

Node.js	Web	Development
Fourth	Edition

	

	

	

	

	

	

Server-side	development	with	Node	10	made	easy

	

	

	

	

	

	

	

	

	

David	Herron

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Node.js	Web	Development
Fourth	Edition
Copyright	©	2018	Packt	Publishing	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt
Publishing	or	its	dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly
or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in
this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Amarabha	Banerjee
Acquisition	Editor:	Larissa	Pinto
Content	Development	Editor:	Gauri	Pradhan
Technical	Editor:	Leena	Patil
Copy	Editor:		Safis	Editing
Project	Coordinator:	Sheejal	Shah
Proofreader:	Safis	Editing
Indexer:	Mariammal	Chettiyar
Graphics:	Jason	Monteiro
Production	Coordinator:	Shraddha	Falebhai

First	published:	August	2011

Second	edition:	July	2013

Third	edition:	June	2016

Fourth	edition:	May	2018

Production	reference:	1240518

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78862-685-9

www.packtpub.com

	

http://www.packtpub.com

																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																																								
																																																																																																	

To	my	mother,	Herron,	and	to	the	memory	of	my	father,	James,	since	I	would	not	exist	without	them
To	my	partner	Maggie	for	being	my	loving	partner	throughout	our	joint	life-journey

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000
books	and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your
personal	development	and	advance	your	career.	For	more	information,
please	visit	our	website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical
eBooks	and	Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

	

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,
with	PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version
at	www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a
discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for
more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and
offers	on	Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

	

About	the	author
David	Herron	is	a	software	engineer	in	Silicon	Valley,	working	on
projects	from	an	X.400	e-mail	server	to	assist	launching	the	OpenJDK
project,	to	Yahoo's	Node.js	application-hosting	platform,	and	a	solar	array
performance	monitoring	service.	David	writes	about	electric	vehicles,
green	technology	on	The	Long	Tail	Pipe	website,	and	about	other	topics,
including	Node.js,	on	TechSparx	website.	Using	Node.js,	he	developed	the
AkashaCMS	static	website	generator.

I	wish	to	thank	my	mother,	Evelyn,	for	everything;	my	father,	Jim;	my	sister,	Patti;	my	brother,
Ken;	my	partner	Maggie	for	being	there	and	encouraging	me,	and	the	many	years	we	expect	to
have	with	each	other.	I	wish	to	thank	Dr.	Kubota	of	the	University	of	Kentucky	for	believing	in	me,
giving	me	my	first	computing	job,	and	overseeing	6	years	of	learning	the	art	of	computer	system
maintenance.	I	am	grateful	to	Ryan	Dahl,	the	creator	of	Node.js,	and	the	current	Node.js	core	team
members.	Some	platforms	are	just	plain	hard	to	work	with,	but	not	Node.js.

What	this	book	covers
Chapter	1,	About	Node.js,	introduces	you	to	the	Node.js	platform.	It	covers
its	uses,	the	technological	architecture	choices	in	Node.js,	its	history,	the
history	of	server-side	JavaScript,	why	JavaScript	should	be	liberated	from
the	browser,	and	important	recent	advances	in	the	JavaScript	scene.

Chapter	2,	Setting	up	Node.js,	goes	over	setting	up	a	Node.js	developer
environment.	This	includes	installing	Node.js	on	Windows,	macOS,	and
Linux.	Important	tools	are	covered,	including	the	npm	and	yarn	package
management	systems	and	Babel,	which	is	used	for	transpiling	modern
JavaScript	into	a	form	that's	runnable	on	older	JavaScript
implementations.

Chapter	3,	Node.js	Modules,	explores	the	module	as	the	unit	of	modularity
in	Node.js	applications.	We	dive	deep	into	understanding	and	developing
Node.js	modules	and	using	npm	to	maintain	dependencies.	We	learn	about
the	new	module	format,	ES6	Modules,	that	should	supplant	the
CommonJS	module	format	currently	used	in	Node.js,	and	are	natively
supported	in	Node.js	10.x.

Chapter	4,	HTTP	Servers	and	Clients,	starts	exploring	web	development
with	Node.js.	We	develop	several	small	webserver	and	client	applications
in	Node.js.	We	use	the	Fibonacci	algorithm	to	explore	the	effects	of	heavy-
weight,	long-running	computations	on	a	Node.js	application.	We	also	learn
several	mitigation	strategies,	and	have	our	first	experience	with
developing	REST	services.

Chapter	5,	Your	First	Express	Application,	begins	the	section	on	developing
a	note-taking	application.	The	first	step	is	getting	a	basic	application
running.

Chapter	6,	Implementing	the	Mobile-First	Paradigm,	uses	Bootstrap	V4	to

implement	responsive	web	design.	We	take	a	look	at	integrating	a	popular
icon	set	so	that	we	can	have	pictorial	buttons,	and	go	over	compiling	a
custom	Bootstrap	theme.

Chapter	7,	Data	Storage	and	Retrieval,	ensures	that	we	don't	lose	our	notes
when	we	restart	the	application.	We	explore	several	database	engines	and
a	method	to	enable	easily	switching	between	them	at	will.

Chapter	8,	Multiuser	Authentication	the	Microservice	Way,	adds	user
authentication	to	the	note-taking	application.	Both	logged-in	and
anonymous	users	can	access	the	application,	with	varying	capabilities
based	on	role.	Authentication	is	supported	both	for	locally	stored
credentials	and	for	using	OAuth	against	Twitter.

Chapter	9,	Dynamic	Client/Server	Interaction	with	Socket.IO,	lets	our	users
talk	with	each	other	in	real	time.	JavaScript	code	will	run	in	both	the
browser	and	the	server,	with	Socket.IO	providing	the	plumbing	needed	for
real-time	event	exchange.	Users	will	see	notes	change	as	they're	edited	by
other	users	and	can	leave	messages/comments	for	others.

Chapter	10,	Deploying	Node.js	Applications,	helps	us	understand	Node.js
application	deployment.	We	look	at	both	traditional	Linux	service
deployment	using	an	etcinit	script	and	using	Docker	for	both	local
development	and	deployment	on	cloud	hosting	services.

Chapter	11,	Unit	Testing	and	Functional	Testing,	takes	a	look	at	three	test
development	models:	unit	testing,	REST	testing,	and	functional	testing.
We'll	use	the	popular	Mocha	and	Chai	frameworks	for	the	first	two,	and
Puppeteer	for	the	third.	Puppeteer	uses	a	headless	version	of	Chrome	to
support	running	tests.	Docker	is	used	to	facilitate	setting	up	and	tearing
down	test	environments.

Chapter	12,	Security,	explores	techniques	and	tools	required	to	mitigate	the
risk	of	security	intrusions.	Intelligently	using	Docker	is	a	great	first	step	if
only	because	it	can	easily	limit	the	attack	surface	of	your	application.	The
Node.js	community	has	developed	a	suite	of	tools	that	integrate	with
Express	to	implement	several	critical	security	technologies.

	

About	the	reviewer
Nicholas	Duffy	has	had	a	wide-ranging	career,	holding	positions	from
analyst	to	business	intelligence	architect,	to	software	engineer,	and	even
golf	professional.	He	has	a	passion	for	all	things	data	and	software
engineering,	specializing	in	cloud	architecture,	Python,	and	Node.js.	He	is
a	frequent	contributor	to	open	source	projects	and	is	also	a	lifelong	New
York	Mets	fan.

I'd	like	to	thank	my	wife,	Anne,	and	our	boys,	Jack	and	Chuck,	for	their	never	ending-support	in
whatever	endeavor	I	pursue.

	

	

Packt	is	searching	for	authors
like	you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.pac
ktpub.com	and	apply	today.	We	have	worked	with	thousands	of	developers
and	tech	professionals,	just	like	you,	to	help	them	share	their	insight	with
the	global	tech	community.	You	can	make	a	general	application,	apply	for
a	specific	hot	topic	that	we	are	recruiting	an	author	for,	or	submit	your
own	idea.

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Node.js	Web	Development

Fourth	Edition

Dedication

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 About	Node.js

The	capabilities	of	Node.js

Server-side	JavaScript

Why	should	you	use	Node.js?

Popularity

JavaScript	at	all	levels	of	the	stack

Leveraging	Google's	investment	in	V8

Leaner,	asynchronous, event-driven	model

Microservice	architecture

Node.js	is	stronger	for	having	survived	a	major	schism	a

nd	hostile	fork

Threaded	versus	event-driven	architecture

Performance	and	utilization

Is	Node.js	a	cancerous	scalability	disaster?

Server	utilization,	the	business	bottom	line,	and	green	

web	hosting

Embracing	advances	in	the	JavaScript	language

Deploying	ES2015/2016/2017/2018	JavaScript	code

Node.js,	the	microservice	architecture,	and	easily	testable	syste

ms

Node.js	and	the	Twelve-Factor	app	model

Summary

2.	 Setting	up	Node.js

System	requirements

Installing	Node.js	using	package	managers

Installing	on	macOS	with	MacPorts

Installing	on	macOS	with	Homebrew

Installing	on	Linux,	*BSD,	or	Windows	from	package	manag

ement	systems

Installing	Node.js	in	the	Windows	Subsystem	for

Linux	(WSL)

Opening	an	administrator-privileged	PowerShell	

on	Windows

Installing	the	Node.js	distribution	from	nodejs.org

Installing	from	source	on	POSIX-like	systems

Installing	prerequisites

Installing	developer	tools	on	macOS

Installing	from	source	for	all	POSIX-like	systems

Installing	from	source	on	Windows

Installing	multiple	Node.js	instances	with	nvm

Installing	nvm	on	Windows

Native	code	modules	and	node-gyp

Node.js	versions	policy	and	what	to	use

Editors	and	debuggers

Running	and	testing	commands

Node.js's	command-line	tools

Running	a	simple	script	with	Node.js

Conversion	to	async	functions	and	the	Promise	paradigm

Launching	a	server	with	Node.js

NPM –	the	Node.js	package	manager

Node.js,	ECMAScript	2015/2016/2017,	and	beyond

Using	Babel	to	use	experimental	JavaScript	features

Summary

3.	 Node.js	Modules

Defining	a	module

CommonJS	and	ES2015	module	formats

CommonJS/Node.js	module	format

ES6	module	format

JSON	modules

Supporting	ES6	modules	on	older	Node.js	version

s

Demonstrating	module-level	encapsulation

Finding	and	loading	CommonJS	and	JSON	modules	using	require

File	modules

Modules	baked	into	Node.js	binary

Directories	as	modules

Module	identifiers	and	pathnames

An	example	of	application	directory	structure

Finding	and	loading	ES6	modules	using	import

Hybrid	CommonJS/Node.js/ES6	module	scenarios

Dynamic	imports	with	import()

The	import.meta	feature

npm	-	the	Node.js	package	management	system

The	npm	package	format

Finding	npm	packages

Other	npm	commands

Installing	an	npm	package

Installing	a	package	by	version	number

Global	package	installs

Avoiding	global	module	installation

Maintaining	package	dependencies	with	npm

Automatically	updating	package.json	dependencie

s

Fixing	bugs	by	updating	package	dependencies

Packages	that	install	commands

Configuring	the	PATH	variable	to	handle	command

s	installed	by	modules

Configuring	the	PATH	variable	on	Windows

Avoiding	modifications	to	the	PATH	variable

Updating	outdated	packages	you've	installed

Installing	packages	from	outside	the	npm	repository

Initializing	a	new	npm	package

Declaring	Node.js	version	compatibility

Publishing	an	npm	package

Explicitly	specifying	package	dependency	version	numbers

The	Yarn	package	management	system

Summary

4.	 HTTP	Servers	and	Clients

Sending	and	receiving	events	with	EventEmitters

JavaScript	classes	and	class	inheritance

The	EventEmitter	Class

The	EventEmitter	theory

HTTP	server	applications

ES2015	multiline	and	template	strings

HTTP	Sniffer	–	listening	to	the	HTTP	conversation

Web	application	frameworks

Getting	started	with	Express

Setting	environment	variables	in	Windows	cmd.exe	command

line

Walking	through	the	default	Express	application

The	Express	middleware

Middleware	and	request	paths

Error	handling

Calculating	the	Fibonacci	sequence	with	an	Express	application

Computationally	intensive	code	and	the Node.js	even

t	loop

Algorithmic	refactoring

Making	HTTP	Client	requests

Calling	a	REST	backend	service	from	an	Express	application

Implementing	a	simple	REST	server with	Express

Refactoring	the	Fibonacci	application	for	REST

Some	RESTful	modules	and	frameworks

Summary

5.	 Your	First	Express	Application

Promises,	async	functions,	and	Express	router	functions

Promises	and	error	handling

Flattening	our	asynchronous	code

Promises	and	generators	birthed	async	functions

Express	and	the	MVC	paradigm

Creating	the	Notes	application

Your	first	Notes	model

Understanding	ES-2015	class	definitions

Filling	out	the	in-memory	Notes	model

The	Notes	home	page

Adding	a	new	note	–	create

Viewing	notes	–	read

Editing	an	existing	note	–	update

Deleting	notes	–	destroy

Theming	your	Express	application

Scaling	up	–	running	multiple	Notes	instances

Summary

6.	 Implementing	the	Mobile-First	Paradigm

Problem	–	the	Notes	app	isn't	mobile	friendly

Mobile-first	paradigm

Using	Twitter	Bootstrap	on	the	Notes	application

Setting	it	up

Adding	Bootstrap	to	application	templates

Alternative	layout	frameworks

Flexbox	and	CSS	Grids

Mobile-first	design	for	the	Notes	application

Laying	the	Bootstrap	grid	foundation

Responsive	page	structure	for	the	Notes	application

Using	icon	libraries	and	improving	visual	appeal

Responsive	page	header	navigation	bar

Improving	the	Notes	list	on	the	front	page

Cleaning	up	the	Note	viewing	experience

Cleaning	up	the	add/edit	note	form

Cleaning	up	the	delete-note	window

Building	a	customized	Bootstrap

Pre-built	custom	Bootstrap	themes

Summary

7.	 Data	Storage	and	Retrieval

Data	storage	and	asynchronous	code

Logging

Request	logging	with	Morgan

Debugging	messages

Capturing	stdout	and	stderr

Uncaught	exceptions

Unhandled	Promise	rejections

Using	the	ES6	module	format

Rewriting	app.js	as	an	ES6	module

Rewriting	bin/www	as	an	ES6	module

Rewriting	models	code	as	ES6	modules

Rewriting	router	modules	as	ES6	modules

Storing	notes	in	the	filesystem

Dynamic	import	of	ES6	modules

Running	the	Notes	application	with	filesystem	storage

Storing	notes	with	the	LevelUP	data	store

Storing	notes	in	SQL	with	SQLite3

SQLite3	database	schema

SQLite3	model	code

Running	Notes	with	SQLite3

Storing	notes	the	ORM	way	with	Sequelize

Sequelize	model	for	the	Notes	application

Configuring	a	Sequelize	database	connection

Running	the	Notes	application	with	Sequelize

Storing	notes	in	MongoDB

MongoDB	model	for	the	Notes	application

Running	the	Notes	application	with	MongoDB

Summary

8.	 Multiuser	Authentication	the	Microservice	Way

Creating	a	user	information	microservice

User	information	model

A	REST	server	for	user	information

Scripts	to	test	and	administer	the	user	authentication	s

erver

Login	support	for	the	Notes	application

Accessing	the	user	authentication	REST	API

Login	and	logout	routing	functions

Login/logout	changes	to	app.js

Login/logout	changes	in	routes/index.mjs

Login/logout	changes	required	in	routes/notes.m

js

View	template	changes	supporting	login/logout

Running	the	Notes	application	with	user	authent

ication

Twitter	login	support	for	the	Notes	application

Registering	an	application	with	Twitter

Implementing	TwitterStrategy

Securely	keeping	secrets	and	passwords

The	Notes	application	stack

Summary

9.	 Dynamic	Client/Server	Interaction	with	Socket.IO

Introducing	Socket.IO

Initializing	Socket.IO	with	Express

Real-time	updates	on	the	Notes	homepage

The	Notes	model	as	an	EventEmitter	class

Real-time	changes	in	the	Notes	home	page

Changing	the	homepage	and	layout	templates

Running	Notes	with	real-time	homepage	updates

Real-time	action	while	viewing	notes

Changing	the	note	view	template	for	real-time	a

ction

Running	Notes	with	real-time	updates	while	view

ing	a	note

Inter-user	chat	and	commenting	for	Notes

Data	model	for	storing	messages

Adding	messages	to	the	Notes	router

Changing	the	note	view	template	for	messages

Using	a	Modal	window	to	compose	messages

Sending,	displaying,	and	deleting	messages

Running	Notes	and	passing	messages

Other	applications	of	Modal	windows

Summary

10.	 Deploying	Node.js	Applications

Notes	application	architecture	and	deployment	considerations

Traditional	Linux	Node.js	service	deployment

Prerequisite	–	provisioning	the	databases

Installing	Node.js	on	Ubuntu

Setting	up	Notes	and	user	authentication on	the	ser

ver

Adjusting	Twitter	authentication	to	work	on	the

server

Setting	up	PM2	to	manage	Node.js	processes

Node.js	microservice	deployment with	Docker

Installing	Docker	on	your	laptop

Starting	Docker	with	Docker	for	Windows/macOS

Kicking	the	tires	of	Docker

Creating	the	AuthNet	for	the	user	authentication	service

MySQL	container	for	Docker

Initializing	AuthNet

Script	execution	on	Windows

Linking	Docker	containers

The	db-userauth	container

Dockerfile	for	the	authentication	service

Configuring	the	authentication	service	for	Dock

er

Building	and	running	the	authentication	service

Docker	container

Exploring	Authnet

Creating	FrontNet	for	the	Notes	application

MySQL	container	for	the	Notes	application

Dockerizing	the	Notes	application

Controlling	the	location	of	MySQL	data	volumes

Docker	deployment	of	background	services

Deploying	to	the	cloud	with	Docker	compose

Docker	compose	files

Running	the	Notes	application	with	Docker	compo

se

Deploying	to	cloud	hosting	with	Docker	compose

Summary

11.	 Unit	Testing	and	Functional	Testing

Assert	–	the	basis	of	testing	methodologies

Testing	a	Notes	model

Mocha	and	Chai­	–	the	chosen	test	tools

Notes	model	test	suite

Configuring	and	running	tests

More	tests	for	the	Notes	model

Testing	database	models

Using	Docker	to	manage	test	infrastructure

Docker	Compose	to	orchestrate	test	infrastructure

Executing	tests	under	Docker	Compose

MongoDB	setup	under	Docker	and	testing	Notes	ag

ainst	MongoDB

Testing	REST	backend	services

Automating	test	results	reporting

Frontend	headless	browser	testing with	Puppeteer

Setting	up	Puppeteer

Improving	testability	in	the	Notes	UI

Puppeteer	test	script	for	Notes

Running	the	login	scenario

The	Add	Note	scenario

Mitigating/preventing	spurious	test	errors	in	Puppeteer	

scripts

Configuring	timeouts

Tracing	events	on	the	Page	and	the	Puppeteer	in

stance

Inserting	pauses

Avoiding	WebSockets	conflicts

Taking	screenshots

Summary

12.	 Security

HTTPS/TLS/SSL	using	Let's	Encrypt

Associating	a	domain	name	with	Docker-based	cloud	hostin

g

A	Docker	container	to	manage	Let's	Encrypt	SSL	certifica

tes

Cross-container	mounting	of	Let's	Encrypt	directories	to

the	notes	container

	

Adding	HTTPS	support	to	Notes

Put	on	your	Helmet	for	across-the-board	security

Using	Helmet	to	set	the	Content-Security-Policy	header

Using	Helmet	to	set	the	X-DNS-Prefetch-Control	header

Using	Helmet	to	set	the	X-Frame-Options	header

Using	Helmet	to	remove	the	X-Powered-By	header

Improving	HTTPS	with	Strict	Transport	Security

Mitigating	XSS	attacks	with	Helmet

Addressing	Cross-Site	Request	Forgery	(CSRF)	attacks

Denying	SQL	injection	attacks

Sequelize	deprecation	warning	regarding	operator	injecti

on	attack

Scanning	for	known	vulnerabilities

Using	good	cookie	practices

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Node.js	is	a	server-side	JavaScript	platform	using	an	event-driven,	non-
blocking	I/O	model,	allowing	users	to	build	fast	and	scalable	transaction-
intensive	applications	running	in	real	time.	It	plays	a	significant	role	in	the
software	development	world	and	liberates	JavaScript	from	the	web
browser.	With	Node.js,	we	can	reuse	our	JavaScript	skills	for	general
software	development	on	a	large	range	of	systems.

It	runs	atop	the	ultra-fast	JavaScript	engine	at	the	heart	of	Google's
Chrome	browser,	V8,	and	adds	a	fast	and	robust	library	of	asynchronous
network	I/O	modules.	

The	primary	focus	of	Node.js	is	developing	high	performance,	highly
scalable	web	applications,	and	it	also	sees	a	widespread	use	in	other	areas.
Electron,	the	Node.js-based	wrapper	around	the	Chrome	engine,	is	the
basis	for	popular	desktop	applications,	such	as	Atom	and	Visual	Studio
Code	editors,	GitKraken,	Postman,	Etcher,	and	the	desktop	Slack
client.	Node.js	is	popular	for	developing	Internet	of	Things	devices	and
sees	a	tremendous	adoption	in	microservice	development	and	for	building
tools	for	frontend	web	developers	and	more.	Node.js,	as	a	lightweight
high-performance	platform,	fits	microservice	development	like	a	glove.

The	Node.js	platform	uses	an	asynchronous	single-thread	system,
with	asynchronously	invoked	callback	functions	(also	known	as	event
handlers)	and	an	event	loop,	as	opposed	to	a	traditional	thread-based
architecture.

The	theory	is	that	threaded	systems	are	notoriously	difficult	to	develop,
and	that	threads	themselves	impose	an	architectural	burden	on	app	servers.
Node.js's	goal	is	to	provide	an	easy	way	to	build	scalable	network	servers.

The	whole	Node.js	runtime	is	designed	around	asynchronous	execution.

JavaScript	was	chosen	as	the	language	because	anonymous	functions	and
other	language	elements	provide	an	excellent	base	for	implementing
asynchronous	computation.

Who	this	book	is	for
We	assume	that	you	have	some	knowledge	of	JavaScript	and	possibly
have	experience	with	server-side	code	development,	and	that	you	are
looking	for	a	different	way	of	developing	server-side	code.

Server-side	engineers	may	find	the	concepts	behind	Node.js	refreshing.	It
offers	a	new	perspective	on	web	application	development	and	a	different
take	on	server	architectures	from	the	monoliths	we	deal	with	in	other
programming	languages.	JavaScript	is	a	powerful	language	and	Node.js's
asynchronous	nature	plays	to	its	strengths.	Having	JavaScript	on	both	the
frontend	and	the	backend	gives	a	whole	new	meaning.

Developers	experienced	with	browser-side	JavaScript	will	find	it
productive	to	bring	that	knowledge	to	a	new	territory.

Although	our	focus	is	on	web	application	development,	Node.js
knowledge	can	be	applied	in	other	areas	as	well.	As	said	earlier,	Node.js	is
widely	used	to	develop	many	types	of	applications.

To	get	the	most	out	of	this
book
The	basic	requirement	is	to	install	Node.js	and	have	a	programmer-
oriented	text	editor.	The	editor	need	not	be	anything	fancy,	vi/vim	will
even	do	in	a	pinch.	We	will	show	you	how	to	install	everything	that's
needed.	It's	all	open	source	software	that	can	be	easily	downloaded	from
websites.	

The	most	important	tool	is	the	one	between	your	ears.

Some	chapters	require	database	engines,	such	as	MySQL	and	MongoDB.

Although	Node.js	is	a	cross-platform	software	development	platform,
some	third-party	modules	are	written	in	C/C++	and	must	be	compiled
during	installation.	To	do	so,	native-code	development	tools	such	as
C/C++	compilers	are	required,	and	Python	is	required	to	run	the	tool-
chain.	The	details	are	covered	in	Chapter	2,	Setting	up	Node.js.	Microsoft	is
involved	with	the	Node.js	project	and	to	ensure	developer	productivity
with	Node.js	on	Windows.

Download	the	example	code
files
You	can	download	the	example	code	files	for	this	book	from	your	account
at	www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.p
acktpub.com/support	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the

onscreen	instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract
the	folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows

Zipeg/iZip/UnRarX	for	Mac

7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/
PacktPublishing/Node.js-Web-Development-Fourth-Edition.	We	also	have	other	code
bundles	from	our	rich	catalog	of	books	and	videos	available	at	https://githu
b.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Node.js-Web-Development-Fourth-Edition
https://github.com/PacktPublishing/

	

	

	

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,
and	Twitter	handles.	Here	is	an	example:	"The	http	object	encapsulates	the
HTTP	protocol,	and	its	http.createServer	method	creates	a	whole	web
server,	listening	on	the	port	specified	in	the	listen	method."

A	block	of	code	is	set	as	follows:

var	http	=	require('http');	

http.createServer(function	(req,	res)	{	

		res.writeHead(200,	{'Content-Type':	'text/plain'});	

		res.end('Hello	World\n');	

}).listen(8124,	"127.0.0.1");	

console.log('Server	running	at	http://127.0.0.1:8124/');	

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,
the	relevant	lines	or	items	are	set	in	bold:

if	(urlP.query['n'])	{	

				fibonacciAsync(urlP.query['n'],	fibo	=>	{

								res.end('Fibonacci	'+	urlP.query['n']	+'='+	fibo);

				});

		}	else	{	

Any	command-line	input	or	output	is	written	as	follows:

$	node	--version

v8.9.1		

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see

onscreen.	For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text
like	this.	Here	is	an	example:	"In	the	Start	menu,	enter	PowerShell	in
the	applications	search	box."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title
in	the	subject	of	your	message.	If	you	have	questions	about	any	aspect	of
this	book,	please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we
would	be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com
/submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form
link,	and	entering	the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on
the	Internet,	we	would	be	grateful	if	you	would	provide	us	with	the
location	address	or	website	name.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you
have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to
a	book,	please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

	

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not
leave	a	review	on	the	site	that	you	purchased	it	from?	Potential	readers	can
then	see	and	use	your	unbiased	opinion	to	make	purchase	decisions,	we	at
Packt	can	understand	what	you	think	about	our	products,	and	our	authors
can	see	your	feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

	

https://www.packtpub.com/

About	Node.js
Node.js	is	an	exciting	new	platform	for	developing	web	applications,
application	servers,	any	sort	of	network	server	or	client,	and	general
purpose	programming.	It	is	designed	for	extreme	scalability	in	networked
applications	through	an	ingenious	combination	of	server-side	JavaScript,
asynchronous	I/O,	and	asynchronous	programming.	It	is	built	around
JavaScript	anonymous	functions,	and	a	single	execution	thread	event-
driven	architecture.

While	only	a	few	years	old,	Node.js	has	quickly	grown	in	prominence	and
it's	now	playing	a	significant	role.	Companies,	both	small	and	large,	are
using	it	for	large-scale	and	small-scale	projects.	PayPal,	for	example,	has
converted	many	services	from	Java	to	Node.js.

The	Node.js	architecture	departs	from	a	typical	choice	made	by	other
application	platforms.	Where	threads	are	widely	used	to	scale	an
application	to	fill	the	CPU,	Node.js	eschews	threads	because	of	their
inherent	complexity.	It's	claimed	that	with	single-thread	event-driven
architectures,	memory	footprint	is	low,	throughput	is	high,	the	latency
profile	under	load	is	better,	and	the	programming	model	is	simpler.	The
Node.js	platform	is	in	a	phase	of	rapid	growth,	and	many	are	seeing	it	as	a
compelling	alternative	to	the	traditional	web	application	architectures
using	Java,	PHP,	Python,	or	Ruby	on	Rails.

At	its	heart,	it	is	a	standalone	JavaScript	engine	with	extensions	making	it
suitable	for	general	purpose	programming	and	with	a	clear	focus	on
application	server	development.	Even	though	we're	comparing	Node.js	to
application	server	platforms,	it	is	not	an	application	server.	Instead,
Node.js	is	a	programming	run-time	akin	to	Python,	Go,	or	Java	SE.	While
there	are	web	application	frameworks	and	application	servers	written	in
Node.js,	it	is	simply	a	system	to	execute	JavaScript	programs.

It	is	implemented	around	a	non-blocking	I/O	event	loop	and	a	layer	of	file
and	network	I/O	libraries,	all	built	on	top	of	the	V8	JavaScript	engine
(from	the	Chrome	web	browser).	The	rapid	performance	and	feature
improvements	implemented	in	Chrome	quickly	flow	through	to	the
Node.js	platform.	Additionally,	a	team	of	folks	are	working	on	a	Node.js
implementation	that	runs	on	top	of	Microsoft's	ChakraCore	JavaScript
engine	(from	the	Edge	web	browser).	That	would	give	the	Node.js
community	greater	flexibility	by	not	being	reliant	on	one	JavaScript
engine	provider.	Visit	https://github.com/nodejs/node-chakracore	to	take	a	look
at	the	project.

The	Node.js	I/O	library	is	general	enough	to	implement	any	sort	of	server
executing	any	TCP	or	UDP	protocol,	whether	it's	domain	name	system
(DNS),	HTTP,		internet	relay	chat	(IRC),	or	FTP.	While	it	supports
developing	internet	servers	or	clients,	its	biggest	use	case	is	in	regular
websites,	in	place	of	technology	such	as	an	Apache/PHP	or	Rails	stack,	or
to	complement	existing	websites.	For	example,	adding	real-time	chat	or
monitoring	existing	websites	can	be	easily	done	with	the	Socket.	IO
library	for	Node.js.	Its	lightweight,	high-performance	nature	often	sees
Node.js	used	as	a	glue	service.

A	particularly	intriguing	combination	is	deploying	small	services	using
Docker	into	cloud	hosting	infrastructure.	A	large	application	can	be
divided	into	what's	now	called	microservices	that	are	easily	deployed	at
scale	using	Docker.	The	result	fits	agile	project	management	methods
since	each	microservice	can	be	easily	managed	by	a	small	team	that
collaborates	at	the	boundary	of	their	individual	API.

This	book	will	give	you	an	introduction	to	Node.js.	We	presume	the
following:

You	already	know	how	to	write	software

You	are	familiar	with	JavaScript

You	know	something	about	developing	web	applications	in	other
languages

https://github.com/nodejs/node-chakracore

We	will	cover	the	following	topics	in	this	chapter:

An	introduction	to	Node.js

Why	you	should	use	Node.js

The	architecture	of	Node.js

Performance,	utilization,	and	scalability	with	Node.js

Node.js,	microservice	architecture,	and	testing

Implementing	the	Twelve-Factor	App	model	with	Node.js

We	will	dive	right	into	developing	working	applications	and	recognize	that
often	the	best	way	to	learn	is	by	rummaging	around	in	working	code.

The	capabilities	of	Node.js
Node.js	is	a	platform	for	writing	JavaScript	applications	outside	web
browsers.	This	is	not	the	JavaScript	we	are	familiar	with	in	web	browsers!
For	example,	there	is	no	DOM	built	into	Node.js,	nor	any	other	browser
capability.

Beyond	its	native	ability	to	execute	JavaScript,	the	bundled	modules
provide	capabilities	of	this	sort:

Command-line	tools	(in	shell	script	style)

An	interactive-terminal	style	of	program	that	is	Read-Eval-Print
Loop	(REPL)

Excellent	process	control	functions	to	oversee	child	processes

A	buffer	object	to	deal	with	binary	data

TCP	or	UDP	sockets	with	comprehensive	event-driven	callbacks

DNS	lookup

An	HTTP,	HTTPS	and	HTTP/2	client/server	layered	on	top	of	the
TCP	library	filesystem	access

Built-in	rudimentary	unit	testing	support	through	assertions

The	network	layer	of	Node.js	is	low	level	while	being	simple	to	use.	For
example,	the	HTTP	modules	allow	you	to	write	an	HTTP	server	(or	client)
using	a	few	lines	of	code.	This	is	powerful,	but	it	puts	you,	the
programmer,	very	close	to	the	protocol	requests	and	makes	you	implement
precisely	those	HTTP	headers	that	you	should	return	in	request	responses.

Typical	web	application	developers	don't	need	to	work	at	a	low	level	of
the	HTTP	or	other	protocols.	Instead,	we	tend	to	be	more	productive,
working	with	higher-level	interfaces.	For	example,	PHP	coders	assume
that	Apache	(or	other	HTTP	servers)	is	already	there	providing	the	HTTP
protocol,	and	that	they	don't	have	to	implement	the	HTTP	server	portion	of
the	stack.	By	contrast,	a	Node.js	programmer	does	implement	an	HTTP
server	to	which	their	application	code	is	attached.

To	simplify	the	situation,	the	Node.js	community	has	several	web
application	frameworks,	such	as	Express,	providing	the	higher-level
interfaces	required	by	typical	programmers.	You	can	quickly	configure	an
HTTP	server	with	baked-in	capabilities	such	as	sessions,	cookies,	serving
static	files,	and	logging,	letting	developers	focus	on	their	business	logic.
Other	frameworks	provide	OAuth	2	support,	or	focus	on	REST	APIs,	and
so	on.

Node.js	is	not	limited	to	web	service	application	development.	The
community	around	Node.js	has	taken	it	in	many	other	directions,

Build	tools:	Node.js	has	become	a	popular	choice	for	developing
command-line	tools	used	in	software	development,	or	communicating
with	service	infrastructure.	Grunt	and	Gulp	are	widely	used	by	frontend
developers	to	build	assets	for	websites.	Babel	is	widely	used	for
transpiling	modern	ES-2016	code	to	run	on	older	browsers.	Popular	CSS
optimizers	and	processors,	such	as	PostCSS,	are	written	in	Node.js.	Static
website	generation	systems	such	as	Metalsmith,	Punch,	and	AkashaCMS,
run	at	the	command	line	and	generate	website	content	that	you	upload	to	a
web	server.

Web	UI	testing:	Puppeteer	gives	you	control	over	a	headless-Chrome	web
browser	instance.	With	it,	you	can	develop	Node.js	scripts	controlling	a
modern	full-featured	web	browser.	Typical	use	cases	involve	web	scraping
and	testing	web	applications.

Desktop	applications:	Both	Electron	and	node-webkit	(NW.js)	are
frameworks	for	developing	desktop	applications	for	Windows,	macOS,
and	Linux.	These	frameworks	utilize	a	large	chunk	of	Chrome,	wrapped

by	Node.js	libraries,	to	develop	desktop	applications	using	web	UI
technologies.	Applications	are	written	with	modern	HTML5,	CSS3,	and
JavaScript,	and	can	utilize	leading-edge	web	frameworks,	such	as
Bootstrap,	React,	or	AngularJS.	Many	popular	applications	have	been
built	using	Electron,	including	the	Slack	desktop	client	application,	the
Atom	and	Microsoft	Visual	Code	programming	editors,	the	Postman
REST	client,	the	GitKraken	GIT	client,	and	Etcher,	which	makes	it
incredibly	easy	to	burn	OS	images	to	flash	drives	to	run	on	single-board
computers.

Mobile	applications:	The	Node.js	for	Mobile	Systems	project	lets	you
develop	smartphone	or	tablet	computer	applications	using	Node.js,	for
both	iOS	and	Android.	Apple's	App	Store	rules	preclude	incorporating	a
JavaScript	engine	with	JIT	capabilities,	meaning	that	normal	Node.js
cannot	be	used	in	an	iOS	application.	For	iOS	application	development,
the	project	uses	Node.js-on-ChakraCore	to	skirt	around	the	App	Store
rules.	For	Android	application	development	the	project	uses	regular
Node.js	on	Android.	At	the	time	of	writing,	the	project	is	in	an	early	stage
of	development,	but	it	looks	promising.

Internet	of	Things	(IoT):	Reportedly,	it	is	a	very	popular	language	for
Internet-of-Things	projects,	and	Node.js	does	run	on	most	ARM-based
single-board	computers.	The	clearest	example	is	the	NodeRED	project.	It
offers	a	graphical	programming	environment,	letting	you	draw	programs
by	connecting	blocks	together.	It	features	hardware-oriented	input	and
output	mechanisms,	for	example,	to	interact	with	General	Purpose	I/O
(GPIO)	pins	on	Raspberry	Pi	or	Beaglebone	single-board	computers.

Server-side	JavaScript
Quit	scratching	your	head	already!	Of	course	you're	doing	it,	scratching
your	head	and	mumbling	to	yourself,	"What's	a	browser	language	doing
on	the	server?"	In	truth,	JavaScript	has	a	long	and	largely	unknown	history
outside	the	browser.	JavaScript	is	a	programming	language,	just	like	any
other	language,	and	the	better	question	to	ask	is	"Why	should	JavaScript
remain	trapped	inside	browsers?".

Back	in	the	dawn	of	the	web	age,	the	tools	for	writing	web	applications
were	at	a	fledgling	stage.	Some	were	experimenting	with	Perl	or	TCL	to
write	CGI	scripts,	and	the	PHP	and	Java	languages	had	just	been
developed.	Even	then,	JavaScript	saw	use	on	the	server	side.	One	early
web	application	server	was	Netscape's	LiveWire	server,	which	used
JavaScript.	Some	versions	of	Microsoft's	ASP	used	JScript,	their	version
of	JavaScript.	A	more	recent	server-side	JavaScript	project	is	the	RingoJS
application	framework	in	the	Java	universe.	Java	6	and	Java	7	were	both
shipped	with	the	Rhino	JavaScript	engine.	In	Java	8,	Rhino	was	dropped
in	favor	of	the	newer	Nashorn	JavaScript	engine.

In	other	words,	JavaScript	outside	the	browser	is	not	a	new	thing,	even	if	it
is	uncommon.

Why	should	you	use	Node.js?
Among	the	many	available	web	application	development	platforms,	why
should	you	choose	Node.js?	There	are	many	stacks	to	choose	from;	what
is	it	about	Node.js	that	makes	it	rise	above	the	others?	We	will	see	in	the
following	sections.

Popularity
Node.js	is	quickly	becoming	a	popular	development	platform	with
adoption	by	plenty	of	big	and	small	players.	One	of	those	is	PayPal,	who
are	replacing	their	incumbent	Java-based	system	with	one	written	in
Node.js.	For	PayPal's	blog	post	about	this,	visit	https://www.paypal-
engineering.com/2013/11/22/node-js-at-paypal/.	Other	large	Node.js	adopters
include	Walmart's	online	e-commerce	platform,	LinkedIn,	and	eBay.

According	to	NodeSource,	Node.js	usage	is	growing	rapidly	(visit	https://n
odesource.com/node-by-numbers).	The	measures	include	increasing	bandwidth
for	downloading	Node.js	releases,	increasing	activity	in	Node.js-related
GitHub	projects,	and	more.

