
THE E XPER T ’S VOICE® IN W E B D E V E L O P M E N T

PHP 7
Quick Scripting
Reference

Second Edition
—
Mikael Olsson

 PHP 7 Quick
Scripting Reference

Second Edition

 Mikael Olsson

PHP 7 Quick Scripting Reference

Mikael Olsson
Hammarland,
Finland

ISBN-13 (pbk): 978-1-4842-1921-8 ISBN-13 (electronic): 978-1-4842-1922-5
DOI 10.1007/978-1-4842-1922-5

Library of Congress Control Number: 2016941199

Copyright © 2016 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Jamie Rumbelow
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484219218 . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

http://www.apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com

iii

Contents at a Glance

About the Author ..xv

About the Technical Reviewer ..xvii

Introduction ...xix

 ■ Chapter 1: Using PHP .. 1

 ■Chapter 2: Variables ... 5

 ■Chapter 3: Operators .. 9

 ■Chapter 4: String .. 15

 ■Chapter 5: Arrays ... 19

 ■Chapter 6: Conditionals .. 23

 ■Chapter 7: Loops ... 27

 ■Chapter 8: Functions .. 31

 ■Chapter 9: Class ... 39

 ■Chapter 10: Inheritance .. 45

 ■Chapter 11: Access Levels .. 49

 ■Chapter 12: Static ... 53

 ■Chapter 13: Constants .. 57

 ■Chapter 14: Interface .. 61

 ■Chapter 15: Abstract .. 65

 ■Chapter 16: Traits ... 69

 ■ CONTENTS AT A GLANCE

iv

 ■Chapter 17: Importing Files .. 71

 ■Chapter 18: Type Declarations .. 75

 ■Chapter 19: Type Conversions .. 79

 ■Chapter 20: Variable Testing... 81

 ■Chapter 21: Overloading ... 87

 ■Chapter 22: Magic Methods ... 91

 ■Chapter 23: User Input.. 97

 ■Chapter 24: Cookies ... 103

 ■Chapter 25: Sessions .. 105

 ■Chapter 26: Namespaces .. 107

 ■Chapter 27: References .. 113

 ■Chapter 28: Advanced Variables .. 117

 ■Chapter 29: Error Handling ... 121

 ■Chapter 30: Exception Handling ... 127

 ■Chapter 31: Assertions ... 131

Index .. 133

v

Contents

About the Author ... xv

About the Technical Reviewer ... xvii

Introduction .. xix

 ■Chapter 1: Using PHP .. 1

Embedding PHP ... 1

Outputting Text .. 2

Installing a Web Server ... 3

Hello World .. 3

Compile and Parse .. 4

Comments ... 4

 ■Chapter 2: Variables ... 5

Defi ning Variables ... 5

Data Types ... 5

Integer Type ... 6

Floating-Point Type .. 7

Bool Type ... 7

Null Type .. 7

Default Values ... 7

 ■ CONTENTS

vi

 ■Chapter 3: Operators .. 9

Arithmetic Operators ... 9

Assignment Operators ... 9

Combined Assignment Operators .. 10

Increment and Decrement Operators .. 10

Comparison Operators ... 11

Logical Operators .. 11

Bitwise Operators .. 12

Operator Precedence ... 12

Additional Logical Operators ... 13

 ■Chapter 4: String .. 15

String Concatenation ... 15

Delimiting Strings .. 15

Heredoc Strings ... 16

Nowdoc Strings .. 16

Escape Characters .. 16

Character Reference ... 17

String Compare ... 17

 ■Chapter 5: Arrays ... 19

Numeric Arrays .. 19

Associative Arrays ... 20

Mixed Arrays.. 20

Multi-Dimensional Arrays .. 21

 ■ CONTENTS

vii

 ■Chapter 6: Conditionals .. 23

If Statement ... 23

Switch Statement .. 24

Alternative Syntax ... 24

Mixed Modes ... 25

Ternary Operator ... 25

 ■Chapter 7: Loops ... 27

While Loop ... 27

Do-while Loop ... 27

For Loop .. 27

Foreach Loop ... 28

Alternative Syntax ... 29

Break ... 29

Continue ... 29

Goto ... 30

 ■Chapter 8: Functions .. 31

Defi ning Functions .. 31

Calling Functions ... 31

Function Parameters ... 32

Default Parameters ... 32

Variable Parameter Lists ... 33

Return Statement .. 34

Scope and Lifetime ... 34

Anonymous Functions ... 36

 ■ CONTENTS

viii

Closures .. 37

Generators ... 37

Built-in Functions .. 38

 ■Chapter 9: Class ... 39

Instantiating an Object .. 40

Accessing Object Members ... 40

Initial Property Values .. 40

Constructor .. 41

Destructor ... 42

Case Sensitivity ... 42

Object Comparison .. 42

Anonymous Classes .. 43

Closure Object ... 43

 ■Chapter 10: Inheritance .. 45

Overriding Members .. 46

Final Keyword ... 47

Instanceof Operator ... 47

 ■Chapter 11: Access Levels .. 49

Private Access ... 49

Protected Access ... 50

Public Access ... 50

Var Keyword ... 50

Object Access .. 50

Access Level Guideline .. 51

 ■ CONTENTS

ix

 ■Chapter 12: Static ... 53

Referencing Static Members ... 53

Static Variables .. 54

Late Static Bindings .. 55

 ■Chapter 13: Constants .. 57

Const ... 57

Defi ne .. 58

Const and defi ne ... 58

Constant Guideline .. 59

Magic Constants .. 59

 ■Chapter 14: Interface .. 61

Interface Signatures .. 61

Interface Example ... 62

Interface Usages ... 63

Interface Guideline .. 63

 ■Chapter 15: Abstract .. 65

Abstract Methods .. 65

Abstract Example .. 65

Abstract Classes and Interfaces .. 66

Abstract Guideline ... 67

 ■Chapter 16: Traits ... 69

Inheritance and Traits .. 70

Trait Guidelines .. 70

 ■ CONTENTS

x

 ■Chapter 17: Importing Files .. 71

Include Path .. 71

Require .. 72

Include_once ... 72

Require_once .. 72

Return .. 73

_Autoload .. 73

 ■Chapter 18: Type Declarations .. 75

Argument Type Declarations ... 75

Return Type Declarations .. 77

Strict Typing .. 77

 ■Chapter 19: Type Conversions .. 79

Explicit Casts ... 79

Set type .. 80

Get type .. 80

 ■Chapter 20: Variable Testing... 81

Isset ... 81

Empty .. 81

Is_null .. 82

Unset ... 82

Null Coalescing Operator ... 83

Determining Types ... 83

Variable Information .. 84

 ■ CONTENTS

xi

 ■Chapter 21: Overloading ... 87

Property Overloading ... 87

Method Overloading .. 88

Isset and unset Overloading .. 88

 ■Chapter 22: Magic Methods ... 91

_ToString ... 92

_Invoke .. 93

Object Serialization ... 93

_Sleep ... 94

_Wakeup ... 94

Set State .. 94

Object Cloning ... 95

 ■Chapter 23: User Input.. 97

HTML Form .. 97

Sending with POST .. 97

Sending with GET .. 98

Request Array .. 98

Security Concerns ... 98

Submitting Arrays .. 99

File Uploading .. 100

Superglobals ... 101

 ■Chapter 24: Cookies ... 103

Creating Cookies ... 103

Cookie Array .. 103

Deleting Cookies ... 103

 ■ CONTENTS

xii

 ■Chapter 25: Sessions .. 105

Starting a Session ... 105

Session Array .. 105

Deleting a Session ... 106

 ■Chapter 26: Namespaces .. 107

Creating Namespaces ... 107

Nested Namespaces ... 108

Alternative Syntax ... 108

Referencing Namespaces ... 109

Namespace Aliases ... 110

Namespace Keyword .. 111

Namespace Guideline.. 112

 ■Chapter 27: References .. 113

Assign by Reference .. 113

Pass by Reference ... 113

Return by Reference .. 115

 ■Chapter 28: Advanced Variables .. 117

Curly Syntax .. 117

Variable Variable Names.. 118

Variable Function Names .. 118

Variable Class Names .. 119

 ■Chapter 29: Error Handling ... 121

Correcting Errors ... 121

Error Levels ... 122

Error-Handling Environment .. 123

 ■ CONTENTS

xiii

Custom Error Handlers .. 124

Raising Errors .. 125

 ■Chapter 30: Exception Handling ... 127

Try-catch Statement .. 127

Throwing Exceptions ... 127

Catch Block ... 128

Finally Block .. 128

Rethrowing Exceptions .. 129

Uncaught Exception Handler ... 129

Errors and Exceptions ... 129

 ■Chapter 31: Assertions ... 131

Assert Performance ... 131

Index .. 133

xv

About the Author

Mikael Olsson is a professional web entrepreneur,
programmer, and author. He works for an R&D
company in Finland, where he specializes in software
development.

In his spare time, Mikael writes books and creates
web sites on his various fields of interest. The books
that he writes are focused on efficiently teaching
the subject by explaining only what is relevant and
practical, without any unnecessary repetition or theory.

xvii

About the Technical
Reviewer

Jamie Rumbelow is a freelance web developer and an aspiring academic. He’s the author
of three books on CodeIgniter and is a keen public speaker. He has worked on dozens of
web applications during his eight years freelancing. Jamie lives in London, England.

xix

Introduction

PHP is a server-side programming language used for creating dynamic web sites and
interactive web applications. The acronym PHP originally stood for Personal Home Page,
but as its functionality grew, this was changed to PHP: Hypertext Preprocessor. This
recursive acronym comes from the fact that it takes PHP code as input and produces
HTML as output. This means that users do not need to install any software to view
PHP-generated web pages. All that is required is that the web server has PHP installed to
interpret the script.

In contrast with HTML sites, PHP sites are dynamically generated. Instead of the site
being made up of a large number of static HTML files, a PHP site may consist of only a
handful of template files. The template files describe only the structure of the site using
PHP code, while the web content is pulled from a database and the style formatting
is from Cascading Style Sheets (CSS). This allows for site-wide changes from a single
location, providing a flexible web site that is easy to design, maintain, and update.

When creating web sites with PHP, a content management system (CMS) is generally
used. A CMS provides a fully integrated platform for web site development consisting
of a back end and a front end. The front end is what visitors see when they arrive at the
site, whereas the back end is where the site is configured, updated, and managed by an
administrator. The back end also allows a web developer to change template files and
modify plugins to more extensively customize the functionality and structure of the site.
Examples of free PHP-based CMS solutions include WordPress, Joomla, ModX, and
Drupal, with WordPress being the most popular and accounting for more than half of the
CMS market.

The first version of PHP was created by Rasmus Lerdorf and released in 1995. Since
then, PHP has evolved greatly from a simple scripting language to a fully featured web
programming language. The official implementation is now released by The PHP Group,
with PHP 7 being the most recent version as of this writing. The language may be used
free of charge and is open source, allowing developers to extend it for their own use or to
contribute to its development.

PHP is by far the most popular server-side programming language in use today.
It holds a growing 80% market share when compared with other server-side technologies,
such as ASP.NET, Java, Ruby, and Perl. One of the reasons for the widespread adoption
of PHP is its platform independence. It can be installed on all major web servers and
operating systems, and used with any major database system. Another strong feature
of PHP is its simple-to-use syntax based on C and Perl, which is easy for a newcomer to
learn; however, PHP also offers many advanced features for the professional programmer.

1© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_1

 CHAPTER 1

 Using PHP

 To start developing in PHP, create a plain text file with a .php file extension and open it
in the editor of your choice—for example Notepad, jEdit, Dreamweaver, NetBeans, or
PHPEclipse. This PHP file can include any HTML, as well as PHP scripting code. Begin by
first entering the following minimal markup for an HTML 5 web document.

 <!doctype html>
 <html>
 <head>
 <meta charset="UTF-8">
 <title>PHP Test</title>
 </head>
 <body></body>
 </html>

 Embedding PHP
 PHP code can be embedded anywhere in a web document in several different ways.
The standard notation is to delimit the code by <?php and ?> . This is called a PHP code
block , or just a PHP block .

 <?php ... ?>

 Within a PHP block, the engine is said to be in PHP mode ; outside of the block, the
engine is in HTML mode . In PHP mode, everything is parsed (executed) by the PHP
engine; whereas in HTML mode, everything is sent to the generated web page without
any execution.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1922-5_1) contains supplementary material, which is
available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1848-8_1

CHAPTER 1 ■ USING PHP

2

 The second notation for switching to PHP mode is a short version of the first where
the php part is left out. Although this notation is shorter, the longer one is preferable if
the PHP code needs to be portable. This is because support for the short delimiter can be
disabled in the php.ini configuration file. 1

 <? ... ?>

 A third (now obsolete) alternative was to embed the PHP code within an HTML
script element with the language attribute set to php . This alternative delimiter was
seldom used; support for it was removed in PHP 7.

 <script language="php">...</script>

 Another obsolete notation that you may encounter in legacy code is when the script
is embedded between ASP tags. This notation is disabled by default, but it can be enabled
from the PHP configuration file. Use of this notation has long been discouraged. The
ability to enable it was finally removed in PHP 7.

 <% ... %>

 The last closing tag in a script file may be omitted to make the file end while it is still
in PHP mode.

 <?php ... ?>
 <?php ...

 Outputting Text
 Printing text in PHP is done by either typing echo or print followed by the output. Each
statement must end with a semicolon (;) in order to separate it from other statements.
The semicolon for the last statement in a PHP block is optional, but it is a good practice to
include it.

 <?php
 echo "Hello World";
 print "Hello World";
 ?>

 Output can also be generated using the <?= open delimiter. As of PHP 5.4, this syntax
is valid even if the short PHP delimiter is disabled.

 <?= "Hello World" ?>

 1 http://www.php.net/manual/en/configuration.file.php

http://www.php.net/manual/en/configuration.file.php

CHAPTER 1 ■ USING PHP

3

 Keep in mind that text displayed on a web page should always be located within the
HTML body element.

 <body>
 <?php echo "Hello World"; ?>
 </body>

 Installing a Web Server
 To view PHP code in a browser, the code first has to be parsed on a web server with the
PHP module installed. An easy way to set up a PHP environment is to download and
install a distribution of the popular Apache web server called XAMPP, 2 which comes
preinstalled with PHP, Perl, and MySQL. It allows you to experiment with PHP on your
own computer.

 After installing the web server, point your browser to http://localhost to make sure
that the server is online. It should display the index.php file, which by default is located
under C:\xampp\htdocs\index.php on a Windows machine. htdocs is the folder that the
Apache web server looks to for files to serve on your domain.

 Hello World
 Continuing from before, the simple Hello World PHP web document should look like this:

 <!doctype html>
 <html>
 <head>
 <meta charset="UTF-8">
 <title>PHP Test</title>
 </head>
 <body>
 <?php echo "Hello World"; ?>
 </body>
 </html>

 To view this PHP file parsed into HTML, save it to the web server’s htdocs folder (the
server’s root directory) with a name such as mypage.php . Then point your browser to its
path, which is http://localhost/mypage.php for a local web server.

 When a request is made for the PHP web page, the script is parsed on the server and
sent to the browser as only HTML. If the source code for the web site is viewed, it will not
show any of the server-side code that generated the page—only the HTML output.

 2 http://www.apachefriends.org/en/xampp.html

http://www.apachefriends.org/en/xampp.html

CHAPTER 1 ■ USING PHP

4

 Compile and Parse
 PHP is an interpreted language, not a compiled language. Every time a visitor arrives at
a PHP web site, the PHP engine compiles the code and parses it into HTML, which is
then sent to the visitor. The main advantage of this is that the code can be changed easily
without having to recompile and redeploy the web site. The main disadvantage is that
compiling the code at run-time requires more server resources.

 For a small web site, a lack of server resources is seldom an issue. The time it takes
to compile the PHP script is also miniscule compared to other factors, such as the time
required to execute database queries. However, for a large web application with lots
of traffic, the server load from compiling PHP files is likely to be significant. For such a
site, the script compilation overhead can be removed by precompiling the PHP code.
This can be done with eAccelerator, 3 for example, which caches PHP scripts in their
compiled state.

 A web site that only serves static content (the same to all visitors) has another
possibility, which is to cache the fully generated HTML pages. This provides all the
maintenance benefits of having a dynamic site, with the speed of a static site. One such
caching tool is the W3 Total Cache 4 plugin for the WordPress CMS.

 Comments
 Comments are used to insert notes into the code. They have no effect on the parsing of
the script. PHP has the two standard C++ notations for single-line (//) and multiline
(/* */) comments. The Perl comment notation (#) may also be used to make single-line
comments.

 <?php
 // single-line comment
 # single-line comment
 /* multi-line
 comment */
 ?>

 As in HTML, whitespace characters—such as spaces, tabs, and comments—are
ignored by the PHP engine. This allows you a lot of freedom in how to format your code.

 3 http://www.eaccelerator.net
 4 http://wordpress.org/extend/plugins/w3-total-cache

http://www.eaccelerator.net/
http://wordpress.org/extend/plugins/w3-total-cache

5© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_2

 CHAPTER 2

 Variables

 Variables are used for storing data, such as numbers or strings, so that they can be used
multiple times in a script.

 Defining Variables
 A variable starts with a dollar sign ($) followed by an identifier , which is the name of
the variable. A common naming convention for variables is to have each word initially
capitalized, except for the first one.

 $myVar;

 A value can be assigned to a variable by using the equals sign, or assignment
operator (=). The variable then becomes defined or initialized .

 $myVar = 10;

 Once a variable has been defined, it can be used by referencing the variable’s name.
For example, the value of the variable can be printed to the web page by using echo
followed by the variable’s name.

 echo $myVar; // "10"

 Keep in mind that variable names are case sensitive. Names in PHP can include
underscore characters and numbers, but they cannot start with a number. They also
cannot contain spaces or special characters, and they must not be a reserved keyword.

