x) \, dx \middle/ (b-a) \\ dx \right| \\
```

Bu misoldagi $\$, buyrug'i f(x) va dx orasida bo'sh joy tashlaydi. Avtomatik tarzda joy tashlanmaganligi sababli biz bu buyruqdan foydalanamiz. Yana bir misol:

$$\begin{cases} \\ \frac{1}{a^{b}} - \frac{1}{\sqrt{1+x}} \\ \frac{1}{a^{b}} \\ \frac{1}{2}(1+x)^{-3/2} = -\frac{1}{\sqrt{1+x}} \\ \frac{1}{\sqrt{1+x}} \\ \frac{1}{a^{b}} \\ \frac{1}{2}(1+x)^{-3/2} = -\frac{1}{\sqrt{1+x}} \\ \frac{1}{\sqrt{1+x}} \\ \frac{1}{a^{b}} \\ \frac{1}{2}(1+x)^{-3/2} = -\frac{1}{\sqrt{1+x}} \\ \frac{1}{\sqrt{1+x}} \\ \frac{1}{\sqrt{1+$$

Biz yuqorida ko'rib o'tgan misollarning barchasidan ko'rinib turibdiki, \left va \right buyruqlari faqat qavslarni formulaga moslab beradi. Ayrim misollarda bu buyruqlar yetarlicha qulayliklarga ega emasligi ko'rinadi. Masalan:

||x+1| - |x-1||

$\left| x+1 \right| |x-1| \right|$

Bu misolda barcha modul belgilari bir xil bo'lganligi sababli,ularning qaysi biri ichki modul va qaysi biri tashqi modul ekanligi bilinmaydi. Ajralib turishi uchun asosiy modul belgisini balandroq qiliib yozish kerak.

Yana bir \left va \right ga doir misol:

```
 \begin{cases} \sum_{k=1}^{n} x^{k} \\ \frac{1}{2} \end{cases}^{2} \\ \frac{1}{2} \\ \frac{1}{
```

Bu misolda yig'indi formulasidagi qavslar juda baland yozilgan. Va albatta bu ko'rinishga ta'sir qiladi. Mana shu muammolarni hal qilishda quyidagi Tex buyruqlaridan foydalanish mumkin. Chap qavslar uchun \bigl, \Bigl, \biggl,

 $\label{eq:Biggl} buyruqlaridan , o'ng qavslar uchun \bigr , \bigr , \biggr , \biggr buyruqlaridan foydalanish mumkin. Bu buyruqlarning yozilish ham xuddi \left va$

\right ga kabi. Masalan: ||x + 1| - |x - 1||||x + 1| - |x - 1||

Yig'indi haqidagi misolimiz esa quyidagi ko'rinishda bo'ladi.

\$\$

\Bigl(

 $\sum_{k=1}^n x^k$ Bigr)^2 $\left(\sum_{k=1}^{n} x^k\right)^2$

\$\$

Bu buyruqlardan foydalanganda qavslar shriftini avtomatik tarzda sinf va unga mos xususiyatlarga ko'ra tanlaydi. Shuningdek hujjat yozuvi o'lchamiga mos tarzda chiqaradi. Masalan:hujjat o'lchami 11pt yoki 12pt bo'lsa qavslarni ham shunga mos tarzda qalinroq shriftda chiqaradi. O'lcham shrifti va o'lchamini o'zgartirish uchun endi boshqa buyruqlardan foydalanish kerak.

Belgilarga doir chizishlar

Ba'zi hollarda belgilarning ustiga chizishga to'g'ri keladi. Masalan tegishlilik belgisida. Bu belgi ustiga "/"(slesh) belgisi chizib qo'yilsa tegishli emas ma'nosini beradi. Bu belgini \not buyrug'i orqali qo'yish mumkin. Masalan:

Ko'pchilik $\{x:x \mid x \in $	Ko'pchilik $\{x:x ot \ni x\}$ ni
\\ ma'nosini tushunishmaydi. \\	ma'nosini tushunishmaydi. Bu Bassel paradoksi
Bu Rassel paradoksi.	Da Habbel peradolisit

Agar teskari tegishli emaslik belgisini qo'ymoqchi bo'lsak $\lambda x:x \quad x \in x$ yozish yoki $\lambda x:x \quad x \in x$

\not\in va \notin bir xil ma'noda qo'llanilmaydi.

Satr usti belgilari

Formula yozish jarayonida bizga formulada ishlatilgan harflar yoki formulaning biror qismini ajratib ko'rsatish uchun shu qism ustida qandaydir o'zgartirishlar qilishga to'g'ri keladi. Bunday o'zgarishlar ajratilgan qism ustida chiziq chizish,qismni ustidan qandaydir chiziq chizishlar va hokazolar bo'lishi mumkin. Aytilganlardan birinchisi ya'ni satr ustida chiziq chizish uchun \overline buyrug'idan foydalaniladi:

```
Xalqaro qoidaga ko'ra$$Xalqaro qoidaga ko'ra\overline{a_na_{n-1}}\ldots a_1a_0}=\overline{a_na_{n-1}\dots a_1a_0} = 10^na_n + \dots + a_0.10^na_n+\cdots+a_0.yoziladi$$yoziladi
```

Satr usti belgilariga doir qo'shimcha buyruqlar a harfi misolida quyidagi jadvalda ko'rsatilgan.

\hat a	\hat{a}	\check a	ă
\tilde a	\tilde{a}	\acute a	á
\grave a	à	\dot a	à
\ddot a	ä	\breve a	ă
\bar a	\bar{a}	\vec a	\vec{a}

Bu buyruqlar orasida \bar buyrug'i \overline ga o'xshaydi. Agar i va j harflarini ustiga jadvaldagi belgilardan birortasini qo'ymoqchi bo'lsangiz u chiroyli ko'rinish kasb etmaydi. Buning o'rniga "boshqa zarur" belgilar jadvalimizdagi \imath va jmath belgilarini kiritish chiroyliroq natija beradi.
bunday ko'rinishdagi

\$\tilde i\$ chiroyli emas

\\ bunday ko'rinishdagi

\$\tilde\imath\$ esa

chiroyli

Hozirgi misolimizda faqat bitta harf ustiga belgi qo'yildi.

Aslida har bir satr va formulaga ham belgi qo'yish mumkin. Masalan $hat{a+b} yozsak$

 $a \stackrel{\circ}{+} b$

ko'rinish hosil bo'ladi.

Bunday ko'rinish chiroyli emas , shuning uchun \widehat yozsak belgi formula bo'yicha yoyiladi.

Quyidagi \$\widehat{f*g}= \hat f\cdot\hat g\$ teng kuchli

```
quyidagi\widehat{f\ast g}=\hat{f}\cdot\hat{g}teng kuchli
```

Bunday yo'l bilan juda chiroyli ko'rinishlar hosil qilish mumkin. Masalan

\widetilde buyrug'i bilan formula ustida to'lqin hosil qilish va shunga o'xshash boshqa ko'rinishlar.

Shuningdek satr va formulalar ustiga yo'nalish chiziqlarini ham qo'yish mumkin. Masalan

\overrightarrow buyrug'i satr ustiga o'ngga yo'nalgan chiziq chizadi.

Bu vektor \$\overrightarrow{AB}\$. Bu vektor \overrightarrow{AB} .