It's	best	to	not	just	follow	the	crowd	because	the	crowd	claims	their
software	platform	does	cool	things.	Node.js	does	some	cool	things,	but
more	important	is	its	technical	merit.

https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://nodesource.com/node-by-numbers

JavaScript	at	all	levels	of	the
stack
Having	the	same	programming	language	on	the	server	and	client	has	been
a	long-time	dream	on	the	web.	This	dream	dates	back	to	the	early	days	of
Java,	where	Java	applets	were	to	be	the	frontend	to	server	applications
written	in	Java,	and	JavaScript	was	originally	envisioned	as	a	lightweight
scripting	language	for	those	applets.	Java	never	fulfilled	its	hype	as	a
client-side	programming	language,	for	various	reasons.	We	ended	up	with
JavaScript	as	the	principle	in-browser,	client-side	language,	rather	than
Java.	Typically,	the	frontend	JavaScript	developers	were	in	a	different
language	universe	than	the	server-side	team,	who	was	likely	to	be	coding
in	PHP,	Java,	Ruby,	or	Python.

Over	time,	in-browser	JavaScript	engines	became	incredibly	powerful,
letting	us	write	ever-more	complex	browser-side	applications.	With
Node.js,	we	may	finally	be	able	to	implement	applications	with	the	same
programming	language	on	the	client	and	server	by	having	JavaScript	at
both	ends	of	the	web,	in	the	browser	and	server.

A	common	language	for	frontend	and	backend	offers	several	potential
benefits:

The	same	programming	staff	can	work	on	both	ends	of	the	wire

Code	can	be	migrated	between	server	and	client	more	easily

Common	data	formats	(JSON)	exist	between	server	and	client

Common	software	tools	exist	for	server	and	client

Common	testing	or	quality	reporting	tools	for	server	and	client

When	writing	web	applications,	view	templates	can	be	used	on
both	sides

The	JavaScript	language	is	very	popular	due	to	its	ubiquity	in	web
browsers.	It	compares	favorably	against	other	languages	while	having
many	modern,	advanced	language	concepts.	Thanks	to	its	popularity,	there
is	a	deep	talent	pool	of	experienced	JavaScript	programmers	out	there.

	

Leveraging	Google's
investment	in	V8
To	make	Chrome	a	popular	and	excellent	web	browser,	Google	invested	in
making	V8	a	super-fast	JavaScript	engine.	Google,	therefore,	has	a	huge
motivation	to	keep	on	improving	V8.	V8	is	the	JavaScript	engine	for
Chrome,	and	it	can	also	be	executed	standalone.	Node.js	is	built	on	top	of
the	V8	JavaScript	engine.

As	Node.js	becomes	more	important	to	the	V8	team,	there's	a	potential
synergy	of	faster	V8	performance	wins	as	more	people	focus	on	V8
improvements.

	

Leaner,	asynchronous,	event-
driven	model
We'll	get	into	this	later.	The	Node.js	architecture,	a	single	execution
thread,	an	ingenious	event-oriented	asynchronous-programming	model,
and	a	fast	JavaScript	engine,	has	less	overhead	than	thread-based
architectures.

	

Microservice	architecture
A	new	sensation	in	software	development	is	the	microservice	idea.
Microservices	are	focused	on	splitting	a	large	web	application	into	small,
tightly-focused	services	that	can	be	easily	developed	by	small	teams.
While	they	aren't	exactly	a	new	idea,	they're	more	of	a	reframing	of	old
client-server	computing	models,	the	microservice	pattern	fits	well	with
agile	project	management	techniques,	and	gives	us	more	granular
application	deployment.		

Node.js	is	an	excellent	platform	for	implementing	microservices.	We'll	get
into	this	later.

	

Node.js	is	stronger	for	having
survived	a	major	schism	and
hostile	fork
During	2014	and	2015,	the	Node.js	community	faced	a	major	split	over
policy,	direction,	and	control.	The	io.js	project	was	a	hostile	fork	driven	by
a	group	who	wanted	to	incorporate	several	features	and	change	who's	in
the	decision-making	process.	The	end	result	was	a	merge	of	the	Node.js
and	io.js	repositories,	an	independent	Node.js	foundation	to	run	the	show,
and	the	community	is	working	together	to	move	forward	in	a	common
direction.

A	concrete	result	of	healing	that	rift	is	the	rapid	adoption	of
new	ECMAScript	language	features.	The	V8	engine	is	adopting	those	new
features	quickly	to	advance	the	state	of	web	development.	The	Node.js
team,	in	turn,	is	adopting	those	features	as	quickly	as	they	show	up	in	V8,
meaning	that	Promises	and	async	functions	are	quickly	becoming	a	reality
for	Node.js	programmers.

The	bottom	line	is	that	the	Node.js	community	not	only	survived	the	io.js
fork,	but	the	community	and	the	platform	it	nurtures	grew	stronger	as	a
result.

Threaded	versus	event-driven
architecture
Node.js's	blistering	performance	is	said	to	be	because	of	its	asynchronous
event-driven	architecture,	and	its	use	of	the	V8	JavaScript	engine.	That's	a
nice	thing	to	say,	but	what's	the	rationale	for	the	statement?

The	V8	JavaScript	engine	is	among	the	fastest	JavaScript
implementations.	As	a	result,	Chrome	is	widely	used	not	just	to	view
website	content,	but	to	run	complex	applications.	Examples	include
Gmail,	the	Google	GSuite	applications	(Docs,	Slides,	and	so	on),	image
editors	such	as	Pixlr,	and	drawing	applications	such	as	draw.io	and	Canva.
Both	Atom	and	Microsoft's	Visual	Studio	Code	are	excellent	IDE's	that
just	happen	to	be	implemented	in	Node.js	and	Chrome	using	Electron.
That	these	applications	exist	and	are	happily	used	by	a	large	number	of
people	is	testament	to	V8's	performance.	Node.js	benefits	from	V8
performance	improvements.	

The	normal	application	server	model	uses	blocking	I/O	to	retrieve	data,
and	it	uses	threads	for	concurrency.	Blocking	I/O	causes	threads	to	wait	on
results.		That	causes	a	churn	between	threads	as	the	application	server
starts	and	stops	the	threads	to	handle	requests.	Each	suspended	thread
(typically	waiting	on	an	I/O	operation	to	finish)	consumes	a	full	stack
trace	of	memory,	increasing	memory	consumption	overhead.	Threads	add
complexity	to	the	application	server	as	well	as	server	overhead.

Node.js	has	a	single	execution	thread	with	no	waiting	on	I/O	or	context
switching.	Instead,	there	is	an	event	loop	looking	for	events	and
dispatching	them	to	handler	functions.	The	paradigm	is	that	any	operation
that	would	block	or	otherwise	take	time	to	complete	must	use	the
asynchronous	model.	These	functions	are	to	be	given	an	anonymous
function	to	act	as	a	handler	callback,	or	else	(with	the	advent	of	ES2015

promises),	the	function	would	return	a	Promise.	The	handler	function,	or
Promise,	is	invoked	when	the	operation	is	complete.	In	the	meantime,
control	returns	to	the	event	loop,	which	continues	dispatching	events.

At	the	Node.js	interactive	conference	in	2017,	IBM's	Chris	Bailey	made	a
case	for	Node.js	being	an	excellent	choice	for	highly	scalable
microservices.	Key	performance	characteristics	are	I/O	performance,
measured	in	transactions	per	second,	startup	time,	because	that	limits	how
quickly	your	service	can	scale	up	to	meet	demand,	and	memory	footprint,
because	that	determines	how	many	application	instances	can	be	deployed
per	server.	Node.js	excels	on	all	those	measures;	with	every	subsequent
release	each,	is	either	improving	or	remaining	fairly	steady.	Bailey
presented	figures	comparing	Node.js	to	a	similar	benchmark	written	in
Spring	Boot	showing	Node.js	to	perform	much	better.	To	view	his	talk,
see	https://www.youtube.com/watch?v=Fbhhc4jtGW4.

To	help	us	wrap	our	heads	around	why	this	would	be,	let's	return	to	Ryan
Dahl,	the	creator	of	Node.js,	and	the	key	inspiration	leading	him	to	create
Node.js.	In	his	Cinco	de	NodeJS	presentation	in	May	2010,	https://www.yout
ube.com/watch?v=M-sc73Y-zQA,	Dahl	asked	us	what	happens	while	executing	a
line	of	code	such	as	this:

result	=	query('SELECT	*	from	db');	

//	operate	on	the	result	

Of	course,	the	program	pauses	at	that	point	while	the	database	layer	sends
the	query	to	the	database,	which	determines	the	result	and	returns	the	data.
Depending	on	the	query,	that	pause	can	be	quite	long;	well,	a	few
milliseconds,	which	is	an	eon	in	computer	time.	This	pause	is	bad	because
that	execution	thread	can	do	nothing	while	waiting	for	the	result	to	arrive.
If	your	software	is	running	on	a	single-threaded	platform,	the	entire	server
would	be	blocked	and	unresponsive.	If	instead,	your	application	is	running
on	a	thread-based	server	platform,	a	thread	context	switch	is	required	to
satisfy	any	other	requests	that	arrive.	The	greater	the	number	of
outstanding	connections	to	the	server,	the	greater	the	number	of	thread
context	switches.	Context	switching	is	not	free	because	more	threads
require	more	memory	per	thread	state	and	more	time	for	the	CPU	to	spend

https://www.youtube.com/watch?v=Fbhhc4jtGW4
https://www.youtube.com/watch?v=M-sc73Y-zQA

on	thread	management	overhead.

Simply	using	an	asynchronous,	event-driven	I/O,	Node.js	removes	most	of
this	overhead	while	introducing	very	little	of	its	own.

Using	threads	to	implement	concurrency	often	comes	with	admonitions
such	as	these:	expensive	and	error-prone,	the	error-prone	synchronization
primitives	of	Java,	or	designing	concurrent	software	can	be	complex	and
error	prone.	The	complexity	comes	from	the	access	to	shared	variables
and	various	strategies	to	avoid	deadlock	and	competition	between	threads.
The	synchronization	primitives	of	Java	are	an	example	of	such	a	strategy,
and	obviously	many	programmers	find	them	difficult	to	use.	There's	the
tendency	to	create	frameworks	such	as	java.util.concurrent	to	tame	the
complexity	of	threaded	concurrency,	but	some	might	argue	that	papering
over	complexity	does	not	make	things	simpler.	

Node.js	asks	us	to	think	differently	about	concurrency.	Callbacks	fired
asynchronously	from	an	event	loop	are	a	much	simpler	concurrency	model
—simpler	to	understand,	simpler	to	implement,	simpler	to	reason	about,
and	simpler	to	debug	and	maintain.	

Ryan	Dahl	points	to	the	relative	access	time	of	objects	to	understand	the
need	for	asynchronous	I/O.	Objects	in	memory	are	more	quickly	accessed
(in	the	order	of	nanoseconds)	than	objects	on	disk	or	objects	retrieved	over
the	network	(milliseconds	or	seconds).	The	longer	access	time	for	external
objects	is	measured	in	zillions	of	clock	cycles,	which	can	be	an	eternity
when	your	customer	is	sitting	at	their	web	browser	ready	to	move	on	if	it
takes	longer	than	two	seconds	to	load	the	page.

In	Node.js,	the	query	discussed	previously	will	read	as	follows:

query('SELECT	*	from	db',	function	(err,	result)	{	

				if	(err)	throw	err;	//	handle	errors	

				//	operate	on	result	

});	

The	programmer	supplies	a	function	that	is	called	(hence	the

name	callback	function)	when	the	result	(or	error)	is	available.	Instead	of	a
thread	context	switch,	this	code	returns	almost	immediately	to	the	event
loop.	That	event	loop	is	free	to	handle	other	requests.	The	Node.js	runtime
keeps	track	of	the	stack	context	leading	to	this	callback	function,	and
eventually	an	event	will	fire	causing	this	callback	function	to	be	called.

Advances	in	the	JavaScript	language	are	giving	us	new	options	to
implement	this	idea.	The	equivalent	code	looks	like	so	when	used	with
ES2015	Promise's:

query('SELECT	*	from	db')	

.then(result	=>	{	

				//	operate	on	result	

})	

.catch(err	=>	{	

				//	handle	errors	

});	

The	following	with	an	ES-2017	async	function:

try	{

				var	result	=	await	query('SELECT	*	from	db');

				//	operate	on	result

}	catch	(err)	{

				//	handle	errors

}

All	three	of	these	code	snippets	perform	the	same	query	written	earlier.
The	difference	is	that	the	query	does	not	block	the	execution	thread,
because	control	passes	back	to	the	event	loop.	By	returning	almost
immediately	to	the	event	loop,	it	is	free	to	service	other	requests.
Eventually,	one	of	those	events	will	be	the	response	to	the	query	shown
previously,	which	will	invoke	the	callback	function.

With	the	callback	or	Promise	approach,	the	result	is	not	returned	as	the
result	of	the	function	call,	but	is	provided	to	a	callback	function	that	will
be	called	later.	The	order	of	execution	is	not	one	line	after	another,	as	it	is
in	synchronous	programming	languages.	Instead,	the	order	of	execution	is
determined	by	the	order	of	the	callback	function	execution.

When	using	an	async	function,	the	coding	style	LOOKS	like	the	original
synchronous	code	example.	The	result	is	returned	as	the	result	of	the
function	call,	and	errors	are	handled	in	a	natural	manner	using	try/catch.
The	await	keyword	integrates	asynchronous	results	handling	without
blocking	the	execution	thread.	A	lot	is	buried	under	the	covers	of	the
async/await	feature,	and	we'll	be	covering	this	model	extensively	throughout
the	book.

Commonly,	web	pages	bring	together	data	from	dozens	of	sources.	Each
one	has	a	query	and	response	as	discussed	earlier.	Using	asynchronous
queries,	each	query	can	happen	in	parallel,	where	the	page	construction
function	can	fire	off	dozens	of	queries—no	waiting,	each	with	their	own
callback—and	then	go	back	to	the	event	loop,	invoking	the	callbacks	as
each	is	done.	Because	it's	in	parallel,	the	data	can	be	collected	much	more
quickly	than	if	these	queries	were	done	synchronously	one	at	a	time.	Now,
the	reader	on	the	web	browser	is	happier	because	the	page	loads	more
quickly.

Performance	and	utilization
Some	of	the	excitement	over	Node.js	is	due	to	its	throughput	(the	requests
per	second	it	can	serve).	Comparative	benchmarks	of	similar	applications,
for	example,	Apache,	show	that	Node.js	has	tremendous	performance
gains.

One	benchmark	going	around	is	this	simple	HTTP	server	(borrowed
from	https://nodejs.org/en/),	which	simply	returns	a	Hello
World	message	directly	from	memory:

var	http	=	require('http');	

http.createServer(function	(req,	res)	{	

		res.writeHead(200,	{'Content-Type':	'text/plain'});	

		res.end('Hello	World\n');	

}).listen(8124,	"127.0.0.1");	

console.log('Server	running	at	http://127.0.0.1:8124/');	

This	is	one	of	the	simpler	web	servers	that	you	can	build	with	Node.js.
The	http	object	encapsulates	the	HTTP	protocol,	and	its	http.createServer
method	creates	a	whole	web	server,	listening	on	the	port	specified	in	the
listen	method.	Every	request	(whether	a	GET	or	POST	on	any	URL)	on	that
web	server	calls	the	provided	function.	It	is	very	simple	and	lightweight.
In	this	case,	regardless	of	the	URL,	it	returns	a	simple	text/plain	that	is
the	Hello	World	response.

Ryan	Dahl	showed	a	simple	benchmark	(https://www.youtube.com/watch?v=M-sc7
3Y-zQA)	that	returned	a	1-megabyte	binary	buffer;	Node.js	gave	822	req/sec,
while	Nginx	gave	708	req/sec,	for	a	15%	improvement	over	Nginx.	He
also	noted	that	Nginx	peaked	at	four	megabytes	memory,	while	Node.js
peaked	at	64	megabytes.	

The	key	observation	was	that	Node.js,	running	an	interpreted	JIT-compiled
high-level	language,	was	about	as	fast	as	Nginx,	built	of	highly	optimized

https://nodejs.org/en/
https://www.youtube.com/watch?v=M-sc73Y-zQA

C	code,	while	running	similar	tasks.	That	presentation	was	in	May	2010,
and	Node.js	has	improved	hugely	since	then,	as	shown	in	Chris	Bailey's
talk	that	we	referenced	earlier.

Yahoo!	search	engineer	Fabian	Frank	published	a	performance	case	study
of	a	real-world	search	query	suggestion	widget	implemented	with
Apache/PHP	and	two	variants	of	Node.js	stacks
(http://www.slideshare.net/FabianFrankDe/nodejs-performance-case-study).	The
application	is	a	pop-up	panel	showing	search	suggestions	as	the	user	types
in	phrases,	using	a	JSON-based	HTTP	query.	The	Node.js	version	could
handle	eight	times	the	number	of	requests	per	second	with	the	same
request	latency.	Fabian	Frank	said	both	Node.js	stacks	scaled	linearly	until
CPU	usage	hit	100%.	In	another	presentation
(http://www.slideshare.net/FabianFrankDe/yahoo-scale-nodejs),	he	discussed	how
Yahoo!	Axis	is	running	on	Manhattan	+	Mojito	and	the	value	of	being	able
to	use	the	same	language	(JavaScript)	and	framework	(YUI/YQL)	on	both
frontend	and	backend.

LinkedIn	did	a	massive	overhaul	of	their	mobile	app	using	Node.js	for	the
server-side	to	replace	an	old	Ruby	on	Rails	app.	The	switch	let	them	move
from	30	servers	down	to	three,	and	allowed	them	to	merge	the	frontend
and	backend	team	because	everything	was	written	in	JavaScript.	Before
choosing	Node.js,	they'd	evaluated	Rails	with	Event	Machine,	Python	with
Twisted,	and	Node.js,	choosing	Node.js	for	the	reasons	that	we	just
discussed.	For	a	look	at	what	LinkedIn	did,	see
http://arstechnica.com/information-technology/2012/10/a-behind-the-scenes-look-at-

linkedins-mobile-engineering/.

Most	existing	advice	on	Node.js	performance	tips	tends	to	have	been
written	for	older	V8	versions	that	used	the	CrankShaft	optimizer.	The	V8
team	has	completely	dumped	CrankShaft,	and	it	has	a	new	optimizer
called	TurboFan.	For	example,	under	CrankShaft,	it	was	slower	to	use
try/catch,	let/const,	generator	functions,	and	so	on.	Therefore,	common
wisdom	said	to	not	use	those	features,	which	is	depressing	because	we
want	to	use	the	new	JavaScript	features	because	of	how	much	it	has
improved	the	JavaScript	language.	Peter	Marshall,	an	Engineer	on	the	V8
team	at	Google,	gave	a	talk	at	Node.js	Interactive	2017	claiming	that,

http://www.slideshare.net/FabianFrankDe/nodejs-performance-case-study
http://www.slideshare.net/FabianFrankDe/yahoo-scale-nodejs
http://arstechnica.com/information-technology/2012/10/a-behind-the-scenes-look-at-linkedins-mobile-engineering/

under	TurboFan,	you	should	just	write	natural	JavaScript.	With	TurboFan,
the	goal	is	for	across-the-board	performance	improvements	in	V8.	To	view
the	presentation,	see	https://www.youtube.com/watch?v=YqOhBezMx1o.

A	truism	about	JavaScript	is	that	it's	no	good	for	heavy	computation	work,
because	of	the	nature	of	JavaScript.	We'll	go	over	some	ideas	related	to
this	in	the	next	section.	A	talk	by	Mikola	Lysenko	at	Node.js	Interactive
2016	went	over	some	issues	with	numerical	computing	in	JavaScript,	and
some	possible	solutions.	Common	numerical	computing	involves	large
numerical	arrays	processed	by	numerical	algorithms	that	you	might	have
learned	in	Calculus	or	Linear	Algebra	classes.	What	JavaScript	lacks	is
multi-dimensional	arrays,	and	access	to	certain	CPU	instructions.	The
solution	he	presented	is	a	library	to	implement	multi-dimensional	arrays	in
JavaScript,	along	with	another	library	full	of	numerical	computing
algorithms.	To	view	the	presentation,	see	https://www.youtube.com/watch?v=1ORaK
Ezlnys.	

The	bottom	line	is	that	Node.js	excels	at	event-driven	I/O	throughput.
Whether	a	Node.js	program	can	excel	at	computational	programs	depends
on	your	ingenuity	in	working	around	some	limitations	in	the	JavaScript
language.	A	big	problem	with	computational	programming	is	that	it
prevents	the	event	loop	from	executing	and,	as	we	will	see	in	the	next
section,	that	can	make	Node.js	look	like	a	poor	candidate	for	anything.

https://www.youtube.com/watch?v=YqOhBezMx1o
https://www.youtube.com/watch?v=1ORaKEzlnys

Is	Node.js	a	cancerous
scalability	disaster?
In	October	2011,	software	developer	and	blogger	Ted	Dziuba	wrote	a	blog
post	(since	pulled	from	his	blog)	titled	Node.js	is	a	cancer,	calling	it	a
scalability	disaster.	The	example	he	showed	for	proof	is	a	CPU-bound
implementation	of	the	Fibonacci	sequence	algorithm.	While	his	argument
was	flawed,	he	raised	a	valid	point	that	Node.js	application	developers
have	to	consider	the	following:	where	do	you	put	the	heavy	computational
tasks?

A	key	to	maintaining	high	throughput	of	Node.js	applications	is	ensuring
that	events	are	handled	quickly.	Because	it	uses	a	single	execution	thread,
if	that	thread	is	bogged	down	with	a	big	calculation,	Node.js	cannot	handle
events,	and	event	throughput	will	suffer.

The	Fibonacci	sequence,	serving	as	a	stand-in	for	heavy	computational
tasks,	quickly	becomes	computationally	expensive	to	calculate,	especially
for	a	naïve	implementation	such	as	this:

const	fibonacci	=	exports.fibonacci	=	function(n)	{	

				if	(n	===	1	||	n	===	2)	return	1;	

				else	return	fibonacci(n-1)	+	fibonacci(n-2);	

}

Yes,	there	are	many	ways	to	calculate	fibonacci	numbers	more	quickly.	We
are	showing	this	as	a	general	example	of	what	happens	to	Node.js	when
event	handlers	are	slow,	and	not	to	debate	the	best	ways	to	calculate
mathematics	functions.	Consider	this	server:

const	http	=	require('http');	

const	url		=	require('url');	

	

const	fibonacci	=	//	as	above	

	

http.createServer(function	(req,	res)	{	

		const	urlP	=	url.parse(req.url,	true);	

		let	fibo;	

		res.writeHead(200,	{'Content-Type':	'text/plain'});	

		if	(urlP.query['n'])	{	

				fibo	=	fibonacci(urlP.query['n']);	

				res.end('Fibonacci	'+	urlP.query['n']	+'='+	fibo);	

		}	else	{	

				res.end('USAGE:	http://127.0.0.1:8124?n=##	where	##	is	the	Fibonacci	

number	desired');	

		}	

}).listen(8124,	'127.0.0.1');	

console.log('Server	running	at	http://127.0.0.1:8124');	

For	sufficiently	large	values	of	n	(for	example,	40),	the	server	becomes
completely	unresponsive	because	the	event	loop	is	not	running,	and
instead	this	function	is	blocking	event	processing	because	it	is	grinding
through	the	calculation.

Does	this	mean	that	Node.js	is	a	flawed	platform?	No,	it	just	means	that
the	programmer	must	take	care	to	identify	code	with	long-running
computations	and	develop	solutions.	These	include	rewriting	the	algorithm
to	work	with	the	event	loop,	or	rewriting	the	algorithm	for	efficiency,	or
integrating	a	native	code	library,	or	foisting	computationally	expensive
calculations	on	to	a	backend	server.

A	simple	rewrite	dispatches	the	computations	through	the	event	loop,
letting	the	server	continue	to	handle	requests	on	the	event	loop.	Using
callbacks	and	closures	(anonymous	functions),	we're	able	to	maintain
asynchronous	I/O	and	concurrency	promises:

const	fibonacciAsync	=	function(n,	done)	{	

				if	(n	===	0)	return	0;

				else	if	(n	===	1	||	n	===	2)	done(1);	

				else	if	(n	===	3)	return	2;

				else	{	

								process.nextTick(function()	{	

												fibonacciAsync(n-1,	function(val1)	{	

																process.nextTick(function()	{	

																				fibonacciAsync(n-2,	function(val2)	{

																				done(val1+val2);	});	

																});	

												});	

								});	

				}	

}	

Because	this	is	an	asynchronous	function,	it	necessitates	a	small
refactoring	of	the	server:

const	http	=	require('http');	

const	url		=	require('url');	

	

const	fibonacciAsync	=	//	as	above	

	

http.createServer(function	(req,	res)	{	

		let	urlP	=	url.parse(req.url,	true);

		res.writeHead(200,	{'Content-Type':	'text/plain'});	

		if	(urlP.query['n'])	{	

				fibonacciAsync(urlP.query['n'],	fibo	=>	{

								res.end('Fibonacci	'+	urlP.query['n']	+'='+	fibo);

				});

		}	else	{	

				res.end('USAGE:	http://127.0.0.1:8124?n=##	where	##	is	the	Fibonacci	

number	desired');

		}

}).listen(8124,	'127.0.0.1');	console.log('Server	running	at	

http://127.0.0.1:8124');

Dziuba's	valid	point	wasn't	expressed	well	in	his	blog	post,	and	it	was
somewhat	lost	in	the	flames	following	that	post.	Namely,	that	while
Node.js	is	a	great	platform	for	I/O-bound	applications,	it	isn't	a	good
platform	for	computationally	intensive	ones.

Later	in	this	book,	we'll	explore	this	example	a	little	more	deeply.

Server	utilization,	the	business
bottom	line,	and	green	web
hosting
The	striving	for	optimal	efficiency	(handling	more	requests	per	second)	is
not	just	about	the	geeky	satisfaction	that	comes	from	optimization.	There
are	real	business	and	environmental	benefits.	Handling	more	requests	per
second,	as	Node.js	servers	can	do,	means	the	difference	between	buying
lots	of	servers	and	buying	only	a	few	servers.	Node.js	potentially	lets	your
organization	do	more	with	less.

Roughly	speaking,	the	more	servers	you	buy,	the	greater	the	cost,	and	the
greater	the	environmental	impact	of	having	those	servers.	There's	a	whole
field	of	expertise	around	reducing	costs	and	the	environmental	impact	of
running	web	server	facilities,	to	which	that	rough	guideline	doesn't	do
justice.	The	goal	is	fairly	obvious—fewer	servers,	lower	costs,	and	a
reduced	environmental	impact	through	utilizing	more	efficient	software.

Intel's	paper,	Increasing	Data	Center	Efficiency	with	Server	Power
Measurements	(https://www.intel.com/content/dam/doc/white-paper/intel-it-data-c
enter-efficiency-server-power-paper.pdf),	gives	an	objective	framework	for
understanding	efficiency	and	data	center	costs.	There	are	many	factors,
such	as	buildings,	cooling	systems,	and	computer	system	designs.
Efficient	building	design,	efficient	cooling	systems,	and	efficient	computer
systems	(data	center	efficiency,	data	center	density,	and	storage	density)
can	lower	costs	and	environmental	impact.	But	you	can	destroy	those
gains	by	deploying	an	inefficient	software	stack	compelling	you	to	buy
more	servers	than	you	would	if	you	had	an	efficient	software	stack.
Alternatively,	you	can	amplify	gains	from	data	center	efficiency	with	an
efficient	software	stack	that	lets	you	decrease	the	number	of	servers
required.

https://www.intel.com/content/dam/doc/white-paper/intel-it-data-center-efficiency-server-power-paper.pdf

This	talk	about	efficient	software	stacks	isn't	just	for	altruistic
environmental	purposes.	This	is	one	of	those	cases	where	being	green	can
help	your	business	bottom	line.

Embracing	advances	in	the
JavaScript	language
The	last	couple	of	years	have	been	an	exciting	time	for	JavaScript
programmers.	The	TC-39	committee	that	oversees	the	ECMAScript
standard	has	added	many	new	features,	some	of	which	are	syntactic	sugar,
but	several	of	which	have	propelled	us	into	a	whole	new	era	of	JavaScript
programming.	By	itself,	the	async/await	feature	promises	us	a	way	out	of
what's	called	Callback	Hell,	or	the	situation	we	find	ourselves	in	when
nesting	callbacks	within	callbacks.	It's	such	an	important	feature	that	it
should	necessitate	a	broad	rethinking	of	the	prevailing	callback-oriented
paradigm	in	Node.js	and	the	rest	of	the	JavaScript	ecosystem.

Refer	back	a	few	pages	to	this:

query('SELECT	*	from	db',	function	(err,	result)	{	

				if	(err)	throw	err;	//	handle	errors	

				//	operate	on	result	

});

This	was	an	important	insight	on	Ryan	Dahl's	part,	and	is	what	propelled
Node.js's	popularity.	Certain	actions	take	a	long	time	to	run,	such	as
database	queries,	and	should	not	be	treated	the	same	as	operations	that
quickly	retrieve	data	from	memory.	Because	of	the	nature	of	the
JavaScript	language,	Node.js	had	to	express	this	asynchronous	coding
construct	in	an	unnatural	way.	The	results	do	not	appear	at	the	next	line	of
code,	but	instead	appear	within	this	callback	function.	Further,	errors	have
to	be	handled	in	an	unnatural	way,	inside	that	callback	function.	

The	convention	in	Node.js	is	that	the	first	parameter	to	a	callback	function
is	an	error	indicator,	and	the	subsequent	parameters	are	the	results.	This	is
a	useful	convention	that	you'll	find	all	across	the	Node.js	landscape.

However,	it	complicates	working	with	results	and	errors	because	both	land
in	an	inconvenient	location	—	that	callback	function.	The	natural	place	for
errors	and	results	to	land	is	on	the	subsequent	line(s)	of	code.

We	descend	further	into	callback	hell	with	each	layer	of	callback	function
nesting.	The	seventh	layer	of	callback	nesting	is	more	complex	than	the
sixth	layer	of	callback	nesting.	Why?	If	nothing	else,	it's	that	the	special
considerations	for	error	handling	become	ever	more	complex	as	callbacks
are	nested	more	deeply.

var	results	=	await	query('SELECT	*	from	db');

Instead,	ES2017	async	functions	return	us	to	this	very	natural	expression
of	programming	intent.	Results	and	errors	land	in	the	correct	location,
while	preserving	the	excellent	event-driven	asynchronous	programming
model	that	made	Node.js	great.	We'll	see	later	in	the	book	how	this	works.

The	TC-39	committee	added	many	more	new	features	to	JavaScript,	such
as:

An	improved	syntax	for	Class	declarations	making	object
inheritance	and	getter/setter	functions	very	natural.

A	new	module	format	that	is	standardized	across	browsers	and
Node.js.

New	methods	for	strings,	such	as	the	template	string	notation.

New	methods	for	collections	and	arrays	—	for	example,
operations	for	map/reduce/filter.

The	const	keyword	to	define	variables	that	cannot	be	changed,	and
the	let	keyword	to	define	variables	whose	scope	is	limited	to	the
block	in	which	they're	declared,	rather	than	hoisted	to	the	front	of
the	function.

New	looping	constructs,	and	an	iteration	protocol	that	works	with
those	new	loops.

A	new	kind	of	function,	the	arrow	function,	which	is	lighter
weight	meaning	less	memory	and	execution	time	impact

The	Promise	object	represents	a	result	that	is	promised	to	be
delivered	in	the	future.	By	themselves,	Promises	can	mitigate	the
callback	hell	problem,	and	they	form	part	of	the	basis	for	async
functions.

Generator	functions	are	an	intriguing	way	to	represent
asynchronous	iteration	over	a	set	of	values.	More	importantly,
they	form	the	other	half	of	the	basis	for	async	functions.

You	may	see	the	new	JavaScript	described	as	ES6	or	ES2017.	What's	the
preferred	name	to	describe	the	version	of	JavaScript	that	is	being	used?

ES1	through	ES5	marked	various	phases	of	JavaScript's	development.	ES5
was	released	in	2009,	and	is	widely	implemented	in	modern	browsers.
Starting	with	ES6,	the	TC-39	committee	decided	to	change	the	naming
convention	because	of	their	intention	to	add	new	language	features	every
year.	Therefore,	the	language	version	name	now	includes	the	year,	hence
ES2015	was	released	in	2015,	ES2016	was	released	in	2016,	and	ES2017
was	released	in	2017.

Deploying
ES2015/2016/2017/2018
JavaScript	code
The	pink	elephant	in	the	room	is	that,	because	of	how	JavaScript	is
delivered	to	the	world,	we	cannot	just	start	using	the	latest	ES2017
features.	In	frontend	JavaScript,	we	are	limited	by	the	fact	that	old
browsers	are	still	in	use.	Internet	Explorer	version	6	has	fortunately	been
almost	completely	retired,	but	there	are	still	plenty	of	old	browsers
installed	on	older	computers	that	are	still	serving	a	valid	role	for	their
owners.	Old	browsers	mean	old	JavaScript	implementations,	and	if	we
want	our	code	to	work,	we	need	it	to	be	compatible	with	old	browsers.

Using	code	rewriting	tools	such	as	Babel,	some	of	the	new	features	can	be
retrofitted	to	function	on	some	of	the	older	browsers.	Frontend	JavaScript
programmers	can	adopt	(some	of)	the	new	features	at	the	cost	of	a	more
complex	build	toolchain,	and	the	risk	of	bugs	introduced	by	the	code
rewriting	process.	Some	may	wish	to	do	that,	while	others	will	prefer	to
wait	a	while.

The	Node.js	world	doesn't	have	this	problem.	Node.js	has	rapidly	adopted
ES2015/2016/2017	features	as	quickly	as	they	were	implemented	in	the
V8	engine.	With	Node.js	8,	we	can	now	use	async	functions	as	a	native
feature,	and	most	of	the	ES2015/2016	features	became	available	with
Node.js	version	6.	The	new	module	format	is	now	supported	in	Node.js
version	10.

In	other	words,	while	frontend	JavaScript	programmers	can	argue	that	they
must	wait	a	couple	of	years	before	adopting	ES2015/2016/2017	features,
Node.js	programmers	have	no	need	to	wait.	We	can	simply	use	the	new
features	without	needing	any	code	rewriting	tools.

Node.js,	the	microservice
architecture,	and	easily
testable	systems
New	capabilities,	such	as	cloud	deployment	systems	and	Docker,	make	it
possible	to	implement	a	new	kind	of	service	architecture.	Docker	makes	it
possible	to	define	server	process	configuration	in	a	repeatable	container
that's	easy	to	deploy	by	the	millions	into	a	cloud	hosting	system.	It	lends
itself	best	to	small	single-purpose	service	instances	that	can	be	connected
together	to	make	a	complete	system.	Docker	isn't	the	only	tool	to	help
simplify	cloud	deployments;	however,	its	features	are	well	attuned	to
modern	application	deployment	needs.

Some	have	popularized	the	microservice	concept	as	a	way	to	describe	this
kind	of	system.	According	to	the	microservices.io	website,	a	microservice
consists	of	a	set	of	narrowly	focused,	independently	deployable	services.
They	contrast	this	with	the	monolithic	application	deployment	pattern
where	every	aspect	of	the	system	is	integrated	into	one	bundle	(such	as	a
single	WAR	file	for	a	Java	EE	app	server).	The	microservice	model	gives
developers	much	needed	flexibility.

Some	advantages	of	microservices	are	as	follows:

Each	microservice	can	be	managed	by	a	small	team

Each	team	can	work	on	its	own	schedule,	so	long	as	the	service
API	compatibility	is	maintained

Microservices	can	be	deployed	independently,	such	as	for	easier
testing

http://microservices.io/

	

It's	easier	to	switch	technology	stack	choices

Where	does	Node.js	fit	in	with	this?	Its	design	fits	the	microservice	model
like	a	glove:

Node.js	encourages	small,	tightly	focused,	single-purpose	modules

These	modules	are	composed	into	an	application	by	the	excellent
npm	package	management	system

Publishing	modules	is	incredibly	simple,	whether	via	the	NPM
repository	or	a	Git	URL

	

	

	

Node.js	and	the	Twelve-Factor
app	model
Throughout	this	book,	we'll	call	out	aspects	of	the	Twelve-Factor	App
model,	and	ways	to	implement	those	ideas	in	Node.js.	This	model	is
published	on	http://12factor.net,	and	is	a	set	of	guidelines	for	application
deployment	in	the	modern	cloud	computing	era.	It's	not	that	the		Twelve-
Factor	App	model	is	the	be-all	and	end-all	of	application	architecture
paradigms.	It's	a	set	of	useful	ideas,	clearly	birthed	after	many	late	nights
spent	debugging	complex	applications,	which	offer	useful	ideas	that	could
save	us	all	a	lot	of	effort	by	having	easier-to-maintain	and	more	reliable
systems.

The	guidelines	are	straightforward,	and	once	you	read	them,	they	will
seem	like	pure	common	sense.	As	a	best	practice,	the	Twelve-Factor	App
model	is	a	compelling	strategy	for	delivering	the	kind	of	fluid	self-
contained	cloud-deployed	applications	called	for	by	our	current	computing
environment.

	

http://12factor.net

Summary
You	learned	a	lot	in	this	chapter.	Specifically,	you	saw	that	JavaScript	has
a	life	outside	web	browsers	and	you	learned	about	the	difference	between
asynchronous	and	blocking	I/O.	We	then	covered	the	attributes	of	Node.js
and	where	it	fits	in	the	overall	web	application	platform	market	and
threaded	versus	asynchronous	software.	Lastly,	we	saw	the	advantages	of
fast	event-driven	asynchronous	I/O,	coupled	with	a	language	with	great
support	for	anonymous	closures.

Our	focus	in	this	book	is	real-world	considerations	of	developing	and
deploying	Node.js	applications.	We'll	cover	as	many	aspects	as	we	can	of
developing,	refining,	testing,	and	deploying	Node.js	applications.

Now	that	we've	had	this	introduction	to	Node.js,	we're	ready	to	dive	in	and
start	using	it.	In	Chapter	2,	Setting	up	Node.js,	we'll	go	over	setting	up	a
Node.js	environment,	so	let's	get	started.

	

Setting	up	Node.js
Before	getting	started	with	using	Node.js,	you	must	set	up	your
development	environment.	In	the	following	chapters,	we'll	use	this	for
development	and	for	non-production	deployment.

In	this	chapter,	we	will	cover	the	following	topics:

How	to	install	Node.js	from	source	and	prepackaged	binaries	on
Linux,	macOS,	or	Windows

How	to	install	Node	Package	Manager	(NPM)	and	some	popular
tools	

The	Node.js	module	system

Node.js	and	JavaScript	language	improvements	from	the
ECMAScript	committee

So	let's	get	on	with	it.