 Data Types
 PHP is a loosely typed language. This means that the type of data that a variable can store
is not specified. Instead, a variable’s data type changes automatically to hold the value
that it is assigned.

 $myVar = 1; // int type
 $myVar = 1.5; // float type

CHAPTER 2 ■ VARIABLES

6

 Furthermore, the value of a variable is evaluated differently, depending on the
context in which it is used.

 // Float type evaluated as string type
 echo $myVar; // "1.5"

 Because of these implicit type conversions, knowing the underlying type of a variable
is not always necessary. Nevertheless, it is important to have an understanding of the data
types that PHP works with in the background. These nine types are listed in Table 2-1 .

 Table 2-1. PHP Data Types

 Data Type Category Description

 int Scalar Integer

 float Scalar Floating-point number

 bool Scalar Boolean value

 string Scalar Series of characters

 array Composite Collection of values

 object Composite User-defined data type

 resource Special External resource

 callable Special Function or method

 null Special No value

 Integer Type
 An integer is a whole number. They can be specified in decimal (base 10), hexadecimal
(base 16), octal (base 8) or binary (base 2) notation. Hexadecimal numbers are preceded
with a 0x , octal with a 0 , and binary numbers with a 0b .

 $myInt = 1234; // decimal number
 $myInt = 0b10; // binary number (2 decimal)
 $myInt = 0123; // octal number (83 decimal)
 $myInt = 0x1A; // hexadecimal number (26 decimal)

 Integers in PHP are always signed and can therefore store both positive and negative
values. The size of an integer depends on the system word size, so on a 32-bit system, the
largest storable value is 2 ^32-1 . If PHP encounters a larger value, it is interpreted as a float
instead.

CHAPTER 2 ■ VARIABLES

7

 Floating-Point Type
 The float or floating-point type can store real numbers. These can be assigned using
either decimal or exponential notation.

 $myFloat = 1.234;
 $myFloat = 3e2; // 3*10^2 = 300

 The precision of a float is platform dependent. Commonly, the 64-bit IEEE format is
used, which can hold approximately 14 decimal digits and a maximum decimal value of
1.8×10 308 .

 Bool Type
 The bool type can store a Boolean value, which is a value that can only be either true or
false. These values are specified with the true and false keywords.

 $myBool = true;

 Null Type
 The case-insensitive constant null is used to represent a variable with no value. Such a
variable is considered to be of the special null data type.

 $myNull = null; // variable is set to null

 Just as with other values, the null value evaluates differently, depending on the
context in which the variable is used. If evaluated as a bool, it becomes false; as a number,
it becomes zero (0); and as a string, it becomes an empty string ("").

 $myInt = $myNull + 0; // numeric context (0)
 $myBool = $myNull == true; // bool context (false)
 echo $myNull; // string context ("")

 Default Values
 In PHP, it is possible to use variables that have not been assigned a value. Such undefined
variables are then automatically created with the null value.

 echo $myUndefined; // variable is set to null

CHAPTER 2 ■ VARIABLES

8

 Although this behavior is allowed, it is a good coding practice to define variables
before they are used, even if the variables are just set to null. As a reminder for this, PHP
issues an error notice when undefined variables are used. Depending on the PHP error
reporting settings, this message may or may not be displayed.

 Notice: Undefined variable: myUndefined in C:\xampp\htdocs\mypage.php on
line 10

9© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_3

 CHAPTER 3

 Operators

 An operator is a symbol that makes the script perform a specific mathematical or
logical manipulation. The operators in PHP can be grouped into five types: arithmetic,
assignment, comparison, logical, and bitwise operators.

 Arithmetic Operators
 The arithmetic operators include the four basic arithmetic operations, as well as the
 modulus operator (%), which is used to obtain the division remainder.

 $x = 4 + 2; // 6 // addition
 $x = 4 - 2; // 2 // subtraction
 $x = 4 * 2; // 8 // multiplication
 $x = 4 / 2; // 2 // division
 $x = 4 % 2; // 0 // modulus (division remainder)

 An exponentiation operator (**) was introduced in PHP 5.6. It raises the left-side
operand to the power of the right-side operand.

 $x = 4 ** 2; // 16 // exponentiation

 Assignment Operators
 The second group is the assignment operators. Most importantly, the assignment
operator (=) itself, which assigns a value to a variable.

 $x = 1; // assignment

CHAPTER 3 ■ OPERATORS

10

 Combined Assignment Operators
 A common use of the assignment and arithmetic operators is to operate on a variable and
then to save the result back into that same variable. These operations can be shortened
with the combined assignment operators.

 $x += 5; // $x = $x+5;
 $x -= 5; // $x = $x-5;
 $x *= 5; // $x = $x*5;
 $x /= 5; // $x = $x/5;
 $x %= 5; // $x = $x%5;

 The exponentiation operator added in PHP 5.6 also received a shorthand assignment
operator.

 $x **= 5; // $x = $x**5;

 Increment and Decrement Operators
 Another common operation is to increment or decrement a variable by one. This can be
simplified with the increment (++) and decrement (--) operators.

 $x++; // $x += 1;
 $x--; // $x -= 1;

 Both of these operators can be used either before or after a variable.

 $x++; // post-increment
 $x--; // post-decrement
 ++$x; // pre-increment
 --$x; // pre-decrement

 The result on the variable is the same whichever is used. The difference is that the
post-operator returns the original value before it changes the variable, whereas the
pre-operator changes the variable first and then returns the value.

 $x = 5; $y = $x++; // $x=6, $y=5
 $x = 5; $y = ++$x; // $x=6, $y=6

CHAPTER 3 ■ OPERATORS

11

 Comparison Operators
 The comparison operators compare two values and return either true or false . They are
mainly used to specify conditions, which are expressions that evaluate to either true or
 false .

 $x = (2 == 3); // false // equal to
 $x = (2 != 3); // true // not equal to
 $x = (2 <> 3); // true // not equal to (alternative)
 $x = (2 === 3); // false // identical
 $x = (2 !== 3); // true // not identical
 $x = (2 > 3); // false // greater than
 $x = (2 < 3); // true // less than
 $x = (2 >= 3); // false // greater than or equal to
 $x = (2 <= 3); // true // less than or equal to

 The strict equality operators, === and !== , are used for comparing both type and
value. These are necessary because the regular “equal to” (==) and “not equal to” (!=)
operators automatically perform a type conversion before they compare the operands.
It is considered good practice to use strict comparison when the type conversion feature
of the “equal to” operation is not needed.

 $x = (1 == "1"); // true (same value)
 $x = (1 === "1"); // false (different types)

 PHP 7 added a new comparison operator called the spaceship operator (<=>). It
compares two values and returns 0 if both values are equal; 1 if the value on the left side is
greater; and –1 if the value on the right side is greater.

 $x = 1 <=> 1; // 0 (1 == 1)
 $x = 1 <=> 2; //-1 (1 < 2)
 $x = 3 <=> 2; // 1 (3 > 2)

 Logical Operators
 The logical operators are often used together with the comparison operators. Logical and
(&&) evaluates to true if both the left and right side are true, and logical or (||) evaluates
to true if either the left or right side is true. For inverting a Boolean result, there is the
logical not (!) operator. Note that for both “logical and” and the “logical or”, the right side
of the operator is not evaluated if the result is already determined by the left side.

 $x = (true && false); // false // logical and
 $x = (true || false); // true // logical or
 $x = !(true); // false // logical not

CHAPTER 3 ■ OPERATORS

12

 Bitwise Operators
 The bitwise operators can manipulate binary digits of numbers. For example, the xor
operator (̂) turn on the bits that are set on one side of the operator, but not on both sides.

 $x = 5 & 4; // 101 & 100 = 100 (4) // and
 $x = 5 | 4; // 101 | 100 = 101 (5) // or
 $x = 5 ^ 4; // 101 ^ 100 = 001 (1) // xor (exclusive or)
 $x = 4 << 1; // 100 << 1 =1000 (8) // left shift
 $x = 4 >> 1; // 100 >> 1 = 10 (2) // right shift
 $x = ~4; // ~00000100 = 11111011 (-5) // invert

 These bitwise operators have shorthand assignment operators, just like the
arithmetic operators.

 $x=5; $x &= 4; // 101 & 100 = 100 (4) // and
 $x=5; $x |= 4; // 101 | 100 = 101 (5) // or
 $x=5; $x ^= 4; // 101 ^ 100 = 001 (1) // xor
 $x=5; $x <<= 1; // 101 << 1 =1010 (10)// left shift
 $x=5; $x >>= 1; // 101 >> 1 = 10 (2) // right shift

 Note that decimal numbers used together with binary operators are automatically
converted to binary. The binary notation may also be used to specify binary numbers for
the operation.

 $x = 0b101 & 0b100; // 0b100 (4)

 Operator Precedence
 When an expression contains multiple operators, the precedence of those operators decides
the order in which they are evaluated. The order of precedence can be seen in Table 3-1 .

 Table 3-1. Order of Operator Precedence

 Pre Operator Pre Operator

 1 ** 10 &

 2 ++ -- 11 ̂

 3 ~ - (unary) 12 |

 4 ! 13 &&

 5 * / % 14 ||

 6 + - (binary) 15 = op=

 7 << >> 16 and

 8 < <= > >= <> 17 xor

 9 == != === !== <=> 18 or

CHAPTER 3 ■ OPERATORS

13

 To give an example, multiplication has greater precedence than addition, and
therefore it is evaluated first in the following line of code.

 $x = 4 + 3 * 2; // 10

 Parentheses can be used to force precedence. An expression placed within
parentheses is evaluated before other expressions in that statement.

 $x = (4 + 3) * 2; // 14

 Additional Logical Operators
 In the precedence table, make special note of the last three operators: and , or , and xor .
The and and or operators work in the same way as the logical && and || operators. The
only difference is their lower level of precedence.

 // Same as: $a = (true && false);
 $x = true && false; // $x is false

 // Same as: ($a = true) and false;
 $x = true and false; // $x is true

 The xor operator is a Boolean version of the bitwise ̂ operator. It evaluates to true if
only one of the operands are true.

 $x = (true xor true); // false

15© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_4

 CHAPTER 4

 String

 A string is a series of characters that can be stored in a variable. In PHP, strings are often
delimited by single quotes.

 $a = 'Hello';

 String Concatenation
 PHP has two string operators. The dot symbol is known as the concatenation operator (.).
It combines two strings into one. It also has an accompanying assignment operator (.=),
which appends the right-hand string to the left-hand string variable.

 $b = $a . ' World'; // Hello World
 $a .= ' World'; // Hello World

 Delimiting Strings
 PHP strings can be delimited in four different ways. There are two common notations:
 double quote (" ") and single quote (' '). The difference between them is that variables
are not parsed in single-quoted strings, whereas they are parsed in double-quoted strings.

 $c = 'World';
 echo "Hello $c"; // "Hello World"
 echo 'Hello $c'; // "Hello $c"

 Single-quoted strings tend to be preferred unless parsing is desired, which highlights
that no parsing takes place. However, double-quoted strings are considered easier to
read, which makes the choice more a matter of preference. The important thing is to be
consistent.

 In addition to single-quoted and double-quoted strings, there are two more
notations: heredoc and nowdoc . These notations are mainly used to include larger blocks
of text.

CHAPTER 4 ■ STRING

16

 Heredoc Strings
 The heredoc syntax consists of the <<< operator followed by an identifier and a new line.
The string is then included followed by a new line containing the identifier to close the
string. Variables are parsed inside of a heredoc string, just as with double-quoted strings.

 $s = <<<LABEL
 Heredoc (with parsing)
 LABEL;

 Nowdoc Strings
 The syntax for the nowdoc string is the same as for the heredoc string, except that the
initial identifier is enclosed in single quotes. Variables are not parsed inside a nowdoc
string.

 $s = <<<'LABEL'
 Nowdoc (without parsing)
 LABEL;

 Escape Characters
 Escape characters are used to write special characters, such as backslashes and double
quotes. These characters are always preceded by a backslash (\). Table 4-1 lists the escape
characters available in PHP.

 Table 4-1. The Escape Characters Available in PHP

 Character Meaning Character Meaning

 \n newline \f form feed

 \t horizontal tab \$ dollar sign

 \v vertical tab \' single quote

 \e escape \" double quote

 \r carriage return \\ backslash

 \u{} Unicode character

 For example, line breaks are represented with the escape character (\n) within
strings.

 $s = "Hello\nWorld";

CHAPTER 4 ■ STRING

17

 Note that this character is different from the
 HTML tag, which creates line
breaks on web pages.

 echo "Hello
World";

 When using the single quote or nowdoc delimiter, the only escape characters that
work are the backslash (\\) and single-quote (\') characters. Escaping the backslash is
only necessary before a single quote or at the end of the string.

 $s = 'It\'s'; // "It's"

 PHP 7 introduced the Unicode escape character, which provides the ability to embed
UTF-8 encoded characters into strings. Such a character is specified as a hexadecimal
number inside curly brackets. The number can be up to six digits long, with leading zeros
being optional.

 echo "\u{00C2A9}"; // © (copyright sign)
 echo "\u{C2A9}"; // ©

 Character Reference
 Characters within strings can be referenced by specifying the index of the desired
character in square brackets after the string variable, starting with zero. This can be used
both for accessing and modifying single characters.

 $s = 'Hello';
 $s[0] = 'J';
 echo $s; // "Jello"

 The strlen function retrieves the length of the string argument. This can be used to
change the last character of a string, for example.

 $s[strlen($s)-1] = 'y';
 echo $s; // "Jelly"

 String Compare
 The way to compare two strings is simply by using one of the equality operators. This
does not compare the memory addresses, as in some other languages.

 $a = 'test';
 $b = 'test';
 $c = ($a === $b); // true

19© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_5

 CHAPTER 5

 Arrays

 An array is used to store a collection of values in a single variable. Arrays in PHP consist
of key-value pairs. The key can either be an integer (numeric array), a string (associative
array), or a combination of both (mixed array). The value can be any data type.

 Numeric Arrays
 Numeric arrays store each element in the array with a numeric index. An array is created
using the array constructor. This constructor takes a list of values, which are assigned to
elements of the array.

 $a = array(1,2,3);

 As of PHP 5.4, a shorter syntax is available, where the array constructor is replaced
with square brackets.

 $a = [1,2,3];

 Once the array is created, its elements can be referenced by placing the index of the
desired element in square brackets. Note that the index begins with zero.

 $a[0] = 1;
 $a[1] = 2;
 $a[2] = 3;

 The number of elements in the array is handled automatically. Adding a new
element to the array is as easy as assigning a value to it.

 $a[3] = 4;

 The index can also be left out to add the value to the end of the array. This syntax also
constructs a new array if the variable does not already contain one.

 $a[] = 5; // $a[4]

CHAPTER 5 ■ ARRAYS

20

 To retrieve the value of an element in the array, the index of that element is specified
inside the square brackets.

 echo "$a[0] $a[1] $a[2] $a[3]"; // "1 2 3 4"

 Associative Arrays
 In associative arrays, the key is a string instead of a numeric index, which gives the
element a name instead of a number. When creating the array the double arrow operator
(=>) is used to tell which key refers to what value.

 $b = array('one' => 'a', 'two' => 'b', 'three' => 'c');

 Elements in associative arrays are referenced using the element names. They cannot
be referenced with a numeric index.

 $b['one'] = 'a';
 $b['two'] = 'b';
 $b['three'] = 'c';

 echo $b['one'] . $b['two'] . $b['three']; // "abc"

 The double arrow operator can also be used with numeric arrays to decide in which
element a value is placed.

 $c = array(0 => 0, 1 => 1, 2 => 2);

 Not all keys need to be specified. If a key is left unspecified, the value is assigned to
the element following the largest previously used integer key.

 $e = array(5 => 5, 6);

 Mixed Arrays
 PHP makes no distinction between associative and numerical arrays, and so elements of
each can be combined in the same array.

 $d = array(0 => 1, 'foo' => 'bar');

 Just be sure to access the elements with the same keys.

 echo $d[0] . $d['foo']; // "1bar"

CHAPTER 5 ■ ARRAYS

21

 Multi-Dimensional Arrays
 A multi-dimensional array is an array that contains other arrays. For example, a two-
dimensional array can be constructed in the following way.

 $a = array(array('00', '01'), array('10', '11'));

 Once created, the elements can be modified using two sets of square brackets.

 $a[0][0] = '00';
 $a[0][1] = '01';
 $a[1][0] = '10';
 $a[1][1] = '11';

 They are also accessed in the same way.

 echo $a[0][0] . $a[0][1] . $a[1][0] . $a[1][1];

 The key can be given a string name to make it into a multi-dimensional associative
array, also called a hash table .

 $b = array('one' => array('00', '01'));
 echo $b['one'][0] . $b['one'][1]; // "0001"

 Multi-dimensional arrays can have more than two dimensions by adding additional
sets of square brackets.

 $c[][][][] = "0000"; // four dimensions

23© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_6

 CHAPTER 6

 Conditionals

 Conditional statements are used to execute different code blocks based on different
conditions.

 If Statement
 The if statement only executes if the condition inside the parentheses is evaluated to
 true . The condition can include any of the comparison and logical operators. In PHP, the
condition does not have to be a Boolean expression.

 if ($x == 1) {
 echo "x is 1";
 }

 To test for other conditions, the if statement can be extended with any number of
 elseif clauses. Each additional condition is only tested if all previous conditions are
false.

 elseif ($x == 2) {
 echo "x is 2";
 }

 For handling all other cases, there can be one else clause at the end, which executes
if all previous conditions are false.

 else {
 echo "x is something else";
 }

 The curly brackets can be left out if only a single statement needs to be executed
conditionally. However, it is considered good practice to always include them since they
improve code readability.