Agar \overrightarrow buyrug'i o'ngga yo'nalgan chiziq chizsa, demak

\overleftarrow chapga yo'nalgan chiziq chizadi. Boshqa shu kabi buyruqlar bu buyruqlar darajasida asosiy hisoblanmaganligi sabali ularga to'xtalmaymiz.

Matematik formulalar yozishda turli buyruqlar imkoniyatlari

Matematik formulalar yozishda Latex turli standart belgilardan tashqari formula yozishni qulaylashtirish uchun maxsus belgili buyruqlarni ham taqdim etadi. Biz odatda matn orasiga formula yozish uchun formula yozishdan oldin bitta dollar belgisi va formuladan so'ng yana bir dollar belgisini qo'yamiz. Aslida bu ishni \((formula boshida) va \) (formula oxirida) buyruqlar bilan ham qilish mumkin. Matematik formula kiritishning yana bir varianti bu formulani

bunday ko'rinishdagi \tilde{i} chiroyli emas bunday ko'rinishdagi \tilde{i} esa chiroyli \begin{math} va \end{math} orasida yozishdir. Shuningdek bu usul yordamida formula ichida so'zlarni ham yozish mumkin.

\$2\times2=4\$	2 imes 2=4
yoki	yoki 2 × 2 – 4
(2×14)	

Latex formula yozishda nafaqat juft dollar belgisi yoki yuqorida ko'rsatib o'tilgan buyruqlardan balki \[(formula boshida) va \](formula oxirida) buyruqlaridan ham foydalanadi. Shuningdek formulalar kiritishning boshqa yo'li ham mavjud. Bu formulani \begin{displaymath} va \end{displaymath} orasiga yozishdir. Bu usulni ikkitalik dollar belgisi o'rniga ishlatish mumkin.

Latex yaratuvchisi Lesli Lamportning aytishicha formulalarni yozishda yuqoridagi "ochiluvchi" va "yopiluvchi" buyruqlardan foydalanish , hujjatdagi xatolarni topish uchun juda qulay.

Oddiy hodisalar

Latexda formulani chiroyli ko'rinishda yozish uchun quyidagi oddiy hodisalarni bilish muhim.

-Formula yozishda agar bo'lish belgisi qatnashsa iloji boricha kasr ko'rinishda(kasr ko'rinishda yozish uchun maxsus \frac buyrug'idan foydalanish mumkin) yozishga harakat qiling.

-Agar matn quyi indeksida yozishga to'g'ri kelib qolsa ,yuqori indeks bilan teng parametrda yozishga harakat qiling.

-Agar yuqori yoki quyi indekslar mavjud bo'lsa ularni joylashtirishda { va } belgilaridan foydalaning.

Formulada yuqori quyi indekslarni joylashtirishda Latexning maxsus buyrug'i

\atop dan foydalanish mumkin.

Ilgari

```
$\Gamma^k_{ij}$
```

```
\ \ko'rinishda yozilgan bo'lsa\
```

```
hozir \\ ij\atop \\ k\right\} \
```

ko'rinishda yoziladi.

Biz bu yerda figurali qavslarni ichidagi formula o'lchamini bilan matn o'lchamiga moslashtirish uchun yana \left va \right dan foydalandik.

Ko'pincha yuqori va quyi indeks yozishda, yuqoridagi misol kabi \left(, \atop

Ilgari Γ^k_{ij} ko'rinishda yozilgan bo'lsa hozir $\left\{ {ij\atop k} \right\}$ ko'rinishda yoziladi.

va \right) buyruqlaridan foydalaniladi. Bunday vaziyatlarda uncha ko'p foydalanilmasada yana bir buyruq bilan tanishib o'tishni lozim topdik. Bu \choose buyrug'i. Quyidagi misolda shu buyruq ko'rsatilgan:

\$\$

 $\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad \{n \in k\} = \inf\{n!\}\{k!(n-k)!\}$

Bu yerda foydalanganimiz \choose buyrug'i ko'rib turganimizdek "ochiluvchi" va "yopiluvchi" qavslar bilan nomutanosiblik kelltirib chiqaradi. Ya'ni bu buyruq avval "ochiluvchi" va "yopiluvchi" qavslarni aniqlab so'ngra yuqori va quyi indekslarni uni ichiga yozadi, \atop da esa avval yuqori va quyi indekslar aniqlanib, so'ngra shularga mos qavslar qo'yib chiqiladi. Albatta barcha vaziyatlarda ham formula yozishda qavslar kerak bo'lmaydi. Bunday vaziyatlarda \choose buyrug'i qulayroq. Shuning uchun ham har ikkala buyruqning o'z o'rni bor.

Endi yana bir ajoyib hodisalardan biri bo'lgan formula yozilgan qator ustiga biror belgi va yoki shunga o'xshash yozuvlar yozish. Bunday ko'rinishlar Latexning \stackrel buyrug'i yordamida hosil qilinadi. Bu buyruq ikkita qismdan iborat: birinchisi qatorni yozish,ikkinchisi qator ustini yozish. Quyidagi misol yordamida bu buyruq haqida tasavvur hosil qilishingiz mumkin:

\$A\stackrel{f}{\longrightarrow}B\$

$$A \xrightarrow{f} B$$

Qator ostida gorizontal figurali qavs yozish uchun \underbrace buyrug'idan foydalaniladi. Albatta bu buyruqdan keyin qatorni yana davom ettirish mumkin.

\$\$
\underbrace{1+3+5+7+
\cdots+2n-1}_{\mbox{\$n\$ ta}}=n^2
$$n = n^2$$

Qator ustiga gorizontal figurali qavs yozish uchun \overbrace buyrug'idan foydalaniladi. Bir qatorning ham yuqori qismiga,ham ostki qismiga gorizontal figurali qavs yozish mumkin.

\$\$
\overbrace{\underbrace{ a+b+\cdots+z}}
$$\frac{36}{a+b+\dots+z}+1+\dots+10}$$

 $\frac{a+b+\dots+z}{26}$
\$\$

Matritsalar

Latex yordamida matritsa yozish uchun bizga array tanasi(\begin{} va \end{} bu Latexdagi tana) kerak bo'ladi. Matritsa tanasini tushunish uchun avval kichkina misol ko'rib o'tamiz. Demak boshladik:

Mana matritsa ham hosil qilindi. Endi undagi bizga notanish bo'lgan buyruq va belgilar bilan tanishamiz. Matritsalar qator va ustunlardan iborat bo'ladi. Yangi qatorga o'tish \\ buyrug'i orqali(oxirgi qatorga shart emas) amalga oshiriladi. Ustunlar orasidagi farqni aniqlash uchun & belgisidan foydalaniladi. Shuningdek bu belgi matritsa turli ustunlarida turli uzunlikdagi qiymatlar bo'lganda ustunlar orasida vujudga keladigan nomutanosibliklarni ham yo'qotadi. Matritsa yozishda array tanasi(\begin{array} ,array figurali qavs ichiga yoziladi) ochilgandan so'ng,matritsa tuzlishini aniqlash boshlanadi, ya'ni matritsa nechta ustundan iboratligi. Yuqoridagi misolimizda 4 ta ustun bo'lgani uchun biz

{cccc} yozdik. Figurali qavslar ichidagi 4 ta harf matritsa 4 ta ustundan iboratligini, c harfi esa ustunni markaz(inglizcha – center ning bosh harfi) bo'yicha tartiblanganligini bildiradi. Bu misolda biz 4 ta ustunning ham markaz bo'yicha tartiblanishini ko'rdik , aslida c harfidan boshqa yana l yoki r harflarini ham ishlatishimiz mumkin edi. Bunda l harfi(inglizcha – left ning bosh harfi) ustunni chap tomon bo'yicha tartiblaydi , r esa (inglizcha – right ning bosh harfi) ustunni o'ng tomon bo'yicha tartiblaydi. Biz yuqoridagi misolimizning uchinchi qatorida yana vertikal ko'pnuqtalar yozish uchun \vdots va diagonal nuqtalar yozish uchun

\ddots buyruqlaridan foyalandik. Bu buyruqlardan nafaqat matritsalar yozishda balki istalgan matematik formulalarni yozishda ham foydalanish mumkin.