	

System	requirements
Node.js	runs	on	POSIX-like	operating	systems,	various	UNIX	derivatives
(Solaris,	for	example)	or	workalikes	(Linux,	macOS,	and	so	on),	as	well	as
on	Microsoft	Windows.	It	can	run	on	machines	both	large	and	small,
including	the	tiny	ARM	devices	such	as	the	Raspberry	Pi	microscale
embeddable	computer	for	DIY	software/hardware	projects.

Node.js	is	now	available	via	package	management	systems,	limiting	the
need	to	compile	and	install	from	source.

Because	many	Node.js	packages	are	written	in	C	or	C++,	you	must	have	a
C	compiler	(such	as	GCC),	Python	2.7	(or	later),	and	the	node-gyp	package.
If	you	plan	to	use	encryption	in	your	networking	code,	you	will	also	need
the	OpenSSL	cryptographic	library.	The	modern	UNIX	derivatives	almost
certainly	come	with	these,	and	Node.js's	configure	script,	used	when
installing	from	source,	will	detect	their	presence.	If	you	need	to	install
them,	Python	is	available	at	http://python.org	and	OpenSSL	is	available	at
http://openssl.org.

http://python.org
http://openssl.org

	

Installing	Node.js	using
package	managers
The	preferred	method	for	installing	Node.js,	now,	is	to	use	the	versions
available	in	package	managers,	such	as	apt-get,	or	MacPorts.	Package
managers	simplify	your	life	by	helping	to	maintain	the	current	version	of
the	software	on	your	computer,	ensuring	to	update	dependent	packages	as
necessary,	all	by	typing	a	simple	command	such	as	apt-get	update.	Let's	go
over	this	first.

	

Installing	on	macOS	with
MacPorts
The	MacPorts	project	(http://www.macports.org/)	has	for	years	been
packaging	a	long	list	of	open	source	software	packages	for	macOS,	and
they	have	packaged	Node.js.	After	you	have	installed	MacPorts	using	the
installer	on	their	website,	installing	Node.js	is	pretty	much	this	simple:

$	port	search	nodejs	npm

...

nodejs6	@6.12.0	(devel,	net)

	Evented	I/O	for	V8	JavaScript

nodejs7	@7.10.1	(devel,	net)

	Evented	I/O	for	V8	JavaScript

nodejs8	@8.9.1	(devel,	net)

	Evented	I/O	for	V8	JavaScript

nodejs9	@9.2.0	(devel,	net)

	Evented	I/O	for	V8	JavaScript

Found	6	ports.

--

npm4	@4.6.1	(devel)

	node	package	manager

npm5	@5.5.1	(devel)

	node	package	manager

Found	4	ports.

$	sudo	port	install	nodejs8	npm5

..	long	log	of	downloading	and	installing	prerequisites	and	Node

$	which	node

http://www.macports.org/

	

optlocal/bin/node

$	node	--version

v8.9.1		

	

	

$	brew	update
...	long	wait	and	lots	of
output
$	brew	search	node
==>
Searching	local	taps...
node	<img
src="Images/902ea8ae-c8f4-4de3-a41e-a21d10704fd1.png"
style="width:1.67em;height:1.67em;"	width="150"	height="150">	libbitcoin-
node	node-build	node@6	nodeenv
leafnode	llnode
node@4	nodebrew	nodenv
==>	Searching	taps	on
GitHub...
caskroom/cask/node-profiler

==>	Searching	blacklisted,	migrated	and	deleted	formulae...

$	brew	install	node
...

==>	Installing	node
==>	Downloading
https://homebrew.bintray.com/bottles/node-
8.9.1.el_capitan.bottle.tar.gz

##
100.0%
==>	Pouring	node-
8.9.1.el_capitan.bottle.tar.gz
==>	Caveats

Bash	completion	has	been	installed	to:

usrlocal/etc/bash_completion.d
==>	Summary

<img	src="Images/062f1f44-c05b-4b0b-881f-b7ad78f50bc9.png"
style="width:1.33em;height:1.33em;"	width="150"
height="150"/>usrlocal/Cellar/node/8.9.1:	5,012	files,	49.6MB

$	node	--version	v8.9.1	

#	curl	-sL	https://deb.nodesource.com/setup_10.x	|	sudo	-E	bash	-

#	sudo	apt-get	install	-y	nodejs	#	sudo	apt-get	install	-y	build-essential	

To	download	other	Node.js	versions	(this	example	shows	version	10.x),	modify
the	URL	to	suit.

Installing	Node.js	in	the
Windows	Subsystem	for	Linux
(WSL)
The	Windows	Subsystem	for	Linux	(WSL)	lets	you	install	Ubuntu,
openSUSE,	or	SUSE	Linux	Enterprise	on	Windows.	All	three	are
available	via	the	Store	built	into	Windows	10.	You	may	need	to	update
your	Windows	for	the	installation	to	work.

Once	installed,	the	Linux-specific	instructions	will	install	Node.js	within
the	Linux	subsystem.

To	install	the	WSL,	see	https://msdn.microsoft.com/en-us/commandline/wsl/install
-win10.

https://msdn.microsoft.com/en-us/commandline/wsl/install-win10

	

Opening	an	administrator-
privileged	PowerShell	on
Windows
Some	of	the	commands	you'll	run	while	installing	tools	on	Windows	are	to
be	executed	in	a	PowerShell	window	with	elevated	privileges.	We	mention
this	because	the	process	of	enabling	the	WSL	includes	a	command	to	be
run	in	such	a	PowerShell	window.

The	process	is	simple:

1.	 In	the	Start	menu,	enter	PowerShell	in	the	applications	search	box.
2.	 The	resultant	menu	will	list	PowerShell.
3.	 Right-click	the	PowerShell	entry.
4.	 The	context	menu	that	comes	up	will	have	an	entry	Run	as

Administrator.	Click	on	that.

The	resultant	command	window	will	have	administrator	privileges,	and
the	title	bar	will	say	Administrator:	Windows	PowerShell.

	

Installing	the	Node.js
distribution	from	nodejs.org
The	https://nodejs.org/en/	website	offers	built-in	binaries	for	Windows,
macOS,	Linux,	and	Solaris.	We	can	simply	go	to	the	website,	click	on	the
Install	button,	and	run	the	installer.	For	systems	with	package	managers,
such	as	the	ones	we've	just	discussed,	it's	preferable	to	use	the	package
management	system.	That's	because	you'll	find	it	easier	to	stay	up-to-date
with	the	latest	version.	But,	that	doesn't	serve	all	people	because:

Some	will	prefer	to	install	a	binary	rather	than	deal	with	the
package	manager

Their	chosen	system	doesn't	have	a	package	management	system

The	Node.js	implementation	in	their	package	management	system
is	out-of-date

Simply	go	to	the	Node.js	website	and	you'll	see	something	like	the
following	screenshot.	The	page	does	its	best	to	determine	your	OS	and
supply	the	appropriate	download.	If	you	need	something	different,	click	on
the	DOWNLOADS	link	in	the	header	for	all	possible	downloads:

https://nodejs.org/en/

For	macOS,	the	installer	is	a	PKG	file	giving	the	typical	installation	process.
For	Windows,	the	installer	simply	takes	you	through	the	typical	Install
Wizard	process.

Once	finished	with	the	installer,	you	have	command-line	tools,	such	as	node
and	npm,	with	which	you	can	run	Node.js	programs.	On	Windows,	you're
supplied	with	a	version	of	the	Windows	command	shell	preconfigured	to
work	nicely	with	Node.js.

	

Installing	from	source	on
POSIX-like	systems
Installing	the	prepackaged	Node.js	distributions	is	the	preferred
installation	method.	However,	installing	Node.js	from	source	is	desirable
in	a	few	situations:

It	can	let	you	optimize	the	compiler	settings	as	desired

It	can	let	you	cross-compile,	say,	for	an	embedded	ARM	system

You	might	need	to	keep	multiple	Node.js	builds	for	testing

You	might	be	working	on	Node.js	itself

Now	that	you	have	the	high-level	view,	let's	get	our	hands	dirty	mucking
around	in	some	build	scripts.	The	general	process	follows	the	usual
configure,	make,	and	make	install	routine	that	you	may	already	have	performed
with	other	open	source	software	packages.	If	not,	don't	worry,	we'll	guide
you	through	the	process.

The	official	installation	instructions	are	in	the	README.md	contained	within	the	source
distribution	at	https://github.com/nodejs/node/blob/master/README.md.

	

https://github.com/nodejs/node/blob/master/README.md

Installing	prerequisites
There	are	three	prerequisites:	a	C	compiler,	Python,	and	the	OpenSSL
libraries.	The	Node.js	compilation	process	checks	for	their	presence	and
will	fail	if	the	C	compiler	or	Python	is	not	present.	The	specific	method	of
installing	these	is	dependent	on	your	operating	system.

These	sorts	of	commands	will	check	for	their	presence:	$	cc	--version
Apple	LLVM	version	7.0.2	(clang-700.1.81)	Target:	x86_64-apple-
darwin15.3.0	Thread	model:	posix	$	python	Python	2.7.11	(default,
Jan	8	2016,	22:23:13)	[GCC	4.2.1	Compatible	Apple	LLVM	7.0.2
(clang-700.1.81)]	on	darwin	Type	"help",	"copyright",	"credits"	or
"license"	for	more	information.	>>>

See	this	for	details:	https://github.com/nodejs/node/blob/master/BUILDING.md.

The	Node.js	build	tools	do	not	support	Python	3.x.

https://github.com/nodejs/node/blob/master/BUILDING.md

Installing	developer	tools	on
macOS
Developer	tools	(such	as	GCC)	are	an	optional	installation	on	macOS.
Fortunately,	they're	easy	to	acquire.

You	start	with	Xcode,	which	is	available	for	free	through	the	Mac	App
Store.	Simply	search	for	Xcode	and	click	on	the	Get	button.	Once	you
have	Xcode	installed,	open	a	Terminal	window	and	type	the	following:	$
xcode-select	--install

This	installs	the	Xcode	command-line	tools:

For	additional	information,	visit	http://osxdaily.com/2014/02/12/install-command-
line-tools-mac-os-x/.

http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/

Installing	from	source	for	all
POSIX-like	systems
Compiling	Node.js	from	source	follows	this	process:

1.	 Download	the	source	from	http://nodejs.org/download.

2.	 Configure	the	source	for	building	using	./configure.
3.	 Run	make,	then	make	install.

The	source	bundle	can	be	downloaded	with	your	browser,	or	as	follows,
substituting	your	preferred	version:

$	mkdir	src

$	cd	src

$	wget	https://nodejs.org/dist/v10.0.0/node-v10.0.0.tar.gz

$	tar	xvfz	node-v10.0.0.tar.gz

$	cd	node-v10.0.0

Now	we	configure	the	source	so	that	it	can	be	built.	This	is	just	like	many
other	open	source	packages,	and	there	are	a	long	list	of	options	to
customize	the	build:

$./configure	--help

To	cause	the	installation	to	land	in	your	home	directory,	run	it	this	way:

$./configure	--prefix=$HOME/node/10.0.0

..output	from	configure		

http://nodejs.org/download

If	you're	going	to	install	multiple	Node.js	versions	side	by	side,	it's	useful
to	put	the	version	number	in	the	path	like	this.	That	way,	each	version	will
sit	in	a	separate	directory.	It's	a	simple	matter	of	switching	between
Node.js	versions	by	changing	the	PATH	variable	appropriately:

#	On	bash	shell:

$	export	PATH=${HOME}/node/VERSION-NUMBER/bin:${PATH}

#	On	csh

$	setenv	PATH	${HOME}/node/VERSION-NUMBER/bin:${PATH}

A	simpler	way	to	install	multiple	Node.js	versions	is	the	nvm	script
described	later.

If	you	want	to	install	Node.js	in	a	system-wide	directory,	simply	leave	off
the	--prefix	option	and	it	will	default	to	installing	in	usrlocal.

After	a	moment,	it'll	stop	and	will	likely	have	successfully	configured	the
source	tree	for	installation	in	your	chosen	directory.	If	this	doesn't	succeed,
the	error	messages	that	are	printed	will	describe	what	needs	to	be	fixed.
Once	the	configure	script	is	satisfied,	you	can	go	on	to	the	next	step.

With	the	configure	script	satisfied,	you	compile	the	software:

$	make

..	a	long	log	of	compiler	output	is	printed

$	make	install

If	you	are	installing	into	a	system-wide	directory,	do	the	last	step	this	way
instead:

$	make

$	sudo	make	install

Once	installed,	you	should	make	sure	that	you	add	the	installation
directory	to	your	PATH	variable	as	follows:

$	echo	'export	PATH=$HOME/node/10.0.0/bin:${PATH}'	>>~/.bashrc

$.	~/.bashrc		

Alternatively,	for	csh	users,	use	this	syntax	to	make	an	exported
environment	variable:

$	echo	'setenv	PATH	$HOME/node/10.0.0/bin:${PATH}'	>>~/.cshrc

$	source	~/.cshrc		

This	should	result	in	some	directories,	as	follows:

$	ls	~/node/10.0.0/

bin			include			lib			share

$	ls	~/node/10.0.0/bin		

	

Installing	from	source	on
Windows
The	BUILDING.md	document	referenced	previously	has	instructions.	One	uses
the	build	tools	from	Visual	Studio,	or	else	the	full	Visual	Studio	2017
product:	

Visual	Studio	2017:	https://www.visualstudio.com/downloads/

Build	tools:	https://www.visualstudio.com/downloads/#build-tools-for-visu
al-studio-2017

Three	additional	tools	are	required:

Git	for	Windows:	http://git-scm.com/download/win		

Python:	https://www.python.org/

OpenSSL:	https://www.openssl.org/source/	and	https://wiki.openssl.org/
index.php/Binaries

Then,	run	the	included	.\vcbuild	script	to	perform	the	build.	

	

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
http://git-scm.com/download/win
https://www.python.org/
https://www.openssl.org/source/
https://wiki.openssl.org/index.php/Binaries

Installing	multiple	Node.js
instances	with	nvm
Normally,	you	won't	install	multiple	versions	of	Node.js	and	doing	so	adds
complexity	to	your	system.	But	if	you	are	hacking	on	Node.js	itself,	or	are
testing	your	software	against	different	Node.js	releases,	you	may	want	to
have	multiple	Node.js	installations.	The	method	to	do	so	is	a	simple
variation	on	what	we've	already	discussed.

Earlier,	while	discussing	building	Node.js	from	source,	we	noted	that	one
can	install	multiple	Node.js	instances	in	separate	directories.	It's	only
necessary	to	build	from	source	if	you	need	a	customized	Node.js	build,
and	most	folks	will	be	satisfied	with	pre-built	Node.js	binaries.	They,	too,
can	be	installed	into	separate	directories.

To	switch	between	Node.js	versions	is	simply	a	matter	of	changing	the	PATH
variable	(on	POSIX	systems),	as	follows,	using	the	directory	where	you
installed	Node.js:

$	export	PATH=usrlocal/node/VERSION-NUMBER/bin:${PATH}		

It	starts	to	be	a	little	tedious	to	maintain	this	after	a	while.	For	each
release,	you	have	to	set	up	Node.js,	NPM,	and	any	third-party	modules
you	desire	in	your	Node.js	installation.	Also,	the	command	shown	to
change	your	PATH	is	not	quite	optimal.	Inventive	programmers	have	created
several	version	managers	to	simplify	managing	multiple	Node.js/NPM
releases	and	providing	commands	to	change	your	PATH	the	smart	way:

Node	version	manager:	https://github.com/tj/n

Node	version	manager:	https://github.com/creationix/nvm

https://github.com/tj/n
https://github.com/creationix/nvm

Both	maintain	multiple	simultaneous	versions	of	Node	and	let	you	easily
switch	between	versions.	Installation	instructions	are	available	on	their
respective	websites.

For	example,	with	nvm,	you	can	run	commands	like	these:

$	nvm	ls

...

									v6.0.0

									v6.1.0

									v6.2.2

									v6.3.1

									v6.4.0

												...

								v6.11.2

									v7.0.0

									v7.1.0

								v7.10.0

									v8.0.0

									v8.1.3

									v8.2.1

									v8.5.0

									v8.9.1

									v8.9.3

									v9.2.0

									v9.4.0

									v9.5.0

								v9.10.1

								v9.11.1

					->	v10.0.0

					->	system

node	->	stable	(->	v8.9.1)	(default)

stable	->	8.9	(->	v8.9.1)	(default)

iojs	->	N/A	(default)

$	nvm	use	10

Now	using	node	v10.0.0	(npm	v5.6.0)

$	node	--version

v10.0.0

$	nvm	use	v4.2

Now	using	node	v4.2.0	(npm	v2.14.7)

$	node	--version

v4.2.0

$	nvm	install	9

Downloading	https://nodejs.org/dist/v9.2.0/node-v9.2.0-darwin-x64.tar.xz...

##	

100.0%

WARNING:	checksums	are	currently	disabled	for	node.js	v4.0	and	later

Now	using	node	v9.2.0	(npm	v5.5.1)

$	node	--version

v9.2.0

$	which	node

/Users/david/.nvm/versions/node/v9.2.0/bin/node

$	usrlocal/bin/node	--version

v8.9.1

$	optlocal/bin/node	--version

v8.9.1

This	demonstrates	that	you	can	have	a	system-wide	Node.js	installed,	keep
multiple	private	Node.js	versions	managed	by	nvm,	and	switch	between
them	as	needed.	When	new	Node.js	versions	are	released,	they	are	simple
to	install	with	nvm	even	if	the	official	packaged	version	for	your	OS	doesn't
immediately	update.

Installing	nvm	on	Windows
Unfortunately,	nvm	does	not	support	Windows.	Fortunately,	a	couple	of
Windows-specific	clones	of	the	nvm	concept	exist:

https://github.com/coreybutler/nvm-windows

https://github.com/marcelklehr/nodist

Another	route	is	to	use	the	WSL.	Because	in	WSL	you're	interacting	with
a	Linux	command	line,	you	can	use	nvm	itself.

Many	of	the	examples	in	this	book	were	tested	using	the	nvm-windows
application.	There	are	slight	behavior	differences,	but	it	acts	largely	the
same	as	nvm	for	Linux	and	macOS.	The	biggest	change	is	the	version
number	specifier	in	the	nvm	use	and	nvm	install	commands.

With	nvm	for	Linux	and	macOS	one	can	type	a	simple	version	number,	like
nvm	use	8,	and	it	will	automatically	substitute	the	latest	release	of	the	named
Node.js	version.	With	nvm-windows	the	same	command	acts	as	if	you	typed
"nvm	use	8.0.0".	In	other	words,	with	nvm-windows	you	must	use	the	exact
version	number.	Fortunately,	the	list	of	supported	versions	is	easily
available	using	the	"nvm	list	available"	command.

https://github.com/coreybutler/nvm-windows
https://github.com/marcelklehr/nodist

Native	code	modules	and
node-gyp
While	we	won't	discuss	native	code	module	development	in	this	book,	we
do	need	to	make	sure	that	they	can	be	built.	Some	modules	in	the	NPM
repository	are	native	code,	and	they	must	be	compiled	with	a	C	or	C++
compiler	to	build	the	corresponding	.node	files		(the	.node	extension	is	used
for	binary	native-code	modules).

The	module	will	often	describe	itself	as	a	wrapper	for	some	other	library.
For	example,	the	libxslt	and	libxmljs	modules	are	wrappers	around	the
C/C++	libraries	of	the	same	name.	The	module	includes	the	C/C++	source
code,	and	when	installed,	a	script	is	automatically	run	to	do	the
compilation	with	node-gyp.

The	node-gyp	tool	is	a	cross-platform	command-line	tool	written	in	Node.js
for	compiling	native	add-on	modules	for	Node.js.	We've	mentioned	native
code	modules	several	times,	and	it	is	this	tool	that	compiles	them	for	use
with	Node.js.

You	can	easily	see	this	in	action	by	running	these	commands:

$	mkdir	temp

$	cd	temp

$	npm	install	libxmljs	libxslt		

This	is	done	in	a	temporary	directory,	so	you	can	delete	it	afterward.	If
your	system	does	not	have	the	tools	installed	to	compile	native	code
modules,	you'll	see	error	messages.	Otherwise,	you'll	see	in	the	output
a	node-gyp	execution,	followed	by	many	lines	of	text	obviously	related	to
compiling	C/C++	files.

The	node-gyp	tool	has	prerequisites	similar	to	those	for	compiling	Node.js
from	source.	Namely,	a	C/C++	compiler,	a	Python	environment,	and	other
build	tools	such	as	Git.	For	Unix/macOS/Linux	systems	those	are	easy	to
come	by.	For	Windows,	you	should	install:

Visual	Studio	Build	Tools:	https://www.visualstudio.com/downloads/#buil
d-tools-for-visual-studio-2017

Git	for	Windows:	http://git-scm.com/download/win

Python	for	Windows:	https://www.python.org/

Normally,	you	won't	need	to	worry	about	installing	node-gyp.	That's	because
it	is	installed	behind	the	scenes	as	part	of	NPM.	That's	done	so	that	NPM
can	automatically	build	native	code	modules.

Its	GitHub	repository	contains	documentation
at	https://github.com/nodejs/node-gyp.

Reading	the	node-gyp	documentation,	in	its	repository,	will	give	you	a
clearer	understanding	of	the	compilation	prerequisites	discussed
previously,	as	well	as	of	developing	native	code	modules.

https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
http://git-scm.com/download/win
https://www.python.org/
https://github.com/nodejs/node-gyp

Node.js	versions	policy	and
what	to	use
We	just	threw	around	so	many	different	Node.js	version	numbers	in	the
previous	section	that	you	may	have	become	confused	over	which	version
to	use.	This	book	is	targeting	Node.js	version	10.x,	and	it's	expected	that
everything	we'll	cover	is	compatible	with	Node.js	10.x	and	any	subsequent
release.

Starting	with	Node.js	4.x,	the	Node.js	team	is	following	a	dual-track
approach.	The	even-numbered	releases	(4.x,	6.x,	8.x,	and	so	on)	are	what
they're	calling	Long	Term	Support	(LTS),	while	the	odd-numbered
releases	(5.x,	7.x,	9.x,	and	so	on)	are	where	current	new	feature
development	occurs.	While	the	development	branch	is	kept	stable,	the	LTS
releases	are	positioned	as	being	for	production	use	and	will	receive
updates	for	several	years.

At	the	time	of	writing,	Node.js	8.x	is	the	current	LTS	release;	Node.js	9.x
was	just	released	and	will	eventually	become	Node.js	10.x,	which	in	turn
will	eventually	become	the	LTS	release.	For	complete	details	about	the
release	schedule,	refer	to	https://github.com/nodejs/LTS/.

A	major	impact	of	each	new	Node.js	release,	beyond	the	usual
performance	improvements	and	bug	fixes,	is	bringing	in	the	latest	V8
JavaScript	engine	release.	In	turn,	this	means	bringing	in	more	of	the	ES-
2015/2016/2017	features	as	the	V8	team	implements	those	features.	In
Node.js	8.x,	async/await	functions	arrived,	and	in	Node.js	10.x	support	for
the	standard	ES6	module	format	has	arrived.

A	practical	consideration	is	whether	a	new	Node.js	release	will	break	your
code.	New	language	features	are	always	being	added	as	V8	catches	up
with	ECMA	Script,	and	the	Node.js	team	sometimes	makes	breaking

https://github.com/nodejs/LTS/

changes	in	the	Node.js	API.	If	you've	tested	on	one	Node.js	version,	will	it
work	on	an	earlier	version?	Will	a	Node.js	change	break	some
assumptions	we	made?

The	NPM	Package	Manager	helps	us	ensure	that	our	packages	execute	on
the	correct	Node.js	version.	This	means	that	we	can	specify	in	the
package.json	file,	which	we'll	explore	in	Chapter	3,	Node.js	Modules,	the
compatible	Node.js	versions	for	a	package.

We	can	add	an	entry	to	package.json	as	follows:

engines:	{	

		"node":	">=6.x"	

}	

This	means	exactly	what	it	implies—that	the	given	package	is	compatible
with	Node.js	version	6.x	or	later.

Of	course,	your	development	machine(s)	could	have	several	Node.js
versions	installed.	You'll	need	the	version	your	software	is	declared	to
support,	plus	any	later	versions	you	wish	to	evaluate.

Editors	and	debuggers
Since	Node.js	code	is	JavaScript,	any	JavaScript-aware	editor	will	be
useful.	Unlike	some	other	languages	that	are	so	complex	that	an	IDE	with
code	completion	is	a	necessity,	a	simple	programming	editor	is	perfectly
sufficient	for	Node.js	development.

Two	editors	are	worth	calling	out	because	they	are	written	in	Node.js:
Atom	and	Microsoft	Visual	Studio	Code.	

Atom	(https://atom.io/)	bills	itself	as	a	hackable	editor	for	the	21st	century.
It	is	extendable	by	writing	Node.js	modules	using	the	Atom	API,	and	the
configuration	files	are	easily	editable.	In	other	words,	it's	hackable	in	the
same	way	plenty	of	other	editors	have	been,	going	back	to	Emacs,
meaning	one	writes	a	software	module	to	add	capabilities	to	the	editor.
The	Electron	framework	was	invented	in	order	to	build	Atom,	and
Electron	is	a	super	easy	way	to	build	desktop	applications	using	Node.js.

Microsoft	Visual	Studio	Code	(https://code.visualstudio.com/)	is	also	a
hackable	editor—well,	the	home	page	says	extensible	and	customizable,
which	means	the	same	thing—that	is	also	open	source,	and	is	also
implemented	in	Electron.	But	it's	not	a	hollow	me-too	editor,	aping	Atom
while	adding	nothing	of	its	own.		Instead,	Visual	Studio	Code	is	a	solid
programmers	editor	in	its	own	right,	bringing	interesting	functionality	to
the	table.

As	for	debuggers,	there	are	several	interesting	choices.	Starting	with
Node.js	6.3,	the	inspector	protocol	made	it	possible	to	use	the
Google	Chrome	debugger.	Visual	Studio	Code	has	a	built-in	debugger	that
also	uses	the	inspector	protocol.

For	a	full	list	of	debugging	options	and	tools,	see	https://nodejs.org/en/docs/g
uides/debugging-getting-started/.

https://atom.io/
https://code.visualstudio.com/
https://nodejs.org/en/docs/guides/debugging-getting-started/

Running	and	testing
commands
Now	that	you've	installed	Node.js,	we	want	to	do	two	things—verify	that
the	installation	was	successful,	and	familiarize	you	with	the	command-line
tools.

Node.js's	command-line	tools
The	basic	installation	of	Node.js	includes	two	commands,	node	and	npm.
We've	already	seen	the	node	command	in	action.	It's	used	either	for	running
command-line	scripts	or	server	processes.	The	other,	npm,	is	a	package
manager	for	Node.js.

The	easiest	way	to	verify	that	your	Node.js	installation	works	is	also	the
best	way	to	get	help	with	Node.js.	Type	the	following	command:

$	node	--help

Usage:	node	[options]	[-e	script	|	script.js	|	-]	[arguments]

							node	inspect	script.js	[arguments]

Options:

		-v,	--version	print	Node.js	version

		-e,	--eval	script	evaluate	script

		-p,	--print	evaluate	script	and	print	result

		-c,	--check	syntax	check	script	without	executing

		-i,	--interactive	always	enter	the	REPL	even	if	stdin

																													does	not	appear	to	be	a	terminal

		-r,	--require	module	to	preload	(option	can	be	repeated)

		-	script	read	from	stdin	(default;	interactive	mode	if	a	tty)

		--inspect[=[host:]port]	activate	inspector	on	host:port

																													(default:	127.0.0.1:9229)

		--inspect-brk[=[host:]port]

																													activate	inspector	on	host:port

																													and	break	at	start	of	user	script

		--inspect-port=[host:]port

																													set	host:port	for	inspector

...	many	more	options

Environment	variables:

NODE_DEBUG	','-separated	list	of	core	modules

																													that	should	print	debug	information

NODE_DISABLE_COLORS	set	to	1	to	disable	colors	in	the	REPL

NODE_EXTRA_CA_CERTS	path	to	additional	CA	certificates

																													file

NODE_ICU_DATA	data	path	for	ICU	(Intl	object)	data

																													(will	extend	linked-in	data)

NODE_NO_WARNINGS	set	to	1	to	silence	process	warnings

NODE_NO_HTTP2	set	to	1	to	suppress	the	http2	module

NODE_OPTIONS	set	CLI	options	in	the	environment

																													via	a	space-separated	list

NODE_PATH	':'-separated	list	of	directories

																													prefixed	to	the	module	search	path

NODE_PENDING_DEPRECATION	set	to	1	to	emit	pending	deprecation

																													warnings

NODE_REPL_HISTORY	path	to	the	persistent	REPL	history

																													file

NODE_REDIRECT_WARNINGS	write	warnings	to	path	instead	of

																													stderr

OPENSSL_CONF	load	OpenSSL	configuration	from	file

Documentation	can	be	found	at	https://nodejs.org/

Note	that	there	are	options	for	both	Node.js	and	V8	(not	shown	in	the
previous	command	line).	Remember	that	Node.js	is	built	on	top	of	V8;	it
has	its	own	universe	of	options	that	largely	focus	on	details	of	bytecode
compilation	or	garbage	collection	and	heap	algorithms.	Enter	node	--v8-
options	to	see	the	full	list	of	them.

On	the	command	line,	you	can	specify	options,	a	single	script	file,	and	a
list	of	arguments	to	that	script.	We'll	discuss	script	arguments	further	in	the
next	section,	Running	a	simple	script	with	Node.js.

Running	Node.js	with	no	arguments	plops	you	into	an	interactive
JavaScript	shell:

$	node

>	console.log('Hello,	world!');

Hello,	world!

undefined		

Any	code	you	can	write	in	a	Node.js	script	can	be	written	here.	The
command	interpreter	gives	a	good	Terminal-oriented	user	experience	and
is	useful	for	interactively	playing	with	your	code.	You	do	play	with	your
code,	don't	you?	Good!

Running	a	simple	script	with
Node.js
Now,	let's	see	how	to	run	scripts	with	Node.js.	It's	quite	simple;	let's	start
by	referring	to	the	help	message	shown	previously.	The	command-line
pattern	is	just	a	script	filename	and	some	script	arguments,	which	should
be	familiar	to	anyone	who	has	written	scripts	in	other	languages.

Creating	and	editing	Node.js	scripts	can	be	done	with	any	text	editor	that	deals	with
plain	text	files,	such	as	VI/VIM,	Emacs,	Notepad++,	Atom,	Visual	Studio	Code,	Jedit,
BB	Edit,	TextMate,	or	Komodo.	It's	helpful	if	it's	a	programmer-oriented	editor,	if	only
for	the	syntax	coloring.

For	this	and	other	examples	in	this	book,	it	doesn't	truly	matter	where	you
put	the	files.	However,	for	the	sake	of	neatness,	you	can	start	by	making	a
directory	named	node-web-dev	in	the	home	directory	of	your	computer,	and
inside	that	creating	one	directory	per	chapter	(for	example,	chap02	and
chap03).

First,	create	a	text	file	named	ls.js	with	the	following	content:

const	fs	=	require('fs');

const	util	=	require('util');

const	fs_readdir	=	util.promisify(fs.readdir);

(async	()	=>	{

		const	files	=	await	fs_readdir('.');

		for	(let	fn	of	files)	{

				console.log(fn);

		}

})().catch(err	=>	{	console.error(err);	});

Next,	run	it	by	typing	the	following	command:

$	node	ls.js

ls.js

This	is	a	pale	cheap	imitation	of	the	Unix	ls	command	(as	if	you	couldn't
figure	that	out	from	the	name).	The	readdir	function	is	a	close	analog	to	the
Unix	readdir	system	call	(type	man	3	readdir	in	a	Terminal	window	to	learn
more)	and	is	used	to	list	the	files	in	a	directory.

We	have	written	this	using	an	inline	async	function,	the	await	keyword,	and
an	ES2015	for..of	loop.	Using	util.promisify,	we	can	convert	any	callback-
oriented	function	so	it	returns	a	Promise,	so	that	the	Promise	plays	well
with	the	await	keyword.

By	default	fs	module	functions	use	the	callback	paradigm,	as	does	most
Node.js	modules.	But	within	async	functions	it	is	more	convenient	if
functions	instead	return	promises.	Using	util.promisify	we	can	make	it	so.

This	script	is	hardcoded	to	list	files	in	the	current	directory.	The	real	ls
command	takes	a	directory	name,	so	let's	modify	the	script	a	little.

Command-line	arguments	land	in	a	global	array	named	process.argv.
Therefore	we	can	modify	ls.js,	copying	it	as	ls2.js,	as	follows	to	see	how
this	array	works:

const	fs	=	require('fs');

const	util	=	require('util');

const	fs_readdir	=	util.promisify(fs.readdir);

(async	()	=>	{

		var	dir	=	'.';

		if	(process.argv[2])	dir	=	process.argv[2];

		const	files	=	await	fs_readdir(dir);

		for	(let	fn	of	files)	{

				console.log(fn);

		}

})().catch(err	=>	{	console.error(err);	});

You	can	run	it	as	follows:

$	pwd

/Users/David/chap02

$	node	ls2	..

chap01

chap02

$	node	ls2

app.js

ls.js

ls2.js

We	simply	checked	if	a	command-line	argument	was	present,	if
(process.argv[2]).	If	it	was,	we	overrode	the	value	of	the	dir	variable,	dir	=
process.argv[2],	and	we	then	used	that	as	the	readdir	argument.

If	you	give	it	a	nonexistent	directory	pathname,	an	error	will	be	thrown
and	printed	using	the	catch	clause.	That	looks	like	so:

$	node	ls2.js	/nonexistent

{	Error:	ENOENT:	no	such	file	or	directory,	scandir	'/nonexistent'

	errno:	-2,

	code:	'ENOENT',

	syscall:	'scandir',

	path:	'/nonexistent'	}

Conversion	to	async	functions
and	the	Promise	paradigm
In	the	previous	section	we	discussed	the	util.promisify	and	its	ability	to
convert	a	callback-oriented	function	into	one	that	returns	a	Promise.	The
latter	play	well	within	async	functions	and	therefore	it	is	preferable	for
functions	to	return	a	Promise.

To	be	more	precise,	util.promisify	is	to	be	given	a	function	that	uses	the
error-first-callback	paradigm.	The	last	argument	of	such	functions	is	a
callback	function	whose	first	argument	is	interpreted	as	an	error	indicator,
hence	the	phrase	error-first-callback.	What	util.promisify	returns	is	another
function	that	returns	a	Promise.	

The	Promise	serves	the	same	purpose	as	the	error-first-callback.	If	an	error
is	indicated,	the	Promise	resolves	to	the	rejected	status,	while	if	success	is
indicated	the	Promise	resolves	to	a	success	status.	As	we	see	in	these
examples,	within	an	async	function	the	Promise	is	handled	very	nicely.

The	Node.js	ecosystem	has	a	large	body	of	functions	using	the	error-first-
callback.	The	community	has	begun	a	conversion	process	where	functions
will	return	a	Promise,	and	possibly	also	take	an	error-first-callback	for	API
compatibility.

One	of	the	new	features	in	Node.js	10	is	an	example	of	such	a	conversion.
Within	the	fs	module	is	a	submodule,	named	fs.promises,	with	the	same	API
but	producing	Promise	objects.	We	could	rewrite	the	previous	example	as
so:	const	fs	=	require('fs').promises;
(async	()	=>	{
var	dir	=	'.';
if	(process.argv[2])	dir	=	process.argv[2];
const	files	=	await	fs.readdir(dir);

for	(let	fn	of	files)	{
console.log(fn);
}
})().catch(err	=>	{	console.error(err);	});

As	you	can	see,	the	functions	in	the	fs.promises	module	returns	a	Promise
without	requiring	a	callback	function.	The	new	program,	which	you	can
save	as	ls2-promises.js,	is	run	as	so:

$	node	ls2-promises.js	

(node:40329)	ExperimentalWarning:	The	fs.promises	API	is	experimental

app.js

ls.js

ls2-promises.js

ls2.js

The	API	is	currently	in	an	experimental	state	and	therefore	we're	shown
this	warning.

Another	choice	is	a	3rd	party	module,	fs-extra.	This	module	has	an
extended	API	beyond	the	standard	fs	module.	On	the	one	hand	its
functions	return	a	Promise	if	no	callback	function	is	provided,	or	else
invokes	the	callback.	In	addition	it	includes	several	useful	functions.

In	the	rest	of	this	book	we	will	be	using	fs-extra	because	of	those
additional	functions.	For	documentation	of	the	module,	see:	https://www.npmj
s.com/package/fs-extra.

https://www.npmjs.com/package/fs-extra

Launching	a	server	with
Node.js
Many	scripts	that	you'll	run	are	server	processes.	We'll	be	running	lots	of
these	scripts	later	on.	Since	we're	still	in	the	dual	mode	of	verifying	the
installation	and	familiarizing	you	with	using	Node.js,	we	want	to	run	a
simple	HTTP	server.	Let's	borrow	the	simple	server	script	on	the	Node.js
home	page	(http://nodejs.org).

Create	a	file	named	app.js	containing	the	following:

const	http	=	require('http');	

http.createServer(function	(req,	res)	{	

		res.writeHead(200,	{'Content-Type':	'text/plain'});	

		res.end('Hello,	World!\n');	

}).listen(8124,	'127.0.0.1');	

console.log('Server	running	at	http://127.0.0.1:8124');	

Run	it	as	follows:

$	node	app.js

Server	running	at	http://127.0.0.1:8124		

This	is	the	simplest	of	web	servers	you	can	build	with	Node.js.	If	you're
interested	in	how	it	works,	flip	forward	to	Chapter	4,	HTTP	Servers	and
Clients;	Chapter	5,	Your	First	Express	Application;	and	Chapter	6,
Implementing	the	Mobile-First	Paradigm.	For	the	moment,	just	visit
http://127.0.0.1:8124	in	your	browser	to	see	the	Hello,	World!	message:

http://nodejs.org

A	question	to	ponder	is	why	this	script	did	not	exit	when	ls.js	did	exit.	In
both	cases,	execution	of	the	script	reaches	the	end	of	the	script;	the
Node.js	process	does	not	exit	in	app.js,	while	in	ls.js	it	does.

The	reason	is	the	presence	of	active	event	listeners.	Node.js	always	starts
up	an	event	loop,	and	in	app.js,	the	listen	function	creates	an	event	listener
that	implements	the	HTTP	protocol.	This	event	listener	keeps	app.js
running	until	you	do	something	such	as	typing	Ctrl	+	C	in	the	Terminal
window.	In	ls.js,	there	is	nothing	that	creates	a	long-running	event
listener,	so	when	ls.js	reaches	the	end	of	its	script,	the	node	process	will
exit.

NPM	–	the	Node.js	package
manager
Node.js	by	itself	is	a	pretty	basic	system,	being	a	JavaScript	interpreter
with	a	few	interesting	asynchronous	I/O	libraries.	One	of	the	things	that
makes	Node.js	interesting	is	the	rapidly	growing	ecosystem	of	third-party
modules	for	Node.js.