CHAPTER 6 ■ CONDITIONALS

24

 if ($x == 1)
 echo "x is 1";
 elseif ($x == 2)
 echo "x is 2";
 else
 echo "x is something else";

 Switch Statement
 The switch statement checks for equality between an integer, float, or string and a series
of case labels. It then passes execution to the matching case. The statement can contain
any number of case clauses and may end with a default label for handling all other cases.

 switch ($x)
 {
 case 1: echo "x is 1"; break;
 case 2: echo "x is 2"; break;
 default: echo "x is something else";
 }

 Note that the statements after each case label are not surrounded by curly brackets.
Instead, the statements end with the break keyword to break out of the switch. Without
the break, the execution falls through to the next case. This is useful if several cases need
to be evaluated in the same way.

 Alternative Syntax
 PHP has an alternative syntax for the conditional statements. In this syntax, the if
statement’s opening bracket is replaced with a colon, the closing bracket is removed, and
the last closing bracket is replaced with the endif keyword.

 if ($x == 1): echo "x is 1";
 elseif ($x == 2): echo "x is 2";
 else: echo "x is something else";
 endif;

 Similarly, the switch statement also has an alternative syntax, which instead uses the
 endswitch keyword to terminate the statement.

 switch ($x):
 case 1: echo "x is 1"; break;
 case 2: echo "x is 2"; break;
 default: echo "x is something else";
 endswitch;

CHAPTER 6 ■ CONDITIONALS

25

 The alternative syntax is often preferable for longer conditional statements since it
then becomes easier to see where those statements end.

 Mixed Modes
 It is possible to switch back to HTML mode in the middle of a code block. This provides
another way of writing conditional statements that output text to the web page.

 <?php if ($x == 1) { ?>
 This will show if $x is 1.
 <?php } else { ?>
 Otherwise this will show.
 <?php } ?>

 The alternative syntax may also be used in this way to make the code clearer.

 <?php if ($x == 1): ?>
 This will show if $x is 1.
 <?php else: ?>
 Otherwise this will show.
 <?php endif; ?>

 When outputting HTML and text, particularly larger blocks, this coding style is
generally preferred because it makes it easier to distinguish between PHP code and the
HTML content that appears on the web page.

 Ternary Operator
 In addition to the if and switch statements, there is the ternary operator (?:) . This
operator can replace a single if/else clause. The operator takes three expressions. If the
first one is evaluated to true , then the second expression is returned, and if it is false , the
third one is returned.

 // Ternary operator expression
 $y = ($x == 1) ? 1 : 2;

 In PHP, this operator be used as an expression and as a statement.

 // Ternary operator statement
 ($x == 1) ? $y = 1 : $y = 2;

 The programming term expression refers to code that evaluates to a value, whereas a
 statement is a code segment that ends with a semicolon or a closing curly bracket.

27© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_7

 CHAPTER 7

 Loops

 There are four looping structures in PHP. These are used to execute a specific code
block multiple times. Just as with the conditional if statement, the curly brackets for the
loops can be left out if there is only one statement in the code block.

 While Loop
 The while loop runs through the code block only if its condition is true. It continues
looping for as long as the condition remains true. Note that the condition is only checked
at the beginning of each iteration (loop).

 $i = 0;
 while ($i < 10) { echo $i++; } // 0-9

 Do-while Loop
 The do-while loop works in the same way as the while loop, except that it checks the
condition after the code block. Therefore, it always runs through the code block at least
once. Bear in mind that this loop ends with a semicolon.

 $i = 0;
 do { echo $i++; } while ($i < 10); // 0-9

 For Loop
 The for loop is used to go through a code block a specific number of times. It uses three
parameters. The first parameter initializes a counter and is always executed once, before
the loop. The second parameter holds the condition for the loop and is checked before
each iteration. The third parameter contains the increment of the counter and is executed
at the end of each iteration.

 for ($i = 0; $i < 10; $i++) { echo $i; } // 0-9

CHAPTER 7 ■ LOOPS

28

 The for loop has several variations since either one of the parameters can be left out.
For example, if the first and third parameters are left out, it behaves in the same way as
the while loop.

 for (;$i < 10;) { echo $i++; }

 The first and third parameters can also be split into several statements using the
comma operator (,).

 for ($i = 0, $x = 9; $i < 10; $i++, $x--) {
 echo $x; // 9-0
 }

 The sizeof function retrieves the number of elements in an array. Together with the
 for loop, it can be used to iterate through a numeric array.

 $a = array(1,2,3);

 for($i = 0; $i < sizeof($a); $i++) {
 echo $a[$i]; // "123"
 }

 If there is no need to keep track of iterations, the foreach loop provides a cleaner
syntax. This loop is also necessary for traversing associative arrays.

 Foreach Loop
 The foreach loop provides an easy way to iterate through arrays. At each iteration, the
next element in the array is assigned to the specified variable (the iterator) and the loop
continues to execute until it has gone through the entire array.

 $a = array(1,2,3);

 foreach ($a as $v) {
 echo $v; // "123"
 }

 There is an extension of the foreach loop to also obtain the key’s name or index by
adding a key variable followed by the double arrow operator (=>) before the iterator.

 $a = array('one' => 1, 'two' => 2, 'three' => 3);

 foreach ($a as $k => $v) {
 echo "$k => $v
";
 }

CHAPTER 7 ■ LOOPS

29

 Alternative Syntax
 As with conditional statements, the brackets in the loops can be rewritten into the
 alternative syntax with a colon and one of the endwhile , endfor , or endforeach keywords.

 while ($i < 10): echo $i++; endwhile;

 for ($i = 0; $i < 10; $i++): echo $i; endfor;

 foreach ($a as $v): echo $v; endforeach;

 The main benefit of this is improved readability, especially for longer loops.

 Break
 There are two special keywords that can be used inside loops— break and continue . The
 break keyword ends the execution of a loop structure.

 for (;;) { break; } // end for

 It can be given a numeric argument that specifies how many nested looping
structures to break out of.

 $i = 0;
 while ($i++ < 10)
 {
 for (;;) { break 2; } // end for and while
 }

 Continue
 The continue keyword can be used within any looping statement to skip the rest of the
current loop and continue at the beginning of the next iteration.

 while ($i++ < 10) { continue; } // start next iteration

 This keyword can accept an argument for how many enclosing loops it should skip to
the end of.

 $i = 0;
 while ($i++ < 10)
 {
 for (;;) { continue 2; } // start next while iteration
 }

CHAPTER 7 ■ LOOPS

30

 In contrast to many other languages, the continue statement also applies to
switches, where it behaves the same as break . Therefore, to skip an iteration from inside a
switch, continue 2 needs to be used.

 $i = 0;
 while ($i++ < 10)
 {
 switch ($i)
 {
 case 1: continue 2; // start next while iteration
 }
 }

 Goto
 A third jump statement introduced in PHP 5.3 is goto , which performs a jump to a
specified label. A label is a name followed by a colon (:).

 goto myLabel; // jump to label
 myLabel: // label declaration

 The target label must be within the same script file and scope. Therefore, goto
cannot be used to jump into looping structures, only out of them.

 loop:
 while (!$finished)
 {
 // ...
 if ($try_again) goto loop; // restart loop
 }

 In general, the goto statement is often best avoided since it tends to make the flow of
execution difficult to follow.

31© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_8

 CHAPTER 8

 Functions

 Functions are reusable code blocks that only execute when called. They allow the code to
be divided into smaller parts that are easier to understand and reuse.

 Defining Functions
 To create a function , the function keyword is used, followed by a name, a set of parentheses,
and a code block. The naming convention 1 for functions is the same as for variables—to use
a descriptive name with each word initially capitalized, except for the first one.

 function myFunc()
 {
 echo 'Hello World';
 }

 A function code block can contain any valid PHP code, including other function
definitions.

 Calling Functions
 Once defined, a function can be called (invoked) from anywhere on the page by typing its
name followed by a set of parenthesis. Function names are case insensitive, but it is good
practice to use the same casing that they have in their definition.

 myFunc(); // "Hello World"

 A function can be called even if the function definition appears further down in the
script file.

 foo(); // ok
 function foo() {}

 1 http://www.php-fig.org/psr/psr-2/

http://www.php-fig.org/psr/psr-2/

CHAPTER 8 ■ FUNCTIONS

32

 An exception to this is where the function is only defined when a certain condition is
met. That conditional code must then be executed prior to calling the function.

 bar(); // error
 if (true) { function bar() {} }
 bar(); // ok

 Function Parameters
 The parentheses that follow the function name are used to pass arguments to the
function. To do this, the corresponding parameters must first be specified in the function
definition in the form of a comma-separated list of variables. The parameters can then be
used in the function.

 function myFunc($x, $y)
 {
 echo $x . $y;
 }

 With the parameters specified, the function can be called with the same number of
arguments.

 myFunc('Hello', ' World'); // "Hello World"

 To be precise, parameters appear in function definitions, whereas arguments appear
in function calls. However, the two terms are sometimes used interchangeably.

 Default Parameters
 It is possible to specify default values for parameters by assigning them a value inside
the parameter list. Then, if that argument is unspecified when the function is called,
the default value is used instead. For this to work as expected, it is important that the
parameters with default values are declared to the right of those without default values.

 function myFunc($x, $y = ' Earth')
 {
 echo $x . $y;
 }

 myFunc('Hello'); // "Hello Earth"

CHAPTER 8 ■ FUNCTIONS

33

 Variable Parameter Lists
 A function cannot be called with fewer arguments than is specified in its declaration, but
it may be called with more arguments. This allows for the passing of a variable number of
arguments, which can then be accessed using a couple of built-in functions. For getting
one argument at a time, there is the func_get_arg function. This function takes a single
argument, which is the parameter to be returned, starting with zero.

 function myArgs()
 {
 $x = func_get_arg(0);
 $y = func_get_arg(1);
 $z = func_get_arg(2);
 echo $x . $y . $z;
 }

 myArgs('Fee', 'Fi', 'Fo'); // "FeeFiFo"

 There are two more functions related to the argument list. The func_num_args
function gets the number of arguments passed and func_get_args returns an array
containing all of those arguments. Together they can be used to allow a function to
handle a variable number of arguments.

 function myArgs2()
 {
 $num = func_num_args();
 $args = func_get_args();
 for ($i = 0; $i < $num; $i++)
 echo $args[$i];
 }

 myArgs2('Fee', 'Fi', 'Fo'); // "FeeFiFo"

 The use of variable parameter lists were simplified in PHP 5.6. As of this version,
parameter lists may include a variadic parameter, indicated by an ellipsis (...) token,
which accepts a variable number of arguments. The variadic parameter behaves as an
array and must always be the last parameter in the list.

 function myArgs3(...$args)
 {
 foreach($args as $v) {
 echo $v;
 }
 }

 myArgs3(1, 2, 3); // "123"

CHAPTER 8 ■ FUNCTIONS

34

 As a complementary feature, the ellipsis token can also be used to unpack a
collection of values into an argument list.

 $a = [1, 2, 3];
 myArgs3(...$a); // "123"

 Return Statement
 return is a jump statement that causes the function to end its execution and return to the
location where it was called.

 function myFunc()
 {
 return; // exit function
 echo 'Hi'; // never executes
 }

 It can optionally be given a value to return, in which case it makes the function call
evaluate to that value.

 function myFunc()
 {
 // Exit function and return value
 return 'Hello';
 }

 echo myFunc(); // "Hello"

 A function without a return value automatically returns null.

 function myNull() {}

 if (myNull() === null)
 echo 'true'; // "true"

 Scope and Lifetime
 Normally, a PHP variable’s scope starts where it is declared and lasts until the end of
the page. However, a local function scope is introduced within functions. By default,
any variable used inside a function is limited to this local scope. Once the scope of the
function ends, the local variable is destroyed.

CHAPTER 8 ■ FUNCTIONS

35

 $x = 'Hello'; // global variable

 function myFunc()
 {
 $y = ' World'; // local variable
 }

 In PHP, trying to access a global variable from a function does not work and instead
creates a new local variable. In order to make a global variable accessible, the scope of
that variable must be extended to the function by declaring it with the global keyword.

 $x = 'Hello'; // global $x

 function myFunc()
 {
 global $x; // use global $x
 $x .= ' World'; // change global $x
 }

 myFunc();
 echo $x; // "Hello World"

 An alternative way to access variables from the global scope is by using the
predefined $ GLOBALS array. The variable is referenced by its name, specified as a string
without the dollar sign.

 function myFunc()
 {
 $GLOBALS['x'] .= ' World'; // change global $x
 }

 In contrast to many other languages, control structures—such as loop and
conditional statements—do not have their own variable scope. Therefore, a variable
defined in such a code block is not destroyed when the code block ends.

 if(true)
 {
 $x = 10; // global $x
 }

 echo $x; // "10"

 In addition to global and local variables, PHP also has property variables; these are
looked at in the next chapter.

CHAPTER 8 ■ FUNCTIONS

36

 Anonymous Functions
 PHP 5.3 introduced anonymous functions , which allow functions to be passed as
arguments and assigned to variables. An anonymous function is defined like a regular
function, except that it has no specified name. The function can be assigned to a variable
using the normal assignment syntax, including the semicolon. That variable can then be
called as a function.

 $say = function($name)
 {
 echo "Hello " . $name;
 };

 $say("World"); // "Hello World"

 Anonymous functions are mainly used as callback functions . This is a function
passed as an argument to another function, which is expected to call it as part of its
execution.

 function myCaller($myCallback)
 {
 echo $myCallback();
 }

 // "Hello"
 myCaller(function() { echo "Hello"; });

 In this way, functionality can be injected into an existing function, increasing its
versatility. For instance, the built-in array_map function applies its callback to each
element of its given array.

 $a = [1, 2, 3];

 $squared = array_map(function($val)
 {
 return $val * $val;
 }, $a);

 foreach ($squared as $v)
 echo $v; // "149"

 A benefit of using anonymous functions is that they allow for a concise way to define
functions that are only used once in the location where they are used. This also prevents
such throwaway functions from cluttering up the global scope.

CHAPTER 8 ■ FUNCTIONS

37

 Closures
 A closure is an anonymous function that can capture variables local to the scope it was
created in. In PHP, all anonymous functions are closures. They can specify variables to be
captured with a use clause in the function header.

 $x = 1;
 $y = 2;

 $myClosure = function($z) use ($x, $y)
 {
 return $x + $y + $z;
 };

 echo $myClosure(3); // "6"

 Generators
 A generator is a function used to generate a series of values. Each value is returned with
a yield statement. Unlike return, the yield statement saves the state of the function,
allowing it to continue from where it left off when it is called again.

 function getNum()
 {
 for ($i = 0; $i < 5; $i++) {
 yield $i;
 }
 }

 The generator function behaves as an iterator; therefore, it can be used with a
 foreach loop. The loop continues until the generator has no more values to yield.

 foreach(getNum() as $v)
 echo $v; // "01234"

 Generators were introduced in PHP 5.5. Their use was expanded in PHP 7 with the
 yield from statement, which allows a generator to yield values from another generator,
iterator, or array.

 function countToFive()
 {
 yield 1;
 yield from [2, 3, 4];
 yield 5;
 }

 foreach (countToFive() as $v)
 echo $v; // "12345"

CHAPTER 8 ■ FUNCTIONS

38

 Since generators only yield values one at a time on demand, they do not require
the whole sequence to be computed all at once and stored in memory. This can have
significant performance benefits when it comes to generating large amounts of data.

 Built-in Functions
 PHP comes with a large number of built-in functions that are always available, such as
string and array handling functions. Other functions depend on what extensions PHP
is compiled with; for example, the MySQLi extension for communicating with MySQL
databases. For a complete reference of the built-in PHP functions, see the PHP Function
Reference. 2

 2 http://www.php.net/manual/en/funcref.php

http://www.php.net/manual/en/funcref.php

39© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_9

 CHAPTER 9

 Class

 A class is a template used to create objects. To define one, the class keyword is used,
followed by a name and a code block. The naming convention for classes is mixed case,
meaning that each word should be initially capitalized.

 class MyRectangle {}

 The class body can contain properties and methods. Properties are variables that
hold the state of the object, whereas methods are functions that define what the object
can do. Properties are also known as fields or attributes in other languages. In PHP, they
need to have an explicit access level specified. In the following, the public access level is
used, which gives unrestricted access to the property.

 class MyRectangle
 {
 public $x, $y;
 function newArea($a, $b) { return $a * $b; }
 }

 To access members from inside the class, the $ this pseudo variable is used along
with the single arrow operator (->). The $this variable is a reference to the current
instance of the class and can only be used within an object context. Without it, $x and $y
would just be seen as local variables.

 class MyRectangle
 {
 public $x, $y;

 function newArea($a, $b)
 {
 return $a * $b;
 }

CHAPTER 9 ■ CLASS

40

 function getArea()
 {
 return $this->newArea($this->x, $this->y);
 }
 }

 Instantiating an Object
 To use a class’s members from outside the enclosing class, an object of the class must first
be created. This is done using the new keyword , which creates a new object or instance.

 $r = new MyRectangle(); // object instantiated

 The object contains its own set of properties, which can hold values that are different
from those of other instances of the class. As with functions, objects of a class may be
created even if the class definition appears further down in the script file.

 $r = new MyDummy(); // ok
 class MyDummy {};

 Accessing Object Members
 To access members that belong to an object, the single arrow operator (->) is needed. It
can be used to call methods or to assign values to properties.

 $r->x = 5;
 $r->y = 10;
 $r->getArea(); // 50

 Another way to initialize properties is to use initial property values.

 Initial Property Values
 If a property needs to have an initial value , a clean way is to assign the property at the
same time that it is declared. This initial value is then set when the object is created.
Assignments of this kind must be a constant expression. It cannot, for example, be a
variable or a mathematical expression.

 class MyRectangle
 {
 public $x = 5, $y = 10;
 }

CHAPTER 9 ■ CLASS

41

 Constructor
 A class can have a constructor , which is a special method used to initialize (construct)
the object. This method provides a way to initialize properties, which is not limited to
constant expressions. In PHP, the constructor starts with two underscores followed by the
word construct . Methods like these are known as magic methods .

 class MyRectangle
 {
 public $x, $y;

 function __construct()
 {
 $this->x = 5;
 $this->y = 10;
 echo "Constructed";
 }
 }

 When a new instance of this class is created, the constructor is called, which in this
example sets the properties to the specified values. Note that any initial property values
are set before the constructor is run.