Matritsa qanday yozilishini ko'rdik. Lekin bu matritsamiz shunchaki bir nechta qatorda ketma-ket turgan ro'yhatga o'xshaydi. Odatda matritsalar turli xil ko'rinishdagi qavslar bilan birga yoziladi. Agar biz ham o'z matritsamizda qavslardan foydalanmoqchi bo'lsak , \begin{array} dan oldin ochiluvchi qavsni(masalan "(" ni) \left(ko'rinishda , yopiluvchini esa \end{array} dan keyin

\right) ko'rinishda yozish mumkin. Yuqoridagi misol uchun bu quyidagicha bo'ladi:

\left(

 $\begin{array}{l} \label{eq:charge} \begin{array}{chrc} & a_{11} \& a_{12} & \& \dots \& a_{1n} \ a_{21} \& a_{21} \& a_{22} & \& \dots \& a_{2n} \ a_{21} \& a_{22} & \& \ a_{2n} \ a_{21} \& a_{22} & \& \ a_{2n} \ a_{21} \& a_{22} & \& \ a_{2n} \ a_{2n} \ a_{2n} \ a_{2n} & a_{2n} \ a_{2$

Agar matritsa faqat bir qatordan iborat bo'lsa uni matritsa yozish usuli bilan yozish shart emas, bunday hollarda oddiy qatorga yozuv yozgandek yozuvlarni bo'sh joy(probel) bilan ajratib yozish, matitsa yozish usuli bilan yozishdan ko'ra ancha qulayroq va osonroq.

Yana bir misol:Endi tenglamalar sistemasiga doir , array tanasi yordamida tuzilgan:

\left\{	
\begin{array}{rcl}	$\int x^2 + y^2 = 7$
$x^2+y^2\&=\&7 \setminus$	$\begin{cases} -r+y \\ r+y = 2 \end{cases}$
x+y & = &3. \\	(x+y) = 0

 $end{array} \$

Bu misolda birinchi ustun chap tomonga nisbatan tartiblangan , ikkinchi ustun esa markazga nisbatan tartiblangan va uchinchi ustun o'ng tomonga nisbatan tartiblangan. Matritsa tuzilishini aniqlash uchun yozilgan {rcl} dan bilish mumkin. Figurali qavsni yozish uchun foydalanilgan \left va \right buyruqlarida ochiluvchi figurali qavs \left\{ ko'rinishda yozilgan va bu qavsni butun formula bo'ylab qo'llaganda yopiluvchi qavs bo'lmasligi uchun yopiluvchi qavsda \right bilan birga nuqtadan foydalanilgan.

Agar matritsani alohida nomerlamoqchi bo'lsangiz , eqnarray tanasidan foydalanishingiz mumkin. Bunda xuddi formulaga nomer qo'yishda foydalaniladigan equation tanasi kabi formula nomeri avtomatik tarzda aniqlanadi. Agar matritsaga qo'yilgan nomerdan yo'llanma orqali hujjatning qaysidir qismida foydalanmoqchi bo'lsak , u holda \label orqali bu nomerga biror nom qo'yib , yo'llanamda chaqirishda \ref funksiyasiga nomer nomini ko'rsatish orqali foydalanish mumkin. Nomer joylashgan sahifaga yo'llanma berish uchun

\pageref funksiyasidan foydalanamiz. Masalan quyidagi

 $\mathbf{2 \times 3} = \mathbf{6} \tag{1}$

$$2 + 3 = 5$$
 (2)

4 betdagi 2 formula

misoldan bu formulalarning 4 betda yozilganligini bilib olishimiz mumkin. Bunday ko'rinishga erishish uchun quyidagi kodni yozdik:

 $\equal equal to the second state of the seco$

 $end{eqnarray}$

\pageref{nom1} betdagi

 $ref{nom1}$ formula

Bunda ya'ni eqnarray tanasidan foydalanganda \$\$ dan foydalanish kerak emas. Shuningdek eqnarray tanasi yordamida figurali qavs ham yozib bo'lmaydi.

Agar siz faqat bir necha tenglamalarga nomer qo'ymoqchi bo'lsangiz,

\nonumber funksiyasidan(\\ bilan birga) foydalanishingiz mumkin.

\begin{eqnarray}

$$\frac{\left(-\frac{1}{10} + \frac{1}{10}\right)^{n}}{e^{-x^{2}}dx} = \sqrt{\pi}$$

$$\frac{e^{-x^{2}}dx}{\sqrt{576}} = 24$$

$$\frac{1}{10} + \frac{1}{10} + \frac{1}{1$$

Agar tenglamalarning birortasiga ham nomer qo'ymoqchi bo'lmasangiz eqnarray tanasi o'rniga eqnarray* (yulduzchali)dan foydalanishingiz mumkin. Shuni ta'kidlab o'tish kerakki array tanasi nafaqat matematik formulalarni balki fornulalarning ichida yoziladigan matnlarda ham qo'l keladi , eqnarray tanasi esa faqat matematik formulalar yozishda qo'llaniladi.

Endi turli xil bog'lanishga ega bo'lgan matematik diagrammani ko'ramiz:

Bu diagrammadan 3 ta qator va 9 ta ustun(ustunlar yo'nalish belgilari , harflar va nollardan iborat)lardan iborat. Qanday qilib gorizontal yo'nalish chizig'i va uni ustiga harf yozishni(\stackrel funksiyasi orqali) ko'rib o'tgandik. Yuqoridagi misolda biz nomalum qism endi faqat vertikal chiziq va unga tegishli harfni yozish. Buni bir misol yordamida ko'rib o'tamiz.