At	the	center	of	that	ecosystem	is	NPM.	While	Node.js	modules	can	be
downloaded	as	source	and	assembled	manually	for	use	with	Node.js
programs,	that's	tedious	and	it's	difficult	to	implement	a	repeatable	build
process.	NPM	gives	us	a	simpler	way;	NPM	is	the	de	facto	standard
package	manager	for	Node.js	and	it	greatly	simplifies	downloading	and
using	these	modules.	We	will	talk	about	NPM	at	length	in	the	next	chapter.

The	sharp-eyed	will	have	noticed	that	npm	is	already	installed	via	all	the
installation	methods	discussed	previously.	In	the	past,	npm	was	installed
separately,	but	today	it	is	bundled	with	Node.js.

Now	that	we	have	npm	installed,	let's	take	it	for	a	quick	spin.
The	hexy	program	is	a	utility	for	printing	hex	dumps	of	files.	That's	a	very
1970	thing	to	do,	but	is	still	extremely	useful.	It	serves	our	purpose	right
now	in	giving	us	something	to	quickly	install	and	try	out:

$	npm	install	-g	hexy

optlocal/bin/hexy	->	optlocal/lib/node_modules/hexy/bin/hexy_cmd.js

+	hexy@0.2.10

added	1	package	in	1.107s

Adding	the	-g	flag	makes	the	module	available	globally,	irrespective	of	the
present-working-directory	of	your	command	shell.	A	global	install	is	most
useful	when	the	module	provides	a	command-line	interface.	When	a

package	provides	a	command-line	script,	npm	sets	that	up.	For	a	global
install,	the	command	is	installed	correctly	for	use	by	all	users	of	the
computer.

Depending	on	how	Node.js	is	installed	for	you,	that	may	need	to	be	run
with	sudo:

$	sudo	npm	install	-g	hexy

Once	it	is	installed,	you'll	be	able	to	run	the	newly–installed	program	this
way:

$	hexy	--width	12	ls.js

00000000:	636f	6e73	7420	6673	203d	2072	const.fs.=.r

0000000c:	6571	7569	7265	2827	6673	2729	equire('fs')

00000018:	3b0a	636f	6e73	7420	7574	696c	;.const.util

00000024:	203d	2072	6571	7569	7265	2827	.=.require('

00000030:	7574	696c	2729	3b0a	636f	6e73	util');.cons

0000003c:	7420	6673	5f72	6561	6464	6972	t.fs_readdir

00000048:	203d	2075	7469	6c2e	7072	6f6d	.=.util.prom

00000054:	6973	6966	7928	6673	2e72	6561	isify(fs.rea

00000060:	6464	6972	293b	0a0a	2861	7379	ddir);..(asy

0000006c:	6e63	2028	2920	3d3e	207b	0a20	nc.().=>.{..

00000078:	2063	6f6e	7374	2066	696c	6573	.const.files

00000084:	203d	2061	7761	6974	2066	735f	.=.await.fs_

00000090:	7265	6164	6469	7228	272e	2729	readdir('.')

0000009c:	3b0a	2020	666f	7220	2866	6e20	;...for.(fn.

000000a8:	6f66	2066	696c	6573	2920	7b0a	of.files).{.

000000b4:	2020	2020	636f	6e73	6f6c	652econsole.

000000c0:	6c6f	6728	666e	293b	0a20	207d	log(fn);...}

000000cc:	0a7d	2928	292e	6361	7463	6828	.})().catch(

000000d8:	6572	7220	3d3e	207b	2063	6f6e	err.=>.{.con

000000e4:	736f	6c65	2e65	7272	6f72	2865	sole.error(e

000000f0:	7272	293b	207d	293b											rr);.});

Again,	we'll	be	doing	a	deep	dive	into	NPM	in	the	next	chapter.	The	hexy
utility	is	both	a	Node.js	library	and	a	script	for	printing	out	these	old-style
hex	dumps.

Node.js,	ECMAScript
2015/2016/2017,	and	beyond	
In	2015,	the	ECMAScript	committee	released	a	long-awaited	major	update
of	the	JavaScript	language.	The	update	brought	in	many	new	features	to
JavaScript,	such	as	Promises,	arrow	functions,	and	Class	objects.	The
language	update	set	the	stage	for	improvements.	since	that	should
dramatically	improve	our	ability	to	write	clean,	understandable	JavaScript
code.

The	browser	makers	are	adding	those	much-needed	features,	meaning	the
V8	engine	is	adding	those	features	as	well.	These	features	are	making	their
way	into	Node.js	starting	with	version	4.x.

To	learn	about	the	current	status	of	ES-2015	in	Node.js,
visit	https://nodejs.org/en/docs/es6/.

By	default,	only	the	ES-2015/2016/2017	features	that	V8	considers	stable
are	enabled	by	Node.js.	Further	features	can	be	enabled	with	command-
line	options.	The	almost-complete	features	are	enabled	with	the	--es_staging
option.	The	website	documentation	gives	more	information.

The	Node	green	website	(http://node.green/)	has	a	table	listing	the	status	of
a	long	list	of	features	in	Node.js	versions.

The	ES2017	language	spec	is	published	at:	
https://www.ecma-international.org/publications/standards/Ecma-262.htm.

The	TC-39	committee	does	its	work	on	GitHub	https://github.com/tc39.

The	ES-2015	features	make	a	big	improvement	in	the	JavaScript	language.
One	feature,	the	Promise	class,	should	mean	a	fundamental	rethinking	of
common	idioms	in	Node.js	programming.	In	ES-2017,	a	pair	of	new

https://nodejs.org/en/docs/es6/
http://node.green/
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://github.com/tc39

keywords,	async	and	await,	will	simplify	writing	asynchronous	code	in
Node.js,	and	it	should	encourage	the	Node.js	community	to	further	rethink
the	common	idioms	of	the	platform.

There's	a	long	list	of	new	JavaScript	features,	but	let's	quickly	go	over	two
of	them	that	we'll	use	extensively.

The	first	is	a	lighter-weight	function	syntax	called	the	arrow	function:

fs.readFile('file.txt',	'utf8',	(err,	data)	=>	{	

		if	(err)	...;	//	do	something	with	the	error	

		else	...;		//	do	something	with	the	data	

});	

This	is	more	than	the	syntactic	sugar	of	replacing	the	function	keyword
with	the	fat	arrow.	Arrow	functions	are	lighter-weight	as	well	as	being
easier	to	read.	The	lighter	weight	comes	at	the	cost	of	changing	the	value
of	this	inside	the	arrow	function.	In	regular	functions,	this	has	a	unique
value	inside	the	function.	In	an	arrow	function,	this	has	the	same	value	as
the	scope	containing	the	arrow	function.	This	means	that,	when	using	an
arrow	function,	we	don't	have	to	jump	through	hoops	to	bring	this	into	the
callback	function	because	this	is	the	same	at	both	levels	of	the	code.

The	next	feature	is	the	Promise	class,	which	is	used	for	deferred	and
asynchronous	computations.	Deferred	code	execution	to	implement
asynchronous	behavior	is	a	key	paradigm	for	Node.js,	and	it	requires	two
idiomatic	conventions:

The	last	argument	to	an	asynchronous	function	is	a	callback
function,	which	is	called	when	an	asynchronous	execution	is	to	be
performed

The	first	argument	to	the	callback	function	is	an	error	indicator

While	convenient,	these	conventions	resulted	in	multilayer	code	pyramids
that	can	be	difficult	to	understand	and	maintain:

doThis(arg1,	arg2,	(err,	result1,	result2)	=>	{	

				if	(err)	...;	

				else	{	

									//	do	some	work	

									doThat(arg2,	arg3,	(err2,	results)	=>	{	

														if	(err2)	...;	

														else	{	

																					doSomethingElse(arg5,	err	=>	{	

																													if	(err)	..	;	

																													else	..;	

																					});	

														}	

									});	

				}	

});	

Depending	on	how	many	steps	are	required	for	a	specific	task,	a	code
pyramid	can	get	quite	deep.	Promises	will	let	us	unravel	the	code	pyramid
and	improve	reliability,	because	error	handling	is	more	straightforward
and	easily	captures	all	errors.

A	Promise	class	is	created	as	follows:

function	doThis(arg1,	arg2)	{	

				return	new	Promise((resolve,	reject)	=>	{	

								//	execute	some	asynchronous	code	

								if	(errorIsDetected)	return	reject(errorObject);	

								//	When	the	process	is	finished	call	this:	

								resolve(result1,	result2);	

				});	

}

Rather	than	passing	in	a	callback	function,	the	caller	receives	a	Promise
object.	When	properly	utilized,	the	preceding	pyramid	can	be	coded	as
follows:

doThis(arg1,	arg2)	

.then(result	=>	{	

		//	This	can	receive	only	one	value,	hence	to

		//	receive	multiple	values	requires	an	object	or	array

		return	doThat(arg2,	arg3);	

})	

.then((results)	=>	{	

		return	doSomethingElse(arg5);	

})	

.then(()	=>	{	

			//	do	a	final	something	

})	

.catch(err	=>	{	

			//	errors	land	here	

});	

This	works	because	the	Promise	class	supports	chaining	if	a	then	function
returns	a	Promise	object.

The	async/await	feature	implements	the	promise	of	the	Promise	class	to
simplify	asynchronous	coding.	This	feature	becomes	active	within	an	async
function:

async	function	mumble()	{

			//	async	magic	happens	here

}

An	async	arrow	function	is	as	follows:	

const	mumble	=	async	()	=>	{

				//	async	magic	happens	here

};

It's	used	as	so:

async	function	doSomething(arg1,	arg2,	arg3,	arg4,	arg5)	{

				var	{	result1,	result2	}	=	await	doThis(arg1,	arg2);

				var	results	=	await	doThat(arg2,	arg3);

				await	doSomethingElse(arg5);

				//	do	a	final	something

				return	finalResult;

}

Isn't	this	a	breath	of	fresh	air	compared	to	the	nested	structure	we	started
with?

The	await	keyword	is	used	with	a	Promise.	It	automatically	waits	for	the
Promise	to	resolve.	If	the	Promise	resolves	successfully	then	the	value	is
returned,	and	if	it	resolves	with	an	error	then	that	error	is	thrown.	Both
handling	results	and	throwing	errors	are	handled	in	the	natural	manner.

This	example	also	shows	another	ES2015	feature:	destructuring.	The
fields	of	an	object	can	be	extracted	using	the	following:

var	{	value1,	value2	}	=	{

				value1:	"Value	1",	value2:	"Value	2",	value3:	"Value3"

};	

We	have	an	object	with	three	fields,	but	extract	only	two	of	the	fields.

Using	Babel	to	use
experimental	JavaScript
features
The	Babel	transpiler	(http://babeljs.io/)	is	a	great	way	to	use	cutting-edge
JavaScript	features	on	older	implementations.	The	word	transpile	means
Babel	rewrites	JavaScript	code	into	other	JavaScript	code,	specifically	to
rewrite	ES-2015	or	ES-2016	features	to	older	JavaScript	code.	Babel
converts	JavaScript	source	to	an	abstract	syntax	tree,	then	manipulates	that
tree	to	rewrite	the	code	using	older	JavaScript	features,	and	then	writes
that	tree	to	a	JavaScript	source	code	file.

Put	another	way,	Babel	rewrites	JavaScript	code	into	JavaScript	code,
applying	desired	transformations	such	as	converting	ES2015/2016	features
into	ES5	code	that	can	run	in	a	web	browser.

Many	use	Babel	to	experiment	with	new	JavaScript	feature	proposals
working	their	way	through	the	TC-39	committee.	Others	use	Babel	to	use
new	JavaScript	features	in	projects	on	JavaScript	engines	that	do	not
support	those	features.

The	Node	Green	website	makes	it	clear	that	Node.js	supports	pretty	much
all	of	the	ES2015/2016/2017	features.	Therefore,	as	a	practical	matter,	we
no	longer	need	to	use	Babel	for	Node.js	projects.	

For	web	browsers,	there	is	a	much	longer	time	lag	between	a	set	of
ECMAScript	features	and	when	we	can	reliably	use	those	features	in
browser-side	code.	It's	not	that	the	web	browser	makers	are	slow	in
adopting	new	features,	because	the	Google,	Mozilla,	and	Microsoft	teams
are	proactive	about	adopting	the	latest	features.	Apple's	Safari	team	seems
slow	to	adopt	new	features,	unfortunately.	What's	slower,	however,	is	the

http://babeljs.io/

penetration	of	new	browsers	into	the	fleet	of	computers	in	the	field.	

Therefore,	modern	JavaScript	programmers	need	to	familiarize	themselves
with	Babel.

We're	not	ready	to	show	example	code	for	these	features,	but	we	can	go	ahead	and
document	the	setup	of	the	Babel	tool.	For	further	information	on	setup
documentation,	visit	http://babeljs.io/docs/setup/,	and	then	click	on	the	CLI	button.

To	get	a	brief	introduction	to	Babel,	we'll	use	it	to	transpile	the	scripts	we
saw	earlier	to	run	on	Node.js	6.x.	In	those	scripts	we	used	async	functions,
which	are	not	supported	in	Node.js	6.x.	

In	the	directory	containing	ls.js	and	ls2.js,	type	these	commands:

$	npm	install	babel-cli	\

							babel-plugin-transform-es2015-modules-commonjs	\

							babel-plugin-transform-async-to-generator

This	installs	the	Babel	software,	along	with	a	couple	of	transformation
plugins.	Babel	has	a	plugin	system	so	that	you	enable	the	transformations
required	by	your	project.	Our	primary	goal	in	this	example	is	converting
the	async	functions	shown	earlier	into	Generator	functions.	Generators	are	a
new	sort	of	function	introduced	with	ES2015,	which	form	the	foundation
for	implementation	of	async	functions.

Because	Node.js	6.x	does	not	have	util.promisify,	we	need	to	make	one
substitution:

//	const	fs_readdir	=	util.promisify(fs.readdir);

const	fs_readdir	=	dir	=>	{

			return	new	Promise((resolve,	reject)	=>	{

							fs.readdir(dir,	(err,	fileList)	=>	{

											if	(err)	reject(err);

											else	resolve(fileList);

							});

				});

};

This	structure	is	more	or	less	what	the	util.promisify	function	does.

http://babeljs.io/docs/setup/

Next,	create	a	file	named	.babelrc	containing	the	following:

{

	"plugins":	[

			"transform-es2015-modules-commonjs",

			"transform-async-to-generator"

]

}

This	file	instructs	Babel	to	use	the	named	transformation	plugins	that	we
installed	earlier.

Because	we	installed	babel-cli,	a	babel	command	is	installed	such	that	we
can	type	the	following:

$./node_modules/.bin/babel	-help		

To	transpile	your	code,	run	the	following	command:

$./node_modules/.bin/babel	ls2.js	-o	ls2-babel.js		

This	command	transpiles	the	named	file,	producing	a	new	file.	The	new
file	is	as	follows:

'use	strict';

function	_asyncToGenerator(fn)	{	return	function	()	{	var	gen	=	

fn.apply(this,	arguments);	return	new	Promise(function	(resolve,	reject)	{	

function	step(key,	arg)	{	try	{	var	info	=	gen[key](arg);	var	value	=	

info.value;	}	catch	(error)	{	reject(error);	return;	}	if	(info.done)	{	

resolve(value);	}	else	{	return	Promise.resolve(value).then(function	(value)	

{	step("next",	value);	},	function	(err)	{	step("throw",	err);	});	}	}	return	

step("next");	});	};	}

const	fs	=	require('fs');

const	util	=	require('util');

//	const	fs_readdir	=	util.promisify(fs.readdir);

const	fs_readdir	=	dir	=>	{

	return	new	Promise((resolve,	reject)	=>	{

			fs.readdir(dir,	(err,	fileList)	=>	{

					if	(err)	reject(err);

					else	resolve(fileList);

			});

	});

};

_asyncToGenerator(function*	()	{

	var	dir	=	'.';

	if	(process.argv[2])	dir	=	process.argv[2];

	const	files	=	yield	fs_readdir(dir);

	for	(let	fn	of	files)	{

					console.log(fn);

	}

})().catch(err	=>	{

	console.error(err);

});

This	code	isn't	meant	to	be	easy	to	read	by	humans.	Instead,	it's	meant	that
you	edit	the	original	source	file,	and	then	convert	it	for	your	target
JavaScript	engine.	The	main	thing	to	notice	is	that	the	transpiled	code	uses
a	Generator	function	in	place	of	the	async	function,	and	the	yield	keyword
in	place	of	the	await	keyword.	The	_asyncToGenerator	function	implements
functionality	similar	to	async	functions.

The	transpiled	script	is	run	as	follows:

$	node	ls2-babel

.babelrc

app.js

babel

ls.js

ls2-babel.js

ls2.js

node_modules

In	other	words,	it	runs	the	same	as	the	async	version,	but	on	an	older
Node.js	release.

Summary
You	learned	a	lot	in	this	chapter	about	installing	Node.js,	using	its
command-line	tools,	and	running	a	Node.js	server.	We	also	breezed	past	a
lot	of	details	that	will	be	covered	later	in	the	book,	so	be	patient.

Specifically,	we	covered	downloading	and	compiling	the	Node.js	source
code,	installing	Node.js	either	for	development	use	in	your	home	directory
or	for	deployment	in	system	directories	and	installing	NPM—the	de	facto
standard	package	manager	used	with	Node.js.	We	also	saw	how	to	run
Node.js	scripts	or	Node.js	servers.	We	then	took	a	look	at	the	new	features
in	ES-2015/2016/2017.	Finally,	we	saw	how	to	use	Babel	to	implement
those	features	in	your	code.

Now	that	we've	seen	how	to	set	up	the	basic	system,	we're	ready	to	start
working	on	implementing	applications	with	Node.js.	First,	you	must	learn
the	basic	building	blocks	of	Node.js	applications	and	modules,	which	we
will	cover	in	the	next	chapter.

	

Node.js	Modules
Before	writing	Node.js	applications,	you	must	learn	about	Node.js
modules	and	packages.	Modules	and	packages	are	the	building	blocks	for
breaking	down	your	application	into	smaller	pieces.

In	this	chapter,	we	will	cover	the	following	topics:

Defining	a	module

The	CommonJS	and	ES2015	module	specifications

Using	ES2015/2016/2017	coding	practices	in	Node.js

Using	the	ES6	module	format	in	Node.js	code

Understanding	how	Node.js	finds	modules

The	npm	package	management	system

So,	let's	get	on	with	it.

	

Defining	a	module
Modules	are	the	basic	building	blocks	for	constructing	Node.js
applications.	A	Node.js	module	encapsulates	functions,	hiding	details
inside	a	well-protected	container,	and	exposing	an	explicitly-declared	list
of	functions.

There	are	two	module	formats	that	we	must	consider:

The	traditional	Node.js	format	based	on	the	CommonJS	standard
has	been	used	since	Node.js	was	created.

With	ES2015/2016	a	new	format,	ES6	Modules,	has	been	defined
with	a	new	import	keyword.	ES6	modules	will	be	(or	is)	supported
in	all	JavaScript	implementations.

Because	ES6	modules	are	now	the	standard	module	format,	the	Node.js
Technical	Steering	Committee	(TSC)	is	committed	to	first-class	support
for	ES6	modules.

We	have	already	seen	modules	in	action	in	the	previous	chapter.	Every
JavaScript	file	we	use	in	Node.js	is	itself	a	module.	It's	time	to	see	what
they	are	and	how	they	work.	We'll	start	with	CommonJS	modules	and	then
quickly	bring	in	ES6	modules.

In	the	ls.js	example	in	Chapter	2,	Setting	up	Node.js,	we	wrote	the
following	code	to	pull	in	the	fs	module,	giving	us	access	to	its	functions:

const	fs	=	require('fs');	

The	require	function	searches	for	the	named	module,	loading	the	module

definition	into	the	Node.js	runtime,	and	making	its	functions	available.	In
this	case,	the	fs	object	contains	the	code	(and	data)	exported	by	the	fs
module.	The	fs	module	is	part	of	the	Node.js	core	and	provides	filesystem
functions.

By	declaring	fs	as	const,	we	have	a	little	bit	of	assurance	against	making
coding	mistakes	that	would	modify	the	object	holding	the	module
reference.

In	every	Node.js	module,	the	exports	object	within	the	module	is	the
interface	exported	to	other	code.	Anything	assigned	to	a	field	of	the	exports
object	is	available	to	other	pieces	of	code,	and	everything	else	is	hidden.
By	the	way,	this	object	is	actually	module.exports.	The	exports	object	is	an
alias	for	module.exports.

The	require	function	and	module.exports	objects	both	come	from	the
CommonJS	specification.	ES6	modules	have	similar	concepts,	but	a
different	implementation.

Let's	look	at	a	brief	example	of	this	before	diving	into	the	details.	Ponder
over	the	simple.js	module:

var	count	=	0;

exports.next	=	function()	{	return	++count;	};

exports.hello	=	function()	{

		return	"Hello,	world!";

};

We	have	one	variable,	count,	which	is	not	attached	to	the	exports	object,	and
a	function,	next,	which	is	attached.	Now,	let's	use	it:

$	node

>	const	s	=	require('./simple');

undefined

>	s.hello();

'Hello,	world!'

>	s.next();

1

>	s.next();

2

>	s.next();

3

>	console.log(s.count);

undefined

undefined

>	

The	exports	object	in	the	module	is	the	object	that	is	returned	by
require('./simple').	Therefore,	each	call	to	s.next	calls	the	next	function	in
simple.js.	Each	returns	(and	increments)	the	value	of	the	local	variable,
count.	An	attempt	to	access	the	private	field,	count,	shows	it's	unavailable
from	outside	the	module.

To	reiterate	the	rule:

Anything	(functions	or	objects)	assigned	as	a	field	of	exports	(as
known	as	module.exports)	is	available	to	other	code	outside	the
module

Objects	not	assigned	to	exports	are	not	available	to	code	outside	the
module,	unless	the	module	exports	those	objects	via	another
mechanism

This	is	how	Node.js	solves	the	global	object	problem	of	browser-based
JavaScript.	The	variables	that	look	like	they're	global	variables	are	only
global	to	the	module	containing	that	variable.	These	variables	are	not
visible	to	any	other	code.

Now	that	we've	got	a	taste	for	modules,	let's	take	a	deeper	look.

CommonJS	and	ES2015
module	formats
Node.js's	module	implementation	is	strongly	inspired	by,	but	not	identical
to,	the	CommonJS	module	specification.	The	differences	between	them
might	only	be	important	if	you	need	to	share	code	between	Node	and	other
CommonJS	systems.

Among	the	changes	in	ES2015	is	a	standard	module	format	meant	for	use
everywhere.	It	has	some	interesting	features,	and	by	existing	everywhere	it
should	advance	the	state	of	JavaScript.	Since	it	is	incompatible	with	the
CommonJS/Node.js	module	system,	adopting	ES2015	modules	in	Node.js
means	reworking	our	practices	and	accepted	norms.

As	a	practical	matter,	Node.js	programmers	will	be	dealing	with	both
module	formats	for	some	time	during	a	transition	period.	Our	long-term
goal	should	be	to	adopt	ES2015	modules	across	the	board.	The	Node.js
platform	is	slated	to	bring	in	support	for	ES2015	modules	in	Node.js	10.
As	of	Node.js	8.5,	the	feature	is	available	by	setting	a	command-line	flag.

CommonJS/Node.js	module
format
We've	already	seen	a	couple	of	examples	of	this	module	format,	with	the
simple.js	example,	and	the	programs	we	examined	in	Chapter	2,	Setting	up
Node.js.	So	let's	take	a	closer	look.

CommonJS	modules	are	stored	in	files	with	the	extension	.js.	

Loading	a	CommonJS	module	is	a	synchronous	operation.	That	means
that	when	the	require('modulename')	function	call	returns,	the	module	has
been	located	and	completely	read	into	memory	and	is	ready	to	go.	The
module	is	cached	in	memory	so	that	subsequent	require('modulename')	calls
return	immediately,	and	all	return	the	exact	same	object.

Node.js	modules	provide	a	simple	encapsulation	mechanism	to	hide
implementation	details	while	exposing	an	API.	Modules	are	treated	as	if
they	were	written	as	follows:

(function()	{	...	contents	of	module	file	...	})();	

Thus,	everything	within	the	module	is	contained	within	an	anonymous
private	namespace	context.	This	is	how	the	global	object	problem	is
resolved;	everything	in	a	module	that	looks	global	is	actually	contained
within	this	private	context.

Objects	and	functions	can	be	exposed	from	a	CommonJS	module	by
means	of	two	free	variables	Node.js	inserts	into	this	private
context:	module	and	exports:

The	module	object	contains	several	fields	that	you	might	find	useful.

Refer	to	the	online	Node.js	documentation	for	details.

The	exports	object	is	an	alias	of	the	module.exports	field.	This	means
that	the	following	two	lines	of	code	are	equivalent:

exports.funcName	=	function(arg,	arg1)	{	...	};

module.exports.funcName	=	function(arg,	arg2)	{	..	};	

Your	code	can	break	the	alias	between	the	two	if	you	do	this:

exports	=	function(arg,	arg1)	{	...	};

Do	not	do	that,	because	exports	will	no	longer	be	equivalent	to
module.exports.	If	your	intent	is	to	assign	a	single	object	or	function	to	be
what's	returned	by	require,	do	this	instead:

module.exports	=	function(arg,	arg1)	{	...	};

Some	modules	do	export	a	single	function	because	that's	how	the	module
author	envisioned	delivering	the	desired	functionality.

The	Node.js	package	format	is	derived	from	the	CommonJS	module
system	(http://commonjs.org).	When	developed,	the	CommonJS	team	aimed	to	fill	a	gap	in
the	JavaScript	ecosystem.	At	that	time,	there	was	no	standard	module	system,	making
it	trickier	to	package	JavaScript	applications.	The	require	function,	the	exports	object,
and	other	aspects	of	Node.js	modules	come	directly	from	the
CommonJS	Modules/1.0	spec.

http://commonjs.org

ES6	module	format
ES6	modules	are	a	new	module	format	designed	for	all	JavaScript
environments.	While	Node.js	has	had	a	good	module	system	for	its	whole
existence,	browser-side	JavaScript	has	not.	That	left	the	browser-side
community	with	either	relying	on	the	<script>	tag,	or	using	non-
standardized	solutions.	For	that	matter,	traditional	Node.js	modules	were
never	standardized,	outside	of	the	CommonJS	effort.	Therefore,	ES6
modules	stand	to	be	a	big	improvement	for	the	entire	JavaScript	world,	by
getting	everyone	on	the	same	page	with	a	common	module	format	and
mechanisms.

The	side	effect	is	that	the	Node.js	community	needs	to	start	looking	at,
learning	about,	and	adopting	the	ES2015	module	format.

ES6	modules	are	referred	to	by	Node.js	with	the	extension	.mjs.	When	it
came	to	implementing	the	new	module	format,	the	Node.js	team
determined	that	they	could	not	support	both	CommonJS	and	ES6	modules
with	the	.js	extension.	The	.mjs	extension	was	decided	as	the	solution,	and
you	may	see	tongue-in-cheek	references	to	Michael	Jackson	Script	for	this
file	extension.	

One	interesting	detail	is	that	ES6	modules	load	asynchronously.	This	may
not	have	an	impact	on	Node.js	programmers,	except	that	this	is	part	of	the
rationale	behind	requiring	the	new	.mjs	extension.

Create	a	file	named	simple2.mjs	in	the	same	directory	as
the	simple.js	example	that	we	looked	at	earlier:

var	count	=	0;

export	function	next()	{	return	++count;	}

function	squared()	{	return	Math.pow(count,	2);	}

export	function	hello()	{

				return	"Hello,	world!";

}

export	default	function()	{	return	count;	}

export	const	meaning	=	42;

export	let	nocount	=	-1;

export	{	squared	};

ES6	items	exported	from	a	module	are	declared	with	the	export	keyword.
This	keyword	can	be	put	in	front	of	any	top-level	declaration,	such	as
variable,	function,	or	class	declarations:

export	function	next()	{	..	}

The	effect	of	this	is	similar	to	the	following:

module.exports.next	=	function()	{	..	}

The	intent	of	both	is	essentially	the	same:	to	make	a	function,	or	other
object,	available	to	code	outside	the	module.	A	statement	such	as	export
function	next()	is	a	named	export,	meaning	the	exported	thing	has	a	name,
and	that	code	outside	the	module	uses	that	name	to	access	the	object.	As
we	see	here,	named	exports	can	be	functions	or	objects,	and	they	may	also
be	class	definitions.

Using	export	default	can	be	done	once	per	module,	and	is	the	default	export
from	the	module.	The	default	export	is	what	code	outside	the	module
accesses	when	using	the	module	object	itself,	rather	than	when	using	one
of	the	exports	from	the	module.

You	can	also	declare	something,	such	as	the	squared	function,	and	then
export	it	later.

Now	let's	see	how	to	use	this	ES2015	module.	Create	a	simpledemo.mjs	file
with	the	following:

import	*	as	simple2	from	'./simple2.mjs';

console.log(simple2.hello());

console.log(`${simple2.next()}	${simple2.squared()}`);

console.log(`${simple2.next()}	${simple2.squared()}`);

console.log(`${simple2.default()}	${simple2.squared()}`);

console.log(`${simple2.next()}	${simple2.squared()}`);

console.log(`${simple2.next()}	${simple2.squared()}`);

console.log(`${simple2.next()}	${simple2.squared()}`);

console.log(simple2.meaning);

The	import	statement	does	what	it	means:	it	imports	objects	exported	from
a	module.	This	version	of	the	import	statement	is	most	similar	to	a
traditional	Node.js	require	statement,	meaning	that	it	creates	an	object
through	which	you	access	the	objects	exported	from	the	module.

This	is	how	the	code	executes:

$	node	--experimental-modules	simpledemo.mjs	

(node:63937)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

Hello,	world!

1	1

2	4

2	4

3	9

4	16

5	25

42

As	of	Node.js	8.5,	the	new	module	format	is	available	behind	an	option
flag	as	shown	here.	You're	also	presented	with	this	nice	warning	that	it's	an
experimental	feature.	Accessing	the	default	export	is	accomplished	by
accessing	the	field	named	default.	Accessing	an	exported	value,	such	as	the
meaning	field,	is	done	without	parentheses	because	it	is	a	value	and	not	a
function.

Now	to	see	a	different	way	to	import	objects	from	a	module,	create
another	file,	named	simpledemo2.mjs,	containing	the	following:

import	{	

				default	as	simple,	hello,	next	

}	from	'./simple2.mjs';

console.log(hello());

console.log(next());

console.log(next());

console.log(simple());

console.log(next());

console.log(next());

console.log(next());

In	this	case,	each	imported	object	is	its	own	thing	rather	than	being
attached	to	another	object.	Instead	of	writing	simple2.next(),	you	simply
write	next().	The	as	clause	is	a	way	to	declare	an	alias,	if	nothing	else	so
you	can	use	the	default	export.	We	already	used	an	as	clause	earlier,	and	it
can	be	used	in	other	instances	where	you	wish	to	provide	an	alias	for	the
value	being	exported	or	imported.

Node.js	modules	can	be	used	from	ES2015	.mjs	code.	Create	a	file	named
ls.mjs,	containing	the	following:

import	_fs	from	'fs';

const	fs	=	_fs.promises;

import	util	from	'util';

(async	()	=>	{

		const	files	=	await	fs.readdir('.');

		for	(let	fn	of	files)	{

				console.log(fn);

		}

})().catch(err	=>	{	console.error(err);	});

You	cannot,	however,	require	an	ES2015	module	into	regular	Node.js	code.
The	lookup	algorithm	for	ES2015	modules	is	different,	and	as	we
mentioned	earlier,	ES2015	modules	are	loaded	asynchronously.

Another	wrinkle	is	handling	the	fs.promises	submodule.		We	are	using	that
submodule	in	the	example,	but	how?				This	import	statement	does	not
work:

import	{	promises	as	fs	}	from	'fs';

This	fails	as	so:

$	node	--experimental-modules	ls.mjs	

(node:45186)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

file:///Volumes/Extra/book-4th/chap03/ls.mjs:1

import	{	promises	as	fs	}	from	'fs';

									^^^^^^^^

SyntaxError:	The	requested	module	'fs'	does	not	provide	an	export	named	

'promises'

	at	ModuleJob._instantiate	(internal/modules/esm/module_job.js:89:21)

That	leaves	us	with	this	construct:

import	_fs	from	'fs';

const	fs	=	_fs.promises;

Executing	the	script	gives	the	following:

$	node	--experimental-modules	ls.mjs

(node:65359)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

(node:37671)	ExperimentalWarning:	The	fs.promises	API	is	experimental

ls.mjs

module1.js

module2.js

simple.js

simple2.mjs

simpledemo.mjs

simpledemo2.mjs

The	last	thing	to	note	about	ES2015	module	code	is	that	import	and	export
statements	must	be	top-level	code.	Even	putting	an	export	inside	a	simple
block	like	this:

{

	export	const	meaning	=	42;

}

Results	in	an	error:

$	node	--experimental-modules	badexport.mjs	

(node:67984)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

SyntaxError:	Unexpected	token	export

	at	ModuleJob.loaders.set	[as	moduleProvider]	

(internal/loader/ModuleRequest.js:32:13)

	at	<anonymous>

While	there	are	a	few	more	details	about	ES2015	modules,	these	are	their
most	important	attributes.

JSON	modules
Node.js	supports	using	require('pathto/file-name.json')	to	import	a	JSON	file.
It	is	equivalent	to	this	code:

const	fs	=	require('fs');

module.exports	=	JSON.parse(

								fs.readFileSync('pathto/file-name.json',	'utf8'));

That	is,	the	JSON	file	is	read	synchronously,	and	the	text	is	parsed	as
JSON.	The	resultant	object	is	available	as	the	object	exported	from	the
module.	Create	a	file	named	data.json,	containing	the	following:	{	
"hello":	"Hello,	world!",	
"meaning":	42	
}

Now	create	a	file	named	showdata.js,	containing	the	following:

const	util	=	require('util');

const	data	=	require('./data');

console.log(util.inspect(data));

It	will	execute	as	follows:

$	node	showdata.js	

{	hello:	'Hello,	world!',	meaning:	42	}

The	util.inspect	function	is	a	useful	way	to	present	an	object	in	an	easy-to-
read	fashion.	

Supporting	ES6	modules	on
older	Node.js	versions
While	support	for	ES6	modules	arrived	as	an	experimental	feature	in
Node.js	8.5,	there	are	two	ways	to	use	these	modules	on	earlier	Node.js
implementations.	

One	method	is	to	use	the	Babel	transpiler	to	rewrite	ES6	code	so	it	can
execute	on	older	Node.js	versions.	For	an	example,	see	https://blog.revillwe
b.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b.

The	better	method	is	the	esm	package	in	the	Node.js	registry.	Simply	do	the
following:

$	nvm	install	6

Downloading	and	installing	node	v6.14.1...

Downloading	https://nodejs.org/dist/v6.14.1/node-v6.14.1-darwin-x64.tar.xz...

##	

100.0%

Computing	checksum	with	shasum	-a	256

Checksums	matched!

Now	using	node	v6.14.1	(npm	v3.10.10)

$	nvm	use	6

Now	using	node	v6.14.1	(npm	v3.10.10)

$	npm	install	esm

...	npm	output

$	node	--require	esm	simpledemo.mjs	

Hello,	world!

1	1

2	4

2	4

3	9

4	16

5	25

42

To	use	this	module,	one	simply	invokes	require('esm')	once,	and	ES6

https://blog.revillweb.com/using-es2015-es6-modules-with-babel-6-3ffc0870095b

modules	are	retrofitted	into	Node.js.		The	--require	flag	automatically	loads
the	named	module.		Without	rewriting	the	code,	we	can	selectively	use	the
esm	module	with	this	the	command-line	option.		

This	example	demonstrates	retrofitting	ES6	modules	into	older	Node.js
releases.		To	successfully	execute	the	ls.mjs	example			we	must	have
support	for	async/await	functions,	and	arrow	functions.		Since	Node.js	6.x
does	not	support	either,	the	ls.mjs	example	will	fail,	and	will	necessitate
rewriting	such	code:

$	node	--version

v6.14.1

$	node	-r	esm	ls.mjs	

UsersDavid/chap03/ls.mjs:5

(async	()	=>	{

							^

SyntaxError:	Unexpected	token	(

	at	exports.runInThisContext	(vm.js:53:16)

	at	Module._compile	(module.js:373:25)

For	more	information,	see:	
https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b.		That
article	describes	an	older	release	of	the	esm	module,	at	the	time	named
@std/esm.

https://medium.com/web-on-the-edge/es-modules-in-node-today-32cff914e4b

Demonstrating	module-level
encapsulation
A	key	attribute	of	modules	is	encapsulation.	The	objects	that	are	not
exported	from	the	module	are	private	to	the	module,	and	cannot	be
accessed	from	code	outside	the	module.	To	reiterate,	modules	are	treated
as	if	they	were	written	as	follows:

(function()	{	...	contents	of	module	file	...	})();

This	JavaScript	idiom	defines	an	anonymous	private	scope.	Anything
declared	within	that	scope	cannot	be	accessed	by	code	outside	the	scope.
That	is,	unless	some	code	makes	object	references	available	to	other	code
outside	this	private	scope.	That's	what	the	module.exports	object	does:	it	is	a
mechanism	for	the	module	author	to	expose	object	references	from	the
module.	Other	code	can	then	access	resources	inside	the	module	in	a
controlled	fashion.

The	top-level	variables	inside	a	module	look	like	they	exist	in	the	global
scope.	Instead	of	being	truly	Global,	they're	safely	private	to	the	module
and	are	completely	inaccessible	to	other	code.

Let's	take	a	look	at	a	practical	demonstration	of	that	encapsulation.	Create
a	file	named	module1.js,	containing	the	following:

const	A	=	"value	A";

const	B	=	"value	B";

exports.values	=	function()	{

			return	{	A:	A,	B:	B	};

}

Then,	create	a	file	named	module2.js,	containing	the	following:

const	util	=	require('util');

const	A	=	"a	different	value	A";

const	B	=	"a	different	value	B";

const	m1	=	require('./module1');

console.log(`A=${A}	B=${B}	values=${util.inspect(m1.values())}`);

console.log(`${m1.A}	${m1.B}`);

const	vals	=	m1.values();

vals.B	=	"something	completely	different";

console.log(util.inspect(vals));

console.log(util.inspect(m1.values()));

Then,	run	it	as	follows	(you	must	have	Node.js	already	installed):

$	node	module2.js	

A=a	different	value	A	B=a	different	value	B	values={	A:	'value	A',	B:	'value	

B'	}

undefined	undefined

{	A:	'value	A',	B:	'something	completely	different'	}

{	A:	'value	A',	B:	'value	B'	}

This	artificial	example	demonstrates	encapsulation	of	the	values
in	module1.js	from	those	in	module2.js.	The	A	and	B	values	in	module1.js	don't
overwrite	A	and	B	in	module2.js	because	they're	encapsulated
within	module1.js.	The	values	function	in	module1.js	does	allow	code	in
module2.js	access	to	the	values;	however,	module2.js	cannot	directly	access
those	values.	We	can	modify	the	object	module2.js	received	from	module1.js.
But	doing	so	does	not	change	the	values	within	module1.js.