 $r = new MyRectangle(); // "Constructed"

 Since this constructor takes no arguments, the parentheses may optionally be left out.

 $r = new MyRectangle; // "Constructed"

 Just as any other method, the constructor can have a parameter list. It can be used to
set the property values to the arguments passed when the object is created.

 class MyRectangle
 {
 public $x, $y;

 function __construct($x, $y)
 {
 $this->x = $x;
 $this->y = $y;
 }
 }

 $r = new MyRectangle(5,10);

CHAPTER 9 ■ CLASS

42

 Destructor
 In addition to the constructor, classes can also have a destructor. This magic method
starts with two underscores followed by the word destruct . It is called as soon as there
are no more references to the object, before the object is destroyed by the PHP garbage
collector .

 class MyRectangle
 {
 // ...
 function __destruct() { echo "Destructed"; }
 }

 To test the destructor, the unset function can manually remove all references to the
object.

 unset($r); // "Destructed"

 Bear in mind that the object model was completely rewritten in PHP 5. Therefore,
many features of classes, such as destructors, do not work in earlier versions of the
language.

 Case Sensitivity
 Whereas variable names are case sensitive , class names in PHP are case insensitive—as
are function names, keywords, and built-in constructs such as echo . This means that a
class named MyClass can also be referenced as myclass or MYCLASS .

 class MyClass {}
 $o1 = new myclass(); // ok
 $o2 = new MYCLASS(); // ok

 Object Comparison
 When using the “equal to” operator (==) on objects, these objects are considered equal if
the objects are instances of the same class and their properties have the same values and
types. In contrast, the strict “equal to” operator (===) returns true only if the variables
refer to the same instance of the same class.

 class Flag
 {
 public $flag = true;
 }

CHAPTER 9 ■ CLASS

43

 $a = new Flag();
 $b = new Flag();

 $c = ($a == $b); // true (same values)
 $d = ($a === $b); // false (different instances)

 Anonymous Classes
 Support for anonymous classes were introduced in PHP 7. Such a class is useful in place
of a named class when only a single, throwaway object is needed.

 $obj = new class {};

 The implementation of the anonymous class, and the object created from it, are no
different from a named class; for instance, they can use constructors in the same way as
any named class.

 $o = new class('Hi')
 {
 public $x;
 public function __construct($a)
 {
 $this->x = $a;
 }
 };

 echo $o->x; // "Hi";

 Closure Object
 Anonymous functions in PHP are also closures , as they have the ability to capture a
context from outside of the function’s scope. In addition to variables, this context can
also be an object’s scope. This creates a so-called closure object , which has access to
the properties of that object. An object closure is made using the bindTo method. This
method accepts two arguments: the object to which the closure is bound and the class
scope that it is associated with. To access non-public members (private or protected), the
name of the class or object must be specified as the second argument.

 class C { private $x = 'Hi'; }

 $getC = function() { return $this->x; };
 $getX = $getC->bindTo(new C, 'C');
 echo $getX(); // "Hi"

CHAPTER 9 ■ CLASS

44

 This example uses two closures. The first closure, $getC , defines the method for
retrieving the property. The second closure, $getX , is a duplicate of $getC , to which
the object and class scope has been bound. PHP 7 simplified this by providing a
shorthand—a better-performing way of temporarily binding and then calling a closure in
the same operation.

 // PHP 7+ code
 $getX = function() { return $this->x; };
 echo $getX->call(new C); // "Hi"

45© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_10

 CHAPTER 10

 Inheritance

 Inheritance allows a class to acquire the members of another class. In the following
example, the Square class inherits from Rectangle , specified by the extends keyword.
 Rectangle then becomes the parent class of Square , which in turn becomes a child class
of Rectangle . In addition to its own members, Square gains all accessible (non-private)
members in Rectangle , including any constructor.

 // Parent class (base class)
 class Rectangle
 {
 public $x, $y;
 function __construct($a, $b)
 {
 $this->x = $a;
 $this->y = $b;
 }
 }

 // Child class (derived class)
 class Square extends Rectangle {}

 When creating an instance of Square , two arguments must now be specified because
 Square has inherited Rectangle ’s constructor.

 $s = new Square(5,10);

 The properties inherited from Rectangle can also be accessed from the Square
object.

 $s->x = 5; $s->y = 10;

 A class in PHP may only inherit from one parent class and the parent must be
defined before the child class in the script file.

CHAPTER 10 ■ INHERITANCE

46

 Overriding Members
 A member in a child class can redefine a member in its parent class to give it a new
implementation. To override an inherited member, it just needs to be redeclared with the
same name. As shown in the following, the Square constructor overrides the constructor
in Rectangle .

 class Square extends Rectangle
 {
 function __construct($a)
 {
 $this->x = $a;
 $this->y = $a;
 }
 }

 With this new constructor, only a single argument is used to create the Square .

 $s = new Square(5);

 Because the inherited constructor of Rectangle is overridden, Rectangle ’s
constructor is no longer called when the Square object is created. It is up to the developer
to call the parent constructor, if necessary. This is done by prepending the call with the
 parent keyword and a double colon. The double colon is known as the scope resolution
operator (::).

 class Square extends Rectangle
 {
 function __construct($a)
 {
 parent::__construct($a,$a);
 }
 }

 The parent keyword is an alias for the parent’s class name, which may alternatively
be used. In PHP, it is possible to access overridden members that are any number of levels
deep in the inheritance hierarchy using this notation.

 class Square extends Rectangle
 {
 function __construct($a)
 {
 Rectangle::__construct($a,$a);
 }
 }

CHAPTER 10 ■ INHERITANCE

47

 Like constructors, the parent destructor is not called implicitly if it is overridden.
It, too, would have to be explicitly called with parent::__destruct() from the child
destructor.

 Final Keyword
 To stop a child class from overriding a method, it can be defined as final . A class itself
can also be defined as final to prevent any class from extending it.

 final class NotExtendable
 {
 final function notOverridable() {}
 }

 Instanceof Operator
 As a safety precaution, you can test to see whether an object can be cast to a specific class
by using the instanceof operator. This operator returns true if the left side object can be
cast into the right side type without causing an error. This is true when the object is an
instance of, or inherits from, the right-side class.

 $s = new Square(5);
 $s instanceof Square; // true
 $s instanceof Rectangle; // true

49© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_11

 CHAPTER 11

 Access Levels

 Every class member has an accessibility level that determines where the member is
visible. There are three of them available in PHP: public , protected , and private .

 class MyClass
 {
 public $myPublic; // unrestricted access
 protected $myProtected; // enclosing or child class
 private $myPrivate; // enclosing class only
 }

 Private Access
 All members, regardless of access level, are accessible in the class in which they are
declared—the enclosing class. This is the only place where a private member can be
accessed.

 class MyClass
 {
 public $myPublic = 'public';
 protected $myProtected = 'protected';
 private $myPrivate = 'private';

 function test()
 {
 echo $this->myPublic; // allowed
 echo $this->myProtected; // allowed
 echo $this->myPrivate; // allowed
 }
 }

 Unlike properties, methods do not have to have an explicit access level specified.
They default to public access unless set to another level.

CHAPTER 11 ■ ACCESS LEVELS

50

 Protected Access
 A protected member can be accessed from inside the child or the parent classes, as well
as from within the enclosing class.

 class MyChild extends MyClass
 {
 function test()
 {
 echo $this->myPublic; // allowed
 echo $this->myProtected; // allowed
 echo $this->myPrivate; // inaccessible
 }
 }

 Public Access
 Public members have unrestricted access. In addition to anywhere a protected member
can be accessed, a public member can also be reached through an object variable.

 $m = new MyClass();
 echo $m->myPublic; // allowed
 echo $m->myProtected; // inaccessible
 echo $m->myPrivate; // inaccessible

 Var Keyword
 Before PHP 5, the var keyword was used to declare properties. To maintain backward
compatibility, this keyword is still usable and gives public access, just like the public
modifier.

 class MyVars
 {
 var $x, $y; // deprecated property declaration
 }

 Object Access
 In PHP, objects of the same class have access to each other’s private and protected
members. This behavior is different from many other programming languages where
such access is not allowed.

CHAPTER 11 ■ ACCESS LEVELS

51

 class MyClass
 {
 private $myPrivate;

 function setPrivate($obj, $val) {
 $obj->myPrivate = $val; // set private property
 }
 }
 $a = new MyClass();
 $b = new MyClass();
 $a->setPrivate($b, 10);

 Access Level Guideline
 As a guideline , when choosing an access level, it is generally best to use the most
restrictive level possible. This is because the more places a member can be accessed, the
more places it can be accessed incorrectly, which makes the code harder to debug. Using
restrictive access levels also makes it easier to modify the class without breaking the code
for any other developers using that class.

53© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_12

 CHAPTER 12

 Static

 The static keyword can be used to declare properties and methods that can be accessed
without having to create an instance of the class. Static (class) members only exist in one
copy, which belongs to the class itself, whereas instance (non-static) members are created
as new copies for each new object.

 class MyCircle
 {
 // Instance members (one per object)
 public $r = 10;
 function getArea() {}

 // Static/class members (only one copy)
 static $pi = 3.14;
 static function newArea($a) {}
 }

 Static methods cannot use instance members since these methods are not part of an
instance. They can use other static members, however.

 Referencing Static Members
 Unlike instance members, static members are not accessed using the single arrow
operator (->). Instead, to reference static members inside a class, the member must be
prefixed with the self keyword followed by the scope resolution operator (::). The self
keyword is an alias for the class name, so alternatively, the actual name of the class can be
used.

 static function newArea($a)
 {
 return self::$pi * $a * $a; // ok
 return MyCircle::$pi * $a * $a; // alternative
 }

CHAPTER 12 ■ STATIC

54

 This same syntax is used to access static members from an instance method.
Note that in contrast to static methods, instance methods can use both static and instance
members.

 function getArea()
 {
 return self::newArea($this->$r);
 }

 To access static members from outside the class, the name of the class needs to be
used, followed by the scope resolution operator (::).

 class MyCircle
 {
 static $pi = 3.14;

 static function newArea($a)
 {
 return self::$pi * $a * $a;
 }
 }

 echo MyCircle::$pi; // "3.14"
 echo MyCircle::newArea(10); // "314"

 The advantage of static members can be seen here; they can be used without having
to create an instance of the class. Therefore, methods should be declared static if they
perform a generic function independently of instance variables. Likewise, properties
should be declared static if there is only need for a single instance of the variable.

 Static Variables
 Local variables can be declared static to make the function remember its value. Such a
static variable only exists in the local function’s scope, but it does not lose its value when
the function ends. This can be used to count the number of times a function is called, for
example.

 function add()
 {
 static $val = 0;
 echo $val++;
 }

 add(); // "0"
 add(); // "1"
 add(); // "2"

CHAPTER 12 ■ STATIC

55

 The initial value that a static variable is given is only set once. Keep in mind that
static properties and static variables may only be initialized with a constant; but not with
an expression, such as another variable or a function return value.

 Late Static Bindings
 As mentioned before, the self keyword is an alias for the class name of the enclosing
class. This means that the keyword refers to its enclosing class even when it is called from
the context of a child class.

 class MyParent
 {
 protected static $val = 'parent';

 public static function getVal()
 {
 return self::$val;
 }
 }

 class MyChild extends MyParent
 {
 protected static $val = 'child';
 }

 echo MyChild::getVal(); // "parent"

 To get the class reference to evaluate to the actual calling class, the static keyword
needs to be used instead of the self keyword. This feature is called late static bindings
and it was added in PHP 5.3.

 class MyParent
 {
 protected static $val = 'parent';

 public static function getLateBindingVal()
 {
 return static::$val;
 }
 }

 class MyChild extends MyParent
 {
 protected static $val = 'child';
 }
 echo MyChild::getLateBindingVal(); // "child"

57© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_13

 CHAPTER 13

 Constants

 A constant is a variable with a value that cannot be changed by the script. Therefore, such
a value must be assigned at the same time that the constant is created. PHP provides two
methods for creating constants: the const modifier and the define function.

 Const
 The const modifier is used to create class constants. Unlike regular properties, class
constants do not have an access level specified because they are always publicly visible.
They also do not use the dollar sign parser token ($). The naming convention for
constants is all uppercase, with underscores separating each word.

 class MyCircle
 {
 const PI = 3.14;
 }

 Constants must be assigned a value when they are created. Like static properties, a
constant may only be initialized with a constant value, and not with an expression. Class
constants are referenced in the same way as static properties, except that they do not use
the dollar sign.

 echo MyCircle::PI; // "3.14"

 The const modifier may not be applied to local variables or parameters. However, as
of PHP 5.3, const can be used to create global constants. Such a constant is defined in the
global scope and can be accessed anywhere in the script.

 const PI = 3.14;
 echo PI; // "3.14"

CHAPTER 13 ■ CONSTANTS

58

 Define
 The define function can create both global and local constants, but not class constants.
The first argument to this function is the constant’s name and the second is its value.

 define('DEBUG', 1);

 Just like constants created with const , define constants are used without the dollar
sign and their value cannot be modified.

 echo DEBUG; // "1"

 Like constants created with const , the value for define may be any scalar data
type: integer, float, string, or bool. Unlike const , however, the define function allows an
expression to be used in the assignment, such as a variable or the result of a mathematical
expression.

 define('ONE', 1); // 1
 define('TWO', ONE+1); // 2

 Constants are case sensitive by default. However, the define function takes a third
optional argument that may be set to true to create a case-insensitive constant.

 define('DEBUG', 1, true);
 echo debug; // "1"

 To check whether a constant already exists, the defined function can be used. This
function works for constants created with const or define .

 if (!defined('PI'))
 define('PI', 3.14);

 PHP 7 made it possible to create constant arrays using the define function. Support
for constant arrays created with const has existed since PHP 5.6.

 const CA = [1, 2, 3]; // PHP 5.6 or later
 define('DA', [1, 2, 3]); // PHP 7 or later

 Const and define
 The const modifier creates a compile-time constant, so the compiler replaces all usage of
the constant with its value. In contrast, define creates a run-time constant that is not set
until run-time. This is the reason why define constants may be assigned with expressional
values, whereas const requires constant values that are known at compile-time.

 const PI = 3.14; // compile-time constant
 define('E', 2.72); // run-time constant

CHAPTER 13 ■ CONSTANTS

59

 Only const may be used for class constants and only define for local constants.
However, when creating global constants, both const and define are allowed. In these
circumstances, using const is generally preferable, as compile-time constants are slightly
faster than run-time constants. The main exception is when the constant is conditionally
defined, or an expressional value is required, in which case define must be used.

 Constant Guideline
 In general, it is a good idea to create constants instead of variables if their values do not
need to be changed. This ensures that the variables are not changed anywhere in the
script by mistake, which in turn helps to prevent bugs.

 Magic Constants
 PHP provides eight predefined constants, as shown in Table 13-1 . These are called magic
 constants because their values change, depending on where they are used.

 Table 13-1. Magic Constants

 Name Description

 __LINE__ Current line number of the file.

 __FILE__ Full path and filename of the file.

 __DIR__ Directory of the file.

 __FUNCTION__ Function name.

 __CLASS__ Class name including namespace.

 __TRAIT__ Trait name including namespace.

 __METHOD__ Class method name.

 __NAMESPACE__ Current namespace.

 Magic constants are especially useful for debugging purposes. For example, the value
of __LINE__ depends on the line in which it appears in the script.

 if(!isset($var))
 {
 echo '$var not set on line ' . __LINE__;
 }

61© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_14

 CHAPTER 14

 Interface

 An interface specifies methods that classes using the interface must implement. They are
defined with the interface keyword, followed by a name and a code block . Their naming
convention is to start with a small i and then to have each word initially capitalized.

 interface iMyInterface {}

 Interface Signatures
 The code block for an interface can contain signatures for instance methods. These
methods cannot have any implementations. Instead, their bodies are replaced by
semicolons. Interface methods must always be public.

 interface iMyInterface
 {
 public function myMethod();
 }

 Additionally, interfaces may define constants. These interface constants behave just
as class constants, except that they cannot be overridden.

 interface iMyInterface
 {
 const PI = 3.14;
 }

 An interface may not inherit from a class, but it may inherit from another interface,
which effectively combines the interfaces into one.

 interface i1 {}
 interface i2 extends i1 {}

CHAPTER 14 ■ INTERFACE

62

 Interface Example
 The following example shows an interface called iComparable , which has a single method
named Compare . Note that this method makes use of type hinting to make sure that the
method is called with the correct type. This functionality is covered in a later chapter.

 interface iComparable
 {
 public function compare(iComparable $o);
 }

 The Circle class implements this interface by using the implements keyword after
the class name, followed by the interface name. If the class also has an extends clause,
the implements clause needs to be placed after it. Bear in mind that although a class
can only inherit from one parent class, it may implement any number of interfaces by
specifying them in a comma-separated list.

 class Circle implements iComparable
 {
 public $r;
 }

 Because Circle implements iComparable , it must define the compare() method .
For this class, the method returns the difference between the circle radiuses. The
implemented method must be public, in addition to having the same signature as the
method defined in the interface. It may also have more parameters, as long as they are
optional.

 class Circle implements iComparable
 {
 public $r;

 public function compare(iComparable $o)
 {
 return $this->r - $o->r;
 }
 }

CHAPTER 14 ■ INTERFACE

63

 Interface Usages
 Interfaces allow for multiple inheritance of class design without the complications
associated with allowing multiple inheritance of functionality. The main benefit of
requiring a specific class design can be seen with the iComparable interface, which
defines a specific functionality that classes can share. It allows developers to use interface
members without having to know the actual type of a class. To illustrate, the following
example shows a simple method that takes two iComparable objects and returns the
largest one.

 function largest(iComparable $a, iComparable $b)
 {
 return ($a->compare($b) > 0) ? $a : $b;
 }

 This method works for any two objects of the same type that implement the
 iComparable interface. It works regardless of what type the objects are since the method
only uses the functionality exposed through that interface.