Yuqoridagi misolda \downarrow funksiyasi yordamida vertikal pastga yo'nalgan strelka hosil qildik , undan keyingi q harfi esa shunchakiodddiy matn kabi kiritiladi. array tanasiga c(center) yozganimiz tufayli strelka va harf birgalikda qaralib markazga nisbatan olingan. Agar harfni yuqoridagi harf bilan bir xil joylashtirmoqchi bo'lsak , c o'rniga r yozish kifoya va agar strelkani yuqoridagi harf bilan tagma-tag joylashtirmoqchi bo'lsak c o'rniga l yozish kifoya. Ba'zi hollarda butun ustunni emas balki faqat bitta satrdagi harfni o'ng tomonga tekislash kerak bo'ladi. Bunday hollarda \lefteqn funksiyasidan foydalanish mumkin. Yuqoridagi misolda q harfini yozmoqchi bo'lsak \lefteqn{q} ko'rinishda bo'ladi. Endi yuqoridagi diagrammamizga tegishli tushunarsiz funksiyalar qolmadi. demak yuqoridagi misol kodi:

\$\$

```
\begin{array}{ccccccc} 0&\longrightarrow & E' &
```

```
\t \in \ E \& E \&
```

```
\t = \{g\} \{\ g\} \{\ g\} \{\ g\} \}
```

```
\&\&\downarrow\end{p}\&\&\downarrow
```

```
\t f^{f}_{f} \in F \&
```

```
\t = \{g\} \{\ g\} \{\ g\} \{\ g\} \}
```

```
end{array}
```

\$\$

Bu misolda ishlatilgan boshqa buyruqlar bilan biz oldingi qismlarda tanishib o'tgan edik. Ko'rinib turibdiki array tanasi matritsalar yozish uchun juda ajoyib imkoniyatlarga ega.

Formula yozish jarayonida agar birinchi qatorda yozayotgan formulangiz juda uzun bo'lgan taqdirda , keyingi qatorga o'tganda formula davomini o'ng tomondan

yozish formulaga chiroyli ko'rinish bermaydi. Shu sababli bunday vaziyatlarda keyingi qator formulasini chap yoki markazdan yozish ma'qulroq. Buni quyidagi formulada ko'ramiz:

$$\int_0^x e^{-t^2} dt = x - \frac{x^3}{1! \cdot 3} + \frac{x^5}{2! \cdot 5} - \frac{x^7}{3! \cdot 7} + \dots + (-1)^n \frac{x^{2n+1}}{n! \cdot (2n+1)} + \dots$$

Latexda esa quyidagicha:

\begin{eqnarray*}

 $+ \frac{x^5}{2!} \frac{x^7}{3!} \frac{3!}{cdot7} + \frac{x^7}{3!} \frac{3!}{cdot7} + \frac{x^7}{2n+1} \frac{x^7}{2n+1} + \frac$

\end{eqnarray*}

Bu yerda biz \lefteqn buyrug'idan foydalandik. Bu buyruq haqida biz matematik diagramma bo'limida bilib olgan edik.

Bo'sh joylarni kiritish

Hujjat yozish jarayonida matematik formula orasiga matn yozishga yoki matn orasiga matematik formula yozishga to'g'ri keladi. Bunday vaziyatda formula va matnni orasiga bo'sh joylarni joylashtirish juda noqulay. Bunday vaziyatlarda quyidagi asosiy buyruqlardan foydalaniladi:

	uzunligi 1em ga teng(1em - oddiy probel-])
\qquad	uzunligi 2emga teng()	
	qisqa bo'sh joy o'rtacha bo'sh joy	
\:	uzunroq bo'sh joy	
\;	odatiy bo'sh joy	
\!		

Quyidagi misolda bu buyruqlarni ishlatish ko'rsatilgan:

Misolni quyidagi \\	Misolni quyidagi
$\inf f(x),dx $ orqali	$\int f(x) dx$ orqali
yoki~\$\int\!\!\int fdxdy\$, orqali \\	yoki JJ $f axay$, orqali yechamiz va natija $\sqrt{3} x$ bo'ladi.

yechamiz va natija~ $\sqrt{3}\,x$

bo'ladi.

Matnda formulalarni yozuvdan ajratish uchun \quad buyrug'i qulayroq.

Formulada ishlatiladigan belgilar o'lchami

Formulalar yozishda odatda formula darajasi, indeksi,qavslar va h. k lar shriftini asosiy formula shriftidan ajratib yoziladi. Tex bunday hollarda avtomatik tarzda juda kichik o'lcham oladi. Agar siz formula yozish jarayonida darajaga matn kiritmoqchi bo'lsangiz \textrm buyrug'idan foydalanishingiz mumkin. Bunda matn yozish rejimiga o'tib yana qaytib chiqish sodir bo'ladi. Bu albatta juda noqulay. Bunday vaziyatlarda \mathrm dan foydalanish qulayroq. Bu buyruq qisqa yozuvlarda qo'l keladi. Chunki \mathrm buyrug'i bo'sh joy(probel)larni o'qimaydi. Bunday noqulayliklarni bartaraf etishda bizga stillar yordam beradi. Matematik shriftlarni o'rnatishda 4 ta buyruqdan foydalanish mumkin.

displaystyle (stilni moslash) textstyle (matn stili)

scriptstyle (indeksda foydalanish uchun)

scriptscriptstyle (indeksning indeksida foydalanish uchun)

Quyidagi ko'rinishlarda bo'ladi. \displaystyle (123), \textstyle (123),

\scriptstyle (123) \scriptscriptstyle (123).

Stillar yordamida hosil qilingan formula:

\$\$

 $\frac{7}{25} =$

 $frac{1}{\delta usplaystyle 3+frac{1}}$

 $\left(1 \right) \left(1 \right) \left(1 \right) \right)$

 $1+(frac{1}{3})$ \$\$

Endi xuddi shu formulani stil ishlatmagan holda ko'ramiz:

\$\$

\frac{7}{25}= \frac{1}{ 3+\frac{1} { 1+\frac{1}{ 1+\frac{1} { 3}}} \$\$

$$\frac{7}{25} = \frac{1}{3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3}}}}$$

$$rac{7}{25} = rac{1}{3 + rac{1}{1 + rac{1}{1 + rac{1}{1 + rac{1}{3}}}}}$$

Matematik shriftlarni ishlatish bo'yicha yana bir misol:

$$\operatorname{corr}(X,Y) = rac{\sum\limits_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\left[\sum\limits_{i=1}^n (x_i - \overline{x})^2 \sum\limits_{i=1}^n (y_i - \overline{y})^2
ight]^{1/2}}$$

\begin{displaymath}

\mathop{\mathrm{corr}}(X,Y)=
\frac{\displaystyle
\sum_{i=1}^n(x_i-\overline x) (y_i-\overline y)}
{\displaystyle\biggl[
\sum_{i=1}^n(x_i-\overline x)^2
\sum_{i=1}^n(y_i-\overline y)^2
\biggr]^{1/2}}
\end{displaymath}

Bu yerda yozilgan displaymath tanasi murakkab va ko'p qatorli formulalar yozishda ishlatiladi. Shuningdek bu yerda ishlatilgan kasr maxrajidagi ochiluvchi to'rtburchak qavs uchun ishlatilgan \biggl[va yopiluvchi qavs uchun \biggr] o'rniga Texning standart buyruqlari bo'lgan \left[va \right] dan ham foydalanish mumkin. Bu kodda ishlatilgan \mathop buyrug'i formula orasida matn yozish uchun ishlatiladi. \mathop va \mathrm buyruqlari haqida keyingi qismlarda ma'lumot beriladi.

Matematik belgilarning ko'rinmasligi va boshqa xususiyatlari

Yuqorida matematik yozuvlar o'lchamini o'zgartirishni ko'rib o'tdik. Ayrim hollarda bir formuladagi turli yozuvlarga turlicha o'lcham berish zarur bo'lib qoladi. Tasavvurga ega bo'lish uchun shuni aytish kerakki Tex da bu hodisani ortiqcha buyruqlarsiz ham qilish mumkin. Masalan \sqrt buyrug'i ildiz ostidagi yozuvga qarab ildiz belgisi o'lchamini avtomatik o'zgartiradi.