	

Finding	and	loading
CommonJS	and	JSON	modules
using	require
We	have	talked	about	several	types	of	modules:	CommonJS,	JSON,
ES2015,	and	native	code	modules.	All	but	the	ES2015	modules	are	loaded
using	the	require	function.	That	function	has	a	very	powerful	and	flexible
algorithm	for	locating	modules	within	a	directory	hierarchy.	This
algorithm,	coupled	with	the	npm	package	management	system,	gives	the
Node.js	platform	a	lot	of	power	and	flexibility.

	

	

File	modules
The	CommonJS	and	ES2015	modules	we've	just	looked	at	are	what	the
Node.js	documentation	describes	as	a	file	module.	Such	modules	are
contained	within	a	single	file,	whose	filename	ends	with	.js,	.mjs,	.json,	or
.node.	The	latter	are	compiled	from	C	or	C++	source	code,	or	even	other
languages	such	as	Rust,	while	the	former	are	of	course	written	in
JavaScript	or	JSON.

We've	already	looked	at	several	examples	of	using	these	modules,	as	well
as	the	difference	between	the	CommonJS	format	traditionally	used	in
Node.js,	and	the	new	ES2015	modules	that	are	now	supported.

	

	

Modules	baked	into	Node.js
binary
Some	modules	are	pre-compiled	into	the	Node.js	binary.	These	are	the
core	Node.js	modules	documented	on	the	Node.js	website	at	https://nodejs.
org/api/index.html.

They	start	out	as	source	code	within	the	Node.js	build	tree.	The	build
process	compiles	them	into	the	binary	so	that	the	modules	are	always
available.

	

https://nodejs.org/api/index.html

Directories	as	modules
A	module	can	contain	a	whole	directory	structure	full	of	stuff.	Stuff	here	is
a	technical	term	referring	to	internal	file	modules,	data	files,	template	files,
documentation,	tests,	assets,	and	more.	Once	stored	within	a	properly
constructed	directory	structure,	Node.js	will	treat	these	as	a	module	that
satisfies	a	require('moduleName')	call.

This	may	be	a	little	confusing	because	the	word	module	is	being	overloaded	with	two
meanings.	In	some	cases,	a	module	is	a	file,	and	in	other	cases,	a	module	is	a
directory	containing	one	or	more	file	modules.

In	most	cases,	a	directory-as-module	contains	a	package.json	file.	This	file
contains	data	about	the	module	(known	as	package)	that	Node.js	uses
while	loading	the	module.	The	Node.js	runtime	recognizes	these	two
fields:	{	name:	"myAwesomeLibrary",	main:	"./lib/awesome.js"	}

If	this	package.json	file	is	in	a	directory	named	awesomelib,	then
require('./awesomelib')	will	load	the	file	module	in	./awesomelib/lib/awesome.js.	

If	there	is	no	package.json,	then	Node.js	will	look	for	either	index.js	or
index.node.	In	such	a	case,	require('./awesomelib')	will	load	the	file	module	in
./awesomelib/index.js.

In	either	case,	the	directory	module	can	easily	contain	other	file	modules.
The	module	that's	initially	loaded	would	simply	use
require('./anotherModule')	one	or	more	times	to	load	other,	private	modules.

The	npm	package	management	system	can	recognize	a	lot	more	data	in
the	package.json	file.	That	includes	the	package	name,	its	author,	the	home
page	URL,	the	issue-queue	URL,	package	dependencies,	and	more.	We'll
go	over	this	later.

Module	identifiers	and
pathnames
Generally	speaking,	the	module	name	is	a	pathname,	but	with	the	file
extension	removed.	Earlier,	when	we	wrote	require('./simple'),	Node.js
knew	to	add	.js	to	the	filename	and	load	in	simple.js.	Similarly,	Node.js
would	recognize	simple.json	or	simple.node	as	the	filename	legitimately
satisfying	require('./simple').

There	are	three	types	of	module	identifiers:	relative,	absolute,	and	top-
level:

Relative	module	identifiers:	These	begin	with	./	or	../	and
absolute	identifiers	begin	with	/.	The	module	name	is	identical
with	POSIX	filesystem	semantics.	The	resultant	pathname	is
interpreted	relative	to	the	location	of	the	file	being	executed.	That
is,	a	module	identifier	beginning	with	./	is	looked	for	in	the
current	directory,	whereas	one	starting	with	../	is	looked	for	in	the
parent	directory.

Absolute	module	identifiers:	These	begin	with/and	are,	of
course,	looked	for	in	the	root	of	the	filesystem,	but	this	is	not	a
recommended	practice.

Top-level	module	identifiers:	These	begin	with	none	of	those
strings	and	are	just	the	module	name,	or	else	module-
name/path/to/module.	These	must	be	stored	in	a	node_modules	directory,
and	the	Node.js	runtime	has	a	nicely	flexible	algorithm	for
locating	the	correct	node_modules	directory:

In	the	case	of	module-name/path/to/module	specifiers,	what	will
be	loaded	is	a	module	path/to/module	within	the	top-level
module	named	module-name

The	baked-in	modules	are	specified	using	top-level
module	names

The	search	begins	in	the	directory	containing	the	file	calling	require().	If
that	directory	contains	a	node_modules	directory,	which	then	contains	either	a
matching	directory	module	or	a	matching	file	module,	then	the	search	is
satisfied.	If	the	local	node_modules	directory	does	not	contain	a	suitable
module,	it	tries	again	in	the	parent	directory,	and	it	will	continue	upward	in
the	filesystem	until	it	either	finds	a	suitable	module	or	it	reaches	the	root
directory.

That	is,	with	a	require	call	in	homedavid/projects/notes/foo.js,	the	following
directories	will	be	consulted:

homedavid/projects/notes/node_modules

homedavid/projects/node_modules

homedavid/node_modules

homenode_modules

/node_modules

If	the	module	is	not	found	through	this	search,	there	are	global	folders	in
which	modules	can	be	located.	The	first	is	specified	in	the	NODE_PATH
environment	variable.	This	is	interpreted	as	a	colon-delimited	list	of
absolute	paths	similar	to	the	PATH	environment	variable.	On	Windows,	the
elements	of	NODE_PATH	are	of	course	separated	by	semicolons.	Node.js	will
search	those	directories	for	a	matching	module.

The	NODE_PATH	approach	is	not	recommended,	because	of	surprising	behavior	which
can	happen	if	people	are	unaware	that	this	variable	must	be	set.	If	a	specific	module
located	in	a	specific	directory	referenced	in	NODE_PATH	is	required	for	proper	function,
and	the	variable	is	not	set,	the	application	will	likely	fail.	As	the	Twelve-Factor
Application	model	suggests,	it	is	best	for	all	dependencies	to	be	explicitly	declared,
and	with	Node.js	that	means	listing	all	dependencies	in	the	package.json	so	that	npm	or
yarn	can	manage	the	dependencies.

This	variable	was	implemented	before	the	module	resolution	algorithm	just	described
was	finalized.	Because	of	that	algorithm,	NODE_PATH	is	largely	unnecessary.	

There	are	three	additional	locations	that	can	hold	modules:

$HOME/.node_modules

$HOME/.node_libraries

$PREFIX/lib/node

In	this	case,	$HOME	is	what	you	expect,	the	user's	home	directory,	and	$PREFIX
is	the	directory	where	Node.js	is	installed.

Some	are	beginning	to	recommend	against	using	global	modules.	The
rationale	is	the	desire	for	repeatability	and	deployability.	If	you've	tested
an	app,	and	all	its	code	is	conveniently	located	within	a	directory	tree,	you
can	copy	that	tree	for	deployment	to	other	machines.	But,	what	if	the	app
depended	on	some	other	file	that	was	magically	installed	elsewhere	on	the
system?	Will	you	remember	to	deploy	such	files?

An	example	of	application
directory	structure
Let's	take	a	look	at	the	filesystem	structure	of	a	typical	Node.js	Express
application:

This	is	an	Express	application	(we'll	start	using	Express	in	Chapter	5,	Your
First	Express	Application)	containing	a	few	modules	installed	in	the
node_modules	directory.	One	of	those,	Express,	has	its	own	node_modules
directory	containing	a	couple	of	modules.

For	app.js	to	load	models-sequelize/notes.js,	it	uses	the	following	require	call:

const	notesModel	=	require('./models-sequelize/notes');	

This	is	a	relative	module	identifier,	where	the	pathname	is	resolved
relative	to	the	directory	containing	the	file	making	the	reference.

Use	the	following	code	to	do	the	reverse	in	models-sequelize/notes.js:

const	app	=	require('../app');	

Again,	this	is	a	relative	module	identifier,	this	time	resolved	relative	to	the
subdirectory	containing	models-sequelize/notes.js.

Any	reference	to	a	top-level	module	identifier	will	first	look	in	the
node_modules	directory	shown	here.	This	directory	is	populated	from	the
dependencies	listed	in	the	package.json,	as	we'll	see	in	a	few	pages:

const	express	=	require('express');

const	favicon	=	require('serve-favicon');

const	logger	=	require('morgan');

const	cookieParser	=	require('cookie-parser');

const	bodyParser	=	require('body-parser');

All	of	these	are	typical	modules	included	in	an	Express	application.	Most
of	them	are	readily	visible	in	the	screenshot	shown	earlier.	What's	loaded
is	the	main	file	in	the	corresponding	subdirectory	of	node_modules,	for
example,	node_modules/express/index.js.

But	the	application	cannot	directly	reference	the	dependencies	of	the
Express	module	that	are	in	its	internal	node_modules	directory.	The	module
search	algorithm	only	moves	upward	in	the	filesystem;	it	does	not	descend
into	subsidiary	directory	trees.	

One	side	effect	of	the	upward	search	direction	is	the	handling	of
conflicting	dependencies.	

Suppose	two	modules	(modules	A	and	B)	listed	a	dependency	on	the	same
module	(C)?		In	the	normal	case,	the	two	dependencies	on	module	C	could
be	handled	by	the	same	instance	of	that	module.	As	we'll	see	in	a	few
pages,	npm's	dependency	list	in	package.json	can	use	loose	or	precise
version	number	references.	Depending	on	the	current	version	number	for
module	C,	modules	A	and	B	may,	or	may	not,	be	in	agreement	as	to	which
version	to	use.	If	they	do	not	agree,	npm	can	arrange	the	module
installation	such	that	both	module	A	and	B	get	the	version	of	module	C
they	depend	on,	without	either	stepping	on	the	other.	If	both	are	agreeable
with	the	same	module	C	instance,	only	one	copy	will	be	installed,	but	if
they	disagree	then	npm	will	install	two	copies.	The	two	copies	will	be
located	such	that	the	module	search	algorithm	will	cause	each	module	to
find	the	correct	version	of	module	C.

Let's	try	a	concrete	example	to	clarify	what	was	just	said.	In	the	screenshot
earlier,	you	see	two	instances	of	the	cookie	module.	We	can	use	npm	to
query	for	all	references	to	this	module:

$	npm	ls	cookie

notes@0.0.0	UsersDavid/chap05/notes

├─┬	cookie-parser@1.3.5

│	└──	cookie@0.1.3	

└─┬	express@4.13.4

	└──	cookie@0.1.5

This	says	the	cookie-parser	module	depends	on	version	0.1.3	of	cookie,	while
Express	depends	on	version	0.1.5.	How	does	npm	avoid	problems	with
these	two	conflicting	versions?		By	putting	one	inside	the	node_modules
directory	inside	the	express	module.	This	way,	when	Express	refers	to	this
module,	it	will	use	the	0.1.5	instance	in	its	own	node_modules	directory,	while
the	cookie-parser	module	will	use	the	0.1.3	instance	in	the	top-level
node_modules	directory.

Finding	and	loading	ES6
modules	using	import
The	import	statement	is	used	to	load	ES6	modules,	and	it	only	works	inside
an	ES6	module.	Because	ES6	modules	are	loaded	asynchronously,	the
require()	statement	cannot	load	ES6	modules.	As	we	said	earlier,	ES6
modules	are	recognized	by	Node.js	by	the	.mjs	extension.		The
ECMAScript	TC-39	committee	has	(or	plans	to)	officially	register	that	file
extension	with	the	recognized	authorities	so	that	regular	tools	will
recognize	both	file	extensions	as	JavaScript.

The	module	specifier	one	hands	to	the	import	statement	is	interpreted	as	a
URL.	For	the	time	being,	Node.js	will	only	accept	file:	URL	because	of
the	security	implications	of	loading	modules	over	the	Internet.	Because	it's
a	URL,	some	characters	such	as	:,	?,	#,	or	%	must	receive	special	treatment.
For	example:

import	'./foo?search';

import	'./foo#hash';

These	are	valid	module	specifiers	where	?search	and	#hash	have	the	sort	of
meaning	you'd	expect	in	a	URL.	So	long	as	Node.js	only	supports	file:
URL	for	import	statements,	we	cannot	make	use	of	that	feature,	but	we
have	to	keep	it	in	mind	and	avoid	using	these	strings	in	module	URL.

One	can	install	custom	module	loader	hooks	that	could	conceivably	use
those	URL	parts	for	some	purpose.

The	module	search	algorithm	is	similar	to	what	we	described	for	require.	If
the	specifier	begins	with	./,	../,	or	/,	the	specifier	is	interpreted	as	a
pathname.	Otherwise,	it	is	interpreted	as	a	top-level	module	similar	to	the
require	statement,	with	one	big	difference.	The	import	statement	will	not

search	for	a	global	module.	This	is	frowned	on,	but	if	one	must	use	a
global	module,	that	can	be	accomplished	with	a	symbolic	link.

For	documentation,	see	https://nodejs.org/api/esm.html.

https://nodejs.org/api/esm.html

Hybrid
CommonJS/Node.js/ES6
module	scenarios
We've	gone	over	the	format	for	CommonJS/Node.js	modules,	the	format
for	ES6	modules,	and	the	algorithm	for	locating	and	importing	both.	The
last	thing	to	cover	is	those	hybrid	situations	where	our	code	will	use	both
module	formats	at	the	same	time.

As	a	practical	matter,	ES6	modules	are	very	new	to	the	Node.js	platform,
and	therefore	we	have	a	large	body	of	existing	code	written	as
CommonJS/Node.js	modules.	Many	tools	in	the	Node.js	market	have
implementation	dependencies	on	the	CommonJS	format.	This	means	we'll
be	facing	situations	where	ES6	modules	will	need	to	use	CommonJS
modules,	and	vice	versa:

CommonJS	module	loads	other	CommonJS	modules	with	require()

CommonJS	module	cannot	load	ES6	modules—except	for	two
methods:

Dynamic	import,	also	known	as	import(),	can	load	an	ES6
module	as	an	asynchronous	operation

The	@std/esm	package	supplies	a	require()	function	with	one
that	can	load	ES6	modules	as	an	asynchronous	operation

ES6	modules	load	other	ES6	modules	with	import,	with	the	full

semantics	of	the	import	statement

ES6	modules	load	CommonJS	modules	using	import

Therefore,	out	of	the	box,	three	of	the	scenarios	are	directly	supported.
The	fourth	is	supported	with	a	workaround	module.

When	an	ES6	module	loads	a	CommonJS	module,	its	module.exports	object
is	exposed	as	the	default	export	of	the	module.	This	means	your	code	uses
this	pattern:

import	cjsModule	from	'common-js-module';

...

cjsModule.functionName();

This	is	extremely	similar	to	using	a	CommonJS	module	in	another
CommonJS	module.	You	are	simply	transliterating	the	require()	call	into	an
import	statement.

Dynamic	imports	with	import()
ES6	modules	do	not	cover	all	the	requirements	to	fully	replace
Node.js/CommonJS	modules.	One	of	the	missing	capabilities	is	being
addressed	with	the	Dynamic	Import	feature	currently	on	its	way	through
the	TC-39	committee.

Support	for	dynamic	imports	landed	in	Node.js	9.7.	See	the	documentation
at:	
https://github.com/tc39/proposal-dynamic-import.

We'll	use	dynamic	imports	to	solve	an	issue	in	Chapter	7,	Data	Storage	and
Retrieval,	about	dynamically	choosing	the	module	to	load.		In	normal
usage	of	the	require()	statement,	can	use	a	simple	string	literal	to	specify
the	module	name.		But	it	is	also	possible	to	use	a	string	literal	to	compute
the	module	name,	like	so:

//	Node.js	dynamically	determined	module	loading

const	moduleName	=	require(`../models/${process.env.MODEL_NAME}`);

We	used	this	technique	in	earlier	editions	of	this	book	to	dynamically
choose	between	several	implementations	of	the	same	model	API.	The	ES6
import	statement	does	not	support	anything	but	a	simple	string	literal,	and
therefore	cannot	compute	the	module	specifier	like	this	example.

With	dynamic	imports,	we	have	an	import()	function	where	the	module
specifier	is	a	regular	string,	letting	us	make	a	similar	dynamic	choice	of
module.	Unlike	the	require()	function,	which	is	synchronous,	import()	is
asynchronous,	and	returns	a	Promise.	Hence,	it's	not	a	direct	replacement
for	require()	in	that	it's	not	terribly	useful	as	a	top-level	function.	You'll	see
how	to	use	it	in	Chapter	7,	Data	Storage	and	Retrieval.

Perhaps	the	most	important	feature	it	brings	is	that	CommonJS	modules

https://github.com/tc39/proposal-dynamic-import

can	use	import()	to	load	an	ES6	module.

The	import.meta	feature
Another	new	feature,	import.meta,	is	making	its	way	through	the	TC-39
committee,	and	is	being	implemented	for	Node.js	10.x.	It	is	an	object
existing	within	the	scope	of	an	ES6	module	providing	some	metadata
about	the	module.	See	https://github.com/tc39/proposal-import-meta.

A	partial	implementation,	supporting	just	import.meta.url,	has	landed	in	the
Node.js	source.	Its	use	requires	the	--harmony-import-meta	command-line	flag.
The	content	of	import.meta.url	is	a	fully	qualified	file:	URL	for	the	current
module,	such	as	file:///Users/david/chap10/notes/app.mjs.

Where	this	becomes	important	is	that	ES6	modules	do	not	support	the
__dirname,	__filename,	and	other	global	variables	used	historically	in	Node.js
modules.	The	__dirname	variable	is	routinely	used	to	read	in	resource	data
from	files	sitting	in	the	package	directory.	It	is	intended	that	for	such
cases,	one	parses	the	directory	name	out	of	import.meta.url.

https://github.com/tc39/proposal-import-meta

	

npm	-	the	Node.js	package
management	system
As	described	in	Chapter2,	Setting	up	Node.js,	npm	is	a	package	management
and	distribution	system	for	Node.js.	It	has	become	the	de	facto	standard
for	distributing	modules	(packages)	for	use	with	Node.js.	Conceptually,	it's
similar	to	tools	such	as	apt-get	(Debian),	rpm/yum	(Red	Hat/Fedora),	MacPorts
(macOS),	CPAN	(Perl),	or	PEAR	(PHP).	Its	purpose	is	publishing	and
distributing	Node.js	packages	over	the	Internet	using	a	simple	command-
line	interface.	With	npm,	you	can	quickly	find	packages	to	serve	specific
purposes,	download	them,	install	them,	and	manage	packages	you've
already	installed.

The	npm	application	extends	on	the	package	format	for	Node.js,	which	in
turn	is	largely	based	on	the	CommonJS	package	specification.	It	uses	the
same	package.json	file	that's	supported	natively	by	Node.js,	but	with
additional	fields	to	build	in	additional	functionality.

	

The	npm	package	format
An	npm	package	is	a	directory	structure	with	a	package.json	file	describing
the	package.	This	is	exactly	what	was	referred	to	earlier	as	a	directory
module,	except	that	npm	recognizes	many	more	package.json	tags	than
Node.js	does.	The	starting	point	for	npm's	package.json	are	the	CommonJS
Packages/1.0	specification.	The	documentation	for	npm's	package.json
implementation	is	accessed	using	the	following	command:

$		npm	help	json

A	basic	package.json	file	is	as	follows:

{	"name":	"packageName",	

			"version":	"1.0",	

			"main":	"mainModuleName",	

			"modules":	{	

				"mod1":	"lib/mod1",	

				"mod2":	"lib/mod2"	

		}	

}	

The	file	is	in	JSON	format,	which,	as	a	JavaScript	programmer,	you
should	be	familiar	with.

The	most	important	tags	are	name	and	version.	The	name	will	appear	in
URLs	and	command	names,	so	choose	one	that's	safe	for	both.	If	you
desire	to	publish	a	package	in	the	public	npm	repository,	it's	helpful	to	check
whether	a	particular	name	is	already	being	used	at	http://npmjs.com	or	with
the	following	command:

$	npm	search	packageName

http://npmjs.com

The	main	tag	is	treated	the	same	as	we	discussed	in	the	previous	section	on
directory	modules.	It	defines	which	file	module	will	be	returned	when
invoking	require('packageName').	Packages	can	contain	many	modules	within
themselves	and	they	can	be	listed	in	the	modules	list.

Packages	can	be	bundled	as	tar-gzip	archives	(tarballs),	especially	to	send
them	over	the	internet.

A	package	can	declare	dependencies	on	other	packages.	That	way,	npm
can	automatically	install	other	modules	required	by	the	module	being
installed.	Dependencies	are	declared	as	follows:

"dependencies":	{	

				"foo"	:	"1.0.0	-	2.x.x",	

				"bar"	:	">=1.0.2	<2.1.2"	

	}	

The	description	and	keyword	fields	help	people	find	the	package	when
searching	in	an	npm	repository	(https://www.npmjs.com/).	Ownership	of	a
package	can	be	documented	in	the	homepage,	author,	or	contributors	fields:

"description":	"My	wonderful	package	that	walks	dogs",

"homepage":	"http://npm.dogs.org/dogwalker/",

"author":	"dogwhisperer@dogs.org"

Some	npm	packages	provide	executable	programs	meant	to	be	in	the	user's
PATH.	These	are	declared	using	the	bin	tag.	It's	a	map	of	command	names	to
the	script	that	implements	that	command.	The	command	scripts	are
installed	into	the	directory	containing	the	node	executable	using	the	name
given:

bin:	{	

		'nodeload.js':	'./nodeload.js',

		'nl.js':	'./nl.js'	

},

The	directories	tag	describes	the	package	directory	structure.	The	lib

https://www.npmjs.com/

directory	is	automatically	scanned	for	modules	to	load.	There	are	other
directory	tags	for	binaries,	manuals,	and	documentation:

directories:	{	lib:	'./lib',	bin:	'./bin'	},	

The	script	tags	are	script	commands	run	at	various	events	in	the	life	cycle
of	the	package.	These	events	include	install,	activate,	uninstall,	update,	and
more.	For	more	information	about	script	commands,	use	the	following
command:

$	npm	help	scripts		

We've	already	used	the	scripts	feature	when	showing	how	to	set	up	Babel.
We'll	use	these	later	for	automating	the	build,	test,	and	execution
processes.

This	was	only	a	taste	of	the	npm	package	format;	see	the	documentation
(npm	help	json)	for	more.

Finding	npm	packages
By	default,	npm	modules	are	retrieved	over	the	internet	from	the	public
package	registry	maintained	on	http://npmjs.com.	If	you	know	the	module
name,	it	can	be	installed	simply	by	typing	the	following:

$	npm	install	moduleName		

But	what	if	you	don't	know	the	module	name?	How	do	you	discover	the
interesting	modules?	The	website	http://npmjs.com	publishes	a	searchable
index	of	the	modules	in	that	registry.

The	npm	package	also	has	a	command-line	search	function	to	consult	the
same	index:

Of	course,	upon	finding	a	module,	it's	installed	as	follows:

$	npm	install	acoustid		

http://npmjs.com
http://npmjs.com

After	installing	a	module,	you	may	want	to	see	the	documentation,	which
would	be	on	the	module's	website.	The	homepage	tag	in	package.json	lists	that
URL.	The	easiest	way	to	look	at	the	package.json	file	is	with	the	npm	view
command,	as	follows:

$	npm	view	akasharender

...

{	name:	'akasharender',

		description:	'Rendering	support	for	generating	static	HTML	websites	

		or	EPUB	eBooks',

		'dist-tags':	{	latest:	'0.6.15'	},

		versions:	

			['0.0.1',

		...

		author:	'David	Herron	<david@davidherron.com>	

		(http://davidherron.com)',

		repository:	{	type:	'git',	url:	

		'git://github.com/akashacms/akasharender.git'	},

		homepage:	'http://akashacms.com/akasharender/toc.html',

...

}		

You	can	use	npm	view	to	extract	any	tag	from	package.json,	like	the	following,
which	lets	you	view	just	the	homepage	tag:

$	npm	view	akasharender	homepage

http://akashacms.org/akasharender/toc.html	

Other	fields	in	the	package.json	can	be	viewed	by	simply	giving	the	desired
tag	name.

$	npm	help	<command>	The	help	text	will	be	shown	on	your	screen.

Or,	see	the	website:	http://docs.npmjs.com	

$	npm	install	express

homedavid/projects/notes/

-	express@4.13.4

...	

The	named	module	is	installed	in	node_modules	in	the	current	directory.	The
specific	version	installed	depends	on	any	version	number	listed	on	the	command
line,	as	we	see	in	the	next	section.	

Installing	a	package	by	version
number
Version	number	matching	in	npm	is	powerful	and	flexible.	The	same	sort
of	version	specifiers	used	in	package.json	dependencies	can	also	be	used
with	the	npm	install	command:

$	npm	install	package-name@tag

$	npm	install	package-name@version

$	npm	install	package-name@version-range

The	last	two	are	what	they	sound	like.	You	can	specify	express@4.16.2	to
target	a	precise	version,	or	express@">4.1.0	<	5.0"	to		target	a	range	of
Express	V4	versions.

The	version	match	specifiers	include	these	choices:

Exact	version	match:	1.2.3

At	least	version	N:	>1.2.3

Up	to	version	N:	<1.2.3

Between	two	releases:	>=1.2.3	<1.3.0

The	@tag	attribute	is	a	symbolic	name	such	as	@latest,	@stable,	or	@canary.	The
package	owner	assigns	these	symbolic	names	to	specific	version	numbers,
and	can	reassign	them	as	desired.	The	exception	is	@latest,	which	is
updated	whenever	a	new	release	of	the	package	is	published.

For	more	documentation,	run	these	commands:	npm	help	json	and	npm	help
npm-dist-tag.

Global	package	installs
In	some	instances	you	want	to	install	a	module	globally,	so	that	it	can	be
used	from	any	directory.	For	example,	the	Grunt	or	Gulp	build	tools	are
widely	useful,	and	conceivably	you	will	find	it	useful	if	these	tools	are
installed	globally.	Simply	add	the	-g	option:

$	npm	install	-g	grunt-cli		

If	you	get	an	error,	and	you're	on	a	Unix-like	system	(Linux/Mac),	you
may	need	to	run	this	with	sudo:

$	sudo	npm	install	-g	grunt-cli

A	global	install	is	most	important	for	those	packages	which	install
executable	commands.	We'll	get	into	this	shortly.

If	a	local	package	install	lands	in	node_modules,	where	does	a	global	package
install	land?		On	a	Unix-like	system	it	lands	in	PREFIX/lib/node_modules,	and
on	Windows	it	lands	in	PREFIX/node_modules.	In	this	case	PREFIX	means	the
directory	where	Node.js	is	installed.	You	can	inspect	the	location	of	this
directory	like	so:

$	npm	config	get	prefix

/Users/david/.nvm/versions/node/v8.9.1

The	algorithm	used	by	Node.js	for	the	require	function	automatically
searches	this	directory	for	packages	if	the	package	is	not	found	elsewhere.

Remember	that	ES6	modules	do	not	support	global	packages.

Avoiding	global	module
installation
Some	in	the	Node.js	community	now	frown	on	installing	a	package
globally.	One	rationale	exists	in	the	Twelve	Factor	model.	Namely,	a
software	project	is	more	reliable	if	all	its	dependencies	are	explicitly
declared.	If	a	build	tool	such	as	Grunt	is	required,	but	is	not	explicitly
declared	in	package.json,	the	users	of	the	application	would	have	to	receive
instructions	to	install	Grunt,	and	they	would	have	to	follow	those
instructions.	

Users	being	users,	they	might	skip	over	the	instructions,	fail	to	install	the
dependency,	and	then	complain	the	application	doesn't	work.	Surely	most
of	us	have	done	that	once	or	twice.

It's	recommended	to	avoid	this	potential	problem	by	installing	everything
locally	via	one	mechanism—the	npm	install	command.

Maintaining	package
dependencies	with	npm
As	we	mentioned	earlier,	the	npm	install	command	by	itself	installs	the
packages	listed	in	the	dependencies	section	of	package.json.	This	is	easy	and
convenient.	Simply	by	listing	all	the	dependencies,	it's	quick	and	easy	to
install	the	dependencies	required	for	using	the	package.	What	happens	is
npm	looks	in	package.json	for	the	dependencies	or	devDependencies	field,	and	it
will	automatically	install	the	mentioned	packages.

You	can	manage	the	dependencies	manually	by	editing	package.json.	Or	you
can	use	npm	to	assist	you	with	editing	the	dependencies.	You	can	add	a
new	dependency	like	so:

$	npm	install	akasharender	--save		

In	response,	npm	will	add	a	dependencies	tag	to	package.json:

"dependencies":	{	

				"akasharender":	"^0.6.15"	

}	

Now,	when	your	application	is	installed,	npm	will	automatically	also	install
that	package	along	with	any	dependencies	listed	by	that	package.

The	devDependencies	are	modules	used	during	development.	That	field	is
initialized	the	same	as	above,	but	with	the	--save-dev	flag.

By	default,	when	an	npm	install	is	run,	modules	listed	in
both	dependencies	and	devDependencies	are	installed.	Of	course,	the	purpose	for
having	two	lists	is	to	not	install	the	devDependencies	in	some	cases:

$	npm	install	--production		

This	installs	only	the	modules	listed	in	dependencies	and	none	of
the	devDependencies	modules.

In	the	Twelve-Factor	application	model,	it's	suggested	that	we	explicitly
identify	the	dependencies	required	by	the	application.	This	way	we	can
reliably	build	our	application,	knowing	that	we've	tested	against	a	specific
set	of	dependencies	that	we've	carefully	identified.	By	installing	exactly
the	dependencies	against	which	the	application	has	been	tested,	we	have
more	confidence	in	the	application.	On	the	Node.js	platform,	npm	gives	us
this	dependencies	section,	including	a	flexible	mechanism	to	declare
compatible	package	versions	by	their	version	number.

$	npm	config	set	save	false

The	npm	config	command	supports	a	long	list	of	settable	options	for	tuning
behavior	of	npm.	See	npm	help	config	for	the	documentation,	and	npm	help	7
config	for	the	list	of	options.

Fixing	bugs	by	updating
package	dependencies
Bugs	exist	in	every	piece	of	software.	An	update	to	the	Node.js	platform
may	break	an	existing	package,	as	might	an	upgrade	to	packages	used	by
the	application.	Your	application	may	trigger	a	bug	in	a	package	it	uses.	In
these	and	other	cases,	fixing	the	problem	might	be	as	simple	as	updating	a
package	dependency	to	a	later	(or	earlier)	version.

First	identify	whether	the	problem	exists	in	the	package	or	in	your	code.
After	determining	it's	a	problem	in	another	package,	investigate	whether
the	package	maintainers	have	already	fixed	the	bug.	Is	the	package	hosted
on	GitHub	or	another	service	with	a	public	issue	queue?	Look	for	an	open
issue	on	this	problem.	That	investigation	will	tell	you	whether	to	update
the	package	dependency	to	a	later	version.	Sometimes,	it	will	tell	you	to
revert	to	an	earlier	version;	for	example,	if	the	package	maintainer
introduced	a	bug	that	doesn't	exist	in	an	earlier	version.

Sometimes,	you	will	find	that	the	package	maintainers	are	unprepared	to
issue	a	new	release.	In	such	a	case,	you	can	fork	their	repository	and	create
a	patched	version	of	their	package.

One	approach	to	fixing	this	problem	is	pinning	the	package	version
number	to	one	that's	known	to	work.	You	might	know	that	version	6.1.2
was	the	last	release	against	which	your	application	functioned,	and	that
starting	with	version	6.2.0	your	application	breaks.	Hence,	in	package.json:
"dependencies":	{
"module1":	"6.1.2"
}

This	freezes	your	dependency	to	the	specific	version	number.	You're	free,
then,	to	take	your	time	updating	your	code	to	work	against	later	releases	of

that	module.		Once	your	code	is	updated,	or	the	upstream	project	is
updated,	change	the	dependency	appropriately.

Another	approach	is	to	host	a	version	of	the	package	somewhere	outside
of	the	npm	repository.	This	is	covered	in	a	later	section.

	

Packages	that	install
commands
Some	packages	install	command-line	programs.	A	side	effect	of	installing
such	packages	is	a	new	command	that	you	can	type	at	the	shell	prompt	or
use	in	shell	scripts.	An	example	is	the	hexy	program	that	we	briefly	used
in	Chapter	2,	Setting	up	Node.js.	Another	example	is	the	widely	used	Grunt
or	Gulp	build	tools.

The	package.json	file	in	such	packages	specifies	the	command-line	tools	that
are	installed.	The	command	can	be	installed	to	one	of	two	places:

Global	Install:	It	is	installed	either	to	a	directory	such	as	usrlocal,
or	to	the	bin	directory	where	Node.js	was	installed.	The	npm	bin	-g
command	tells	you	the	absolute	pathname	for	this	directory.

Local	Install:	To	node_modules/.bin	in	the	package	where	the	module
is	being	installed.	The	npm	bin	command	tells	you	the	absolute
pathname	for	this	directory.

To	run	the	command,	simply	type	the	command	name	at	a	shell	prompt.
Except	there's	a	little	bit	of	configuration	required	to	make	that	simple.

	

Configuring	the	PATH	variable
to	handle	commands	installed
by	modules
Typing	the	full	pathname	is	not	a	user-friendly	requirement	to	execute	the
command.	We	want	to	use	the	commands	installed	by	modules,	and	we
want	a	simple	process	for	doing	so.	Meaning,	we	must	add	an	appropriate
value	in	the	PATH	variable,	but	what	is	it?

For	global	package	installations,	the	executable	lands	in	a	directory	that	is
probably	already	in	your	PATH	variable,	like	usrbin	or	usrlocal/bin.	Local
package	installations	are	what	require	special	handling.	The	full	path	for
the	node_modules/.bin	directory	varies	for	each	project,	and	obviously	it	won't
work	to	add	the	full	path	for	every	node_modules/.bin	directory	to	your	PATH.

Adding	./node_modules/.bin	to	the	PATH	variable	(or,	on	Windows,
.\node_modules\.bin)	works	great.	Any	time	your	shell	is	in	the	root	of	a
Node.js	project,	it	will	automatically	find	locally-installed	commands	from
Node.js	packages.

How	we	do	this	depends	on	the	command	shell	you	use,	and	your
operating	system.

On	a	Unix-like	system	the	command	shells	are	bash	and	csh.	Your	PATH
variable	would	be	set	up	in	one	of	these	ways:

$	export	PATH=./node_modules/.bin:${PATH}					#	bash

$	setenv	PATH	./node_modules/.bin:${PATH}					#	csh

The	next	step	is	adding	the	command	to	your	login	scripts	so	the	variable
is	always	set.	On	bash,	add	the	corresponding	line	to	your	~/.bashrc,	and	on

csh	add	it	to	your	~/.cshrc.

Configuring	the	PATH	variable
on	Windows
On	Windows,	this	task	is	handled	through	a	system-wide	settings	panel:	

This	pane	of	the	System	Properties	panel	is	found	by	searching	for
PATH	in	the	Windows	Settings	screen.	Click	on	the	Environment
Variables	button,	then	select	the	Path	variable,	and	finally	click	on	the
Edit	button.	In	the	screen	here	click	the	New	button	to	add	an	entry	to
this	variable,	and	enter	.\node_modules\.bin	as	shown.	You'll	have	to
restart	any	open	command	shell	windows.	Once	you	do,	the	effect	will
be	as	shown	previously.

	

Avoiding	modifications	to	the
PATH	variable
What	if	you	don't	want	to	add	these	variables	to	your	PATH	at	all	times?	
The	npm-path	module	may	be	of	interest.	This	is	a	small	program	that
computes	the	correct	PATH	variable	for	your	shell	and	operating	system.	See
the	package	at		https://www.npmjs.com/package/npm-path.

	

https://www.npmjs.com/package/npm-path

Updating	outdated	packages
you've	installed
The	coder	codes,	updating	their	package,	leaving	you	in	their	dust	unless
you	keep	up.

To	find	out	if	your	installed	packages	are	out	of	date,	use	the	following
command:	$	npm	outdated

The	report	shows	the	current	npm	packages,	the	currently-installed
version,	as	well	as	the	current	version	in	the	npm	repository.	Updating	the
outdated	packages	is	very	simple:	$	npm	update	express	$	npm	update

Installing	packages	from
outside	the	npm	repository
As	awesome	as	the	npm	repository	is,	we	don't	want	to	push	everything
we	do	through	their	service.	This	is	especially	true	for	internal
development	teams	who	cannot	publish	their	code	for	all	the	world	to	see.
While	you	can	rent	or	install	a	private	npm	repository,	there's	another	way.
Packages	can	be	installed	from	other	locations.	Details	about	this	are	in	npm
help	package.json	in	the	dependencies	section.	Some	examples	are:

URL:	You	can	specify	any	URL	that	downloads	a	tarball,	that	is,
a	.tar.gz	file.	For	example,	GitHub	or	GitLab	repositories	can
easily	export	tarball	URL.	Simply	go	to	the	Releases	tab	to	find
them.

Git	URL:	Similarly,	any	Git	repository	can	be	accessed	with	the
right	URL.	For	example:

$	npm	install	git+ssh://user@hostname:project.git#tag	--save		

GitHub	Shortcut:	For	GitHub	repositories	you	can	list	just	the
repository	specifier,	such	as	expressjs/express.		A	tag	or	a	commit
can	be	referenced	using	expressjs/express#tag-name.

Local	filesystem:	You	can	install	from	a	local	directory	using	a
URL	like	this:		file:../../path/to/dir.

	

	

Initializing	a	new	npm	package
If	you	want	to	create	a	new	package,	you	can	create	the	package.json	file	by
hand	or	you	can	get	npm's	help.	The	npm	init	command	leads	you	through	a
little	dialog	to	get	starting	values	for	the	package.json	file.

Once	you	get	through	the	questions,	the	package.json	file	is	written	to	disk.