 Interface Guideline
 An interface provides a design for a class without any implementation. It is a contract
by which classes that implement it agree to provide certain functionality. This has two
benefits. First, it provides a way to make sure that developers implement certain methods.
Second, because these classes are guaranteed to have certain methods, they can be used
even without knowing the class’s actual type, which allows the code to be more flexible.

65© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_15

 CHAPTER 15

 Abstract

 An abstract class provides a partial implementation that other classes can build upon.
When a class is declared as abstract, it means that the class can contain incomplete
methods that must be implemented in child classes, in addition to normal class
members.

 Abstract Methods
 In an abstract class, any method can be declared abstract. These methods are then left
unimplemented and only their signatures are specified, while their code blocks are
replaced by semicolons.

 abstract class Shape
 {
 abstract public function myAbstract();
 }

 Abstract Example
 To give an example, the following class has two properties and an abstract method.

 abstract class Shape
 {
 private $x = 100, $y = 100;
 abstract public function getArea();
 }

 If a class inherits from this abstract class, it is then forced to override the abstract
method. The method signature must match, except for the access level , which can be
made less restricted.

CHAPTER 15 ■ ABSTRACT

66

 class Rectangle extends Shape

 {
 public function getArea()
 {
 return $this->x * $this->y;
 }
 }

 It is not possible to instantiate an abstract class. They serve only as parents for other
classes, partly dictating their implementation .

 $s = new Shape(); // compile-time error

 However, an abstract class may inherit from a non-abstract (concrete) class .

 class NonAbstract {}
 abstract class MyAbstract extends NonAbstract {}

 Abstract Classes and Interfaces
 Abstract classes are in many ways similar to interfaces. They can both define member
signatures that the deriving classes must implement, and neither one of them can be
instantiated. The key differences are, first, that the abstract class can contain non-abstract
members, while the interface cannot. Second, a class can implement any number of
interfaces but only inherit from one class, abstract or not.

 // Defines default functionality and definitions
 abstract class Shape
 {
 public $x = 100, $y = 100;
 abstract public function getArea();
 }
 // Class is a Shape
 class Rectangle extends Shape { /*...*/ }

 // Defines a specific functionality
 interface iComparable
 {
 function compare();
 }
 // Class can be compared
 class MyClass implements iComparable { /*...*/ }

CHAPTER 15 ■ ABSTRACT

67

 Abstract Guideline
 An abstract class provides a partially implemented base class that dictates how child
classes must behave. They are most useful when child classes share some similarities,
but differ in other implementations that child classes are required to define. Just like
interfaces, abstract classes are useful constructs in object-oriented programming that
help developers follow good coding standards.

69© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_16

 CHAPTER 16

 Traits

 A trait is a group of methods that can be inserted into classes. They were added in
PHP 5.4 to enable greater code reuse without the added complexity that comes from
allowing multiple inheritance. Traits are defined with the trait keyword, followed by
a name and a code block. The naming convention is the same as for classes, with each
word initially capitalized. The code block may only contain static and instance methods .

 trait PrintFunctionality
 {
 public function myPrint() { echo 'Hello'; }
 }

 Classes that need the functionality that a trait provides can include it with the use
keyword, followed by the trait’s name. The trait’s methods then behave as if they were
directly defined in that class.

 class MyClass
 {
 // Insert trait methods
 use PrintFunctionality;
 }

 $o = new MyClass();
 $o->myPrint(); // "Hello"

 A class may use multiple traits by placing them in a comma-separated list. Similarly,
a trait may be composed from one or more other traits.

CHAPTER 16 ■ TRAITS

70

 Inheritance and Traits
 Trait methods override inherited methods. Likewise, methods defined in the class
override methods inserted by a trait.

 class MyParent
 {
 public function myPrint() { echo 'Base'; }
 }

 class MyChild extends MyParent
 {
 // Overrides inherited method
 use PrintFunctionality;
 // Overrides trait inserted method
 public function myPrint() { echo 'Child'; }
 }

 $o = new MyChild();
 $o->myPrint(); // "Child"

 Trait Guidelines
 Single inheritance sometimes forces the developer to make a choice between code reuse
and a conceptually clean class hierarchy. To achieve greater code reuse, methods can be
moved near the root of the class hierarchy, but then classes start to have methods that
they do not need, which reduces the understandability and maintainability of the code.
On the other hand, enforcing conceptual cleanliness in the class hierarchy often leads
to code duplication, which may cause inconsistencies. Traits provide a way to avoid this
shortcoming with single inheritance, which enables code reuse that is independent of the
class hierarchy.

71© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_17

 CHAPTER 17

 Importing Files

 The same code often needs to be called on multiple pages. This can be done by first
placing the code inside a separate file and then including that file using the include
statement. This statement takes all the text in the specified file and includes it in the
script, as if the code had been copied to that location. Just like echo , include is a special
language construct and not a function, so parentheses should not be used.

 <?php
 include 'myfile.php';
 ?>

 When a file is included, parsing changes to HTML mode at the beginning of the
target file and resumes PHP mode again at the end. For this reason, any code inside the
included file that needs to be executed as PHP code must be enclosed within PHP tags.

 <?php
 // myfile.php
 ?>

 Include Path
 An include file can either be specified with a relative path, an absolute path, or without
a path. A relative file path is relative to the importing file’s directory. An absolute file path
includes the full file path.

 // Relative path
 include 'myfolder\myfile.php';

 // Absolute path
 include 'C:\xampp\htdocs\myfile.php';

CHAPTER 17 ■ IMPORTING FILES

72

 When a relative path or no path is specified, include first searches for the file in the
current working directory, which defaults to the directory of the importing script. If the
file is not found there, include checks the folders specified by the include_path 1 directive
defined in php.ini before failing.

 // No path
 include 'myfile.php';

 In addition to include , there are three other language constructs available for
importing the content of one file into another: require , include_once , and require_once .

 Require
 The require construct includes and evaluates the specified file. It is identical to include ,
except in how it handles failure. When a file import fails, require halts the script with an
error; whereas include only issues a warning. An import may fail either because the file is
not found or because the user running the web server does not have read access to it.

 require 'myfile.php'; // halt on error

 Generally, it is best to use require for any complex PHP application or CMS site.
That way, the application does not attempt to run when a key file is missing. For less
critical code segments and simple PHP web sites, include may suffice, in which case PHP
shows the output, even if the included file is missing.

 Include_ once
 The include_once statement behaves like include , except that if the specified file has
already been included, it is not included again.

 include_once 'myfile.php'; // include only once

 Require_ once
 The require_once statement works like require , but it does not import a file if it has
already been imported.

 require_once 'myfile.php'; // require only once

 1 http://www.php.net/manual/en/ini.core.php#ini.include-path

http://www.php.net/manual/en/ini.core.php#ini.include-path

CHAPTER 17 ■ IMPORTING FILES

73

 The include_once and require_once statements may be used instead of include
and require in cases, where the same file might be imported more than once during
a particular execution of a script. This avoids errors caused by function and class
redefinitions, for example.

 Return
 It is possible to execute a return statement inside an imported file. This stops the
execution and returns to the script that called the file import.

 <?php
 // myimport.php
 return 'OK';
 ?>

 If a return value is specified, the import statement evaluates to that value, just like a
normal function.

 <?php
 // myfile.php
 if ((include 'myimport.php') == 'OK')
 echo 'OK';
 ?>

 _ Autoload
 For large web applications, the number of includes required in every script may be
substantial. This can be avoided by defining an __autoload function. This function is
automatically invoked when an undefined class or interface is used to try to load that
definition. It takes one parameter, which is the name of the class or interface that PHP is
looking for.

 function __autoload($class_name)
 {
 include $class_name . '.php';
 }

 // Attempt to auto include MyClass.php
 $obj = new MyClass();

CHAPTER 17 ■ IMPORTING FILES

74

 A good coding practice to follow when writing object-oriented applications is to have
one source file for every class definition, and to name the file according to the class name.
Following this convention, the __autoload function is able to load the class—provided
that it is in the same folder as the script file that needed it.

 <?php
 // myclass.php
 class MyClass {}
 ?>

 If the file is located in a subfolder, the class name can include underscore characters
to symbolize this. The underscore characters then need to be converted into directory
separators in the __ autoload function.

75© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_18

 CHAPTER 18

 Type Declarations

 Type declarations allow a function to declare the expected types of their parameters and
return value. This permits the PHP engine to enforce that the specified types are used.

 Argument Type Declarations
 Early versions of PHP relied exclusively on proper documentation of functions for
developers to know what arguments a function accepts. To allow for functions that are
more robust, PHP 5 began to introduce argument type declarations , permitting the type
of a function parameter to be specified. Valid types for type declarations are shown in
Table 18-1 , along with the PHP version in which these types were added.

 Table 18-1. Type Declarations

 Name Description Version

 class name Argument must be an object or a child of this class. PHP 5.0

 interface name Argument must be an object implementing this interface. PHP 5.0

 array Argument must be an array. PHP 5.1

 callable Argument must be callable as a function. PHP 5.4

 bool Argument must be a Boolean value. PHP 7.0

 float Argument must be a floating-point number. PHP 7.0

 int Argument must be an integer. PHP 7.0

 string Argument must be a string. PHP 7.0

 A type declaration is set by prefixing the parameter with the type in the function
signature. The following is an example using the array pseudo type introduced in PHP 5.1.

CHAPTER 18 ■ TYPE DECLARATIONS

76

 function myPrint(array $a)
 {
 foreach ($a as $v) { echo $v; }
 }

 myPrint(array(1,2,3)); // "123"

 Failing to satisfy the type hint results in a fatal error. This gives a quick way for the
developer to detect when an invalid argument is used.

 myPrint('Test'); // error

 The callable pseudo type was added in PHP 5.4. With this type hint in place, the
argument must be a callable function, method, or object. Language constructs such as
 echo are not allowed, but anonymous functions may be used, as in the following example.

 function myCall(callable $callback, $data)
 {
 $callback($data);
 }

 $say = function($s) { echo $s; };
 myCall($say, 'Hi'); // "Hi";

 To pass a method as a callback function, both the object and the method name
need to be grouped together as an array.

 class MyClass {
 function myCallback($s) {
 echo $s;
 }
 }

 $o = new MyClass();
 myCall(array($o, 'myCallback'), 'Hi'); // "Hi"

 Type declarations for scalar types—including bool, int, float, and string—were added
in PHP 7. The following is a simple example using the bool type.

 function isTrue(bool $b)
 {
 return ($b === true);
 }

 echo isTrue(true); // "1"
 echo isTrue(false); // ""

CHAPTER 18 ■ TYPE DECLARATIONS

77

 It is a good idea to use type declarations for functions that rely on an argument
being of a specific type. That way, if this function is mistakenly passed an argument of the
incorrect type, it immediately triggers an error. Without a type declaration, the function
may fail silently, making the error that much more difficult to detect.

 Return Type Declarations
 Support for return type declarations was added in PHP 7 as a way to prevent unintended
return values. The return type is declared after the parameter list. The same types are
allowed as for argument type declarations.

 function f(): array {
 return [];
 }

 When used with an interface, type declarations force implementing classes to match
the same type declarations.

 interface I {
 static function myArray(array $a): array;
 }

 class C implements I {
 static function myArray(array $a): array {
 return $a;
 }
 }

 Strict Typing
 The default behavior in PHP is to attempt to convert scalar values of incorrect type into
the expected type. For instance, a function expecting a string can still be called with an
integer argument, because an integer can be converted into a string.

 function showString(string $s) {
 echo $s;
 }

 showString(5); // "5"

CHAPTER 18 ■ TYPE DECLARATIONS

78

 Strong type checking can be enabled in a specific source file by placing the following
declaration as the first statement in that file.

 declare(strict_types=1);

 This affects both argument and return type declarations of scalar type, which must
then be of the exact type declared in the function.

 showString(5); // Fatal error: Uncaught TypeError

79© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_19

 CHAPTER 19

 Type Conversions

 PHP automatically converts a variable’s data type as necessary, given the context in which
it is used. For this reason, explicit type conversions are seldom required. Nonetheless, the
type of a variable or expression may be changed by performing an explicit type cast.

 Explicit Casts
 An explicit cast is performed by placing the desired data type in parentheses before the
variable or value that is to be evaluated. In the following example, the explicit cast forces
the bool variable to be evaluated as an int.

 $myBool = false;
 $myInt = (int)$myBool; // 0

 One use for explicit casts can be seen when the bool variable is sent as output to the page.
Due to automatic type conversions, the false value becomes an empty string; therefore, it is
not displayed. By first converting it to an integer, the false value shows up as 0 instead.

 echo $myBool; // ""
 echo (int)$myBool; // "0"

 Allowed casts are listed in Table 19-1 .

 Table 19-1. Allowed Type Casts

 Name Description

 (int), (integer) Cast to int

 (bool), (boolean) Cast to bool

 (float), (double), (real) Cast to float

 (string) Cast to string

 (array) Cast to array

 (object) Cast to object

 (unset) Cast to null

CHAPTER 19 ■ TYPE CONVERSIONS

80

 To give some examples, the array cast converts a scalar type to an array with a single
element. It performs the same function as using the array constructor.

 $myInt = 10;
 $myArr = (array)$myInt;
 $myArr = array($myInt); // same as above
 echo $myArr[0]; // "10"

 If a scalar type such as int is cast to object, it becomes an instance of the built-in
 stdClass class. The value of the variable is stored in a property of this class, called scalar .

 $myObj = (object)$myInt;
 echo $myObj->scalar; // "10"

 The unset cast makes the variable evaluate to null. Despite its name, it does not
actually unset the variable. The cast merely exists for the sake of completeness, because
null is considered a data type.

 $myNull = (unset)$myInt;
 $myNull = null; // same as above

 Set type
 An explicit cast does not change the type of the variable it precedes, only how it is
evaluated in that expression. To change the type of a variable, the settype function can
be used, which takes two arguments. The first is the variable to be converted and the
second is the data type given as a string.

 $myVar = 1.2;
 settype($myVar, 'int'); // convert variable to int

 Alternatively, a type conversion can be performed by storing the result of an explicit
cast back into the same variable.

 $myVar = 1.2;
 $myVar = (int)$myVar; // 1

 Get type
 Related to settype is the gettype function , which returns the type of the supplied
argument as a human-readable string.

 $myBool = true;
 echo gettype($myBool); // "boolean"

81© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_20

 CHAPTER 20

 Variable Testing

 As a web-focused language, it is common in PHP to process user-supplied data. Such
data needs to be tested before it is used to confirm that it exists and has a valid value. PHP
provides a number of built-in constructs that can be used for this purpose.

 Isset
 The isset language construct returns true if the variable exists and has been assigned a
value other than null.

 isset($a); // false

 $a = 10;
 isset($a); // true

 $a = null;
 isset($a); // false

 Empty
 The empty construct checks whether the specified variable has an empty value— such as
null, 0, false, or an empty string—and returns true if that is the case. It also returns true if
the variable does not exist.

 empty($b); // true

 $b = false;
 empty($b); // true

CHAPTER 20 ■ VARIABLE TESTING

82

 Is_null
 The is_null construct can be used to test whether a variable is set to null.

 $c = null;
 is_null($c); // true

 $c = 10;
 is_null($c); // false

 If the variable does not exist, is_null also returns true, but with an error notice
because it is not supposed to be used with uninitialized variables.

 is_null($d); // true (undefined variable notice)

 A strict equality check against null is functionally equivalent to using the is_null
construct. Using this operator instead is often preferred because it is more readable and
marginally faster, as it does not involve a function call overhead.

 $c = null;
 $c === null; // true

 Unset
 Another language construct that is useful to know about is unset , which deletes a variable
from the current scope.

 $e = 10;
 unset($e); // delete $e

 When a global variable is made accessible in a function with the global keyword,
this code actually creates a local reference to the global variable in the $GLOBALS array.
For this reason, attempting to unset a global variable in a function only deletes the local
reference. To delete the global variable from a function’s scope, the unset has to be made
directly on the $GLOBALS array.

 function myUnset()
 {
 // Make $o a reference to $GLOBALS['o']
 global $o;

 // Remove the reference variable
 unset($o);

 // Remove the global variable
 unset($GLOBALS['o']);
 }

CHAPTER 20 ■ VARIABLE TESTING

83

 Unsetting a variable is slightly different from setting the variable to null. When
a variable is set to null, the variable still exists, but the variable content it held is
immediately freed. In contrast, unsetting a variable deletes the variable, but the memory
is still considered to be in use until the garbage collector clears it. Performance issues
aside, using unset is recommended because it makes the code’s intent clearer.

 $var = null; // free memory
 unset($var); // delete variable

 Keep in mind that, most of the time, it is not necessary to manually unset variables,
because the PHP garbage collector automatically deletes variables when they go out
of scope. However, if a server performs memory-intensive tasks, then unsetting those
variables manually allows the server to handle a greater number of simultaneous requests
before running out of memory.

 Null Coalescing Operator
 The null coalescing operator (??) was added in PHP 7 as a shortcut for the common
case of using a ternary with isset . It returns its first operand if it exists and is not null;
otherwise, it returns its second operand.

 $x = null;
 $name = $x ?? 'unknown'; // "unknown"

 This statement is equivalent to the following ternary operation, which uses the isset
construct.

 $name = isset($x) ? $x : 'unknown';

 Determining Types
 PHP has several useful functions for determining the type of a variable. These functions
can be seen in Table 20-1 .