Bu formuladagi \sim (sqrt{a}+	Bu formuladagi $\sqrt{a} + \sqrt{d}$
$\left(d\right) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2 ta belgi o'lchami har xil
o'lchami har xil	

Bu misolda a va d harflar balandligi har xil bo'lganligi tufayli , shu harflarga mos ildiz balandliklari aniqlandi. Agar bir necha belgi kiritilsa ularning eng

balandiga mos ildiz belgisi yoziladi. Formuladagi yozuvlarni bir xil o'lchamda yozish uchun esa \mathstruct buyrug'idan foydalaniladi.

Bu formuladagi \\Bu formuladagi $s_qt{mathstrut a}$ $\sqrt{a} + \sqrt{d}$ $+sqrt{mathstrut d}$ \\2 ta belgi bir xil o'lchamda.

2 ta belgi bir xil o'lchamda.

Biz bu misol orqali matematik belgilar balandligini aniqladik. Texda formulani ko'rsatmaslik ham mumkin. Bu ish hujjatni qog'ozga chiqarishda kerak bo'lishi mumkin. Formula yoziladigan joy taxminiy formula uzunligi aniqlanib bo'sh joy ko'rinishida tashlab ketilsa , keyinchalik qo'lda kiritilishi mumkin. Ko'rinmas belgilarni \phantom buyrug'i yordamida yaratish mumkin. Bu buyruq ichiga formula balandligini \mathstrut buyrug'i yordamida yozish , yoki formulani o'zini yozib kerakli parametrlar o'rnatish ham mumkin. Masalan:

Ildiz belgisi~

 $\operatorname{sqrt}(phantom{x})$

Ildiz belgisi √ ko'rinishda yoziladi

ko'rinishda yoziladi

Shuningdek vertikal ko'rinmas joylar ham yozish mumkin. Bunda bizga \vphantom buyrug'i yordam beradi. Bunda \mathstrut o'rniga \vphantom{(} yozish mumkin. Gozrizontal bo'sh joy yaratish uchun ham maxsus \hphantom buyrug'idan foydalanish mumkin.

Bu yerdagi~	Bu yerdagi	bo'sh joy
$\lambda hphantom{\sqrt{sin^2}alpha}$	qo'lda formula voz	ish uchun qo'vilgan.
bo'sh joy \\	I	1.0

qo'lda formula yozish uchun qo'yilgan.

Formulada turli intervallardan foydalanish

Formula yozish jarayonida qaysidir qismni ajratib ko'rsatish uchun turli qavslar,nuqtalardan va h. k lardan foydalanish mumkin. Masalan nuqtalar uchun Texda \colon va \ldotp buyruqlarini ishlatish mumkin. Bunda \colon buyrug'i ikki nuqta , \ldotp esa bir nuqta qo'yadi. Texning qism(so'z,ibora,formula va h. k)ni ajratish uchun mo'ljallangan buyruqlari:

,, ;; :\colon .\ldotp · \cdotp Shuningdek qismlarni bo'sh joylar bilan ham ajratish mumkin. Bo'sh joylar

haqida biz yuqoridagi bo'limda tanishib o'tdik. Albatta ulardan foydalanish juda qulay. Lekin belgilarni ajratishning boshqa usullarini ham bilib qo'ysak yomon bo'lmaydi. Bu usulga binar hisoblash deyiladi. Misol:

Quyidagi \$2+3\$ va \$2{+}3\$	
lardan\\	Quyidagi $2 + 3$ va $2 + 3$ lardan
ikkinchisi	ikkinchisi binar hisoblash yordamida
binar	hosil qilingan.
hisoblash yordamida\\	
hosil qilingan.	

Bu ko'rinish (qavs ichidagi belgi va qavs tashqarisidagi belgilar o'lchami bir xilligi va ular orasida bo'sh joy yo'qligi) chiroyli ko'rinishda emas. Agar qavs ichida matematik formula va shunga o'xshash amallar bo'lsa bu usul yaxshi natija bermaydi. Bunday vaziyatlarda Texning maxsus buyruqlaridan foydalanish qulayroq. Bu buyruqlar bizga ayitb o'tilgan muammolarni bartaraf etishda yordam beradi. Bu buyruqlar quyidagilar: \mathbin, \mathrel va \mathop.

Agar~\$E\hat{\otimes}F\$	
formulani\\	Agar E⊗F formulani Bo'sh joy bilan yozmoqchi bo'lsak,
Bo'sh joy bilan yozmoqchi bo'lsak,\\	u quyidagicha bo'ladi $E\otimes F$.
u quyidagicha bo'ladi~\$E\otimes F\$.	

Bu yerda \hat{\otimes} buyrug'i bo'sh joylarni o'qimaganligi sababli, \otimes buyrug'idan foydalandik. Shu misolni Yuqoridagi buyruqlar bilan birga ishlatib natijani ko'ramiz:

Endi~	
$E \in \{ \\ f \in \} F^{ (n) } $	Endi $E \otimes F$ formulani Bo'sh joy bilan yozish shart emas
formulani	chunki $E \otimes F$ dagi bo'sh joylar
Bo'sh joy bilan yozish shart emas,\\	endi birinchi formulada ham bor.
chunki~ $E \in F$ dagi bo'sh joylar	
endi birinchi formulada ham bor.	

Endi \mathop buyrug'ini ko'rib o'tamiz. Bu funksiya matematik formulada yozuvlarni moslashtirish uchun ishlatiladi. Bunda matn yozish uchun \rm funksiyasidan foydalanish mumkin. Masalan ni yozishni ko'rsak. Bu formula bunday ko'rinishda chiqishi uchun \mathcal{c} ni yozishni ko'rsak. Bu formula bunday ko'rinishda chiqishi uchun \mathcal{c} uchun \mathcal{c} mathop{\rm Ext}\nolimits^1(E,F)\$ lar yoziladi. Bu yerda \nolimits buyrug'i orqali formula darajasi(yuqori indeks) kiritiladi. Yana bir misol:

Quyidagi

 $\sin x va$

 $\operatorname{Constant}^{\mathrm{Quyidagi}} \operatorname{Sin} x$ va $\operatorname{Sin} x$ lar teng kuchli. {\rm sin}x\$ lar teng

kuchli.

Endi murakkab tuzilishga ega bo'lgan quyidagi yi'gindini hosil qilamiz.

$$\sum_{x\in\Gamma}' f(x).$$

Odatiy usulda quyidagicha yoziladi , lekin biz kutgan natijaga erishilmaydi ya'ni

\$\$
$$\sum_{x \in \Gamma} f(x)$$
.
\$\$

Endi boshqa usulni sinab ko'ramiz ' belgiga teng kuchli buyruq bilan almashtiramiz. Balki shunday usul bilan biz kutgan natijaga erishishimiz mumkindir.

\$\$
\sum^\prime_{x\in\Gamma}f(x).
$$\sum_{x\in\Gamma}' f(x).$$

Ko'rib turganingizdek kutilgan natija bo'lmadi. Endi yuqorida aytib o'tgan buyruqlarimizdan foydalanib ko'ramiz. Balki bu buyruqlar bizga yordam berar.