Expect	to	have	to	edit	that	file	considerably	before	publishing	to	the	npm
repository.	A	few	fields	help	give	a	good	impression	to	folks	looking	at	the
package	listing	on	npmjs.com:

Link	to	the	home	page,	and	issue	queue	URL

Keywords,	so	it	can	be	linked	with	other	similar	packages

A	good	description	that	helps	folks	understand	the	purpose

A	good	README.md	file	so	folks	can	read	some	documentation	right
away

	

	

"engines":	{

				"node":	">=	8.x"

}

This,	of	course,	uses	the	same	version	number	matching	scheme	discussed
earlier.

Publishing	an	npm	package
All	those	packages	in	the	npm	repository	came	from	people	like	you	with
an	idea	of	a	better	way	of	doing	something.	It	is	very	easy	to	get	started
with	publishing	packages.	Online	docs	can	be	found	at
https://docs.npmjs.com/getting-started/publishing-npm-packages.

You	first	use	the	npm	adduser	command	to	register	yourself	with	the	npm
repository.	You	can	also	sign	up	with	the	website.	Next,	you	log	in	using
the	npm	login	command.

Finally,	while	sitting	in	the	package	root	directory,	use	the	npm	publish
command.	Then,	stand	back	so	that	you	don't	get	stampeded	by	the	crush
of	thronging	fans.	Or,	maybe	not.	There	are	almost	600,000	packages	in
the	repository,	with	almost	400	packages	added	every	day.	To	get	yours	to
stand	out,	you	will	require	some	marketing	skill,	which	is	another	topic
beyond	the	scope	of	this	book.

https://docs.npmjs.com/getting-started/publishing-npm-packages

Explicitly	specifying	package
dependency	version	numbers
One	feature	of	the	Twelve-Factor	methodology	is	step	two,	explicitly
declaring	your	dependencies.	We've	already	touched	on	this,	but	it's	worth
reiterating	and	to	seeing	npm	makes	this	easy	to	accomplish.

Step	one	of	the	Twelve-Factor	methodology	is	ensuring	that	your
application	code	is	checked	into	a	source	code	repository.	You	probably
already	know	this,	and	even	have	the	best	of	intentions	to	ensure	that
everything	is	checked	in.	With	Node.js,	each	module	should	have	its	own
repository	rather	than	putting	every	single	last	piece	of	code	in	one
repository.

Each	module	can	then	progress	on	its	own	timeline.	A	breakage	in	one
module	is	easy	to	back	out	by	changing	the	version	dependency	in
package.json.

This	gets	us	to	Twelve-Factor	step	two.	There	are	two	aspects	of	this	step,
one	of	which	is	the	package	versioning	that	we	discussed	previously.	The
next	is	explicitly	declaring	version	numbers,	which	can	be	declared	in
dependencies	and	devDependencies	sections	of	package.json.	This	ensures	that
everyone	on	the	team	is	on	the	same	page,	developing	against	the	same
versions	of	the	same	modules.	When	it's	time	to	deploy	to	testing,	staging,
or	production	servers,	and	the	deployment	script	runs	npm	install	or	npm
update,	the	code	will	use	a	known	version	of	the	module	that	everyone
tested	against.

The	lazy	way	of	declaring	dependencies	is	putting	*	in	the	version	field.
That	uses	the	latest	version	in	the	npm	repository.	Maybe	this	will	work,
until	one	day	the	maintainers	of	that	package	introduce	a	bug.	You'll	type
npm	update,	and	all	of	a	sudden	your	code	doesn't	work.	You'll	head	over	to

the	GitHub	site	for	the	package,	look	in	the	issue	queue,	and	possibly	see
that	others	have	already	reported	the	problem	you're	seeing.	Some	of	them
will	say	that	they've	pinned	on	the	previous	release	until	this	bug	is	fixed.
What	that	means	is	their	package.json	file	does	not	depend	on	*	for	the	latest
version,	but	on	a	specific	version	number	before	the	bug	was	created.

Don't	do	the	lazy	thing,	do	the	smart	thing.

The	other	aspect	of	explicitly	declaring	dependencies	is	to	not	implicitly
depend	on	global	packages.	Earlier,	we	said	that	some	in	the	Node.js
community	caution	against	installing	modules	in	the	global	directories.
This	might	seem	like	an	easy	shortcut	to	sharing	code	between
applications.	Just	install	it	globally,	and	you	don't	have	to	install	the	code
in	each	application.

But,	doesn't	that	make	deployment	harder?	Will	the	new	team	member	be
instructed	on	all	the	special	files	to	install	here	and	there	to	make	the
application	run?	Will	you	remember	to	install	that	global	module	on	all
destination	machines?

For	Node.js,	that	means	listing	all	the	module	dependencies	in	package.json,
and	then	the	installation	instructions	are	simply	npm	install,	followed
perhaps	by	editing	a	configuration	file.

The	Yarn	package	management
system
As	powerful	as	npm	is,	it	is	not	the	only	package	management	system	for
Node.js.	Because	the	Node.js	core	team	does	not	dictate	a	package
management	system,	the	Node.js	community	is	free	to	roll	up	their	sleeves
and	develop	any	system	they	feel	best.	That	the	vast	majority	of	us	use
npm	is	a	testament	to	its	value	and	usefulness.	But	there	is	a	competitor.

Yarn	(see	https://yarnpkg.com/en/)	is	a	collaboration	between	engineers	at
Facebook,	Google,	and	several	other	companies.	They	proclaim	that	Yarn
is	ultra	fast,	ultra-secure	(by	using	checksums	of	everything),	and	ultra
reliable	(by	using	a	yarn-lock.json	file	to	record	precise	dependencies).

Instead	of	running	their	own	package	repository,	Yarn	runs	on	top	of	npm's
package	repository	at	npmjs.com.	This	means	that	the	Node.js	community	is
not	forked	by	Yarn,	but	enhanced	by	having	an	improved	package
management	tool.

The	npm	team	responded	to	Yarn	in	npm@5	(also	known	as	npm	version
5)	by	improving	performance,	and	by	introducing	a	package-lock.json	file	to
improve	reliability.		The	npm	team	have	announced	additional
improvements	in	npm@6.	

Yarn	has	become	very	popular	and	is	widely	recommended	over	npm.
They	perform	extremely	similar	functions,	and	the	performance	is	not	that
different	to	npm@5.	The	command-line	options	are	worded	differently.	An
important	benefit	Yarn	brings	to	the	Node.js	community	is	that
competition	between	Yarn	and	npm	seems	to	be	breeding	faster	advances
in	Node.js	package	management.

To	get	you	started,	these	are	the	most	important	commands:

https://yarnpkg.com/en/

yarn	add:	Adds	a	package	to	use	in	your	current	package

yarn	init:	Initializes	the	development	of	a	package

yarn	install:	Installs	all	the	dependencies	defined	in	a	package.json
file

yarn	publish:	Publishes	a	package	to	a	package	manager

yarn	remove:	Removes	an	unused	package	from	your	current
package

Running	yarn	by	itself	does	the	yarn	install	behavior.	There	are	several
other	commands	in	Yarn,	and	yarn	help	will	list	them	all.

Summary
You	learned	a	lot	in	this	chapter	about	modules	and	packages	for	Node.js.

Specifically,	we	covered	implementing	modules	and	packages	for	Node.js,
managing	installed	modules	and	packages,	and	saw	how	Node.js	locates
modules.

Now	that	you've	learned	about	modules	and	packages,	we're	ready	to	use
them	to	build	applications,	which	is	the	topic	of	the	next	chapter.

	

HTTP	Servers	and	Clients
Now	that	you've	learned	about	Node.js	modules,	it's	time	to	put	this
knowledge	to	work	by	building	a	simple	Node.js	web	application.	In	this
chapter,	we'll	keep	to	a	simple	application,	enabling	us	to	explore	three
different	application	frameworks	for	Node.js.	In	later	chapters,	we'll	build
some	more	complex	applications,	but	before	we	can	walk,	we	must	learn
to	crawl.

We	will	cover	the	following	topics	in	this	chapter:

EventEmitters

Listening	to	HTTP	events	and	the	HTTP	Server	object

HTTP	request	routing

ES2015	template	strings

Building	a	simple	web	application	with	no	frameworks

The	Express	application	framework

Express	middleware	functions

How	to	deal	with	computationally	intensive	code

The	HTTP	Client	object

Creating	a	simple	REST	service	with	Express

	

	

	

Sending	and	receiving	events
with	EventEmitters
EventEmitters	are	one	of	the	core	idioms	of	Node.js.	If	Node.js's	core	idea
is	an	event-driven	architecture,	emitting	events	from	an	object	is	one	of
the	primary	mechanisms	of	that	architecture.	An	EventEmitter	is	an	object
that	gives	notifications—events—at	different	points	in	its	life	cycle.	For
example,	an	HTTP	Server	object	emits	events	concerning	each	stage	of	the
startup/shutdown	of	the	Server	object,	and	as	HTTP	requests	are	made
from	HTTP	clients.

Many	core	Node.js	modules	are	EventEmitters,	and	EventEmitters	are	an
excellent	skeleton	to	implement	asynchronous	programming.
EventEmitters	have	nothing	to	do	with	web	application	development,	but
they	are	so	much	part	of	the	Node.js	woodwork	that	you	may	skip	over
their	existence.	

In	this	chapter,	we'll	work	with	the	HTTPServer	and	HTTPClient	objects.
Both	are	subclasses	of	the	EventEmitter	class,	and	rely	on	it	to	send	events
for	each	step	of	the	HTTP	protocol.	

JavaScript	classes	and	class
inheritance
Before	getting	started	on	the	EventEmitter	class,	we	need	to	take	a	look	at
another	of	the	ES2015	features:	classes.	The	JavaScript	language	has
always	had	objects,	and	a	concept	of	a	class	hierarchy,	but	nothing	so
formal	as	in	other	languages.	The	ES2015	class	object	builds	on	the
existing	prototype-based	inheritance	model,	but	with	a	syntax	looking	very
much	like	class	definitions	in	other	languages.

For	example,	consider	this	class	we'll	be	using	later	in	the	book:

class	Note	{

				constructor(key,	title,	body)	{

								this._key	=	key;

								this._title	=	title;

								this._body	=	body;

				}

				get	key()	{	return	this._key;	}

				get	title()	{	return	this._title;	}

				set	title(newTitle)	{	return	this._title	=	newTitle;	}

				get	body()	{	return	this._body;	}

				set	body(newBody)	{	return	this._body	=	newBody;	}

}

Once	you've	defined	the	class,	you	can	export	the	class	definition	to	other
modules:

module.exports.Note	=	class	Note	{	..	}			#	in	CommonJS	modules

export	class	Note	{	..	}																		#	in	ES6	modules

The	functions	marked	with	get	or	set	keywords	are	getters	and	setters,	used
like	so:

var	aNote	=	new	Note("key",	"The	Rain	in	Spain",	"Falls	mainly	on	the	

plain");

var	key	=	aNote.key;

var	title	=	aNote.title;

aNote.title	=	"The	Rain	in	Spain,	which	made	me	want	to	cry	with	joy";

New	instances	of	a	class	are	created	with	new.	You	access	a	getter	or	setter
function	as	if	it	is	a	simple	field	on	the	object.	Behind	the	scenes,	the
getter/setter	function	is	invoked.

The	preceding	implementation	is	not	the	best	because	the	_title	and
_body	fields	are	publicly	visible,	and	there	is	no	data	hiding	or
encapsulation.	We'll	go	over	a	better	implementation	later.

One	tests	whether	a	given	object	is	of	a	certain	class	by	using	the	instanceof
operator:

if	(anotherNote	instanceof	Note)	{

				...	it's	a	Note,	so	act	on	it	as	a	Note

}

Finally,	you	declare	a	subclass	using	the	extends	operator,	similar	to	what's
done	in	other	languages:

class	LoveNote	extends	Note	{

				constructor(key,	title,	body,	heart)	{

								super(key,	title,	body);

								this._heart	=	heart;

				}

				get	heart()	{	return	this._heart;	}

				set	heart(newHeart)	{	return	this._heart	=	newHeart;	}

}

In	other	words,	the	LoveNote	class	has	all	the	fields	of	Note,	plus	this	new
field	named	heart.

The	EventEmitter	Class
The	EventEmitter	object	is	defined	in	the	events	module	of	Node.js.	Directly
using	the	EventEmitter	class	means	performing	require('events').	In	most
cases,	you'll	be	using	an	existing	object	that	uses	EventEmitter	internally	and
you	won't	require	this	module.	But	there	are	cases	where	needs	dictate
implementing	an	EventEmitter	subclass.

Create	a	file	named	pulser.js	containing	the	following	code:

const	EventEmitter	=	require('events');

class	Pulser	extends	EventEmitter	{

				start()	{

								setInterval(()	=>	{

												console.log(`${new	Date().toISOString()}	>>>>	pulse`);

												this.emit('pulse');

												console.log(`${new	Date().toISOString()}	<<<<	pulse`);

								},	1000);

				}

}

module.exports	=	Pulser;

This	defines	a	Pulser	class,	which	inherits	from	EventEmitter.	In	older
Node.js	releases,	this	would	require	using	util.inherits,	but	the	new	class
object	makes	subclassing	much	simpler.	

Another	thing	to	examine	is	how	this.emit	in	the	callback	function	refers	to
the	Pulser	object.	Before	the	ES2015	arrow	function,	when	our	callbacks
used	a	regular	function,	this	would	not	have	referred	to	the	Pulser	object.
Instead,	it	would	have	referred	to	some	other	object	related	to	the
setInterval	function.	Because	it	is	an	arrow	function,	the	this	inside	the
arrow	function	is	the	same	this	as	in	the	outer	function.

If	you	needed	to	use	a	function	rather	than	an	arrow	function,	this	trick

would	work:

class	Pulser	extends	EventEmitter	{

				start()	{

								var	self	=	this;

								setInterval(function()	{

												self.emit(...);

								});

				}

}

What's	different	is	the	assignment	of	this	to	self.	The	value	of	this	inside
the	function	is	different,	but	the	value	of	self	remains	the	same	in	every
enclosed	scope.	This	widely-used	trick	is	less	necessary	now	that	we	have
arrow	functions.

If	you	want	a	simple	EventEmitter,	but	with	your	own	class	name,	the
body	of	the	extended	class	can	be	empty:

class	HeartBeat	extends	EventEmitter	{}

const	beatMaker	=	new	HeartBeat();

The	purpose	of	the	Pulser	class	is	sending	a	timed	event,	once	a	second,	to
any	listeners.	The	start	method	uses	setInterval	to	kick	off	repeated
callback	execution,	scheduled	for	every	second,	calling	emit	to	send	the
pulse	events	to	any	listeners.

Now,	let's	see	how	to	use	the	Pulser	object.	Create	a	new	file,	called
pulsed.js,	containing:

const	Pulser	=	require('./pulser');

//	Instantiate	a	Pulser	object

const	pulser	=	new	Pulser();

//	Handler	function

pulser.on('pulse',	()	=>	{

				console.log(`${new	Date().toISOString()}	pulse	received`);

});

//	Start	it	pulsing

pulser.start();	

Here,	we	create	a	Pulser	object	and	consume	its	pulse	events.	Calling
pulser.on('pulse')	sets	up	connections	for	the	pulse	events	to	invoke	the
callback	function.	It	then	calls	the	start	method	to	get	the	process	going.

Enter	this	into	a	file	and	name	the	file	pulsed.js.	When	you	run	it,	you
should	see	the	following	output:

$	node	pulsed.js	

2017-12-03T06:24:10.272Z	>>>>	pulse

2017-12-03T06:24:10.275Z	pulse	received

2017-12-03T06:24:10.276Z	<<<<	pulse

2017-12-03T06:24:11.279Z	>>>>	pulse

2017-12-03T06:24:11.279Z	pulse	received

2017-12-03T06:24:11.279Z	<<<<	pulse

2017-12-03T06:24:12.281Z	>>>>	pulse

2017-12-03T06:24:12.281Z	pulse	received

2017-12-03T06:24:12.282Z	<<<<	pulse

That	gives	you	a	little	practical	knowledge	of	the	EventEmitter	class.	Let's
now	look	at	its	operational	theory.

The	EventEmitter	theory
With	the	EventEmitter	class,	your	code	emits	events	that	other	code	can
receive.	It's	a	way	of	connecting	two	separated	sections	of	your	program,
kind	of	like	how	quantum	entanglement	means	two	electrons	can
communicate	with	each	other	from	any	distance.	Seems	simple	enough.

The	event	name	can	be	anything	that	makes	sense	to	you,	and	you	can
define	as	many	event	names	as	you	like.	Event	names	are	defined	simply
by	calling	.emit	with	the	event	name.	There's	nothing	formal	to	do	and	no
registry	of	event	names.	Simply	making	a	call	to	.emit	is	enough	to	define
an	event	name.

By	convention,	the	event	name	error	indicates	errors.

An	object	sends	events	using	the	.emit	function.	Events	are	sent	to	any
listeners	that	have	registered	to	receive	events	from	the	object.	The
program	registers	to	receive	an	event	by	calling	that	object's	.on	method,
giving	the	event	name	and	an	event	handler	function.

There	is	no	central	distribution	point	for	all	events.	Instead,	each	instance
of	an	EventEmitter	object	manages	its	own	set	of	listeners	and	distributes	its
events	to	those	listeners.

Often,	it	is	required	to	send	data	along	with	an	event.	To	do	so,	simply	add
the	data	as	arguments	to	the	.emit	call,	as	follows:

this.emit('eventName',	data1,	data2,	..);	

When	the	program	receives	that	event,	the	data	appears	as	arguments	to
the	callback	function.	Your	program	would	listen	to	such	an	event	as
follows:

emitter.on('eventName',	(data1,	data2,	...theArgs)	=>	{	

		//	act	on	event	

});	

There	is	no	handshaking	between	event	receivers	and	the	event	sender.
That	is,	the	event	sender	simply	goes	on	with	its	business,	and	it	gets	no
notifications	about	any	events	received,	any	action	taken,	or	any	error	that
occurred.

In	this	example,	we	used	another	of	the	ES2015	features,	the	rest	operator,
shown	here	as	...theArgs.	The	rest	operator	catches	any	number	of
remaining	function	parameters	into	an	array.	Since	EventEmitter	can	pass
along	any	number	of	parameters,	and	the	rest	operator	can	automatically
receive	any	number	of	parameters,	it's	a	match	made	in	heaven,	or	else	in
the	TC-39	committee.

HTTP	server	applications
The	HTTP	server	object	is	the	foundation	of	all	Node.js	web	applications.
The	object	itself	is	very	close	to	the	HTTP	protocol,	and	its	use	requires
knowledge	of	that	protocol.	In	most	cases,	you'll	be	able	to	use	an
application	framework	such	as	Express	that	hides	the	HTTP	protocol
details,	allowing	the	programmer	to	focus	on	business	logic.

We	already	saw	a	simple	HTTP	server	application	in	Chapter	2,	Setting	up
Node.js,	which	is	as	follows:

const	http	=	require('http');	

http.createServer((req,	res)	=>	{	

		res.writeHead(200,	{'Content-Type':	'text/plain'});	

		res.end('Hello,	World!\n');	

}).listen(8124,	'127.0.0.1');	

console.log('Server	running	at	http://127.0.0.1:8124');	

The	http.createServer	function	creates	an	http.Server	object.	Because	it	is	an
EventEmitter,	this	can	be	written	in	another	way	to	make	that	fact	explicit:

const	http	=	require('http');	

const	server	=	http.createServer();	

server.on('request',		(req,	res)	=>	{	

		res.writeHead(200,	{'Content-Type':	'text/plain'});	

		res.end('Hello,	World!\n');	

});	

server.listen(8124,	'127.0.0.1');	

console.log('Server	running	at	http://127.0.0.1:8124');	

The	request	event	takes	a	function,	which	receives	request	and	response
objects.	The	request	object	has	data	from	the	web	browser,	while	the
response	object	is	used	to	gather	the	data	to	be	sent	in	the	response.	The
listen	function	causes	the	server	to	start	listening	and	arranging	to	dispatch
an	event	for	every	request	arriving	from	a	web	browser.

Now,	let's	look	at	something	more	interesting	with	different	actions	based
on	the	URL.

Create	a	new	file,	named	server.js,	containing	the	following	code:

const	http	=	require('http');	

const	util	=	require('util');	

const	url		=	require('url');	

const	os			=	require('os');	

	

const	server	=	http.createServer();	

server.on('request',	(req,	res)	=>	{	

				var	requrl	=	url.parse(req.url,	true);	

				if	(requrl.pathname	===	'')	{	

								res.writeHead(200,	{'Content-Type':	'texthtml'});	

								res.end(

`<html><head><title>Hello,	world!</title></head>	

<body><h1>Hello,	world!</h1>	

<p>OS	Info<a></p>	

</body></html>`);	

				}	else	if	(requrl.pathname	===	"osinfo")	{	

								res.writeHead(200,	{'Content-Type':	'texthtml'});	

								res.end(

`<html><head><title>Operating	System	Info</title></head>	

<body><h1>Operating	System	Info</h1>	

<table>	

<tr><th>TMP	Dir</th><td>${os.tmpdir()}</td></tr>	

<tr><th>Host	Name</th><td>${os.hostname()}</td></tr>	

<tr><th>OS	Type</th><td>${os.type()}	${os.platform()}	${os.arch()}	

${os.release()}</td></tr>	

<tr><th>Uptime</th><td>${os.uptime()}	${util.inspect(os.loadavg())}</td></tr>		

<tr><th>Memory</th><td>total:	${os.totalmem()}	free:	${os.freemem()}</td>

</tr>	

<tr><th>CPU's</th><td><pre>${util.inspect(os.cpus())}</pre></td></tr>	

<tr><th>Network</th><td><pre>${util.inspect(os.networkInterfaces())}</pre>

</td></tr>	

</table>	

</body></html>`);	

				}	else	{	

								res.writeHead(404,	{'Content-Type':	'text/plain'});	

								res.end("bad	URL	"+	req.url);	

				}	

});	

	

server.listen(8124);	

console.log('listening	to	http://localhost:8124');	

To	run	it,	type	the	following	command:

$	node	server.js

listening	to	http://localhost:8124

This	application	is	meant	to	be	similar	to	PHP's	sysinfo	function.	Node's	os
module	is	consulted	to	provide	information	about	the	server.	This	example
can	easily	be	extended	to	gather	other	pieces	of	data	about	the	server:

A	central	part	of	any	web	application	is	the	method	of	routing	requests	to
request	handlers.	The	request	object	has	several	pieces	of	data	attached	to
it,	two	of	which	are	useful	for	routing	requests:	the	request.url	and
request.method	fields.

In	server.js,	we	consult	the	request.url	data	to	determine	which	page	to
show,	after	parsing	(using	url.parse)	to	ease	the	digestion	process.	In	this

case,	we	can	do	a	simple	comparison	of	the	pathname	to	determine	which
handler	method	to	use.

Some	web	applications	care	about	the	HTTP	verb	(GET,	DELETE,	POST,	and	so
on)	used	and	must	consult	the	request.method	field	of	the	request	object.	For
example,	POST	is	frequently	used	for	FORM	submissions.

The	pathname	portion	of	the	request	URL	is	used	to	dispatch	the	request	to
the	correct	handler.	While	this	routing	method,	based	on	simple	string
comparison,	will	work	for	a	small	application,	it'll	quickly	become
unwieldy.	Larger	applications	will	use	pattern	matching	to	use	part	of	the
request	URL	to	select	the	request	handler	function	and	other	parts	to
extract	request	data	out	of	the	URL.	We'll	see	this	in	action	while	looking
at	Express	later	in	the	Getting	started	with	Express	section.

A	search	for	a	URL	match	in	the	npm	repository	turns	up	several
promising	packages	that	could	be	used	to	implement	request	matching	and
routing.	A	framework	like	Express	has	this	capability	already	baked	in	and
tested.

If	the	request	URL	is	not	recognized,	the	server	sends	back	an	error	page
using	a	404	result	code.	The	result	code	informs	the	browser	about	the
status	of	the	request,	where	a	200	code	means	everything	is	fine,	and	a	404
code	means	the	requested	page	doesn't	exist.	There	are,	of	course,	many
other	HTTP	response	codes,	each	with	their	own	meaning.

ES2015	multiline	and	template
strings
The	previous	example	showed	two	of	the	new	features	introduced	with
ES2015,	multiline	and	template	strings.	The	feature	is	meant	to	simplify
our	life	while	creating	text	strings.

The	existing	string	representations	use	single	quotes	and	double	quotes.
Template	strings	are	delimited	with	the	backtick	character	that's	also
known	as	the	grave	accent:

`template	string	text`	

Before	ES2015,	one	way	to	implement	a	multiline	string	was	this
construct:

["<html><head><title>Hello,	world!</title></head>",	

	"<body><h1>Hello,	world!</h1>",	

	"<p>OS	Info<a></p>",	

	"</body></html>"]	

.join('\n')	

Yes,	that	was	the	code	used	in	the	same	example	in	previous	versions	of
this	book.	This	is	what	we	can	do	with	ES2015:

`<html><head><title>Hello,	world!</title></head>	

<body><h1>Hello,	world!</h1>	

<p>OS	Info<a></p>	

</body></html>`

This	is	more	succinct	and	straightforward.	The	opening	quote	is	on	the
first	line,	the	closing	quote	on	the	last	line,	and	everything	in	between	is

part	of	our	string.

The	real	purpose	of	the	template	strings	feature	is	supporting	strings	where
we	can	easily	substitute	values	directly	into	the	string.	Most	other
programming	languages	support	this	ability,	and	now	JavaScript	does	too.

Pre-ES2015,	a	programmer	could	have	written	code	like	this:

[...	

		"<tr><th>OS	Type</th><td>{ostype}	{osplat}	{osarch}	{osrelease}</td></tr>"	

		...].join('\n')	

.replace("{ostype}",	os.type())	

.replace("{osplat}",	os.platform())	

.replace("{osarch}",	os.arch())	

.replace("{osrelease}",	os.release())	

Again,	this	is	extracted	from	the	same	example	in	previous	versions	of	this
book.	With	template	strings,	this	can	be	written	as	follows:

`...<tr><th>OS	Type</th><td>${os.type()}	${os.platform()}	${os.arch()}	

${os.release()}</td></tr>...`	

Within	a	template	string,	the	part	within	the	${	..	}	brackets	is	interpreted
as	an	expression.	It	can	be	a	simple	mathematical	expression,	a	variable
reference,	or,	as	in	this	case,	a	function	call.

The	last	thing	to	mention	is	a	matter	of	indentation.	In	normal	coding,	one
indents	a	long	argument	list	to	the	same	level	as	the	containing	function
call.	But,	for	these	multiline	string	examples,	the	text	content	is	flush	with
column	zero.	What's	up?

This	may	impede	the	readability	of	your	code,	so	it's	worth	weighing	code
readability	against	another	issue:	excess	characters	in	the	HTML	output.
The	blanks	we	would	use	to	indent	the	code	for	readability	will	become
part	of	the	string	and	will	be	output	in	the	HTML.	By	making	the	code
flush	with	column	zero,	we	don't	add	excess	blanks	to	the	output	at	the
cost	of	some	code	readability.

This	approach	also	carries	a	security	risk.	Have	you	verified	the	data	is
safe?	That	it	will	not	form	the	basis	of	a	security	attack?	In	this	case,	we're
dealing	with	simple	strings	and	numbers	coming	from	a	safe	data	source.	
Therefore	this	code	is	as	safe	as	the	Node.js	runtime.	What	about	user-
supplied	content,	and	the	risk	that	a	nefarious	user	might	supply	insecure
content	implanting	some	kind	of	malware	into	target	computers?

For	this	and	many	other	reasons,	it	is	often	safer	to	use	an	external
template	engine.	Applications	like	Express	make	it	easy	to	do	so.

HTTP	Sniffer	–	listening	to	the
HTTP	conversation
The	events	emitted	by	the	HTTPServer	object	can	be	used	for	additional
purposes	beyond	the	immediate	task	of	delivering	a	web	application.	The
following	code	demonstrates	a	useful	module	that	listens	to	all	the	HTTP
Server	events.	It	could	be	a	useful	debugging	tool,	which	also
demonstrates	how	HTTP	server	objects	operate.

Node.js's	HTTP	Server	object	is	an	EventEmitter	and	the	HTTP	Sniffer
simply	listens	to	every	server	event,	printing	out	information	pertinent	to
each	event.

What	we're	about	to	do	is:

1.	 Create	a	module,	httpsniffer,	that	prints	information	about	HTTP
requests.

2.	 Add	that	module	to	the	server.js	script	we	just	created.
3.	 Rerun	that	server	to	view	a	trace	of	HTTP	activity.

Create	a	file	named	httpsniffer.js	containing	the	following	code:

const	util	=	require('util');	

const	url		=	require('url');	

const	timestamp	=	()	=>	{	return	new	Date().toISOString();	}

exports.sniffOn	=	function(server)	{	

		server.on('request',	(req,	res)	=>	{	

				console.log(`${timestamp()}	e_request`);	

				console.log(`${timestamp()}	${reqToString(req)}`);	

		});	

		server.on('close',	errno	=>	{	console.log(`${timestamp()}	e_close	

		${errno}`);	});	

		server.on('checkContinue',	(req,	res)	=>	{	

				console.log(`${timestamp()}	e_checkContinue`);	

				console.log(`${timestamp()}	${reqToString(req)}`);	

				res.writeContinue();	

		});	

		server.on('upgrade',	(req,	socket,	head)	=>	{	

				console.log(`${timestamp()}	e_upgrade`);	

				console.log(`${timestamp()}	${reqToString(req)}`);

		});	

		server.on('clientError',	()	=>	{	console.log(`${timestamp()}	

		e_clientError`);	});	

};	

	

const	reqToString	=	exports.reqToString	=	(req)	=>	{	

		var	ret=`req	${req.method}	${req.httpVersion}	${req.url}`	+'\n';	

		ret	+=	JSON.stringify(url.parse(req.url,	true))	+'\n';	

		var	keys	=	Object.keys(req.headers);	

		for	(var	i	=	0,	l	=	keys.length;	i	<	l;	i++)	{	

				var	key	=	keys[i];	

				ret	+=	`${i}	${key}:	${req.headers[key]}`	+'\n';	

		}	

		if	(req.trailers)	ret	+=	util.inspect(req.trailers)	+'\n';	

		return	ret;	

};	

That	was	a	lot	of	code!	But	the	key	to	it	is	the	sniffOn	function.	When	given
an	HTTP	Server	object,	it	uses	the	.on	function	to	attach	listener	functions
that	print	data	about	each	emitted	event.	It	gives	a	fairly	detailed	trace	of
HTTP	traffic	on	an	application.

In	order	to	use	it,	simply	insert	this	code	just	before	the	listen	function	in
server.js:

require('./httpsniffer').sniffOn(server);	

server.listen(8124);	

console.log('listening	to	http://localhost:8124');	

With	this	in	place,	run	the	server	as	we	did	earlier.	You	can	visit
http://localhost:8124/	in	your	browser	and	see	the	following	console	output:

$	node	server.js	

listening	to	http://localhost:8124

2017-12-03T19:21:33.162Z	request

2017-12-03T19:21:33.162Z	request	GET	1.1	/

{"protocol":null,"slashes":null,"auth":null,"host":null,"port":null,"hostname

":null,"hash":null,"search":"","query":{},"pathname":"/","path":"","href":""}

0	host:	localhost:8124

1	upgrade-insecure-requests:	1

2	accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

3	user-agent:	Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_11_6)	

AppleWebKit/604.3.5	(KHTML,	like	Gecko)	Version/11.0.1	Safari/604.3.5

4	accept-language:	en-us

5	accept-encoding:	gzip,	deflate

6	connection:	keep-alive

{}

2017-12-03T19:21:42.154Z	request

2017-12-03T19:21:42.154Z	request	GET	1.1	/osinfo

{"protocol":null,"slashes":null,"auth":null,"host":null,"port":null,"hostname

":null,"hash":null,"search":"","query":

{},"pathname":"/osinfo","path":"osinfo","href":"osinfo"}

0	host:	localhost:8124

1	connection:	keep-alive

2	upgrade-insecure-requests:	1

3	accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

4	user-agent:	Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_11_6)	

AppleWebKit/604.3.5	(KHTML,	like	Gecko)	Version/11.0.1	Safari/604.3.5

5	referer:	http://localhost:8124/

6	accept-language:	en-us

7	accept-encoding:	gzip,	deflate

{}

You	now	have	a	tool	for	snooping	on	HTTPServer	events.	This	simple
technique	prints	a	detailed	log	of	event	data.	The	pattern	can	be	used	for
any	EventEmitter	object.	You	can	use	this	technique	as	a	way	to	inspect	the
actual	behavior	of	EventEmitter	objects	in	your	program.

Web	application	frameworks
The	HTTPServer	object	is	very	close	to	the	HTTP	protocol.	While	this	is
powerful	in	the	same	way	that	driving	a	stick	shift	car	gives	you	low-level
control	over	the	driving	experience,	typical	web	application	programming
is	better	done	at	a	higher	level.	Does	anybody	use	assembly	language	to
write	web	applications?	It's	better	to	abstract	away	the	HTTP	details	and
concentrate	on	your	application.

The	Node.js	developer	community	has	developed	quite	a	few	application
frameworks	to	help	with	different	aspects	of	abstracting	away	HTTP
protocol	details.	Of	them,	Express	is	the	most	popular,	and	Koa	(http://koaj
s.com/)	should	be	considered	because	it	was	developed	by	the	same	team
and	has	fully	integrated	support	for	async	functions.

The	ExpressJS	Wiki	has	a	list	of	frameworks	built	on	top	of	ExpressJS,
or	tools	that	work	with	it.	This	includes	template	engines,	middleware
modules,	and	more.	The	ExpressJS	Wiki	is	located	at	https://github.com/expr
essjs/express/wiki.

One	reason	to	use	a	web	framework	is	that	they	often	provide	the	best
practices	used	in	web	application	development	for	over	20	years.	The
usual	best	practices	include	the	following:

Providing	a	page	for	bad	URLs	(the	404	page)

Screening	URLs	and	forms	for	any	injected	scripting	attacks

Supporting	the	use	of	cookies	to	maintain	sessions

Logging	requests	for	both	usage	tracking	and	debugging

Authentication

http://koajs.com/
https://github.com/expressjs/express/wiki

Handling	static	files,	such	as	images,	CSS,	JavaScript,	or	HTML

Providing	cache	control	headers	to	caching	proxies

Limiting	things	such	as	page	size	or	execution	time

Web	frameworks	help	you	invest	your	time	in	the	task	without	getting	lost
in	the	details	of	implementing	HTTP	protocol.	Abstracting	away	details	is
a	time-honored	way	for	programmers	to	be	more	efficient.	This	is
especially	true	when	using	a	library	or	framework	providing	prepackaged
functions	that	take	care	of	the	details.

Getting	started	with	Express
Express	is	perhaps	the	most	popular	Node.js	web	app	framework.	It's	so
popular	that	it's	part	of	the	MEAN	Stack	acronym.	MEAN	refers	to
MongoDB,	ExpressJS,	AngularJS,	and	Node.js.	Express	is	described	as
being	Sinatra-like,	referring	to	a	popular	Ruby	application	framework,	and
that	it	isn't	an	opinionated	framework,	meaning	the	framework
authors	don't	impose	their	opinions	about	structuring	an	application.	This
means	Express	is	not	at	all	strict	about	how	your	code	is	structured;	you
just	write	it	the	way	you	think	is	best.

You	can	visit	the	home	page	for	Express	at	http://expressjs.com/.

Shortly,	we'll	implement	a	simple	application	to	calculate	Fibonacci
numbers	using	Express,	and	in	later	chapters,	we'll	do	quite	a	bit	more
with	Express.	We'll	also	explore	how	to	mitigate	the	performance
problems	from	computationally	intensive	code	we	discussed	earlier.

As	of	writing	this	book,	Express	4.16	is	the	current	version,	and	Express	5
is	in	Alpha	testing.	According	to	the	ExpressJS	website,	there	are	very	few
differences	between	Express	4	and	Express	5.

Let's	start	by	installing	the	express-generator.	While	we	can	just	start
writing	some	code,	the	express-generator	provides	a	blank	starting
application.	We'll	take	that	and	modify	it.

Install	it	using	the	following	commands:

$	mkdir	fibonacci

$	cd	fibonacci

$	npm	install	express-generator@4.x		

This	is	different	from	the	suggested	installation	method	on	the	Express

http://expressjs.com/

website,	which	was	to	use	the	-g	tag	for	a	global	install.	We're	also	using
an	explicit	version	number	to	ensure	compatibility.	As	of	writing	this
book,	express-generator@5.x	does	not	exist.	When	it	does	exist,	one	should	be
able	to	use	the	5.x	version	with	the	following	instructions.

Earlier,	we	discussed	how	many	now	recommend	against	installing
modules	globally.	In	the	Twelve-Factor	model,	it's	strongly	recommended
to	not	install	global	dependencies,	and	that's	what	we're	doing.

The	result	is	that	an	express	command	is	installed	in	the	./node_modules/.bin
directory:

$	ls	node_modules/.bin/

express	

Run	the	express	command	like	so:

$./node_modules/.bin/express	--help

				

		Usage:	express	[options]	[dir]

	

		Options:

				

				-h,	--help										output	usage	information

				-V,	--version							output	the	version	number

				-e,	--ejs											add	ejs	engine	support	(defaults	to	jade)

								--hbs											add	handlebars	engine	support

				-H,	--hogan									add	hogan.js	engine	support

				-c,	--css	<engine>		add	stylesheet	<engine>	support	

				(less|stylus|compass|sass)	(defaults	to	plain	css)

								--git											add	.gitignore

				-f,	--force									force	on	non-empty	directory	

We	probably	don't	want	to	type	./node_modules/.bin/express	every	time	we	run
the	express-generator	application	or,	for	that	matter,	any	of	the	other
applications	that	provide	command-line	utilities.	Refer	back	to	the
discussion	in	Chapter	3,	Node.js	Modules	about	adding	that	directory	to	the
PATH	variable.

Now	that	you've	installed	express-generator	in	the	fibonacci	directory,	use	it

to	set	up	the	blank	framework	application:

$./node_modules/.bin/express	--view=hbs	--git	.	

destination	is	not	empty,	continue?	[y/N]	y	

	

			create	:	.	

			create	:	./package.json	

			create	:	./app.js	

			create	:	./.gitignore	

			create	:	./public	

			create	:	./routes	

			create	:	./routes/index.js	

			create	:	./routes/users.js	

			create	:	./views	

			create	:	./views/index.hbs	

			create	:	./views/layout.hbs	

			create	:	./views/error.hbs	

			create	:	./bin	

			create	:	./bin/www	

			create	:	./public/javascripts	

			create	:	./public/images	

			create	:	./public/stylesheets	

			create	:	./public/stylesheets/style.css	

	

			install	dependencies:	

					$	cd	.	&&	npm	install	

	

			run	the	app:	

					$	DEBUG=fibonacci:*	npm	start	

	

				$	npm	uninstall	express-generator	

				added	83	packages	and	removed	5	packages	in	4.104s

This	created	a	bunch	of	files	for	us,	which	we'll	walk	through	in	a	minute.
The	node_modules	directory	still	has	the	express-generator	module,	which	is
now	not	useful.	We	can	just	leave	it	there	and	ignore	it,	or	we	can	add	it	to
the	devDependencies	of	the	package.json	it	generated.	Alternatively,	we	can
uninstall	it	as	shown	here.