CHAPTER 20 ■ VARIABLE TESTING

84

 To give an example, the is_numeric function returns true if the argument contains
either a number or a string that can be evaluated to a number.

 is_numeric(10.5); // true (float)
 is_numeric('33'); // true (numeric string)
 is_numeric('text'); // false (non-numeric string)

 Variable Information
 PHP has three built-in functions for retrieving information about variables : print_r ,
 var_dump , and var_export . The print_r function displays the value of a variable in a
human-readable way. It is useful for debugging purposes.

 $a = array('one', 'two', 'three');
 print_r($a);

 The preceding code produces the following output.

 Array ([0] => one [1] => two [2] => three)

 Table 20-1. Functions for Determining the Type of a Variable

 Name Description

 is_array() True if variable is an array.

 is_bool() True if variable is a bool.

 is_callable() True if variable can be called as a function.

 is_float(), is_double(), is_real() True if variable is a float.

 is_int(), is_integer(), is_long() True if variable is an integer.

 is_null() True if variable is set to null.

 is_numeric() True if variable is a number or numeric string.

 is_scalar() True if variable is an int, float, string, or bool.

 is_object() True if variable is an object.

 is_resource() True if variable is a resource.

 is_string() True if variable is a string.

CHAPTER 20 ■ VARIABLE TESTING

85

 Similar to print_r is var_dump , which in addition to values, also displays data types
and sizes. Calling var_dump($a) shows this output.

 array(3) {
 [0]=> string(3) "one"
 [1]=> string(3) "two"
 [2]=> string(5) "three"
 }

 Finally, there is the var_export function, which prints variable information in a style
that can be used as PHP code. The following shows the output for var_export($a) . Note
the trailing comma after the last element, which is allowed.

 array (0 => 'one', 1 => 'two', 2 => 'three',)

 The var_export function , along with print_r , accepts an optional Boolean second
argument. When set to true , the function returns the output instead of printing it. This
gives var_export further uses, such as being combined with the eval language construct.
This construct takes a string argument and evaluates it as PHP code.

 eval('$b = ' . var_export($a, true) . ';');

 The ability to execute arbitrary code with eval is a powerful feature that should
be used with care. It should not be used to execute any user-provided data, at least not
without proper validation, as this represents a security risk. Another reason why the use
of eval is discouraged is because similar to goto , it makes the execution of code more
difficult to follow, which complicates debugging.

87© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_21

 CHAPTER 21

 Overloading

 Overloading in PHP provides the ability to add object members at run-time. This is done
by having the class implement the overloading methods __get , __set , __call , and __
callStatic . Bear in mind that the meaning of overloading in PHP is different from many
other languages.

 Property Overloading
 The __get and __ set methods provide a convenient way to implement getter and setter
methods, which are methods that are often used to safely read and write to properties.
These overloading methods are invoked when using properties that are inaccessible,
either because they are not defined in the class or because they are unavailable from the
current scope. In the following example, the __set method adds any inaccessible
 properties to the $data array, and __get safely retrieves the elements.

 class MyProperties
 {
 private $data = array();

 public function __set($name, $value)
 {
 $this->data[$name] = $value;
 }

 public function __get($name)
 {
 if (array_key_exists($name, $this->data))
 return $this->data[$name];
 }
 }

CHAPTER 21 ■ OVERLOADING

88

 When setting the value of an inaccessible property, __set is called with the name of
the property and the value as its arguments. Similarly, when accessing an inaccessible
property, __get is called with the property name as its argument.

 $obj = new MyProperties();

 $obj->a = 1; // __set called
 echo $obj->a; // __get called

 Method Overloading
 There are two methods for handling calls to inaccessible methods of a class: __call and
 __callStatic . The __call method is invoked for instance method calls.

 class MyClass
 {
 public function __call($name, $args)
 {
 echo "Calling $name $args[0]";
 }
 }

 // "Calling myTest in object context"
 (new MyClass())->myTest('in object context');

 The first argument to __ call is the name of the method being called and the second
is a numeric array containing the parameters passed to the method. These arguments
are the same for the __callStatic method, which handles calls to inaccessible static
methods.

 class MyClass
 {
 public static function __callStatic($name, $args)
 {
 echo "Calling $name $args[0]";
 }
 }

 // "Calling myTest in static context"
 MyClass::myTest('in static context');

 Isset and unset Overloading
 The built-in constructs isset , empty , and unset only work on explicitly defined
properties, not overloaded ones. This functionality is added to a class by overloading the
 __isset and __unset methods.

CHAPTER 21 ■ OVERLOADING

89

 class MyClass
 {
 private $data = array();

 public function __set($name, $value) {
 $this->data[$name] = $value;
 }
 public function __get($name) {
 if (array_key_exists($name, $this->data))
 return $this->data[$name];
 }

 public function __isset($name) {
 return isset($this->data[$name]);
 }

 public function __unset($name) {
 unset($this->data[$name]);
 }
 }

 The __isset method is invoked when isset is called on an inaccessible property.

 $obj = new MyClass();
 $obj->name = "Joe";

 isset($obj->name); // true
 isset($obj->age); // false

 When unset is called on an inaccessible property, the __unset method handles
that call.

 unset($obj->name); // delete property
 isset($obj->name); // false

 The empty construct only works on overloaded properties if both __isset and __get
are implemented. If the result from __isset is false, the empty construct returns true . If,
on the other hand, __isset returns true , then empty retrieves the property with __get
and evaluates if it has a value considered to be empty.

 empty($obj->name); // false
 empty($obj->age); // true

91© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_22

 CHAPTER 22

 Magic Methods

 There are a number of methods that can be implemented in a class for the purpose of
being called internally by the PHP engine. These are known as magic methods and they
are easy to recognize because they all start with two underscores. Table 22-1 lists the
magic methods that have been discussed so far.

 Table 22-1. Magic Methods

 Name Description

 __construct(...) Called when creating a new instance.

 __destruct() Called when object has no references left.

 __call($name, $array) Called when invoking inaccessible methods in an
object context.

 __callStatic($name, $array) Called when invoking inaccessible methods in a
static context.

 __get($name) Called when reading data from inaccessible
properties.

 __set($name, $value) Called when writing data to inaccessible properties.

 __isset($string) Called when isset or empty is used on inaccessible
properties.

 __unset($string) Called when unset is used on inaccessible
properties.

CHAPTER 22 ■ MAGIC METHODS

92

 In addition to these, there are six more magic methods that, like the others, can be
implemented in classes to provide certain functionalities.

 Table 22-2. More Magic Methods

 Name Description

 __toString() Called for object to string conversions.

 __invoke(...) Called for object to function conversions.

 __sleep() Called by serialize . Performs cleanup tasks and returns an
array of variables to be serialized.

 __wakeup() Called by unserialize to reconstruct the object.

 __set_state($array) Called by var_export . The method must be static and its
argument contains the exported properties.

 __clone() Called after object has been cloned.

 _ToString
 When an object is used in a context where a string is expected, the PHP engine searches
for a method named __toString to retrieve a string representation of the object.

 class MyClass
 {
 public function __toString()
 {
 return 'Instance of ' . __CLASS__;
 }
 }

 $obj = new MyClass();
 echo $obj; // "Instance of MyClass"

 It is not possible to define how an object will behave when evaluated as types other
than string.

CHAPTER 22 ■ MAGIC METHODS

93

 _Invoke
 The __invoke method allows an object to be treated as a function. Arguments provided
when the object is called are used as the __invoke function’s arguments.

 class MyClass
 {
 public function __invoke($arg)
 {
 echo $arg;
 }
 }

 $obj = new MyClass();
 $obj('Test'); // "Test"

 Object Serialization
 Serialization is the process of converting data into a string format. This is useful for
storing objects in databases or files. In PHP, the built-in serialize function performs this
object-to-string conversion and unserialize converts the string back into the original
object. The serialize function handles all types, except for the resource type, which is
used to hold database connections and file handlers, for example. Consider the following
simple database class.

 class MyConnection
 {
 public $link, $server, $user, $pass;

 public function connect()
 {
 $this->link = mysql_connect($this->server,
 $this->user,
 $this->pass);
 }
 }

 When this class is serialized, the database connection is lost and the $link resource
type variable holding the connection is stored as null.

 $obj = new MyConnection();
 // ...

 $bin = serialize($obj); // serialize object
 $obj = unserialize($bin); // restore object

 To get greater control over how object data is serialized and unserialized,
the __sleep and __wakeup methods may be implemented by this class.

CHAPTER 22 ■ MAGIC METHODS

94

 _Sleep
 The __sleep method is called by serialize and needs to return an array containing
the properties that will be serialized. This array must not include private or protected
properties because serialize is not able to access them. The method may also perform
cleanup tasks before the serialization occurs, such as committing any pending data to
storage mediums.

 public function __sleep()
 {
 return array('server', 'user', 'pass');
 }

 Note that the properties are returned to serialize in string form. The $link
resource type pointer is not included in the array because it cannot be serialized. To
reestablish the database connection, the __wakeup method can be used.

 _Wakeup
 Calling unserialize on the serialized object invokes the __wakeup method in order to
restore the object. It accepts no arguments and does not need to return any value. It is
used for reestablishing resource-type variables and for performing other initializing
tasks that may need to be done after the object has been unserialized. In this example, it
reestablishes the MySQL database connection.

 public function __wakeup()
 {
 if(isset($this->server, $this->user, $this->$pass))
 $this->connect();
 }

 Note that the isset construct is called here with multiple arguments, in which case it
only returns true if all parameters are set.

 Set State
 The var_export function retrieves variable information that is usable as valid PHP code.
In the following example, this function is used on an object.

 class Fruit
 {
 public $name = 'Lemon';
 }

 $export = var_export(new Fruit(), true);

CHAPTER 22 ■ MAGIC METHODS

95

 Since an object is a complex type, there is no generic syntax for constructing it along
with its members. Instead, var_export creates the following string.

 Fruit::__set_state(array('name' => 'Lemon',))

 In order to construct it, this string relies on a static __set_state method being
defined for the object. As shown, the __set_state method takes an associative array
containing key-value pairs of each of the object’s properties, including private and
protected members.

 static function __set_state(array $array)
 {
 $tmp = new Fruit();
 $tmp->name = $array['name'];
 return $tmp;
 }

 With this method defined in the Fruit class, the exported string can now be parsed
with the eval construct to create an identical object.

 eval('$MyFruit = ' . $export . ';');

 Object Cloning
 Assigning an object to a variable only creates a new reference to the same object. To copy
an object, the clone operator can be used.

 class Fruit {}

 $f1 = new Fruit();
 $f2 = $f1; // copy object reference
 $f3 = clone $f1; // copy object

 When an object is cloned, its properties are copied over to the new object. However,
any child objects it may contain are not cloned, so they are shared between the copies.
This is where the __clone method comes in. It is called on the cloned copy after the
cloning is done. It can be used to clone any child objects.

 class Apple {}

 class FruitBasket
 {
 public $apple;

CHAPTER 22 ■ MAGIC METHODS

96

 function __construct() { $apple = new Apple(); }

 function __clone()
 {
 $this->apple = clone $this->apple;
 }
 }

97© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_23

 CHAPTER 23

 User Input

 When an HTML form is submitted to a PHP page, the data becomes available to that
script.

 HTML Form
 An HTML form has two required attributes : action and method . The action attribute
specifies the script to which the form data is passed. For example, the following form
submits one input property called myString to the mypage.php script file.

 <!doctype html>
 <html>
 <body>
 <form action="mypage.php" method="post">
 <input type="text" name="myString">
 <input type="submit">
 </form>
 </body>
 </html>

 The other required attribute of the form element specifies the sending method,
which may be either GET or POST.

 Sending with POST
 If the form is sent using the POST method , the data is available through the $_POST array.
The names of the properties are the keys in that associative array. Data sent with the
POST method is not visible on the URL of the page, but this also means that the state of
the page cannot be saved by, for example, bookmarking the page.

 echo $_POST['myString'];

CHAPTER 23 ■ USER INPUT

98

 Sending with GET
 The alternative to POST is to send the form data with the GET method and to retrieve
it using the $_GET array. The variables are then displayed in the address bar, which
effectively maintains the state of the page if it is bookmarked and revisited.

 echo $_GET['myString'];

 Because the data is contained in the address bar, variables cannot only be passed
through HTML forms but also through HTML links. The $_GET array can then be used to
change the state of the page accordingly. This provides one way of passing variables from
one page to another.

 link

 Request Array
 If it does not matter whether the POST or GET method was used to send the data, the
 $_REQUEST array can be used. This array typically contains the $_GET and $_POST arrays,
but may also contain the $_COOKIE array.

 echo $_REQUEST['myString']; // "Foo Bar"

 The content of the $_REQUEST array can be set in the PHP configuration file 1 and
varies between PHP distributions. Due to security concerns, the $_COOKIE array is usually
not included.

 Security Concerns
 Any user-provided data can be manipulated; therefore, it should be validated and
sanitized before being used. Validation means that you make sure that the data is in the
form you expect, in terms of data type, range, and content. For example, the following
code validates an email address.

 if(!filter_var($_POST['email'], FILTER_VALIDATE_EMAIL))
 echo "Invalid email address";

 Sanitizing is when you disable potentially malicious code in the user input. This is
done by escaping the code according to the rules of the language where the input is to
be used. For example, if the data is sent to a database, it needs to be sanitized with the
 mysql_real_escape_string function to disable any embedded SQL code.

 1 http://www.php.net/manual/en/ini.core.php#ini.request-order

http://www.php.net/manual/en/ini.core.php#ini.request-order

CHAPTER 23 ■ USER INPUT

99

 // Sanitize for database use
 $name = mysql_real_escape_string($_POST['name']);

 // Execute SQL command
 $sql = "SELECT * FROM users WHERE user='" . $name . "'";
 $result = mysql_query($sql);

 When user-supplied data is output to the web page as text, the htmlspecialchars
function should be used. It disables any HTML markup, so that the user input is displayed
but not interpreted.

 // Sanitize for web page use
 echo htmlspecialchars($_POST['comment']);

 Submitting Arrays
 Form data can be grouped into arrays by including array square brackets after the
variable names in the form. This works for all form input elements, including <input> ,
 <select> , and <textarea> .

 <input type="text" name="myArr[]">
 <input type="text" name="myArr[]">

 The elements may also be assigned their own array keys.

 <input type="text" name="myArr[name]">

 Once submitted, the array is available for use in the script.

 $val1 = $_POST['myArr'][0];
 $val2 = $_POST['myArr'][1];
 $name = $_POST['myArr']['name'];

 The form <select> element has an attribute for allowing multiple items to be
selected from the list.

 <select name="myArr[]" size="3" multiple="true">
 <option value="apple">Apple</option>
 <option value="orange">Orange</option>
 <option value="pear">Pear</option>
 </select>

 When this multi-select element is included in a form, the array brackets become
necessary for retrieving the selected values in the script.

 foreach ($_POST['myArr'] as $item)
 echo $item . ' '; // ex "apple orange pear"

CHAPTER 23 ■ USER INPUT

100

 File Uploading
 The HTML form provides a file input type that allows files to be uploaded to the
server. For file uploading to work, the form’s optional enctype attribute must be set to
 "multipart/form-data" , as shown in the following example.

 <form action="mypage.php" method="post"
 enctype="multipart/form-data">
 <input name="myfile" type="file">
 <input type="submit" value="Upload">
 </form>

 Information about the uploaded file is stored in the $_FILES array . The keys of this
associative array are seen in Table 23-1 .

 Table 23-1. Keys of the $_FILES Array

 Name Description

 name Original name of uploaded file.

 tmp_name Path to temporary server copy.

 type Mime type of the file.

 size File size in bytes.

 error Error code.

 A received file is only temporarily stored on the server. If it is not saved by the script,
it will be deleted. The following shows a simple example of how to save the file. The
example checks the error code to make sure that the file was successfully received, and if
so, moves the file out of the temporary folder to save it. In practice, you would also want
to examine the file size and type to determine whether the file is to be kept.

 $dest = 'upload\\' . basename($_FILES['myfile']['name']);
 $file = $_FILES['myfile']['tmp_name'];
 $err = $_FILES['myfile']['error'];

 if($err == 0 && move_uploaded_file($file, $dest))
 echo 'File successfully uploaded';

 Two new functions are seen in this example. The move_uploaded_file function
checks to ensure that the first argument contains a valid upload file, and if so, it moves
it to the path and renames it to the file name specified by the second argument. The
specified folder must already exist, and if the function succeeds in moving the file, it
returns true . The other new function is basename . It returns the file name component of a
path, including the file extension.

CHAPTER 23 ■ USER INPUT

101

 Superglobals
 As seen in this chapter, there are a number of built-in associative arrays that make
external data available to PHP scripts. These arrays are known as superglobals , because
they are automatically available in every scope. There are nine superglobals in PHP, each
of which is described briefly in Table 23-2 .

 Table 23-2. Superglobals

 Name Description

 $GLOBALS Contains all global variables, including other superglobals.

 $_GET Contains variables sent via an HTTP GET request.

 $_POST Contains variables sent via an HTTP POST request.

 $_FILES Contains variables sent via an HTTP POST file upload.

 $_COOKIE Contains variables sent via HTTP cookies.

 $_SESSION Contains variables stored in a user’s session.

 $_REQUEST Contains $_GET , $_POST , and possibly $_COOKIE variables.

 $_SERVER Contains information about the web server and the request made to it.

 $_ENV Contains all environment variables set by the web server.

 The content of the variables $_GET , $_POST , $_COOKIE , $_SERVER , and $_ENV is
included in the output generated by the phpinfo function. This function also displays
the general settings of the PHP configuration file, php.ini , along with other information
regarding PHP.

 phpinfo(); // display PHP information

103© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_24

 CHAPTER 24

 Cookies

 A cookie is a small file kept on the client’s computer that can be used to store data relating
to that user.

 Creating Cookies
 To create a cookie, the setcookie function is used. This function must be called before
any output is sent to the browser. It has three mandatory parameters that contain the
name, value, and expiration date of the cookie.

 setcookie("lastvisit", date("H:i:s"), time() + 60*60);

 The value here is set with the date function, which returns a string formatted
according to the specified format string. The expiration date is measured in seconds and
is usually set relative to the current time in seconds retrieved through the time function.
In this example, the cookie expires after one hour.