\$\$
\mathop{{\sum}'}_{x\in\Gamma}
$$f(x)$$
.
\$\$

Mana bu biz kutgan natija. Agar tahlil qilib ko'rsangiz haqiqatdan ham bu usul to'g'riligiga amin bo'lasiz. Endi yana bir buyruq \mathrel buyrug'i haqida. Ayrim hollarda matematik hodisalarni tushuntirish uchun bir vaqtning o'zida bir necha belgidan foydalanishga to'g'ri keladi. Masalan belgisi. Buni qanday yozish mumkin. Bunday vaziyatlarda biz yuqorida ta'kidlab o'tgan \mathrel buyrug'idan foydalanih mumkin. Bu buyruqning ishlashini ham xuddi binar hisoblashlar kabi tushunish mumkin , ya'ni bo'sh joylar masalasi muammo emas va ko'rinishi quyidagicha \mathrel{...}. Yuqorida ishlatgan binar belgimizni chiqarish uchun quyidagilarni yozish kerak.

 $\t \in \{\subset\}\$

Endi formulani shu belgi ishtirokida yozamiz.

\$ E\mathrel{\mathop{\subset}

 $E \underset{\neq}{\subset} F$

 $\limis_{ne} F$

Bu yerda \limits buyrug'i quyi indeksni belgilaydi.

Bunda va $\subseteq \neq$ ko'rinishlarda chiqarish mumkin. Agar $\subseteq \neq$ ko'rinishda chiqarish kerak bo'lsa

 $\label{eq:limits} $$ \ e^rniga \ orniga \ orni$

 $\left\{ \sum_{n\in \mathbb{N}^{ne}} F \right\}$

 $E\subset_{
eq} F$

kabi bo'ladi.

Foydalanilgan adabiyotlar ro'yhati

1. С. М. Львовский "LATEX: подробное описание"

2. С. М. Львовский "Набор и вёрстка в системе LATEX" 2003

3. Игорь Котельников, Платон Чеботаев "ЛАТЕХ по русски 2е" 2004. Новосибирск

4. Владимир Сюткин "Включение рисунков в Latex 2e" 2001. Москва

- 5. Владимир Сюткин "Цвет в Latex 2e" 2001. Москва
- 6. <u>www. miktex. org</u>
- 7. <u>www. intuit. ru</u>

8. <u>www.latex-students.com</u>

9. <u>http://tex. stackexchange. com/questions/21726/how-does-latex-find-package-files</u>

10. http://biotex.ibss.org.ua/links.html?catid=77

11. http://www.bakoma-tex.com/

MUSTAQIL ISH MAVZULARI: (MathCad, Maple, Matlab dasturlari asosida bajaring)

- 1. Chiziqsiz tenglamalar sistemasini yechishning iteratsiya usuli (algoritmi tavsifi, amallar miqdorini baholash, dastur va hisoblash eksperimentlari natijalari)
- 2. Matritsaning xos sonlari va xos vektorlari, ularni sonli hisoblash.
- 3. Matritsaning xos sonlari va xos vektorlarini topishning Krilov usuli
- 4. Matritsaning xos sonlari va xos vektorlarini topishning Danilevskiy usuli
- 5. Funksiyani interpolyatsiyalash. Interpolyatsiya masalasining qoʻyilishi.
- 6. Interpolyatsiya masalasining qoʻyilishi. Lagranj interpolyatsion formulasi, uning xatoligini baholash.
- 7. Lagranj interpolyatsion koʻphadining tadbiqlari
- 8. Interpolyatsiya masalasining qoʻyilishi. Nyuton interpolyatsion formulasi, uning xatoligini baholash.
- 9. Nyuton interpolyatsion koʻphadning tadbiqlari
- 10.Splayn-funksiyalar va ularning xossalari.
- 11.Ermit interpolyatsion kubik splayn funksiyasi.
- 12. Griffinning interpolyatsion kubik splayni.
- 13. Aniq integralni taqribiy hisoblash usullari, ularning qiyosiy tahlili (shu jumladan dasturlar va hisoblash eksperimentlari natijalari)
- 14.Oddiy differensial tenglamalarni yechishning Eyler usuli. Oshkor va oshkormas sxemalarning qiyosiy tahlili (shu jumladan dasturlar va hisoblash eksperimentlari natijalari).
- 15.Oddiy differensial tenglamalarni yechishning Eyler usuli. Oshkor va oshkormas sxemalarning qiyosiy tahlili (shu jumladan dasturlar va hisoblash eksperimentlari natijalari).
- 16.Oddiy differensial tenglamalarni yechishning ketma-ket yaqinlashish usuli (shu jumladan, hisoblash eksperimentlari natijalari).
- 17.Oddiy differensial tenglamalarni yechishning Runge-Kutta usullari, ularning qiyosiy tahlili (shu jumladan dasturlar va hisoblash eksperimentlari natijalari). 6. Oddiy differensial tenglamalarni yechishning Adams interpolyatsion va zkstrapolyatsion usullari, ularning qiyosiy tahlili (shu jumladan dasturlar va hisoblash eksperimentlari natijalari).
- 18.Chekli ayirmali tenglamalar sistemasini uch diagonalli sistemaga keltirish va progonka usuli.
- 19. Chegaraviy masalalarni yechishda variatsion va proyeksion usullar
- 20.Oddiy differensial tenglama uchun qoʻyilgan chegaraviy masalani kollokatsiya usuli bilan taqribiy yechish.
- 21.Oddiy differensial tenglama uchun qoʻyilgan chegaraviy masalani Galyorkin usuli bilan taqribiy yechish.
- 22.Oddiy differensial tenglama uchun qoʻyilgan chegaraviy masalani Rits usuli bilan taqribiy yechish.
- 23.Oddiy differensial tenglama uchun qoʻyilgan chegaraviy masalani eng kichik kvadratlar usuli bilan taqribiy yechish.
- 24. Matematik fizika masalalarini sonli yechish. Chekli-ayirmali tenglamalar.
- 25.Issiqlik oʻtkazuvchanlik masalalarini chekli ayirmali sxemalar yordamida yechish.

- 26. Tebranish masalalarini chekli ayirmali sxemalar yordamida yechish.
- 27. Issiqlik oʻtkazuvchanlik masalalarini chekli ayirmali sxemalar yordamida yechish.
- 28.Laplas tenglamasi uchun chegaraviy masalalarni chekli ayirmali sxemalar yordamida yechish.
- 29.Puasson tenglamasi uchun chegaraviy masalalarni chekli ayirmali sxemalar yordamida yechish.
- 30.Chekli ayirmali sxemalarda turgʻunlik va yaqinlashish orasidagi bogʻlanish.
- 31.Matematik fizika masalalarini variatsion usul bilan yechish.
- 32. Matematik fizika masalalarini variatsion-ayirmali usul bilan yechish.
- 33.Laplas tenglamasi uchun chegaraviy masalalarni chekli ayirmali sxemalar yordamida yechishda Libman jarayoni.
- 34.Matematik fizika masalalarini sonli yechishda variatsion usullar.
- 35.Integral (Fredgolm) tenglamani ketma-ket yaqinlashish usuli bilan sonli yechish.
- 36.Integral (Fredgolm) tenglamani yadroni approksimatsiyalash usuli bilan sonli yechish.