The	next	thing	to	do	is	run	the	blank	application	in	the	way	we're	told.	The
command	shown,	npm	start,	relies	on	a	section	of	the	supplied	package.json
file:

"scripts":	{	

				"start":	"node	./bin/www"	

},	

The	npm	tool	supports	scripts	that	are	ways	to	automate	various	tasks.	We'll
use	this	capability	throughout	the	book	to	do	various	things.	When	the
Twelve-Factor	Application	model	suggests	automating	all	your
administrative	tasks,	the	npm	scripts	feature	is	an	excellent	mechanism	to	do
so.	Most	npm	scripts	are	run	with	the	npm	run	scriptName	command,	but	the
start	command	is	explicitly	recognized	by	npm	and	can	be	run	as	shown
previously.

The	steps	are:

1.	 Install	the	dependencies	npm	install.
2.	 Start	the	application	using	npm	start.
3.	 Optionally	modify	package.json	to	always	run	with	debugging.

To	install	the	dependencies,	and	run	the	application,	type	these	commands:

$	npm	install

$	DEBUG=fibonacci:*	npm	start

>	fibonacci@0.0.0	start	UsersDavid/chap04/fibonacci

>	node	./bin/www

	fibonacci:server	Listening	on	port	3000	+0ms

Setting	the	DEBUG	variable	this	way	turns	on	some	debugging	output,	which
includes	this	message	about	listening	on	port	3000.	Otherwise,	we	aren't
told	this	information.	This	syntax	is	what's	used	in	the	Bash	shell	to	run	a
command	with	an	environment	variable.		If	you	get	an	error	try	running
just	"npm	start"	then	read	the	next	section.

We	can	modify	the	supplied	npm	start	script	to	always	run	the	app	with
debugging	enabled.	Change	the	scripts	section	to	the	following:

"scripts":	{	

				"start":	"DEBUG=fibonacci:*	node	./bin/www"	

},

Since	the	output	says	it	is	listening	on	port	3000,	we	direct	our	browser	to
http://localhost:3000/	and	see	the	following	output:

Setting	environment	variables
in	Windows	cmd.exe	command
line
If	you're	on	Windows	the	previous	example	may	have	failed	with	an	error
that	DEBUG	is	not	a	known	command.		The	problem	is	that	the	Windows
shell,	the	cmd.exe	program,	does	not	support	the	Bash	command-line
structure.		

Adding	VARIABLE=value	at	the	beginning	of	a	command-line	is	specific	to
some	shells,	like	Bash,	on	Linux	and	macOS.		It	sets	that	environment
variable	only	for	the	command-line	being	executed,	and	is	a	very
convenient	way	to	temporarily	override	environment	variables	for	a
specific	command.		

Clearly	a	solution	is	required	if	your	package.json	is	to	be	usable	across
different	operating	systems.

The	best	solution	appears	to	be	the	cross-env	package	in	the	npm	repository,
see:	https://www.npmjs.com/package/cross-env		With	this	package	installed,
commands	in	the	scripts	section	in	package.json	can	set	environment
variables	just	as	in	Bash	on	Linux/macOS.		The	usage	looks	like	so:

"scripts":	{	

				"start":	"cross-env	DEBUG=fibonacci:*	node	./bin/www"	

},	

"dependencies":	{

				...

				"cross-env":	"5.1.x"

}

Then	the	command	is	executed	as	so:

https://www.npmjs.com/package/cross-env

C:\Users\david\Documents\chap04\fibonacci>npm	install

...	output	from	installing	packages

C:\Users\david\Documents\chap04\fibonacci>npm	run	start

>	fibonacci@0.0.0	start	C:\Users\david\Documents\chap04\fibonacci

>	cross-env	DEBUG=fibonacci:*	node	./bin/www

fibonacci:server	Listening	on	port	3000	+0ms

GET	/	304	90.597	ms	-	-

GET	/stylesheets/style.css	304	14.480	ms	-	-

GET	/fibonacci	200	84.726	ms	-	503

GET	/stylesheets/style.css	304	4.465	ms	-	-

GET	/fibonacci?fibonum=22	500	1069.049	ms	-	327

GET	/stylesheets/style.css	304	2.601	ms	-	-

Walking	through	the	default
Express	application
We	have	a	working,	blank	Express	application;	let's	look	at	what	was
generated	for	us.	We're	doing	this	to	familiarize	ourselves	with	Express
before	diving	in	to	start	coding	our	Fibonacci	application.

Because	we	used	the	--view=hbs	option,	this	application	is	set	up	to	use	the
Handlebars.js	template	engine.	Handlebars	was	built	on	top	of	Mustache,
and	was	originally	designed	for	use	in	the	browser;	for	more	information
see	its	homepage	at	http://handlebarsjs.com/.	The	version	shown	here	has
been	packaged	for	use	with	Express,	and	is	documented	at	https://github.co
m/pillarjs/hbs.	

Generally	speaking,	a	template	engine	makes	it	possible	to	insert	data	into
generated	web	pages.	The	ExpressJS	Wiki	has	a	list	of	template	engines
for	Express	https://github.com/expressjs/express/wiki#template-engines.

The	views	directory	contains	two	files,	error.hbs	and	index.hbs.	The	hbs
extension	is	used	for	Handlebars	files.	Another	file,	layout.hbs,	is	the
default	page	layout.	Handlebars	has	several	ways	to	configure	layout
templates	and	even	partials	(snippets	of	code	which	can	be	included
anywhere).

The	routes	directory	contains	the	initial	routing	setup,	that	is,	the	code	to
handle	specific	URLs.	We'll	modify	these	later.

The	public	directory	will	contain	assets	that	the	application	doesn't
generate,	but	are	simply	sent	to	the	browser.	What's	initially	installed	is	a
CSS	file,	public/stylesheets/style.css.

The	package.json	file	contains	our	dependencies	and	other	metadata.

http://handlebarsjs.com/
https://github.com/pillarjs/hbs
https://github.com/expressjs/express/wiki#template-engines

The	bin	directory	contains	the	www	script	that	we	saw	earlier.	That's	a
Node.js	script,	which	initializes	the	HTTPServer	objects,	starts	it	listening
on	a	TCP	port,	and	calls	the	last	file	we'll	discuss,	app.js.	These	scripts
initialize	Express,	hook	up	the	routing	modules,	and	do	other	things.

There's	a	lot	going	on	in	the	www	and	app.js	scripts,	so	let's	start	with	the
application	initialization.	Let's	first	take	a	look	at	a	couple	of	lines	in
app.js:

var	express	=	require('express');	

...	

var	app	=	express();	

...	

module.exports	=	app;	

This	means	that	app.js	is	a	module	that	exports	the	object	returned	by	the
express	module.	It	doesn't	start	the	HTTP	server	object,	however.

Now,	let's	turn	to	the	www	script.	The	first	thing	to	see	is	that	it	starts	with
this	line:

#!/usr/bin/env	node

This	is	a	Unix/Linux	technique	to	make	a	command	script.	It	says	to	run
the	following	as	a	script	using	the	node	command.	In	other	words,	we	have
Node.js	code	and	we're	instructing	the	operating	system	to	execute	that
code	using	the	Node.js	runtime:

$	ls	-l	bin/www

-rwx------	1	david	staff	1595	Feb	5	1970	bin/www

We	can	also	see	that	the	script	was	made	executable	by	express-generator.	

It	calls	the	app.js	module	as	follows:

var	app	=	require('../app');	

...	

var	port	=	normalizePort(process.env.PORT	||	'3000');	

app.set('port',	port);	

...	

var	server	=	http.createServer(app);	

...	

server.listen(port);	

server.on('error',	onError);	

server.on('listening',	onListening);	

We	see	where	port	3000	comes	from;	it's	a	parameter	to	the	normalizePort
function.	We	also	see	that	setting	the	PORT	environment	variable	will
override	the	default	port	3000.	And	finally,	we	see	that	the	HTTP	Server
object	is	created	here,	and	is	told	to	use	the	application	instance	created	in
app.js.	Try	running	the	following	command:

$	PORT=4242	DEBUG=fibonacci:*	npm	start

The	application	now	tells	you	that	it's	listening	on	port	4242,	where	you	can
ponder	the	meaning	of	life.

The	app	object	is	next	passed	to	http.createServer().	A	look	in	the	Node.js
documentation	tells	us	this	function	takes	a	requestListener,	which	is	simply
a	function	that	takes	the	request	and	response	objects	we've	seen	previously.
Therefore,	the	app	object	is	such	a	function.

Finally,	the	www	script	starts	the	server	listening	on	the	port	we	specified.

Let's	now	walk	through	app.js	in	more	detail:

app.set('views',	path.join(__dirname,	'views'));	

app.set('view	engine',	'hbs');

This	tells	Express	to	look	for	templates	in	the	views	directory	and	to	use	the
EJS	templating	engine.

The	app.set	function	is	used	for	setting	application	properties.	It'll	be	useful
to	browse	the	API	documentation	as	we	go	through
(http://expressjs.com/en/4x/api.html).

http://expressjs.com/en/4x/api.html

Next	is	a	series	of	app.use	calls:

app.use(logger('dev'));	

app.use(bodyParser.json());	

app.use(bodyParser.urlencoded({	extended:	false	}));	

app.use(cookieParser());	

app.use(express.static(path.join(__dirname,	'public')));	

	

app.use('',	routes);	

app.use('users',	users);	

The	app.use	function	mounts	middleware	functions.	This	is	an	important
piece	of	Express	jargon	we	will	discuss	shortly.	At	the	moment,	let's	say
that	middleware	functions	are	executed	during	the	processing	of	routes.
This	means	all	the	features	named	here	are	enabled	in	app.js:

Logging	is	enabled	using	the	Morgan	request	logger.	Visit
https://www.npmjs.com/package/morgan	for	its	documentation.

The	body-parser	module	handles	parsing	HTTP	request	bodies.	Visit
https://www.npmjs.com/package/body-parser	for	its	documentation.

The	cookie-parser	module	is	used	to	parse	HTTP	cookies.	Visit
https://www.npmjs.com/package/cookie-parser	for	its	documentation.

A	static	file	web	server	is	configured	to	serve	the	asset	files	in	the
public	directory.

Two	router	modules,	routes	and	users,	to	set	up	which	functions
handle	which	URLs.

https://www.npmjs.com/package/morgan
https://www.npmjs.com/package/body-parser
https://www.npmjs.com/package/cookie-parser

The	Express	middleware
Let's	round	out	the	walkthrough	of	app.js	by	discussing	what	middleware
functions	do	for	our	application.	We	have	an	example	at	the	end	of	the
script:

app.use(function(req,	res,	next)	{	

		var	err	=	new	Error('Not	found');	

		err.status	=	404;	

		next(err);	

});	

The	comment	says	catch	404	and	forward	to	error	handler.	As	you
probably	know,	an	HTTP	404	status	means	the	requested	resource	was	not
found.	We	need	to	tell	the	user	their	request	wasn't	satisfied,	and	maybe
show	them	a	picture	of	a	flock	of	birds	pulling	a	whale	out	of	the	ocean.
This	is	the	first	step	in	doing	so.	Before	getting	to	the	last	step	of	reporting
this	error,	you	must	learn	how	middleware	works.

We	do	have	a	middleware	function	right	in	front	of	us.	Refer	to	its
documentation	at	http://expressjs.com/en/guide/writing-middleware.html.

Middleware	functions	take	three	arguments.	The	first	two,	request	and
response,	are	equivalent	to	the	request	and	response	of	the	Node.js	HTTP
request	object.	However,	Express	expands	the	objects	with	additional	data
and	capabilities.	The	last,	next,	is	a	callback	function	controlling	when	the
request-response	cycle	ends,	and	it	can	be	used	to	send	errors	down	the
middleware	pipeline.

The	incoming	request	gets	handled	by	the	first	middleware	function,	then
the	next,	then	the	next,	and	so	on.	Each	time	the	request	is	to	be	passed
down	the	chain	of	middleware	functions,	the	next	function	is	called.	If	next
is	called	with	an	error	object,	as	shown	here,	an	error	is	being	signaled.

http://expressjs.com/en/guide/writing-middleware.html

Otherwise,	the	control	simply	passes	to	the	next	middleware	function	in
the	chain.

What	happens	if	next	is	not	called?	The	HTTP	request	will	hang	because
no	response	has	been	given.	A	middleware	function	gives	a	response	when
it	calls	functions	on	the	response	object,	such	as	res.send	or	res.render.

For	example,	consider	the	inclusion	of	app.js:

app.get('/',	function(req,	res)	{	res.send('Hello	World!');	});	

This	does	not	call	next,	but	instead	calls	res.send.	This	is	the	correct	method
of	ending	the	request-response	cycle,	by	sending	a	response	(res.send)	to
the	request.	If	neither	next	nor	res.send	is	called,	the	request	never	gets	a
response.

Hence,	a	middleware	function	does	one	of	the	following	four	things:

Executes	its	own	business	logic.	The	request	logger	middleware
shown	earlier	is	an	example.

Modifies	the	request	or	response	objects.	Both	the	body-parser	and
cookie-parser	do	so,	looking	for	data	to	add	to	the	request	object.

Calls	next	to	proceed	to	the	next	middleware	function	or	else
signals	an	error.

Sends	a	response,	ending	the	cycle.

The	ordering	of	middleware	execution	depends	on	the	order	they're	added
to	the	app	object.	The	first	added	is	executed	first,	and	so	on.

Middleware	and	request	paths
We've	seen	two	kinds	of	middleware	functions	so	far.	In	one,	the	first
argument	is	the	handler	function.	In	the	other,	the	first	argument	is	a	string
containing	a	URL	snippet,	and	the	second	argument	is	the	handler
function.

What's	actually	going	on	is	app.use	has	an	optional	first	argument:	the	path
the	middleware	is	mounted	on.	The	path	is	a	pattern	match	against	the
request	URL,	and	the	given	function	is	triggered	if	the	URL	matches	the
pattern.	There's	even	a	method	to	supply	named	parameters	in	the	URL:

app.use('userprofile/:id',	function(req,	res,	next)	{	

				userProfiles.lookup(req.params.id,	(err,	profile)	=>	{	

										if	(err)	return	next(err);	

										//	do	something	with	the	profile	

										//	Such	as	display	it	to	the	user	

										res.send(profile.display());	

				});	

});	

This	path	specification	has	a	pattern,	:id,	and	the	value	will	land	in
req.params.id.	In	this	example,	we're	suggesting	a	user	profiles	service,	and
that	for	this	URL	we	want	to	display	information	about	the	named	user.

Another	way	to	use	a	middleware	function	is	on	a	specific	HTTP	request
method.	With	app.use,	any	request	will	be	matched,	but	in	truth,	GET	requests
are	supposed	to	behave	differently	to	POST	requests.	You	call	app.METHOD
where	METHOD	matches	one	of	the	HTTP	request	verbs.	That	is,	app.get
matches	the	GET	method,	app.post	matches	POST,	and	so	on.

Finally,	we	get	to	the	router	object.	This	is	a	kind	of	middleware	used
explicitly	for	routing	requests	based	on	their	URL.	Take	a	look	at
routes/users.js:

var	express	=	require('express');	

var	router	=	express.Router();	

router.get('/',	function(req,	res,	next)	{	

		res.send('respond	with	a	resource');	

});	

module.exports	=	router;	

We	have	a	module	whose	exports	object	is	a	router.	This	router	has	only
one	route,	but	it	can	have	any	number	of	routes	you	think	is	appropriate.

Back	in	app.js,	this	is	added	as	follows:

app.use('/users',	users);	

All	the	functions	we	discussed	for	the	app	object	apply	to	the	router	object.
If	the	request	matches,	the	router	is	given	the	request	for	its	own	chain	of
processing	functions.	An	important	detail	is	that	the	request	URL	prefix	is
stripped	when	the	request	is	passed	to	the	router	instance.

You'll	notice	that	the	router.get	in	users.js	matches	'/'	and	that	this	router	is
mounted	on	'/users'.	In	effect,	that	router.get	matches	/users	as	well,	but
because	the	prefix	was	stripped,	it	specifies	'/'	instead.	This	means	a
router	can	be	mounted	on	different	path	prefixes	without	having	to	change
the	router	implementation.

Error	handling
Now,	we	can	finally	get	back	to	the	generated	app.js,	the	404	Error	page
not	found,	and	any	other	errors	the	application	might	want	to	show	to	the
user.

A	middleware	function	indicates	an	error	by	passing	a	value	to	the	next
function	call.	Once	Express	sees	an	error,	it	will	skip	any	remaining	non-
error	routing,	and	it	will	only	pass	it	to	error	handlers	instead.	An	error
handler	function	has	a	different	signature	than	what	we	saw	earlier.

In	app.js,	which	we're	examining,	this	is	our	error	handler:

app.use(function(err,	req,	res,	next)	{	

		res.status(err.status	||	500);	

		res.render('error',	{	

				message:	err.message,	

				error:	{}	

		});	

});	

Error	handler	functions	take	four	parameters,	with	err	added	to	the	familiar
req,	res,	and	next.	For	this	handler,	we	use	res.status	to	set	the	HTTP
response	status	code,	and	we	use	res.render	to	format	an	HTML	response
using	the	views/error.hbs	template.	The	res.render	function	takes	data,
rendering	it	with	a	template	to	produce	HTML.

This	means	any	error	in	our	application	will	land	here,	bypassing	any
remaining	middleware	functions.

Calculating	the	Fibonacci
sequence	with	an	Express
application
The	Fibonacci	numbers	are	the	integer	sequence:	0,	1,	1,	2,	3,	5,	8,	13,	21,
34,	...

Each	entry	in	the	list	is	the	sum	of	the	previous	two	entries	in	the	list.	The
sequence	was	invented	in	1202	by	Leonardo	of	Pisa,	who	was	also	known
as	Fibonacci.	One	method	to	calculate	entries	in	the	Fibonacci	sequence	is
the	recursive	algorithm	we	showed	earlier.	We	will	create	an	Express
application	that	uses	the	Fibonacci	implementation	and	then	explore
several	methods	to	mitigate	performance	problems	in	computationally
intensive	algorithms.

Let's	start	with	the	blank	application	we	created	in	the	previous	step.	We
had	you	name	that	application	Fibonacci	for	a	reason.	We	were	thinking
ahead.

In	app.js,	make	the	following	changes	to	the	top	portion	of	the	file:

const	express	=	require('express');

const	hbs	=	require('hbs');

const	path	=	require('path');

const	favicon	=	require('serve-favicon');

const	logger	=	require('morgan');

const	cookieParser	=	require('cookie-parser');

const	bodyParser	=	require('body-parser');

const	index	=	require('./routes/index');

const	fibonacci	=	require('./routes/fibonacci');

const	app	=	express();

//	view	engine	setup

app.set('views',	path.join(__dirname,	'views'));

app.set('view	engine',	'hbs');

hbs.registerPartials(path.join(__dirname,	'partials'));

//	uncomment	after	placing	your	favicon	in	/public

//app.use(favicon(path.join(__dirname,	'public',	'favicon.ico')));

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({	extended:	false	}));

app.use(cookieParser());

app.use(express.static(path.join(__dirname,	'public')));

app.use('/',	index);

app.use('/fibonacci',	fibonacci);

Most	of	this	is	what	express-generator	gave	us.	The	var	statements	have	been
changed	to	const,	for	that	little	teensy	bit	of	extra	comfort.	We	explicitly
imported	the	hbs	module	so	we	could	do	some	configuration.	And	we
imported	a	router	module	for	Fibonacci,	which	we'll	see	in	a	minute.

For	the	Fibonacci	application,	we	don't	need	to	support	users,	and	therefore
deleted	that	routing	module.		The	fibonacci	module,	which	we'll	show	next,
serves	to	query	a	number	for	which	we'll	calculate	the	Fibonacci	number.

In	the	top-level	directory,	create	a	file,	math.js,	containing	this	extremely
simplistic	Fibonacci	implementation:

exports.fibonacci	=	function(n)	{

				if	(n	===	0)	return	0;

				else	if	(n	===	1	||	n	===	2)	return	1;

				else	return	exports.fibonacci(n-1)	+	exports.fibonacci(n-2);

};

In	the	views	directory,	look	at	the	file	named	layout.hbs	which	express-
generator	created:

<!DOCTYPE	html>

<html>

		<head>

				<title>{{title}}</title>

				<link	rel='stylesheet'	href='stylesheetsstyle.css'	/>

		</head>

		<body>

				{{{body}}}

		</body>

</html>

This	file	contains	the	structure	we'll	use	for	HTML	pages.	Going	by	the
Handlebars	syntax,	we	see	that	{{title}}	appears	within	the	HTML	title
tag.	It	means	when	we	call	res.render,	we	should	supply	a	title	attribute.
The	{{{body}}}	tag	is	where	the	view	template	content	lands.

Change	views/index.hbs	to	just	contain	the	following:

<h1>{{title}}</h1>

{{>	navbar}}

This	serves	as	the	front	page	of	our	application.	It	will	be	inserted	in	place
of	{{{body}}}	in	layout.hbs.	The	marker,	{{>	navbar}},	refers	to	a	partial	named
navbar.	Earlier,	we	configured	a	directory	named	partials	to	hold	partials.
Now	let's	create	a	file,	partials/navbar.html,	containing:

<div	class='navbar'>

<p>home<a>	|	Fibonacci's<a></p>

</div>

This	will	serve	as	a	navigation	bar	that's	included	on	every	page.

Create	a	file,	views/fibonacci.hbs,	containing	the	following	code:

<h1>{{title}}</h1>

{{>	navbar}}

{{#if	fiboval}}

		<p>Fibonacci	for	{{fibonum}}	is	{{fiboval}}</p>

		<hr/>

{{/if}}

<p>Enter	a	number	to	see	its'	Fibonacci	number</p>

<form	name='fibonacci'	action='/fibonacci'	method='get'>

<input	type='text'	name='fibonum'	/>

<input	type='submit'	value='Submit'	/>

</form>

Remember	that	the	files	in	views	are	templates	into	which	data	is	rendered.	They	serve
the	View	aspect	of	the	Model-View-Controller	(MVC)	paradigm,	hence	the
directory	name.

In	the	routes	directory,	delete	the	user.js	module.	It	is	generated	by	the
Express	framework,	but	we	will	not	use	it	in	this	application.

In	routes/index.js,	change	the	router	function	to	the	following:

/*	GET	home	page.	*/	

router.get('/',	function(req,	res,	next)	{	

		res.render('index',	{	title:	"Welcome	to	the	Fibonacci	Calculator"	});	

});	

The	anonymous	object	passed	to	res.render	contains	the	data	values	we
provide	to	the	layout	and	view	templates.	

Then,	finally,	in	the	routes	directory,	create	a	file	named	fibonacci.js
containing	the	following	code:

const	express	=	require('express');	

const	router	=	express.Router();	

	

const	math	=	require('../math');	

router.get('',	function(req,	res,	next)	{	

		if	(req.query.fibonum)	{	

				/	Calculate	directly	in	this	server	

				res.render('fibonacci',	{	

						title:	"Calculate	Fibonacci	numbers",	

						fibonum:	req.query.fibonum,	

						fiboval:	math.fibonacci(req.query.fibonum)	

				});	

		}	else	{	

				res.render('fibonacci',	{	

						title:	"Calculate	Fibonacci	numbers",	

						fiboval:	undefined	

				});	

		}	

});	

	

module.exports	=	router;	

The	package.json	is	already	set	up	so	we	can	use	npm	start	to	run	the	script

and	always	have	debugging	messages	enabled.	And	now	we're	ready	to	do
so:

$	npm	start

			

>	fibonacci@0.0.0	start	Usersdavid/chap04/fibonacci

>	DEBUG=fibonacci:*	node	./bin/www

				

fibonacci:server	Listening	on	port	3000	+0ms	

As	it	suggests,	you	can	visit	http://localhost:3000/	and	see	what	we	have:

This	page	is	rendered	from	the	views/index.hbs	template.	Simply	click	on	the
Fibonacci's	link	to	go	to	the	next	page,	which	is	of	course	rendered	from
the	views/fibonacci.hbs	template.	On	that	page,	you'll	be	able	to	enter	a
number,	click	on	the	Submit	button,	and	get	an	answer	(hint:	pick	a
number	below	40	if	you	want	your	answer	in	a	reasonable	amount	of	time):

Let's	walk	through	the	application	to	discuss	how	it	works.

There	are	two	routes	in	app.js:	the	route	for	/,	which	is	handled	by
routes/index.js,	and	the	route	for	/fibonacci,	which	is	handled	by
routes/fibonacci.js.

The	res.render	function	renders	the	named	template	using	the	provided	data
values	and	emits	the	result	as	an	HTTP	response.	For	the	home	page	of
this	application,	the	rendering	code	(routes/index.js)	and	template
(views/index.hbs)	aren't	much,	and	it	is	on	the	Fibonacci	page	where	all	the
action	is	happening.

The	views/fibonacci.hbs	template	contains	a	form	in	which	the	user	enters	a
number.	Because	it	is	a	GET	form,	when	the	user	clicks	on	the	Submit
button,	the	browser	will	issue	an	HTTP	GET	on	the	/fibonacci	URL.	What
distinguishes	one	GET	on	/fibonacci	from	another	is	whether	the	URL
contains	a	query	parameter	named	fibonum.	When	the	user	first	enters	the
page,	there	is	no	fibonum	and	hence	nothing	to	calculate.	After	the	user	has
entered	a	number	and	clicked	on	Submit,	there	is	a	fibonum	and	something
to	calculate.

Express	automatically	parses	the	query	parameters,	making	them	available

as	req.query.	That	means	routes/fibonacci.js	can	quickly	check	whether
there	is	a	fibonum.	If	there	is,	it	calls	the	fibonacci	function	to	calculate	the
value.

Earlier,	we	asked	you	to	enter	a	number	less	than	40.	Go	ahead	and	enter	a
larger	number,	such	as	50,	but	go	take	a	coffee	break	because	this	is	going
to	take	a	while	to	calculate.	Or	proceed	on	to	reading	the	next	section
where	we	start	to	discuss	use	of	computationally	intensive	code.

Computationally	intensive
code	and	the	Node.js	event
loop
This	Fibonacci	example	is	purposely	inefficient	to	demonstrate	an
important	consideration	for	your	applications.	What	happens	to	the
Node.js	event	loop	when	running	long	computations?	To	see	the	effect,
open	two	browser	windows,	each	opened	to	the	Fibonacci	page.	In	one,
enter	the	number	55	or	greater,	and	in	the	other,	enter	10.	Note	that	the
second	window	freezes,	and	if	you	leave	it	running	long	enough,	the
answer	will	eventually	pop	up	in	both	windows.	What's	happening	is	the
Node.js	event	loop	is	blocked	from	processing	events	because	the
Fibonacci	algorithm	is	running	and	does	not	ever	yield	to	the	event	loop.

Since	Node.js	has	a	single	execution	thread,	processing	requests	depend
on	request	handlers	quickly	returning	to	the	event	loop.	Normally,	the
asynchronous	coding	style	ensures	that	the	event	loop	executes	regularly.

This	is	true	even	for	requests	that	load	data	from	a	server	halfway	around
the	globe,	because	the	asynchronous	I/O	is	non-blocking	and	control	is
quickly	returned	to	the	event	loop.	The	naïve	Fibonacci	function	we	chose
doesn't	fit	into	this	model	because	it's	a	long-running	blocking	operation.
This	type	of	event	handler	prevents	the	system	from	processing	requests
and	stops	Node.js	from	doing	what	it's	meant	to	do,	namely	to	be	a
blisteringly	fast	web	server.

In	this	case,	the	long-response-time	problem	is	obvious.	Response	time
quickly	escalates	to	the	point	where	you	can	take	a	vacation	to	Tibet	and
perhaps	get	reincarnated	as	a	llama	in	Peru	during	the	time	it	takes	to
respond	with	the	Fibonacci	number!

To	see	this	more	clearly,	create	a	file	named	fibotimes.js	containing	the
following	code:

const	math	=	require('./math');	

const	util	=	require('util');	

	

for	(var	num	=	1;	num	<	80;	num++)	{

				let	now	=	new	Date().toISOString();

				console.log(`${now}	Fibonacci	for	${num}	=	${math.fibonacci(num)}`);

}	

Now	run	it.	You	will	get	the	following	output:

$	node	fibotimes.js	

2017-12-10T23:04:42.342Z	Fibonacci	for	1	=	1

2017-12-10T23:04:42.345Z	Fibonacci	for	2	=	1

2017-12-10T23:04:42.345Z	Fibonacci	for	3	=	2

2017-12-10T23:04:42.345Z	Fibonacci	for	4	=	3

2017-12-10T23:04:42.345Z	Fibonacci	for	5	=	5

...

2017-12-10T23:04:42.345Z	Fibonacci	for	10	=	55

2017-12-10T23:04:42.345Z	Fibonacci	for	11	=	89

2017-12-10T23:04:42.345Z	Fibonacci	for	12	=	144

2017-12-10T23:04:42.345Z	Fibonacci	for	13	=	233

2017-12-10T23:04:42.345Z	Fibonacci	for	14	=	377

...

2017-12-10T23:04:44.072Z	Fibonacci	for	40	=	102334155

2017-12-10T23:04:45.118Z	Fibonacci	for	41	=	165580141

2017-12-10T23:04:46.855Z	Fibonacci	for	42	=	267914296

2017-12-10T23:04:49.723Z	Fibonacci	for	43	=	433494437

2017-12-10T23:04:54.218Z	Fibonacci	for	44	=	701408733

...

2017-12-10T23:06:07.531Z	Fibonacci	for	48	=	4807526976

2017-12-10T23:07:08.056Z	Fibonacci	for	49	=	7778742049

^C

This	quickly	calculates	the	first	40	or	so	members	of	the	Fibonacci
sequence,	but	after	the	40th	member,	it	starts	taking	a	couple	of	seconds
per	result	and	quickly	degrades	from	there.	It	is	untenable	to	execute	code
of	this	sort	on	a	single-threaded	system	that	relies	on	a	quick	return	to	the
event	loop.	A	web	service	containing	such	code	would	give	poor
performance	to	the	users.

There	are	two	general	ways	to	solve	this	problem	in	Node.js:

Algorithmic	refactoring:	Perhaps,	like	the	Fibonacci	function	we
chose,	one	of	your	algorithms	is	suboptimal	and	can	be	rewritten
to	be	faster.	Or,	if	not	faster,	it	can	be	split	into	callbacks
dispatched	through	the	event	loop.	We'll	look	at	one	such	method
in	a	moment.

Creating	a	backend	service:	Can	you	imagine	a	backend	server
dedicated	to	calculating	Fibonacci	numbers?	Okay,	maybe	not,	but
it's	quite	common	to	implement	backend	servers	to	offload	work
from	frontend	servers,	and	we	will	implement	a	backend
Fibonacci	server	at	the	end	of	this	chapter.

Algorithmic	refactoring
To	prove	that	we	have	an	artificial	problem	on	our	hands,	here	is	a	much
more	efficient	Fibonacci	function:

exports.fibonacciLoop	=	function(n)	{	

				var	fibos	=	[];	

				fibos[0]	=	0;	

				fibos[1]	=	1;	

				fibos[2]	=	1;	

				for	(var	i	=	3;	i	<=	n;	i++)	{	

								fibos[i]	=	fibos[i-2]	+	fibos[i-1];	

				}	

				return	fibos[n];	

}	

If	we	substitute	a	call	to	math.fibonacciLoop	in	place	of	math.fibonacci,	the
fibotimes	program	runs	much	faster.	Even	this	isn't	the	most	efficient
implementation;	for	example,	a	simple	prewired	lookup	table	is	much
faster	at	the	cost	of	some	memory.

Edit	fibotimes.js	as	follows	and	rerun	the	script.	The	numbers	will	fly	by	so
fast	your	head	will	spin:

for	(var	num	=	1;	num	<	8000;	num++)	{

				let	now	=	new	Date().toISOString();

				console.log(`${now}	Fibonacci	for	${num}	=	${math.fibonacciLoop(num)}`);

}

Some	algorithms	aren't	so	simple	to	optimize	and	still	take	a	long	time	to
calculate	the	result.	In	this	section,	we're	exploring	how	to	handle
inefficient	algorithms,	and	therefore	will	stick	with	the	inefficient
Fibonacci	implementation.

It	is	possible	to	divide	the	calculation	into	chunks	and	then	dispatch	the

computation	of	those	chunks	through	the	event	loop.	Add	the	following
code	to	math.js:

exports.fibonacciAsync	=	function(n,	done)	{

				if	(n	===	0)	done(undefined,	0);

				else	if	(n	===	1	||	n	===	2)	done(undefined,	1);

				else	{

								setImmediate(()	=>	{

												exports.fibonacciAsync(n-1,	(err,	val1)	=>	{

																if	(err)	done(err);

																else	setImmediate(()	=>	{

																				exports.fibonacciAsync(n-2,	(err,	val2)	=>	{

																								if	(err)	done(err);

																								else	done(undefined,	val1+val2);

																				});

																});

												});

								});

				}

};

This	converts	the	fibonacci	function	from	asynchronous	function	to	a
traditional	callback-oriented	asynchronous	function.	We're	using
setImmediate	at	each	stage	of	the	calculation	to	ensure	the	event	loop
executes	regularly	and	that	the	server	can	easily	handle	other	requests
while	churning	away	on	a	calculation.	It	does	nothing	to	reduce	the
computation	required;	this	is	still	the	silly,	inefficient	Fibonacci	algorithm.
All	we've	done	is	spread	the	computation	through	the	event	loop.

In	fibotimes.js,	we	can	use	this:

const	math	=	require('./math');

const	util	=	require('util');

(async	()	=>	{

			for	(var	num	=	1;	num	<	8000;	num++)	{

							await	new	Promise((resolve,	reject)	=>	{

											math.fibonacciAsync(num,	(err,	fibo)	=>	{

															if	(err)	reject(err);

															else	{

																			let	now	=	new	Date().toISOString();

																			console.log(`${now}	Fibonacci	for	${num}	=	

																			${fibo}`);

																			resolve();

															}

											})

							})

				}

})().catch(err	=>	{	console.error(err);	});

This	version	of	fibotimes.js	executes	the	same,	we	simply	type	node
fibotimes.		However,	using	fibonacciAsync	will	require	changes	in	the	server.

Because	it's	an	asynchronous	function,	we	will	need	to	change	our	router
code.	Create	a	new	file,	named	routes/fibonacci-async1.js,	containing	the
following:

const	express	=	require('express');

const	router	=	express.Router();

const	math	=	require('../math');

router.get('/',	function(req,	res,	next)	{

		if	(req.query.fibonum)	{

				//	Calculate	using	async-aware	function,	in	this	server

				math.fibonacciAsync(req.query.fibonum,	(err,	fiboval)	=>	{

						res.render('fibonacci',	{

								title:	"Calculate	Fibonacci	numbers",

								fibonum:	req.query.fibonum,

								fiboval:	fiboval

						});

				});

		}	else	{

				res.render('fibonacci',	{

						title:	"Calculate	Fibonacci	numbers",

						fiboval:	undefined

				});

		}

});

module.exports	=	router;

This	is	the	same	as	earlier,	just	rewritten	for	an	asynchronous	Fibonacci
calculation.

In	app.js,	make	this	change	to	the	application	wiring:

//	const	fibonacci	=	require('./routes/fibonacci');

const	fibonacci	=	require('./routes/fibonacci-async1');

With	this	change,	the	server	no	longer	freezes	when	calculating	a	large
Fibonacci	number.	The	calculation	of	course	still	takes	a	long	time,	but	at
least	other	users	of	the	application	aren't	blocked.

You	can	verify	this	by	again	opening	two	browser	windows	in	the
application.	Enter	60	in	one	window,	and	in	the	other	start	requesting
smaller	Fibonacci	numbers.	Unlike	with	the	original	fibonacci	function,
using	fibonacciAsync	allows	both	windows	to	give	answers,	though	if	you
really	did	enter	60	in	the	first	window	you	might	as	well	take	that	three-
month	vacation	to	Tibet:

It's	up	to	you,	and	your	specific	algorithms,	to	choose	how	to	best
optimize	your	code	and	to	handle	any	long-running	computations	you	may
have.

Making	HTTP	Client	requests
The	next	way	to	mitigate	computationally	intensive	code	is	to	push	the
calculation	to	a	backend	process.	To	explore	that	strategy,	we'll	request
computations	from	a	backend	Fibonacci	server,	using	the	HTTP	Client
object	to	do	so.	However,	before	we	look	at	that,	let's	first	talk	in	general
about	using	the	HTTP	Client	object.

Node.js	includes	an	HTTP	Client	object,	useful	for	making	HTTP
requests.	It	has	the	capability	to	issue	any	kind	of	HTTP	request.	In	this
section,	we'll	use	the	HTTP	Client	object	to	make	HTTP	requests	similar
to	calling	a	Representational	State	Transfer	(REST)	web	service.

Let's	start	with	some	code	inspired	by	the	wget	or	curl	commands	to	make
HTTP	requests	and	show	the	results.	Create	a	file	named	wget.js	containing
this	code:

const	http	=	require('http');

const	url	=	require('url');

const	util	=	require('util');

const	argUrl	=	process.argv[2];

const	parsedUrl	=	url.parse(argUrl,	true);

//	The	options	object	is	passed	to	http.request

//	telling	it	the	URL	to	retrieve

const	options	=	{

		host:	parsedUrl.hostname,

		port:	parsedUrl.port,

		path:	parsedUrl.pathname,

		method:	'GET'

};

if	(parsedUrl.search)	options.path	+=	"?"+parsedUrl.search;

const	req	=	http.request(options);

//	Invoked	when	the	request	is	finished

req.on('response',	res	=>	{

		console.log('STATUS:	'	+	res.statusCode);

		console.log('HEADERS:	'	+	util.inspect(res.headers));

		res.setEncoding('utf8');

		res.on('data',	chunk	=>	{	console.log('BODY:	'	+	chunk);	});

		res.on('error',	err	=>	{	console.log('RESPONSE	ERROR:	'	+	err);	});

});

//	Invoked	on	errors

req.on('error',	err	=>	{	console.log('REQUEST	ERROR:	'	+	err);	});

req.end();

You	can	run	the	script	as	follows:

$	node	wget.js	http://example.com

STATUS:	200

HEADERS:	{	'accept-ranges':	'bytes',

		'cache-control':	'max-age=604800',

		'content-type':	'text/html',

		date:	'Sun,	10	Dec	2017	23:40:44	GMT',

		etag:	'"359670651"',

		expires:	'Sun,	17	Dec	2017	23:40:44	GMT',

		'last-modified':	'Fri,	09	Aug	2013	23:54:35	GMT',

		server:	'ECS	(rhv/81A7)',

		vary:	'Accept-Encoding',

		'x-cache':	'HIT',

		'content-length':	'1270',

		connection:	'close'	}

BODY:	<!doctype	html>

<html>

...