 Cookie Array
 Once the cookie has been set for a user, this cookie is sent along the next time that user
views the page; it can then be accessed through the $_COOKIE array.

 if (isset($_COOKIE['lastvisit']))
 echo "Last visit: " . $_COOKIE['lastvisit'];

 Deleting Cookies
 A cookie can be deleted manually by re-creating that same cookie with an old expiration
date. It is then removed when the browser is closed.

 setcookie("lastvisit", 0, 0);

105© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_25

 CHAPTER 25

 Sessions

 A session provides a way to make variables accessible across multiple web pages. Unlike
cookies, session data is stored on the server.

 Starting a Session
 To begin a session, the session_start function is used. This function must appear before
any output is sent to the web page.

 <?php session_start(); ?>

 The session_start function sets a cookie on the client’s computer, containing an id
used to associate the client with the session. If the client already has an ongoing session,
the function resumes that session instead of starting a new one.

 Session Array
 With the session started, the $_SESSION array is used to store session data as well as
retrieve it. As an example, the page view count is stored with the following code. The first
time the page is viewed, the session element is initialized to one.

 if(isset($_SESSION['views']))
 $_SESSION['views'] += 1;
 else
 $_SESSION['views'] = 1;

 This element can now be retrieved from any page on the domain as long as session_
start is called on the top of that page.

 echo 'Views: ' . $_SESSION['views'];

CHAPTER 25 ■ SESSIONS

106

 Deleting a Session
 A session is guaranteed to last until the user leaves the web site; then, the garbage
collector is free to delete that session. To manually remove a session variable, the unset
function can be used. For removing all session variables, there is the session_destroy
function.

 unset($_SESSION['views']); // destroy session variable
 session_destroy(); // destroy session

107© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_26

 CHAPTER 26

 Namespaces

 Namespaces provide a way to avoid naming conflicts and to group namespace members
into a hierarchy. Any code may be contained within a namespace, but only four code
constructs are affected: classes, interfaces, functions, and constants.

 Creating Namespaces
 A construct that is not included in a namespace belongs to the global namespace .

 // Global code/namespace
 class MyClass {}

 To assign the construct to another namespace, a namespace directive is defined. Any
code constructs below the namespace directive belong to that namespace. The naming
convention for namespaces is all lowercase.

 namespace my;

 // Belongs to my namespace
 class MyClass {}

 A script file containing namespaced code must declare the namespace at the top
of the file before any other code, markup, or whitespace. Declare statements are an
exception to this because they must be placed before namespace declarations.

 <?php
 namespace my;
 class MyClass {}
 ?>
 <html><body></body></html>

CHAPTER 26 ■ NAMESPACES

108

 Nested Namespaces
 Namespaces can be nested any number of levels deep to further define the namespace
hierarchy. Like directories and files in Windows, namespaces and their members are
separated with a backslash character.

 namespace my\sub;
class MyClass {} // my\sub\MyClass

 Alternative Syntax
 Alternatively, namespaces may be defined with the bracketed syntax commonly used in
other programming languages. Just as with the regular syntax, no text or code may exist
outside of the namespace.

 <?php
 namespace my
 {
 class MyClass {}
 ?>
 <html><body></body></html>
 <?php }?>

 Multiple namespaces can be declared in the same file, although this is not
considered good coding practice. If global code is to be combined with namespaced
code, then the bracketed syntax must be used. The global code is then enclosed in an
unnamed namespace block.

 // Namespaced code
 namespace my
 {
 const PI = 3.14;
 }

 // Global code
 namespace
 {
 echo my\PI; // "3.14"
 }

 Unlike other PHP constructs, the same namespace may be defined in more than one
file. This allows namespace members to be split up across multiple files.

CHAPTER 26 ■ NAMESPACES

109

 Referencing Namespaces
 A namespace member can be referred to in three ways: fully qualified, qualified, and
unqualified. The fully qualified name can always be used. It consists of the global prefix
operator (\), followed by the namespace path and the member. The global prefix operator
indicates that the path is relative to the global namespace.

 namespace my
 {
 class MyClass {}
 }

 namespace other
 {
 // Fully qualified name
 $obj = new \my\MyClass();
 }

 The qualified name includes the namespace path, but not the global prefix operator.
Therefore, it can only be used if the wanted member is defined in a namespace below the
current namespace in the hierarchy.

 namespace my
 {
 class MyClass {}
 }

 namespace
 {
 // Qualified name
 $obj = new my\MyClass();
 }

 The member name alone, or unqualified name, may only be used within the
namespace that defines the member.

 namespace my
 {
 class MyClass {}

 // Unqualified name
 $obj = new MyClass();
 }

 Unqualified class and interface names only resolve to the current namespace. In
contrast, if an unqualified function or constant does not exist in the current namespace,
they will try to resolve to any global function or constant by the same name.

CHAPTER 26 ■ NAMESPACES

110

 namespace
 {
 function myPrint() { echo 'global'; }
}

 namespace my
 {
 // Falls back to global namespace
 myPrint(); // "global"
 }

 Alternatively, the global prefix operator can be used to explicitly refer to the global
member. This would be necessary if the current namespace contained a function with the
same name.

 namespace my
 {
 function myPrint() { echo 'local'; }

 \myPrint(); // "global"
 myPrint(); // "local"
 }

 Namespace Aliases
 Aliases shorten qualified names to improve readability of the source code. The names
for classes, interfaces, and namespaces can be shortened. An alias is defined with a use
directive, which must be placed after the namespace name in the topmost scope of the file.

 namespace my;
 class MyClass {}

 namespace foo;
 use my\MyClass as MyAlias;
 $obj = new MyAlias();

 With the bracketed syntax, any use directives are placed after the opening curly
bracket in the topmost scope.

 namespace foo;
 {
 use my\MyClass as MyAlias;
 $obj = new MyAlias();
 }

CHAPTER 26 ■ NAMESPACES

111

 The as clause may optionally be left out to import the member under its current
name.

 namespace foo;
use \my\MyClass;
 $obj = new MyClass();

 It is not possible to mass-import the members of another namespace. However, there
is a syntactical shortcut for importing multiple members in the same use statement.

 namespace foo;
 use my\Class1 as C1, my\Class2 as C2;

 PHP 7 further simplified this syntax by allowing use declarations to be grouped
within curly brackets.

 namespace foo;
use my\{ Class1 as C1, Class2 as C2 };

 In addition to classes, interfaces, and namespaces, PHP 5.6 extended the use
construct to support function and constant aliases. These are imported with the use
function and use const constructs, respectively.

 namespace my\space {
 const C = 5;
 function f() {}
 }

 namespace {
 use const my\space\C;
 use function my\space\f;
 }

 Keep in mind that aliases only apply to the script file that defines them. Therefore, an
imported file does not inherit the parent file’s aliases.

 Namespace Keyword
 The namespace keyword can be used as a constant that evaluates to the current
namespace or an empty string in global code. It may be used to explicitly refer to the
current namespace.

 namespace my\name
 {
 function myPrint() { echo 'Hi'; }
 }

CHAPTER 26 ■ NAMESPACES

112

 namespace my
 {
 namespace\name\myPrint(); // "Hi"
 name\myPrint(); // "Hi"
 }

 Namespace Guideline
 As the number of components involved in a web application grow, so too increases the
potential for name clashes. One solution for this is to prefix names with the name of the
component. However, this creates long names, which reduces readability of the source
code. For this reason, PHP 5.3 introduced namespaces, which allow developers to group
code for each component into separately named containers.

113© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_27

 CHAPTER 27

 References

 A reference is an alias that allows two different variables to write to the same value. There
are three operations that can be performed with references: assign by reference, pass by
reference, and return by reference.

 Assign by Reference
 A reference is assigned by placing an ampersand (&) before the variable that is to be bound.

 $x = 5;
 $r = &$x; // r is a reference to x
 $s =& $x; // alternative syntax

 The reference then becomes an alias for that variable and can be used exactly as if it
was the original variable.

 $r = 10; // assign value to $r/$x
 echo $x; // "10"

 Pass by Reference
 In PHP, function arguments are passed by value by default. This means that a local copy
of the variable is passed; so if the copy is changed, it will not affect the original variable.

 function myFunc($x) { $x .= ' World'; }

 $x = 'Hello';
 myFunc($x); // value of x is passed
 echo $x; // "Hello"

CHAPTER 27 ■ REFERENCES

114

 To allow a function to modify an argument, it must be passed by reference . This is
done by adding an ampersand before the parameter’s name in the function definition.

 function myFunc(&$x) { $x .= ' World'; }

 $x = 'Hello';
 myFunc($x); // reference to x is passed
 echo $x; // "Hello World"

 Object variables are also passed by value by default. However, what is actually
passed is a pointer to the object data, not the data itself. Therefore, changes to the object’s
members affect the original object, but replacing the object variable with the assignment
operator only creates a local variable.

 class MyClass { public $x = 1; }

 function modifyVal($o)
 {
 $o->x = 5;
 $o = new MyClass(); // new local object
 }

 $o = new MyClass();
 modifyVal($o); // pointer to object is passed
 echo $o->x; // "5"

 In contrast, when an object variable is passed by reference, it is not only possible to
change its properties, but also to replace the entire object and have the change propagate
back to the original object variable.

 class MyClass { public $x = 1; }

 function modifyRef(&$o)
 {
 $o->x = 5;
 $o = new MyClass(); // new object
 }

 $o = new MyClass();
 modifyRef($o); // reference to object is passed
 echo $o->x; // "1"

CHAPTER 27 ■ REFERENCES

115

 Return by Reference
 A variable can be assigned a reference from a function by having that function return
by reference. The syntax for returning a reference is to place the ampersand before the
function name. In contrast to pass by reference, the ampersand is also used when calling
the function to bind the reference.

 class MyClass
 {
 public $val = 10;

 function &getVal()
 {
 return $this->val;
 }
 }

 $obj = new MyClass();
 $myVal = &$obj->getVal();

 Bear in mind that references should not be used merely for performance reasons,
because the PHP engine takes care of such optimizations on its own. Only use references
when you have a need for reference-type behavior.

117© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_28

 CHAPTER 28

 Advanced Variables

 In addition to being a container for data, PHP variables have other features that are
examined in this chapter. These are features that are not commonly used but are good to
know about.

 Curly Syntax
 A variable name can be explicitly specified by enclosing it in curly brackets. This is known
as curly or complex syntax . To illustrate, the following code outputs the variable even
though it appears in the middle of a word.

 $fruit = 'Apple';
 echo "Two {$fruit}s"; // "Two Apples"

 More importantly, the curly syntax is useful for forming variable names out of
expressions. Consider the following code, which uses the curly syntax to construct names
for three variables.

 for ($i = 1; $i <= 3; $i++)
 ${'x'.$i} = $i;

 echo "$x1 $x2 $x3"; // "1 2 3"

 The curly syntax is required here because the expression needs to be evaluated in
order to form a valid variable name. If the expression has only a single variable, the curly
brackets are not needed.

 for ($i = 'a'; $i <= 'c'; $i++)
 $$i = $i;

 echo "$a $b $c"; // "a b c"

 This syntax is known as a variable variable in PHP.

CHAPTER 28 ■ ADVANCED VARIABLES

118

 Variable Variable Names
 A variable variable is a variable whose name can be changed through code. As an
example, consider the following regular variable.

 $a = 'foo';

 This variable’s value can be used as a variable name by placing an additional dollar
sign before it.

 $$a = 'bar';

 The value of $a , which is foo , now becomes an alternative name for the $$a variable.

 echo $foo; // "bar"
 echo $$a; // "bar"

 An example usage for this would be to generate variables from an array.

 $arr = array('a' => 'Foo', 'b' => 'Bar');

 foreach ($arr as $key => $value)
 {
 $$key = $value;
 }

 echo "$a $b"; // "Foo Bar"

 Variable Function Names
 By placing parentheses after a variable, its value is evaluated as the name for a function.

 function myPrint($s) { echo $s; }

 $func = 'myPrint';
 $func('Hello'); // "Hello"

 This behavior does not work with built-in language constructs, such as echo .

 echo('Hello'); // "Hello"

 $func = 'echo';
 $func('Hello'); // error

CHAPTER 28 ■ ADVANCED VARIABLES

119

 Variable Class Names
 Similar to variable function names, classes can be referenced using string variables. This
functionality was introduced in PHP 5.3.

 class MyClass {}

 $classname = 'MyClass';
 $obj = new $classname();

 The mechanism of accessing code entities via strings and string variables also works
for members of a class or an instance.

 class MyClass
 {
 public $myProperty = 10;
 }

 $obj = new MyClass();
 echo $obj->{'myProperty'}; // "10"

121© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_29

 CHAPTER 29

 Error Handling

 An error is a mistake in the code that the developer needs to fix. When an error occurs
in PHP, the default behavior is to display the error message in the browser. This message
includes the file name, line number, and error description in order to help the developer
correct the problem.

 While compile and parse errors are typically easy to detect and fix, run-time errors
can be harder to find because they may only occur in certain situations and for reasons
beyond the developer’s control. Consider the following code that attempts to open a file
for reading using the fopen function .

 $handle = fopen('myfile.txt', 'r');

 It relies on the assumption that the requested file will always be there. If, for any
reason, the file is not there or is otherwise inaccessible, the function will generate an
error.

 Warning: fopen(myfile.txt):
 failed to open stream: No such file or directory in
C:\xampp\htdocs\mypage.php on line 2

 Once an error has been detected, it should be corrected, even if it only occurs in
exceptional situations.

 Correcting Errors
 There are two ways to correct this error. The first way is to check to make sure that the file
can be read before attempting to open it. PHP conveniently provides the is_readable
function for this task, which returns true if the specified file exists and is readable.

 if (is_readable('myfile.txt'))
 $handle = fopen('myfile.txt', 'r');

CHAPTER 29 ■ ERROR HANDLING

122

 The second way is to use the error control operator (@) . When prepended to an
expression, this operator suppresses any error messages that might be generated by that
expression. Either way works to remove the warning.

 $handle = @fopen('myfile.txt', 'r');

 To determine if the file was opened successfully, the return value needs to be
examined. Looking at the documentation, 1 you can find that fopen returns false on error.

 if ($handle === false)
 {
 echo 'File not found.';
 }

 If this is not the case, then the content of the file can be read with the fread function.
This function reads the number of bytes specified in the second argument from the file
handler given in the first argument.

 else
 {
 // Read the content of the whole file
 $content = fread($handle, filesize('myfile.txt'));

 // Close the file handler
 fclose($handle);
 }

 Once the file handler is no longer needed, it is good practice to close it with fclose ;
although PHP also automatically closes the file after the script has finished.

 Error Levels
 PHP provides several built-in constants for describing different error levels. Table 29-1
includes some of the more important ones.

 1 http://www.php.net/manual/en/function.fopen.php

http://www.php.net/manual/en/function.fopen.php

CHAPTER 29 ■ ERROR HANDLING

123

 The first three of these levels represent run-time errors generated by the PHP engine.
The following are some examples of operations that trigger these errors.

 // E_NOTICE – Use of unassigned variable
 $a = $x;

 // E_WARNING – Missing file
 $b = fopen('missing.txt', 'r');

 // E_ERROR – Missing function
 $c = missing();

 Error-Handling Environment
 PHP provides a few configuration directives for setting up the error-handling
environment. The error_reporting function sets which errors PHP reports through the
internal error handler. The error level constants have bitmask values. This allows them to
be combined and subtracted using bitwise operators, as shown here.

 error_reporting(E_ALL | ~E_NOTICE); // all but E_NOTICE

 The error reporting level can also be changed permanently in php.ini . The default
value found in php.ini varies between servers, but for an XAMPP server, it is set to
display all error messages. This is a good setting to have during development and it can

 Table 29-1. Error Levels

 Name Description

 E_ERROR Fatal run-time error. Execution is halted.

 E_WARNING Non-fatal run-time error.

 E_NOTICE Run-time notice about possible error.

 E_USER_ERROR Fatal user-generated error.

 E_USER_WARNING Non-fatal user-generated warning.

 E_USER_NOTICE User-generated notice.

 E_COMPILE_ERROR Fatal compile-time error.

 E_PARSE Compile-time parsing error.

 E_STRICT Suggested change to ensure forward compatibility.

 E_ALL All errors, except E_STRICT prior to PHP 5.4.

CHAPTER 29 ■ ERROR HANDLING

124

be set programmatically by placing the following line of code at the start of the script.
Note that E_STRICT is added, because this error level was not included in E_ALL until
PHP 5.4.

 // During development
 error_reporting(E_ALL | E_STRICT);

 When the web app goes live, raw error messages should be hidden away from users.
This is done with the display_errors directive. It determines whether errors are printed
to the web page by the internal error handler. The default value is to print them, but when
the web site is live, it is a good idea to hide any potential raw error messages.

 // During production
 ini_set('display_errors','0');

 Another directive related to the error-handling environment is the log_errors
directive. It sets whether error messages are recorded in the server’s error log. This
directive is disabled by default, but it is a good idea to enable it during development to
keep track of errors.

 // During development
 ini_set('log_errors','1');

 The ini_set function sets the value of a configuration option. Alternatively, these
options can all be permanently set in the php.ini configuration file instead of in the
script files.

 Custom Error Handlers
 The internal error handler can be overridden with a custom error handler. This is the
preferred method for handling errors because it allows you to abstract the raw errors with
friendly, custom error messages to the end users.

 A custom error handler is defined using the set_error_handler function . This
function accepts two arguments: a callback function that is called when the error is
raised, and optionally, the error levels that the function handles.

 set_error_handler('myError', E_ALL | E_STRICT);

 If no error levels are specified, the error handler is set to handle all errors, including
 E_STRICT . However, a user-defined error handler is only actually able to handle run-time
errors, and only run-time errors other than E_ERROR . Keep in mind that changes to the
 error_reporting setting do not affect the custom error handler, only the internal one.