- 37.Integral (Fredgolm) tenglamani momentlar usuli bilan sonli yechish.37.Integral (Fredgolm) tenglamani kvadratura usuli bilan sonli yechish.4. Korrekt boʻlmagan integral tenglamalarni sonli yechish usullari.
- 38.Integral tenglamalarni chekli yigʻindilar usuli bilan sonli yechish.
- 39.Integral tenglamalarni ajraluvchan yadro usuli bilan sonli yechish.
- 40. Yuqori tartibli chekli ayirmali sxemalar qurish
- 41.Hisoblash natijalarini vizuallashtirish
- 42.Differensial tenglamalarni Matlab matematik tizimi yordamida yechish.
- 43. Chiziqli algebraik tenglamalar sistemasini Matlab dasturi yordamida yechish.
- 44. Chiziqli algebraik tenglamalar sistemasini Excel dasturi yordamida yechish.
- 45.Excel dasturining hisoblash usullarini amalga oshirish imkoniyatlari.
- 46.Matlab matematik tizimining hisoblash usullarini amalga oshirish
- 47.imkoniyatlari.
- 48.Giperbolik tenglamalar sistema uchun chekli ayirmali sxemaning turgʻunligi
- 49.Giperbolik tenglamani yechish uchun chekli elementlar usuli
- 50.Kvadratura formulalari va ularning tadbiqlari
- 51.Interpolyatsion kvadratura formulalari
- 52.Gauss kvadratura formulasi.
- 53. Chebishev kvadratura formulasi.
- 54. Hisoblash algoritmlarini parallellashtirish
- 55.Masalalarni yechishni paralellashtirishda MPI texnologiyasini
- 56.Hisoblash natijalarini vizuallashtirish
- 57.Uzilishga ega boʻlgan yechimlarni hisoblash usullari.
- 58."Toʻppa-toʻgʻri hisoblaydigan" chekli ayirmali sxemalar
- 59.Gaz dinamikasi masalalari uchun "toʻppa-toʻgʻri hisoblaydigan" chekli ayirmali sxemalar
- 60.Ikki fazali filtratsiya masalalari uchun "toʻppa-toʻgʻri hisoblaydigan" chekli ayirmali sxemalar
- 61.Uch fazali filtratsiya masalalari uchun "toʻppa-toʻgʻri hisoblaydigan" chekli ayirmali sxemalar

ГЛОССАРИЙ

Термин	Ўзбек тилидаги шархи	Инглиз тилидаги шархи
Standard	fayllar ustida boshqarish, tahrirlash, ob'yektlarni qo`yish, ma'lumotnomadan foydalanish kabi ko`plab amallarni bajaradi	Performs many tasks such as file management, editing, inserting objects, using reference
Resources	Mathcad resurslarini tez chaqirish (namunalar, darsliklar, elektron kitoblar va h. k)	Quick call to Mathcad resources (samples, textbooks, e-books, etc.)
Controls	hujjatlarga foydalanuvchi interfeysidagi standart boshqarish elementlarini qo`yish (tekshirish bayroqlari, kiritish maydonlari)	insert standard controls in the user interface into documents (check flags, input fields)
Calculator	asosiy matematik amallari	basic mathematical operations
Evaluation	boshqarish va hisoblash operatorlari	management and computing operators
Boolean	mantiqiy operatorlar	logical operators
Symbolic	simvolli operatorlar	symbolic operators
Simvolli yechish	Algebraik tenglamalarni analitik yechish	Analytical solution of algebraic equations
simplify(expr)	soddalashtirilgan exrr ifodani yoki Maple qoidalari doirasida soddalashtirish imkoniyati bo'lmasa uning o'zini qaytaradi	returns a simplified exrr expression or itself if it is not possible to simplify it under Maple rules

solve	Tenglama va tengsizliklarni echish	Solving equations and inequalities
exact	analitik ko'rinish	analytical view
explicit	yaqqol ko'rinish	clear view
integral transform	Laplas, Furg'e va boshqa integral o'zgartirishlar	Laplace, Furge and other integral transformations
Surface Plot	uch o'chovli grafiklarni qurish	build three-dimensional graphs
axes	koordinatalar turi	coordinate type
animate3d	uch o'lchamli grafiklarning animatsiyasi	animation of three- dimensional graphics
contourplot	konturli grafikani qurish	construct contour graphics
MATrix LABoratory	matritsali laboratoriya	matrix laboratory
GUI	Foydalanuvchining grafik interfeysini elementlarini qayta ishlash oynasi	User graphical interface elements processing window
Import Data	Fayllar ma'lumotlarini import oynasi	File data import window

АДАБИЁТЛАРРЎЙХАТИ

I. Ўзбекистон Республикаси Президентининг асарлари

1. Мирзиёев Ш.М. Нияти улуғ халқнинг иши ҳам улуғ, ҳаёти ёруғ ва келажаги фаровон бўлади. 3-ЖИЛД / Ш.М. Мирзиёев. – Т.: "Ўзбекистон", 2019. – 592 б.

2. Мирзиёев Ш.М. Халқимизнинг розилиги бизнинг фаолиятимизга берилган энг олий баҳодир. 2-ЖИЛД / Ш.М. Мирзиёев. – Т.: "Ўзбекистон", 2019. – 400 б.

3. Мирзиёев Ш.М. Миллий тараққиёт йўлимизни қатъият билан давом эттириб, янги босқичга кўтарамиз. 1-ЖИЛД / Ш.М. Мирзиёев. – Т.: "Ўзбекистон", 2018. – 592 б.

4. Мирзиёев Ш.М. Буюк келажагимизни мард ва олижаноб ҳалқимиз билан бирга қурамиз. – Т.: "Ўзбекистон". 2017. – 488 б.

5. Мирзиёев Ш.М. Миллий тараққиёт йўлимизни қатъият билан давом эттириб, янги босқичга кўтарамиз – Т.: "Ўзбекистон". 2017. – 592 б.

II. Норматив-хукукий хужжатлар

6. Ўзбекистон Республикасининг Конституцияси. – Т.: Ўзбекистон, 2018.

7. Ўзбекистон Республикасининг "Таълим тўғрисида" ги Қонуни.

8. Ўзбекистон Республикаси Президентининг 2015 йил 12 июнь "Олий таълим муасасаларининг раҳбар ва педагог кадрларини қайта тайёрлаш ва малакасини ошириш тизимини янада такомиллаштириш чора-тадбирлари тўғрисида"ги ПФ-4732-сонли Фармони.

9. Ўзбекистон Республикаси Президентининг 2017 йил 7 февраль "Ўзбекистон Республикасини янада ривожлантириш бўйича Ҳаракатлар стратегияси тўғрисида"ги 4947-сонли Фармони.

10. Ўзбекистон Республикаси Президентининг 2017 йил 20 апрель "Олий таълим тизимини янада ривожлантириш чора-тадбирлари тўғрисида"ги ПҚ-2909-сонли Қарори.

11. Ўзбекистон Республикаси Президентининг 2018 йил 21 сентябрь "2019-2021 йилларда Ўзбекистон Республикасини инновацион ривожлантириш стратегиясини тасдиқлаш тўғрисида"ги ПФ-5544-сонли Фармони.

12. Ўзбекистон Республикаси Президентининг 2019 йил 27 май "Ўзбекистон Республикасида коррупцияга қарши курашиш тизимини янада такомиллаштириш чора-тадбирлари тўғрисида" ги ПФ-5729-сон Фармони. 13. Ўзбекистон Республикаси Президентининг 2019 йил 17 июнь "2019-2023 йилларда Мирзо Улуғбек номидаги Ўзбекистон Миллий университетида талаб юқори бўлган малакали кадрлар тайёрлаш тизимини тубдан такомиллаштириш ва илмий салоҳиятини ривожлантири чоратадбирлари тўғрисида"ги ПҚ-4358-сонли Қарори.

14. Ўзбекистон Республикаси Президентининг 2019 йил 27 август "Олий таълим муассасалари раҳбар ва педагог кадрларининг узлуксиз малакасини ошириш тизимини жорий этиш тўғрисида"ги ПФ-5789-сонли Фармони.

15. Ўзбекистон Республикаси Президентининг 2019 йил 8 октябрь "Ўзбекистон Республикаси олий таълим тизимини 2030 йилгача ривожлантириш концепциясини тасдиклаш тўғрисида"ги ПФ-5847-сонли Фармони.

Ш. Махсус адабиётлар

16. Andrea Prosperetti, Advanced Mathematics for Applications, Cambridge University Press, 2011.

17. Bauer, H. Measure and Integration Theory, Berlin: de Gruyter, ISBN-13: 978-3110167191, 2001.

18. Bear, H.S. A Primer of Lebesgue Integration, San Diego: Academic Press, 2nd Edition, 2001.

19. Bobenko A.I. (Ed.) Advances in Discrete Differential Geometry//Springer, 2016. — 439 p. — (Mathematics). — ISBN: 3662504464

20. Bogachev, V. I. Measure theory, Berlin: Springer, 2006.

21. David Spencer "Gateway", Students book, Macmillan 2012.

22. English for Specific Purposes. All Oxford editions. 2010. 204.

23. Evan M. Glazer, John W. McConnell Real-Life Math: Everyday Use of Mathematical Concepts//2013, ISBN-13: 978-0313319983

24. Georgii H.O. Gibbs measures and phase transitions. Berlin:de Gruyter, 657 p., 2011.

25. H.Q. Mitchell "Traveller" B1, B2, MM Publiciations. 2015. 183.

26. H.Q. Mitchell, Marileni Malkogianni "PIONEER", B1, B2, MM Publiciations. 2015. 191.

27. I. M. Rikhsiboev and N. S. Mohamed, Engineering Mathematics 2, Malaysia, 2019.

28. Jim Libby, Math for Real Life: Teaching Practical Uses for Algebra, Geometry and Trigonometry// 2019, 234p. ISBN: 978-1476667492

29. Karl Berry, The TEX Live Guide—2020

30. Lindsay Clandfield and Kate Pickering "Global", B2, Macmillan. 2013. 175.

31. Manfredo P. Do Carmo. Differential geometry of Curves and surface // Dover publications, Inc. Mineola, New York, 2016. – 529 pp.

32. Maple 15 user manual, Maplesoft, 2016, 462 p.

33. Margaret L. Lial, Thomas W. Hungerford, John P. Holcomb, Bernadette Mullins, Mathematics with Applications In the Management, Natural and Social Sciences (11th Edition), Pearson6 2018.

34. Rao, M. M. Random and Vector Measures, Series on Multivariate Analysis, 9, World Scientific, 2012.

35. Steve Taylor "Destination" Vocabulary and grammar", Macmillan 2010.

36. Tao, Terence. An Introduction to Measure Theory. Providence, R.I.: American Mathematical Society, 2019.

37. Weaver, Nik Measure Theory and Functional Analysis. World Scientific, 2013, 423 p.

38. Авилова Л.В., Болотюк В.А., Болотюк Л.А. Аналитическая геометрия и линейная алгебра// 2013. Издание: 1-е изд. 421 с.

39. Александров А.Д., Нецветаев Н.Ю. Геометрия, М.: Наука, 1990. – 672 с.

40. Белогуров А.Ю. Модернизация процесса подготовки педагога в контексте инновационного развития общества: Монография. — М.: МАКС Пресс, 2016. — 116 с. ISBN 978-5-317-05412-0.

41. Гулобод Қудратуллоҳ қизи, Р.Ишмуҳамедов, М.Нормуҳаммедова. Анъанавий ва ноанъанавий таълим. – Самарқанд: "Имом Буҳорий ҳалқаро илмий-тадқиқот маркази" нашриёти, 2019. 312 б.

42. Ибраймов А.Е. Масофавий ўкитишнинг дидактик тизими. методик кўлланма/ тузувчи. А.Е.Ибраймов. – Тошкент: "Lesson press", 2020. 112 бет.

43. Ишмуҳамедов Р.Ж., М.Мирсолиева. Ўкув жараёнида инновацион таълим технологиялари. – Т.: «Fan va texnologiya», 2014. 60 б.

44. Кирянов Д. Mathcad 15/Mathcad Prime 1.0. - СПб.: БХВ-Петербург, 2012. — 432 с. 45. Муслимов Н.Ава бошқалар. Инновацион таълим технологиялари. Ўкув-методик қўлланма. – Т.: "Sano-standart", 2015. – 208 б.

46. Образование в цифровую эпоху: монография / Н. Ю. Игнатова; Мво образования и науки РФ; ФГАОУ ВО «УрФУ им. первого Президента России Б.Н.Ельцина», Нижнетагил. технол. ин-т (фил.). – Нижний Тагил: НТИ (филиал) УрФУ, 2017. – 128 с. http://elar.urfu.ru/bitstream/10995/54216/1/978-5-9544-0083-0_2017.pdf

47. Олий таълим тизимини ракамли авлодга мослаштириш концепцияси. Европа Иттифоки Эрасмус+ дастурининг кўмагида. <u>https://hiedtec.ecs.uni-ruse.bg/pimages/34/3._UZBEKISTAN-CONCEPT-UZ.pdf</u>

48. Современные образовательные технологии: педагогика и психология: монография. Книга 16 / О.К. Асекретов, Б.А. Борисов, Н.Ю. Бугакова и др. – Новосибирск: Издательство ЦРНС, 2015. – 318 с. http://science.vvsu.ru/files/5040BC65-273B-44BB-98C4-CB5092BE4460.pdf

49. Усмонов Б.Ш., Ҳабибуллаев Р.А. Олий ўкув юртларида ўкув жараёнини кредит-модуль тизимида ташкил қилиш.–Т.: "ТКТИ" нашриёти, 2019.

IV. Интернет сайтлар

50. Ўзбекистон Республикаси Олий ва ўрта махсус таълим вазирлиги: www.edu.uz.

51. Бош илмий-методик марказ: www.bimm.uz

52. www. Ziyonet. Uz

53. Открытое образование. <u>https://openedu.ru/</u>

54. https://www.ucl.ac.uk/ioe/courses/graduate-taught/mathematics-education-ma

55. https://www.onlinestudies.com/Courses/Mathematics/Europe/

56. <u>https://online-learning.harvard.edu/catalog?keywords=mathematics-</u> <u>&op=Search</u>

57. https://www.msu.ru/en/projects/proekt-vernadskiy/news/math-teachers-advanced-training.html

58. https://english.spbu.ru/education/graduate/master-in-english/90-program-master/2455-advanced-mathematics.