CHAPTER 29 ■ ERROR HANDLING

125

 The callback function requires two parameters: the error level and error description.
Optional parameters include the file name, line number, and error context, which is an
array containing every variable in the scope that the error was triggered in.

 function myError($errlvl, $errdesc, $errfile, $errline)
 {
 switch($errlvl)
 {
 case E_USER_ERROR:
 error_log("Error: $errdesc", 1, 'me@example.com');
 require_once('my_error_page.php');
 return true;
 }
 return false;
 }

 This example function handles errors of level E_USER_ERROR . When such an error
occurs, an email is sent to the specified address and a custom error page is displayed. By
returning false from the function for other errors, they are handled by the internal error
handler instead.

 Raising Errors
 PHP provides the trigger_error function for raising errors. It has one required
argument, the error message, and a second optional argument specifying the error level.
The error level must be one of the three E_USER levels, with E_USER_NOTICE being the
default level.

 if(!isset($myVar))
 trigger_error('$myVar not set'); // E_USER_NOTICE

 Triggering errors is useful when you have a custom error handler in place, allowing
you to combine the handling of both custom errors and errors raised by PHP.

127© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_30

 CHAPTER 30

 Exception Handling

 PHP 5 introduced exceptions , a built-in mechanism for handling program failures within
the context in which they occur. Unlike errors, which generally need to be fixed by the
developer, exceptions are handled by the script. They represent an irregular run-time
situation that should have been expected as a possibility and which the script should be
able to handle on its own.

 Try-catch Statement
 To handle an exception, it must be caught using a try-catch statement . This statement
consists of a try block containing the code that may cause the exception, and one or
more catch clauses.

 try
 {
 $div = invert(0);
 }
 catch (LogicException $e) {}

 If the try block successfully executes, the program then continues running after the
 try-catch statement. However, if an exception occurs, the execution is then passed to the
first catch block able to handle that exception type.

 Throwing Exceptions
 When a situation occurs that a function cannot recover from, it can generate an exception
to signal to the caller that the function has failed. This is done using the throw keyword,
followed by a new instance of the Exception class or a child class of Exception , such as
 LogicException . 1

 1 http://www.php.net/manual/en/spl.exceptions.php

http://www.php.net/manual/en/spl.exceptions.php

CHAPTER 30 ■ EXCEPTION HANDLING

128

 function invert($x)
 {
 if ($x == 0)
 throw new LogicException('Division by zero');

 return 1 / $x;
 }

 Catch Block
 In the previous example, the catch block is set to handle the built-in LogicException
type. If the code in the try block could throw more kinds of exceptions, multiple catch
blocks can be used, allowing different exceptions to be handled in different ways.

 catch (LogicException $e) {}
 catch (RuntimeException $e) {}
 // ...

 To catch a more specific exception, the catch block needs to be placed before
exceptions that are more general. For example, the LogicException inherits from
 Exception , so the LogicException needs to be caught first.

 catch (LogicException $e) {}
 catch (Exception $e) {}

 The catch clause defines an exception object. This object can be used to obtain
more information about the exception, such as a description of the exception using the
 getMessage method.

 catch (LogicException $e)
 {
 echo $e->getMessage(); // "Division by zero"
 }

 Finally Block
 PHP 5.5 introduced the finally block, which can be added as the last clause in a
 try-catch statement. This block is used to clean up resources allocated in the try block.
It always executes whether or not there is an exception.

 $resource = myopen();
 try { myuse($resource); }
 catch(Exception $e) {}
 finally { myfree($resource); }

CHAPTER 30 ■ EXCEPTION HANDLING

129

 Rethrowing Exceptions
 Sometimes an exception cannot be handled where it is first caught. It can then be
rethrown using the throw keyword followed by the exception object.

 try { $div = invert(0); }
 catch (LogicException $e) { throw $e; }

 The exception then propagates up the caller stack until it is caught by another
try-catch statement. If the exception is never caught, it becomes an error of level
E_ERROR , which halts the script, unless an uncaught exception handler has been defined.

 Uncaught Exception Handler
 The set_exception_handler function allows any uncaught exceptions to be caught. It
takes a single argument, which is the callback function that is raised for such an event.

 set_exception_handler('myException');

 The callback function only needs one parameter, the exception object that was
thrown.

 function myException($e)
 {
 $file = 'exceptionlog.txt';
 file_put_contents($file,$e->getMessage(),FILE_APPEND);
 require_once('my_error_page.php');
 exit;
 }

 Because this exception handler is called outside the context where the exception
occurred, recovering from the exception would be difficult. Instead, this example handler
writes the exception to a log file and displays an error page. To stop further execution of
the script, the built-in exit construct is used. It is synonymous with the die construct and
optionally takes a string argument that is printed before the script is halted.

 Errors and Exceptions
 Whereas exceptions are thrown with the intention of being handled by the script, errors
are generated to inform the developer that there is a mistake in the code. When it comes
to problems that occur at run-time, the exception mechanism is generally considered
superior. However, since it was not introduced until PHP 5, all internal functions still
use the error mechanism. For user-defined functions, the developer is free to choose
either mechanism. Keep in mind that errors cannot be caught by try-catch statements.
Likewise, exceptions do not trigger error handlers.

131© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5_31

 CHAPTER 31

 Assertions

 Assert is a debugging feature that can be used during development to ensure that a
condition is always true. Any expression can be asserted, as long as it evaluates to either
 true or false .

 // Make sure $myVar is set
 assert(isset($myVar));

 Code assertions like this help validate that there are no execution paths that break
the specified assumption. If this occurs, a warning showing the file and line number of
the assertion is displayed, which makes it easy to locate and fix the mistake in the code.

 Warning: assert(): Assertion failed in C:\xampp\htdocs\mypage.php on line 3

 A description of the assertion may be included, which is displayed if the assertion
fails. Support for this second parameter was added in PHP 5.4.8.

 assert(isset($myVar), '$myVar not set');

 As of PHP 7, the second parameter can also be an exception object to be thrown if
the assertion fails. By default, an AssertionError is thrown when an assertion fails.

 assert(false, new AssertionError('Assert failed'));

 Assert Performance
 Assertions can be turned off using the assert_options function by setting the
 ASSERT_ACTIVE option to zero. This means that assertions do not need to be removed
from the code after debugging is finished and the development code becomes
production code.

 // Disable assertions
 assert_options(ASSERT_ACTIVE, 0);

CHAPTER 31 ■ ASSERTIONS

132

 A condition passed to an assertion is always evaluated, even if assertions are turned
off. To avoid this extra overhead in production code, the condition can be passed as a
string instead, which is then evaluated by assert .

 assert('isset($myVar)');

 Passing the condition as a string has the added benefit of including the string in the
warning shown when the assertion fails.

 Warning: assert(): Assertion "isset($myVar)" failed in C:\xampp\htdocs\
mypage.php on line 3

 In PHP 7, assert became a language construct, as opposed to a function, allowing
for zero performance loss from including assertions in production code. The way to skip
assertions completely in PHP 7 is to set the zend.assertions configuration directive to -1
in the php.ini configuration file.

133© Mikael Olsson 2016
M. Olsson, PHP 7 Quick Scripting Reference, DOI 10.1007/978-1-4842-1922-5

 A
 Abstract class

 access level , 65
 classes and

interfaces , 66
 concrete class , 66
 methods , 65
 properties , 65

 Access levels
 abstract , 65
 guideline , 51
 object access , 50
 private access , 49
 protected access , 50
 public access , 50
 var keyword , 50

 Anonymous functions , 36
 Arithmetic operator , 9–10
 Arrays

 associative , 20
 mixed modes , 20
 multi-dimensional , 21
 numerical , 19

 Assertions , 131
 ASSERT_ACTIVE

option , 131
 Code assertions , 131
 warning message , 132

 Assignment operator , 9–10
 Associative arrays , 20

 B
 Bitwise operators , 12

 C
 Callback function , 36, 129
 Catch blocks , 128
 Class

 access members , 40
 anonymous class , 43
 case sensitivity , 42
 closure object , 43
 constructor , 41
 defi nition , 39
 destructor , 42
 initial value , 40
 methods , 39
 object comparison , 42
 object creation , 40
 property , 39
 $this , 39

 Comparison operators , 11
 Concatenation operator , 15
 Conditionals

 if statement , 23
 mixed modes , 25
 switch statement , 24
 ternary operator , 25

 Constants
 const modifi er , 57–58
 defi nition , 57–59
 guideline , 59
 magic constants , 59

 Cookies
 $_COOKIE array , 103
 deletion , 103
 setcookie function , 103

 Curly/complex syntax , 117

 Index

■ INDEX

134

 D
 Decrement operator , 10
 Double arrow operator , 20, 28

 E
 empty construct , 81
 Error exception , 129
 Error handling

 error control operator (@) , 122
 display_errors , 124
 error levels , 123
 error_reporting function , 123
 fopen function , 121
 fread function , 122
 ini_set function , 124
 is_readable function , 121
 log_errors , 124
 set_error_handler function , 124
 trigger_error function , 125

 Escape characters , 16
 Exception handling

 callback function , 129
 catch blocks , 128
 error exception , 129
 fi nally block , 128
 getMessage method , 128
 LogicException , 128
 rethrowing exception , 129
 set_exception_handler

function , 129
 throw keyword , 127
 try-catch statement , 127

 Exponentiation operator , 9–10

 F
 File upload , 100
 $_FILES array , 100
 Finally block , 128
 Functions

 anonymous functions , 36
 closure , 37, 43
 default parameters , 32
 defi nition , 31
 generator , 37
 parameters , 32
 return statement , 34
 scope and lifetime , 34
 variable parameter lists , 33

 G
 Generator function , 37
 GetMessage method , 128
 GET method , 98
 Global prefi x operator , 109
 $GLOBALS array , 35

 H
 HTML attributes , 97

 action , 97
 method , 97
 mypage.php , 97

 I, J, K
 Import fi les

 autoload function , 73
 include_once , 72
 include path , 71
 require , 72
 require_once , 72
 return , 73

 Increment operator , 10
 Inheritance

 fi nal keyword , 47
 operator, instanceof , 47
 overriding members , 46
 Rectangle class , 45
 Square class , 45

 Interface
 iComparable , 62
 signatures , 61
 usages , 63

 is_null construct , 82
 isset construct , 81

 L
 Logical operators , 11
 LogicException , 128
 Loops

 alternative syntax , 29
 break , 29
 continue , 29
 do-while , 27
 for , 27
 foreach , 28
 goto , 30
 while , 27

■ INDEX

135

 M
 Magic constants , 59
 Magic methods , 41–42, 91–92

 __clone method , 95
 clone operator , 95
 __invoke method , 93
 serialize function , 93
 static __set_state method , 95
 __sleep method , 94
 __toString method , 92
 __wakeup method , 94

 Mixed arrays , 20
 Modulus operator (%) , 9
 move_uploaded_fi le function , 100
 Multi-dimensional arrays , 21
 Multi-select element , 99
 mysql_real_escape_string function , 98

 N
 Namespaces

 aliases , 110
 global function , 109–110
 global namespace , 107, 109
 local function , 110
 namespace block , 108
 namespace directive , 107
 namespace keyword , 111
 nested namespaces , 108

 Null coalescing operator , 83
 Numeric arrays , 19

 O
 Operators

 and , 13
 arithmetic operators , 9–10
 assignment operators , 9–10
 bitwise operators , 12
 comparison operators , 11
 decrement operators , 10
 increment operators , 10
 inheritance , 47
 logical operators , 11
 or , 13
 precedence , 12
 xor , 13

 Overloading
 __call method , 88
 __callStatic method , 88

 get methods , 87
 __isset method , 88–89
 properties , 87
 set methods , 87
 __unset method , 88

 P, Q
 PHP

 code block , 1
 comments , 4
 compile and parse , 3
 Hello World , 3
 garbage collector , 42
 printing text , 2
 standard notation , 1
 variables

 class name , 119
 curly/complex syntax , 117
 function name , 118
 variable variable , 118

 web server installation , 3
 POST method , 97

 R
 Reference

 object variable , 114
 pass by reference , 114
 pass by value , 113
 return by reference , 115

 $_REQUEST array , 98
 Rethrow exception , 129

 S
 Scope resolution operator , 46, 53
 <select> element , 99
 Sessions

 session_destroy
function , 106

 session_start function , 105
 $_SESSION array , 105

 setcookie function , 103
 Single arrow operator , 39–40
 Spaceship operator , 11
 Static members

 instance members , 53
 late static bindings , 55
 reference , 53
 variables , 54

■ INDEX

136

 String
 character reference , 17
 concatenation operator , 15
 double quote , 15
 escape characters , 16
 heredoc , 16
 nowdoc , 16
 single quote , 15

 Superglobals , 101

 T, U
 Ternary operator , 25

 statement , 25
 expression , 25

 Th row keyword , 127
 Traits

 inherited methods , 70
 MyClass class , 69
 static and instance

methods , 69
 Try-catch statement , 127
 Type conversion

 data type , 80
 explicit cast , 79
 gettype function , 80

 scalar type , 80
 settype function , 80

 Type declarations , 75
 callable function , 76
 fatal error , 76
 return type , 77
 scalar type , 76
 strict typing , 77

 V, W, X, Y, Z
 Variable

 bool , 7
 data types , 5
 default values , 7
 fl oat/fl oating-point type , 7
 integer , 6
 null type , 7

 Variable testing
 delete variable , 83
 $GLOBALS array , 82
 unset , 82
 var_dump , 85
 var_export function , 85
 variable information , 84

 Variable types , 84

	Contents at a Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Introduction
	Chapter 1: Using PHP
	Embedding PHP
	Outputting Text
	Installing a Web Server
	Hello World
	Compile and Parse
	Comments

	Chapter 2: Variables
	Defining Variables
	Data Types
	Integer Type
	Floating-Point Type
	Bool Type
	Null Type
	Default Values

	Chapter 3: Operators
	Arithmetic Operators
	Assignment Operators
	Combined Assignment Operators
	Increment and Decrement Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence
	Additional Logical Operators

	Chapter 4: String
	String Concatenation
	Delimiting Strings
	Heredoc Strings
	Nowdoc Strings
	Escape Characters
	Character Reference
	String Compare

	Chapter 5: Arrays
	Numeric Arrays
	Associative Arrays
	Mixed Arrays
	Multi-Dimensional Arrays

	Chapter 6: Conditionals
	If Statement
	Switch Statement
	Alternative Syntax
	Mixed Modes
	Ternary Operator

	Chapter 7: Loops
	While Loop
	Do-while Loop
	For Loop
	Foreach Loop
	Alternative Syntax
	Break
	Continue
	Goto

	Chapter 8: Functions
	Defining Functions
	Calling Functions
	Function Parameters
	Default Parameters
	Variable Parameter Lists
	Return Statement
	Scope and Lifetime
	Anonymous Functions
	Closures
	Generators
	Built-in Functions

	Chapter 9: Class
	Instantiating an Object
	Accessing Object Members
	Initial Property Values
	Constructor
	Destructor
	Case Sensitivity
	Object Comparison
	Anonymous Classes
	Closure Object

	Chapter 10: Inheritance
	Overriding Members
	Final Keyword
	Instanceof Operator

	Chapter 11: Access Levels
	Private Access
	Protected Access
	Public Access
	Var Keyword
	Object Access
	Access Level Guideline

	Chapter 12: Static
	Referencing Static Members
	Static Variables
	Late Static Bindings

	Chapter 13: Constants
	Const
	Define
	Const and define
	Constant Guideline
	Magic Constants

	Chapter 14: Interface
	Interface Signatures
	Interface Example
	Interface Usages
	Interface Guideline

	Chapter 15: Abstract
	Abstract Methods
	Abstract Example
	Abstract Classes and Interfaces
	Abstract Guideline

	Chapter 16: Traits
	Inheritance and Traits
	Trait Guidelines

	Chapter 17: Importing Files
	Include Path
	Require
	Include_once
	Require_once
	Return
	_Autoload

	Chapter 18: Type Declarations
	Argument Type Declarations
	Return Type Declarations
	Strict Typing

	Chapter 19: Type Conversions
	Explicit Casts
	Set type
	Get type

	Chapter 20: Variable Testing
	Isset
	Empty
	Is_null
	Unset
	Null Coalescing Operator
	Determining Types
	Variable Information

	Chapter 21: Overloading
	Property Overloading
	Method Overloading
	Isset and unset Overloading

	Chapter 22: Magic Methods
	_ToString
	_Invoke
	Object Serialization
	_Sleep
	_Wakeup
	Set State
	Object Cloning

	Chapter 23: User Input
	HTML Form
	Sending with POST
	Sending with GET
	Request Array
	Security Concerns
	Submitting Arrays
	File Uploading
	Superglobals

	Chapter 24: Cookies
	Creating Cookies
	Cookie Array
	Deleting Cookies

	Chapter 25: Sessions
	Starting a Session
	Session Array
	Deleting a Session

	Chapter 26: Namespaces
	Creating Namespaces
	Nested Namespaces
	Alternative Syntax
	Referencing Namespaces
	Namespace Aliases
	Namespace Keyword
	Namespace Guideline

	Chapter 27: References
	Assign by Reference
	Pass by Reference
	Return by Reference

	Chapter 28: Advanced Variables
	Curly Syntax
	Variable Variable Names
	Variable Function Names
	Variable Class Names

	Chapter 29: Error Handling
	Correcting Errors
	Error Levels
	Error-Handling Environment
	Custom Error Handlers
	Raising Errors

	Chapter 30: Exception Handling
	Try-catch Statement
	Throwing Exceptions
	Catch Block
	Finally Block
	Rethrowing Exceptions
	Uncaught Exception Handler
	Errors and Exceptions

	Chapter 31: Assertions
	Assert Performance

	Index