There's	more	in	the	printout,	namely	the	HTML	of	the	page	at
http://example.com/.	The	purpose	of	wget.js	is	to	make	an	HTTP	request	and
show	you	voluminous	details	of	the	response.	An	HTTP	request	is
initiated	with	the	http.request	method,	as	follows:

var	http	=	require('http');	

var	options	=	{	

		host:	'example.com',	

		port:	80,	

		path:	null,	

		method:	'GET'	

};	

var	request	=	http.request(options);	

request.on('response',	response	=>	{

		...

});

The	options	object	describes	the	request	to	make,	and	the	callback	function
is	called	when	the	response	arrives.	The	options	object	is	fairly
straightforward,	with	the	host,	port,	and	path	fields	specifying	the	URL
being	requested.	The	method	field	must	be	one	of	the	HTTP	verbs	(GET,	PUT,
POST,	and	so	on).	You	can	also	provide	a	headers	array	for	the	headers	in	the
HTTP	request.	For	example,	you	might	need	to	provide	a	cookie:

var	options	=	{	

		headers:	{	'Cookie':	'..	cookie	value'	}	

};	

The	response	object	is	itself	an	EventEmitter,	which	emits	the	data	and	error
events.	The	data	event	is	called	as	data	arrives,	and	the	error	event	is,	of
course,	called	on	errors.

The	request	object	is	a	WritableStream,	which	is	useful	for	HTTP	requests
containing	data,	such	as	PUT	or	POST.	This	means	the	request	object	has	a	write
function	that	writes	data	to	the	requester.	The	data	format	in	an	HTTP
request	is	specified	by	the	standard	Multipurpose	Internet	Mail
Extensions	(MIME)	originally	created	to	give	us	better	email.	Around
1992,	the	WWW	community	worked	with	the	MIME	standard	committee
which	was	developing	a	format	for	multipart,	multi-media-rich	electronic
mail.	Receiving	fancy-looking	email	is	so	commonplace	today	that	one
might	not	be	aware	that	email	used	to	be	plain	text.	MIME-types	were
developed	to	describe	the	format	of	each	piece	of	data,	and	the	WWW
community	adopted	this	for	use	on	the	web.	HTML	forms	will	post	with	a
Content-Type	of	multipart/form-data,	for	example.

	

Calling	a	REST	backend
service	from	an	Express
application
Now	that	we've	seen	how	to	make	HTTP	client	requests,	we	can	look	at
how	to	make	a	REST	query	inside	an	Express	web	application.	What	that
effectively	means	is	to	make	an	HTTP	GET	request	to	a	backend	server,
which	responds	with	the	Fibonacci	number	represented	by	the	URL.	To	do
so,	we'll	refactor	the	Fibonacci	application	to	make	a	Fibonacci	server	that	is
called	from	the	application.	While	this	is	overkill	for	calculating	Fibonacci
numbers,	it	lets	us	look	at	the	basics	of	implementing	a	multitier
application	stack	in	Express.

Inherently,	calling	a	REST	service	is	an	asynchronous	operation.	That
means	calling	the	REST	service	will	involve	a	function	call	to	initiate	the
request	and	a	callback	function	to	receive	the	response.	REST	services	are
accessed	over	HTTP,	so	we'll	use	the	HTTP	client	object	to	do	so.

	

Implementing	a	simple	REST
server	with	Express
While	Express	has	a	powerful	templating	system,	making	it	suitable	for
delivering	HTML	web	pages	to	browsers,	it	can	also	be	used	to	implement
a	simple	REST	service.	The	parameterized	URLs	we	showed	earlier
(/user/profile/:id)	can	act	like	parameters	to	a	REST	call.	And	Express
makes	it	easy	to	return	data	encoded	in	JSON.

Now,	create	a	file	named	fiboserver.js	containing	this	code:

const	math		=	require('./math');	

const	express	=	require('express');	

const	logger	=	require('morgan');	

const	app	=	express();	

app.use(logger('dev'));	

app.get('fibonacci:n',	(req,	res,	next)	=>	{	

				math.fibonacciAsync(Math.floor(req.params.n),	(err,	val)	=>	{	

								if	(err)	next('FIBO	SERVER	ERROR	'	+	err);	

								else	res.send({	n:	req.params.n,	result:	val	});

				});	

});	

app.listen(process.env.SERVERPORT);	

This	is	a	stripped-down	Express	application	that	gets	right	to	the	point	of
providing	a	Fibonacci	calculation	service.	The	one	route	it	supports
handles	the	Fibonacci	computation	using	the	same	functions	we've	already
worked	with.

This	is	the	first	time	we've	seen	res.send	used.	It's	a	flexible	way	to	send
responses	which	can	take	an	array	of	header	values	(for	the	HTTP
response	header),	and	an	HTTP	status	code.	As	used	here,	it	automatically
detects	the	object,	formats	it	as	JSON	text,	and	sends	it	with	the	correct
Content-Type.

In	package.json,	add	this	to	the	scripts	section:

"server":	"SERVERPORT=3002	node	./fiboserver"	

This	automates	launching	our	Fibonacci	service.

Note	that	we're	specifying	the	TCP/IP	port	via	an	environment	variable	and	using
that	variable	in	the	application.	This	is	another	aspect	of	the	Twelve-Factor
application	model:	to	put	configuration	data	in	the	environment.

Now,	let's	run	it:

$	npm	run	server

>	fibonacci@0.0.0	server	UsersDavid/chap04/fibonacci

>	SERVERPORT=3002	node	./fiboserver	

Then,	in	a	separate	command	window,	we	can	use	the	curl	program	to
make	some	requests	against	this	service:

$	curl	-f	http://localhost:3002fibonacci10

{"n":"10","result":55}

$	curl	-f	http://localhost:3002fibonacci11

{"n":"11","result":89}

$	curl	-f	http://localhost:3002fibonacci12

{"n":"12","result":144}		

Over	in	the	window	where	the	service	is	running,	we'll	see	a	log	of	GET
requests	and	how	long	each	took	to	process:

$	npm	run	server

>	fibonacci@0.0.0	server	UsersDavid/chap04/fibonacci

>	SERVERPORT=3002	node	./fiboserver	

GET	fibonacci10	200	0.393	ms	-	22

GET	fibonacci11	200	0.647	ms	-	22

GET	fibonacci12	200	0.772	ms	-	23

Now,	let's	create	a	simple	client	program,	fiboclient.js,	to
programmatically	call	the	Fibonacci	service:

const	http	=	require('http');

[

		"fibonacci30",	"fibonacci20",	"fibonacci10",

		"fibonacci9",	"fibonacci8",	"fibonacci7",

		"fibonacci6",	"fibonacci5",	"fibonacci4",

		"fibonacci3",	"fibonacci2",	"fibonacci1"

].forEach(path	=>	{

				console.log(`${new	Date().toISOString()}	requesting	${path}`);

				var	req	=	http.request({

						host:	"localhost",

						port:	process.env.SERVERPORT,

						path:	path,

						method:	'GET'

				},	res	=>	{

						res.on('data',	chunk	=>	{

										console.log(`${new	Date().toISOString()}	BODY:	${chunk}`);

						});

				});

				req.end();

});

Then,	in	package.json,	add	this	to	the	scripts	section:

"scripts":	{

		"start":	"node	./bin/www",

		"server":	"SERVERPORT=3002	node	./fiboserver"	,

		"client":	"SERVERPORT=3002	node	./fiboclient"	

}

Then	run	the	client	app:

$	npm	run	client

>	fibonacci@0.0.0	client	UsersDavid/chap04/fibonacci

>	SERVERPORT=3002	node	./fiboclient

2017-12-11T00:41:14.857Z	requesting	fibonacci30

2017-12-11T00:41:14.864Z	requesting	fibonacci20

2017-12-11T00:41:14.865Z	requesting	fibonacci10

2017-12-11T00:41:14.865Z	requesting	fibonacci9

2017-12-11T00:41:14.866Z	requesting	fibonacci8

2017-12-11T00:41:14.866Z	requesting	fibonacci7

2017-12-11T00:41:14.866Z	requesting	fibonacci6

2017-12-11T00:41:14.866Z	requesting	fibonacci5

2017-12-11T00:41:14.866Z	requesting	fibonacci4

2017-12-11T00:41:14.866Z	requesting	fibonacci3

2017-12-11T00:41:14.867Z	requesting	fibonacci2

2017-12-11T00:41:14.867Z	requesting	fibonacci1

2017-12-11T00:41:14.884Z	BODY:	{"n":"9","result":34}

2017-12-11T00:41:14.886Z	BODY:	{"n":"10","result":55}

2017-12-11T00:41:14.891Z	BODY:	{"n":"6","result":8}

2017-12-11T00:41:14.892Z	BODY:	{"n":"7","result":13}

2017-12-11T00:41:14.893Z	BODY:	{"n":"8","result":21}

2017-12-11T00:41:14.903Z	BODY:	{"n":"3","result":2}

2017-12-11T00:41:14.904Z	BODY:	{"n":"4","result":3}

2017-12-11T00:41:14.905Z	BODY:	{"n":"5","result":5}

2017-12-11T00:41:14.910Z	BODY:	{"n":"2","result":1}

2017-12-11T00:41:14.911Z	BODY:	{"n":"1","result":1}

2017-12-11T00:41:14.940Z	BODY:	{"n":"20","result":6765}

2017-12-11T00:41:18.200Z	BODY:	{"n":"30","result":832040}

We're	building	our	way	toward	adding	the	REST	service	to	the	web
application.	At	this	point,	we've	proved	several	things,	one	of	which	is	the
ability	to	call	a	REST	service	in	our	program.

We	also	inadvertently	demonstrated	an	issue	with	long-running
calculations.	You'll	notice	the	requests	were	made	from	the	largest	to	the
smallest,	but	the	results	appeared	in	a	very	different	order.	Why?	It's
because	of	the	processing	time	for	each	request,	and	the	inefficient
algorithm	we're	using.	The	computation	time	increases	enough	to	ensure
that	the	larger	request	values	require	enough	processing	time	to	reverse	the
order.

What	happens	is	that	fiboclient.js	sends	all	its	requests	right	away,	and
then	each	one	waits	for	the	response	to	arrive.	Because	the	server	is	using
fibonacciAsync,	it	will	work	on	calculating	all	responses	simultaneously.	The
values	that	are	quickest	to	calculate	are	the	ones	that	will	be	ready	first.	As
the	responses	arrive	in	the	client,	the	matching	response	handler	fires,	and
in	this	case,	the	result	prints	to	the	console.	The	results	will	arrive	when
they're	ready	and	not	a	millisecond	sooner.

Refactoring	the	Fibonacci
application	for	REST
Now	that	we've	implemented	a	REST-based	server,	we	can	return	to	the
Fibonacci	application,	applying	what	we've	learned	to	improve	it.	We	will
lift	some	of	the	code	from	fiboclient.js	and	transplant	it	into	the	application
to	do	this.	Create	a	new	file,	routes/fibonacci-rest.js,	with	the	following
code:

const	express	=	require('express');

const	router	=	express.Router();

const	http	=	require('http');

const	math	=	require('../math');

router.get('/',	function(req,	res,	next)	{

		if	(req.query.fibonum)	{

				var	httpreq	=	http.request({	

						host:	"localhost",	

						port:	process.env.SERVERPORT,	

						path:	"fibonacci"+Math.floor(req.query.fibonum),	

						method:	'GET'	

				});

				httpreq.on('response',	response	=>	{

						response.on('data',	chunk	=>	{	

								var	data	=	JSON.parse(chunk);	

								res.render('fibonacci',	{	

										title:	"Calculate	Fibonacci	numbers",	

										fibonum:	req.query.fibonum,	

										fiboval:	data.result	

								});	

						});	

						response.on('error',	err	=>	{	next(err);	});	

				});

				httpreq.on('error',	err	=>	{	next(err);	});	

				httpreq.end();	

		}	else	{

				res.render('fibonacci',	{

						title:	"Calculate	Fibonacci	numbers",

						fiboval:	undefined

				});

		}

});

module.exports	=	router;

In	app.js,	make	this	change:

const	index	=	require('./routes/index');

//	const	fibonacci	=	require('./routes/fibonacci');

//	const	fibonacci	=	require('./routes/fibonacci-async1');

//	const	fibonacci	=	require('./routes/fibonacci-await');

const	fibonacci	=	require('./routes/fibonacci-rest');

Then,	in	package.json,	change	the	scripts	entry	to	the	following:

"scripts":	{

		"start":	"DEBUG=fibonacci:*	node	./bin/www",

		"startrest":	"DEBUG=fibonacci:*	SERVERPORT=3002	node	./bin/www",

		"server":	"DEBUG=fibonacci:*	SERVERPORT=3002	node	./fiboserver"	,

		"client":	"DEBUG=fibonacci:*	SERVERPORT=3002	node	./fiboclient"	

},

How	can	we	have	the	same	value	for	SERVERPORT	for	all	three	scripts	entries?	
The	answer	is	that	the	variable	is	used	differently	in	different	places.	In
startrest,	that	variable	is	used	in	routes/fibonacci-rest.js	to	know	at	which
port	the	REST	service	is	running.	Likewise,	in	client,	fiboclient.js	uses	that
variable	for	the	same	purpose.	Finally,	in	server,	the	fiboserver.js	script	uses
the	SERVERPORT	variable	to	know	which	port	to	listen	on.

In	start	and	startrest,	no	value	is	given	for	PORT.	In	both	cases,	bin/www
defaults	to	PORT=3000	if	it	is	not	specified.

In	one	command	window,	start	the	backend	server,	and	in	the	other,	start
the	application.	Open	a	browser	window	as	before,	and	make	a	few
requests.	You	should	see	output	similar	to	this:

$	npm	run	server

>	fibonacci@0.0.0	server	UsersDavid/chap04/fibonacci

>	DEBUG=fibonacci:*	SERVERPORT=3002	node	./fiboserver

GET	fibonacci34	200	21124.036	ms	-	27

GET	fibonacci12	200	1.578	ms	-	23

GET	fibonacci16	200	6.600	ms	-	23

GET	fibonacci20	200	33.980	ms	-	24

GET	fibonacci28	200	1257.514	ms	-	26

The	output	like	this	for	the	application:

$	npm	run	startrest

>	fibonacci@0.0.0	startrest	UsersDavid/chap04/fibonacci

>	DEBUG=fibonacci:*	SERVERPORT=3002	node	./bin/www

		fibonacci:server	Listening	on	port	3000	+0ms

GET	/fibonacci?fibonum=34	200	21317.792	ms	-	548

GET	/stylesheets/style.css	304	20.952	ms	-	-

GET	/fibonacci?fibonum=12	304	109.516	ms	-	-

GET	/stylesheets/style.css	304	0.465	ms	-	-

GET	/fibonacci?fibonum=16	200	83.067	ms	-	544

GET	/stylesheets/style.css	304	0.900	ms	-	-

GET	/fibonacci?fibonum=20	200	221.842	ms	-	545

GET	/stylesheets/style.css	304	0.778	ms	-	-

GET	/fibonacci?fibonum=28	200	1428.292	ms	-	547

GET	/stylesheets/style.css	304	19.083	ms	-	-

Because	we	haven't	changed	the	templates,	the	screen	will	look	exactly	as
it	did	earlier.

We	may	run	into	another	problem	with	this	solution.	The	asynchronous
implementation	of	our	inefficient	Fibonacci	algorithm	may	cause	the
Fibonacci	service	process	to	run	out	of	memory.	In	the	Node.js	FAQ,
https://github.com/nodejs/node/wiki/FAQ,	it's	suggested	to	use	the	--
max_old_space_size	flag.	You'd	add	this	in	package.json	as	follows:

"server":	"SERVERPORT=3002	node	./fiboserver	--max_old_space_size	5000",

However,	the	FAQ	also	says	that	if	you're	running	into	maximum	memory
space	problems,	your	application	should	probably	be	refactored.	This	gets

https://github.com/nodejs/node/wiki/FAQ

back	to	our	point	several	pages	ago	that	there	are	several	approaches	to
addressing	performance	problems,	one	of	which	is	the	algorithmic
refactoring	of	your	application.

Why	go	to	the	trouble	of	developing	this	REST	server	when	we	could	just
directly	use	fibonacciAsync?

We	can	now	push	the	CPU	load	for	this	heavyweight	calculation	to	a
separate	server.	Doing	so	would	preserve	CPU	capacity	on	the	frontend
server	so	it	can	attend	to	web	browsers.	GPU	co-processors	are	now
widely	used	for	numerical	computing	and	can	be	accessed	via	a	simple
network	API.	The	heavy	computation	can	be	kept	separate,	and	you	can
even	deploy	a	cluster	of	backend	servers	sitting	behind	a	load	balancer,
evenly	distributing	requests.	Decisions	like	this	are	made	all	the	time	to
create	multitier	systems.

What	we've	demonstrated	is	that	it's	possible	to	implement	simple
multitier	REST	services	in	a	few	lines	of	Node.js	and	Express.	The	whole
exercise	gave	us	a	chance	to	think	about	computationally	intensive	code	in
Node.js.

	

Some	RESTful	modules	and
frameworks
Here	are	a	few	available	packages	and	frameworks	to	assist	your	REST-
based	projects:

Restify	(>http://restify.com/):	This	offers	both	client-side	and
server-side	frameworks	for	both	ends	of	REST	transactions.	The
server-side	API	is	similar	to	Express.

Loopback	(http://loopback.io/):	This	is	an	offering	from
StrongLoop,	the	current	sponsor	of	the	Express	project.	It	offers	a
lot	of	features	and	is,	of	course,	built	on	top	of	Express.

http://restify.com/
http://loopback.io/

Summary
You	learned	a	lot	in	this	chapter	about	Node's	HTTP	support,
implementing	web	applications,	and	even	REST	service	implementation.

Now	we	can	move	on	to	implementing	a	more	complete	application:	one
for	taking	notes.	We	will	use	the	Notes	application	for	several	upcoming
chapters	as	a	vehicle	to	explore	the	Express	application	framework,
database	access,	deployment	to	cloud	services	or	on	your	own	server,	and
user	authentication.

In	the	next	chapter,	we	will	build	the	basic	infrastructure.

Your	First	Express	Application
Now	that	we've	got	our	feet	wet	building	an	Express	application	for
Node.js,	let's	work	on	an	application	that	performs	a	useful	function.	The
application	we'll	build	will	keep	a	list	of	notes,	and	it	will	let	us	explore
some	aspects	of	a	real	application.

In	this	chapter,	we'll	only	build	the	basic	infrastructure	of	the	application,
and	in	the	later	chapters,	we'll	extend	the	application	considerably.		

The	topics	covered	in	this	chapter	includes

Using	Promises	and	async	functions	in	Express	router	functions

Applying	the	MVC	paradigm	to	Express	applications

Building	an	Express	application

JavaScript	Class	definitions

Implementing	the	CRUD	paradigm

Handlebars	templates

	

	

	

Promises,	async	functions,	and
Express	router	functions
Before	we	get	into	developing	our	application,	we	must	take	a	deeper	look
at	a	pair	of	new	ES-2015/2016/2017	features	that	collectively
revolutionize	JavaScript	programming:		The	Promise	class	and	async
functions.	Both	are	used	for	deferred	and	asynchronous	computation	and
can	make	intensely	nested	callback	functions	a	thing	of	the	past:

A	Promise	represents	an	operation	that	hasn't	completed	yet	but	is
expected	to	be	completed	in	the	future.	We've	seen	Promises	in
use.	The	.then	or	.catch	functions	are	invoked	when	the	promised
result	(or	error)	is	available.	

Generator	functions	are	a	new	kind	of	function	that	can	be	paused
and	resumed,	and	can	return	results	from	the	middle	of	the
function.	

Those	two	features	were	mixed	with	another,	the	iteration
protocol,	along	with	some	new	syntax,	to	create	async	functions.	

The	magic	of	async	functions	is	that	we	can	write	asynchronous	code	as	if
it's	synchronous	code.	It's	still	asynchronous	code,	meaning	long-running
request	handlers	won't	block	the	event	loop.	The	code	looks	like	the
synchronous	code	we'd	write	in	other	languages.	One	statement	follows
another,	the	errors	are	thrown	as	exceptions,	and	the	results	land	on	the
next	line	of	code.	Promise	and	async	functions	are	so	much	of	an
improvement	that	it's	extremely	compelling	for	the	Node.js	community	to
switch	paradigms,	meaning	rewriting	legacy	callback-oriented	APIs.

Over	the	years,	several	other	approaches	have	been	used	to	manage
asynchronous	code,	and	you	may	come	across	code	using	these	other
techniques.	Before	the	Promise	object	was	standardized,	at	least	two
implementations	were	available:	Bluebird	(http://bluebirdjs.com/)	and	Q	(htt
ps://www.npmjs.com/package/q).	Use	of	a	non-standard	Promise	library	should
be	carefully	considered,	since	there	is	value	in	maintaining	compatibility
with	the	standard	Promise	object.

The	Pyramid	of	Doom	is	named	after	the	shape	the	code	takes	after	a	few
layers	of	nesting.	Any	multistage	process	can	quickly	escalate	to	code
nested	15	levels	deep.	Consider	the	following	example:

router.get('pathto/something',	(req,	res,	next)	=>	{	

		doSomething(arg1,	arg2,	(err,	data1)	=>	{	

				if	(err)	return	next(err);	

				doAnotherThing(arg3,	arg2,	data1,	(err2,	data2)	=>	{	

						if	(err2)	return	next(err2);	

						somethingCompletelyDifferent(arg1,	arg42,	(err3,	data3)	=>	{	

								if	(err3)	return	next(err3);	

								doSomethingElse((err4,	data4)	=>	{	

										if	(err4)	return	next(err4);	

										res.render('page',	{	data	});	

								});	

						});	

				});	

		});	

});

Rewriting	this	as	an	async	function	will	make	this	much	clearer.	To	get
there,	we	need	to	examine	the	following	ideas:

Using	Promises	to	manage	asynchronous	results

Generator	functions	and	Promises

async	functions

We	generate	a	Promise	this	way:

http://bluebirdjs.com/
https://www.npmjs.com/package/q

exports.asyncFunction	=	function(arg1,	arg2)	{	

		return	new	Promise((resolve,	reject)	=>	{	

				//	perform	some	task	or	computation	that's	asynchronous	

				//	for	any	error	detected:	

				if	(errorDetected)	return	reject(dataAboutError);	

				//	When	the	task	is	finished	

				resolve(theResult);	

		});	

};	

Note	that	asyncFunction	is	an	asynchronous	function,	but	it	does	not	take	a	callback.
Instead,	it	returns	a	Promise	object,	and	the	asynchronous	code	is	executed	within	a
callback	passed	to	the	Promise	class.

Your	code	must	indicate	the	status	of	the	asynchronous	operation	via	the
resolve	and	reject	functions.	As	implied	by	the	function	names,	reject
indicates	an	error	occurred	and	resolve	indicates	a	success	result.	Your
caller	then	uses	the	function	as	follows:

asyncFunction(arg1,	arg2)	

.then((result)	=>	{	

			//	the	operation	succeeded	

			//	do	something	with	the	result

			return	newResult;

})	

.catch(err	=>	{	

			//	an	error	occurred	

});	

The	system	is	fluid	enough	that	the	function	passed	in	a	.then	can	return
something,	such	as	another	Promise,	and	you	can	chain	the	.then	calls
together.	The	value	returned	in	a	.then	handler	(if	any)	becomes	a	new
Promise	object,	and	in	this	way	you	can	construct	a	chain	of	.then	and
.catch	calls	to	manage	a	sequence	of	asynchronous	operations.	

A	sequence	of	asynchronous	operations	would	be	implemented	as	a	chain
of	.then	functions,	as	we	will	see	in	the	next	section.

notes.read(req.query.key)	.then(note	=>	{	return	filterNote(note);	})	.then(note
=>	{	return	swedishChefSpeak(note);	})	.then(note	=>	{

				res.render('noteview',	{

				title:	note	?	note.title	:	"",	notekey:	req.query.key,	note:	note

});

})

.catch(err	=>	{	next(err);	});

There	are	several	places	where	errors	can	occur	in	this	little	bit	of	code.	The
notes.read	function	has	several	possible	failure	modes:	the	filterNote
function	might	want	to	raise	an	alarm	if	it	detects	a	cross-site	scripting	attack.
The	Swedish	chef	could	be	on	strike.	There	could	be	a	failure	in	res.render	or
the	template	being	used.	But	we	have	only	one	way	to	catch	and	report	errors.
Are	we	missing	something?

The	Promise	class	automatically	captures	errors,	sending	them	down	the	chain
of	operations	attached	to	the	Promise.	If	the	Promise	class	has	an	error	on	its
hands,	it	skips	over	the	.then	functions	and	will	instead	invoke	the	first	.catch
function	it	finds.	In	other	words,	using	instances	of	Promise	provides	a	higher
assurance	of	capturing	and	reporting	errors.	With	the	older	convention,	error
reporting	was	trickier,	and	it	was	easy	to	forget	to	add	correct	error	handling.

Flattening	our	asynchronous
code
The	problem	being	addressed	is	that	asynchronous	coding	in	JavaScript
results	in	the	Pyramid	of	Doom.	To	explain,	let's	reiterate	the	example
Ryan	Dahl	gave	as	the	primary	Node.js	idiom:

db.query('SELECT	..etc..',	function(err,	resultSet)	{	

			if	(err)	{	

						//	Instead,	errors	arrive	here	

			}	else	{	

						//	Instead,	results	arrive	here	

				}	

});	

//	We	WANT	the	errors	or	results	to	arrive	here	

The	goal	was	to	avoid	blocking	the	event	loop	with	a	long	operation.
Deferring	the	processing	of	results	or	errors	using	callback	functions	was
an	excellent	solution	and	is	the	founding	idiom	of	Node.js.	The
implementation	of	callback	functions	led	to	this	pyramid-shaped
problem.		Namely,	that	results	and	errors	land	in	the	callback.	Rather	than
delivering	them	to	the	next	line	of	code,	the	errors	and	results	are	buried.

Promises	help	flatten	the	code	so	that	it	no	longer	takes	a	pyramidal	shape.
They	also	capture	errors,	ensuring	delivery	to	a	useful	location.	But	those
errors	and	results	are	still	buried	inside	an	anonymous	function	and	do	not
get	delivered	to	the	next	line	of	code.

Further,	using	Promises	results	in	a	little	bit	of	boilerplate	code	that
obscures	the	programmers	intent.	It's	less	boilerplate	than	with	regular
callback	functions,	but	the	boilerplate	is	still	there.

Fortunately,	the	ECMAScript	committee	kept	working	on	the	problem.

Promises	and	generators
birthed	async	functions
Generators	and	the	associated	Iteration	Protocol	are	a	large	topic,	which
we	will	briefly	cover.	

The	Iteration	Protocol	is	what's	behind	the	new	for..of	loop,	and	some
other	new	looping	constructs.	These	constructs	can	be	used	with	anything
producing	an	iterator.	For	more	about	both,	see	https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Iteration_protocols.

A	generator	is	a	kind	of	function	which	can	be	stopped	and	started	using
the	yield	keyword.	Generators	produce	an	iterator	whose	values	are
whatever	is	given	to	the	yield	statement.	For	more	on	this,	see	https://devel
oper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator.

Consider	this:

$	cat	gen.js

function*	gen()	{

	yield	1;

	yield	2;

	yield	3;

	yield	4;

}

for	(let	g	of	gen())	{

	console.log(g);

}

$	node	gen.js

1

2

3

4

The	yield	statement	causes	a	generator	function	to	pause	and	to	provide	the

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator

value	given	to	the	next	call	on	its	next	function.	The	next	function	isn't
explicitly	seen	here,	but	is	what	controls	the	loop,	and	is	part	of	the
iteration	protocol.	Instead	of	the	loop,	try	calling	gen().next()	several	times:

var	geniter	=	gen();

console.log(geniter.next());

console.log(geniter.next());

console.log(geniter.next());

You'll	see	this:

$	node	gen.js

{	value:	1,	done:	false	}

{	value:	2,	done:	false	}

{	value:	3,	done:	false	}

The	Iteration	protocol	says	the	iterator	is	finished	when	done	is	true.	In	this
case,	we	didn't	call	it	enough	to	trigger	the	end	state	of	the	iterator.

Where	generators	became	interesting	is	when	used	with	functions	that
return	a	Promise.	The	Promise	is	what's	made	available	through	the
iterator.	The	code	consuming	the	iterator	can	wait	on	the	Promise	to	get	its
value.	A	series	of	asynchronous	operations	could	be	inside	the	generator
and	invoked	in	an	iterable	fashion.	

With	the	help	of	an	extra	function,	a	generator	function	along	with
Promise-returning	asynchronous	functions	can	be	a	very	nice	way	to	write
asynchronous	code.	We	saw	an	example	of	this	in	Chapter	2,	Setting	up
Node.js,	while	exploring	Babel.	Babel	has	a	plugin	to	rewrite	async
functions	into	a	generator	along	with	a	helper	function,	and	we	took	a	look
at	the	transpiled	code	and	the	helper	function.	The	co	library	(https://www.npm
js.com/package/co)	is	a	popular	helper	function	for	implementing
asynchronous	coding	in	generators.	Create	a	file	named	2files.js:

const	fs	=	require('fs-extra');

const	co	=	require('co');

const	util	=	require('util');

co(function*	()	{

https://www.npmjs.com/package/co

		var	texts	=	[

				yield	fs.readFile('hello.txt',	'utf8'),

				yield	fs.readFile('goodbye.txt',	'utf8')

];

		console.log(util.inspect(texts));

});

Then	run	it	like	so:

$	node	2files.js

['Hello,	world!\n',	'Goodbye,	world!\n']

Normally,	fs.readFile	sends	its	result	to	a	callback	function,	and	we'd	build
a	little	pyramid-shaped	piece	of	code	to	perform	this	task.	The	fs-extra
module	contains	implementations	of	all	functions	from	the	built-in	fs
module	but	changed	to	return	a	Promise	instead	of	a	callback	function.
Therefore,	each	fs.readFile	shown	here	is	returning	a	Promise	that's
resolved	when	the	file	content	is	fully	read	into	memory.	What	co	does	is	it
manages	the	dance	of	waiting	for	the	Promise	to	be	resolved	(or	rejected),
and	returns	the	value	of	the	Promise.	Therefore,	with	two	suitable	text	files
we	have	the	result	shown	from	executing	2files.js.

The	important	thing	is	that	the	code	is	very	clean	and	readable.	We	aren't
caught	up	in	boilerplate	code	required	to	manage	asynchronous	operations.
The	intent	of	the	programmer	is	pretty	clear.

async	functions	take	that	same	combination	of	generators	and	Promises	and
define	a	standardized	syntax	in	the	JavaScript	language.	Create	a	file
named	2files-async.js:

const	fs	=	require('fs-extra');

const	util	=	require('util');

async	function	twofiles()	{

	var	texts	=	[

	await	fs.readFile('hello.txt',	'utf8'),

	await	fs.readFile('goodbye.txt',	'utf8')

];

	console.log(util.inspect(texts));

}

twofiles().catch(err	=>	{	console.error(err);	});

Then	run	it	like	so:

$	node	2files-async.js	

['Hello,	world!\n',	'Goodbye,	world!\n']

Clean.	Readable.	The	intent	of	the	programmer	is	clear.	No	dependency	on
an	add-on	library,	with	syntax	built-in	to	the	JavaScript	language.	Most
importantly,	everything	is	handled	in	a	natural	way.	Errors	are	indicated
naturally	by	throwing	exceptions.	The	results	of	an	asynchronous
operation	naturally	appear	as	the	result	of	the	operation,	with	the	await
keyword	facilitating	the	delivery	of	that	result.

To	see	the	real	advantage,	let's	return	to	the	Pyramid	of	Doom	example
from	earlier:

router.get('pathto/something',	async	(req,	res,	next)	=>	{	

			try	{

							let	data1	=	await	doSomething(req.query.arg1,	req.query.arg2);

							let	data2	=	await	doAnotherThing(req.query.arg3,	req.query.arg2,	

							data1);

							let	data3	=	await	somethingCompletelyDifferent(req.query.arg1,

																																																						req.query.arg42);

							let	data4	=	await	doSomethingElse();

							res.render('page',	{	data1,	data2,	data3,	data4	});	

			}	catch(err)	{

							next(err);

			}

});	

Other	than	the	try/catch,	this	example	became	very	clean	compared	to	its
form	as	a	callback	pyramid.	All	the	asynchronous	callback	boilerplate	is
erased,	and	the	intent	of	the	programmer	shines	clearly.

Why	was	the	try/catch	needed?	Normally,	an	async	function	catches	thrown
errors,	automatically	reporting	them	correctly.	But	since	this	example	is
within	an	Express	router	function,	we're	limited	by	its	capabilities.	Express
doesn't	know	how	to	recognize	an	async	function,	and	therefore	it	does	not
know	to	look	for	the	thrown	errors.	Instead,	we're	required	to	catch	them

and	call	next(err).

This	improvement	is	only	for	code	executing	inside	an	async	function.
Code	outside	an	async	function	still	requires	callbacks	or	Promises	for
asynchronous	coding.	Further,	the	return	value	of	an	async	function	is	a
Promise.

Refer	to	the	official	specification	of	async	functions	at
https://tc39.github.io/ecmascript-asyncawait/	for	details.

https://tc39.github.io/ecmascript-asyncawait/

Express	and	the	MVC	paradigm
Express	doesn't	enforce	an	opinion	on	how	you	should	structure	the
Model,	View,	and	Controller	modules	of	your	application,	or	whether	you
should	follow	any	kind	of	MVC	paradigm	at	all.	As	we	learned	in	the
previous	chapter,	the	blank	application	created	by	the	Express	Generator
provides	two	aspects	of	the	MVC	model:

The	views	directory	contains	template	files,	controlling	the	display
portion,	corresponding	to	the	View.

The	routes	directory	contains	code	implementing	the	URLs
recognized	by	the	application	and	coordinating	the	response	to
each	URL.	This	corresponds	to	the	controller.

This	leaves	you	wondering	where	to	put	code	corresponding	to	the	model.
Models	hold	the	application	data,	changing	it	as	instructed	by	the
controller	and	supplying	data	requested	by	View	code.	At	a	minimum,	the
Model	code	should	be	in	separate	modules	from	the	Controller	code.	This
is	to	ensure	a	clean	separation	of	concerns,	for	example,	to	ease	the	unit
testing	of	each.

The	approach	we'll	use	is	to	create	a	models	directory	as	a	sibling	of	the
views	and	routes	directories.	The	models	directory	will	hold	modules	for
storing	the	notes	and	related	data.	The	API	of	the	modules	in	the	models
directory	will	provide	functions	to	create,	read,	update,	or	delete	data
items	Create,	Read,	Update,	and	Delete	or	Destroy	(CRUD	model)	and
other	functions	necessary	for	the	View	code	to	do	its	thing.

The	CRUD	model	(create,	read,	update,	destroy)	is	the	four	basic
operations	of	persistent	data	storage.	The	Notes	application	is	structured	as

a	CRUD	application	to	demonstrate	implementing	each	of	these
operations.

We'll	use	functions	named	create,	read,	update,	and	destroy	to	implement	each
of	the	basic	operations.

We're	using	the	verb	destroy	rather	than	delete,	because	delete	is	a	reserved	word	in
JavaScript.

$	mkdir	notes
$	cd	notes

$	npm	install	express-generator@4.x
$
./node_modules/.bin/express	--view=hbs	--git	.

destination	is	not	empty,	continue?	[y/N]	y

	create	:	.
	create	:	./package.json

	create	:	./app.js
	create	:	./.gitignore

	create	:	./public
	create	:	./routes

	create	:	./routes/index.js
	create	:
./routes/users.js
	create	:	./views

create	:	./views/index.hbs
	create	:
./views/layout.hbs
	create	:	./views/error.hbs

	create	:	./bin
	create	:	./bin/www

	create	:	./public/stylesheets
	create	:
./public/stylesheets/style.css

	install	dependencies:

	$	cd	.	&&	npm	install

	run
the	app:
	$	DEBUG=notes:*	npm	start

	create	:	./public/javascripts
	create	:
./public/images
$	npm	install

added	82	packages	and	removed	5	packages	in	97.188s

$	npm	uninstall	express-generator
up	to	date	in
8.325s

If	you	wish,	you	can	run	npm	start	and	view	the	blank	application	in	your
browser.	Instead,	let's	move	on	to	setting	up	the	code.

Your	first	Notes	model
Create	a	directory	named	models,	as	a	sibling	of	the	views	and	routes
directories.

Then,	create	a	file	named	Note.js	in	that	directory,	and	put	this	code	in	it:

const	notekey	=	Symbol('key');

const	notetitle	=	Symbol('title');

const	notebody	=	Symbol('body');

module.exports	=	class	Note	{	

				constructor(key,	title,	body)	{	

								this[notekey]	=	key;	

								this[notetitle]	=	title;	

								this[notebody]	=	body;	

				}	

				get	key()	{	return	this[notekey];	}

				get	title()	{	return	this[notetitle];	}

				set	title(newTitle)	{	this[notetitle]	=	newTitle;	}

				get	body()	{	return	this[notebody];	}

				set	body(newBody)	{	this[notebody]	=	newBody;	}

};

This	defines	a	new	class,	Note,	for	use	within	our	Notes	application.	The
intent	is	to	hold	data	related	to	notes	being	exchanged	between	users	of
our	application.	

Understanding	ES-2015	class
definitions
This	sort	of	object	class	definition	is	new	to	JavaScript	with	ES-2015.	It
simplifies	defining	classes	over	previous	methods	and	brings	JavaScript
class	definitions	closer	to	the	syntax	in	other	languages.	Under	the	hood,
JavaScript	classes	still	use	prototype-based	inheritance,	but	with	a	simpler
syntax,	and	the	coder	doesn't	even	have	to	think	about	the	object
prototype.

We	can	reliably	determine	whether	an	object	is	a	note	with	the	instanceof
operator:

$	node

>	const	Note	=	require('./Note');

>	typeof	Note

'function'

>	const	aNote	=	new	Note('foo',	'The	Rain	In	Spain',	'Falls	mainly	on	the	

plain');

>	var	notNote	=	{}

>	notNote	instanceof	Note

false

>	aNote	instanceof	Note

true

>	typeof	aNote

'object'

This	shows	us	the	clearest	method	to	identify	an	object	is	with	the
instanceof	operator.	The	typeof	operator	informs	us	Note	is	a	function
(because	of	the	prototype-based	inheritance	behind	the	scenes),	and	that	an
instance	of	the	Note	class	is	an	object.	With	instance	of,	we	can	easily
determine	whether	an	object	is	an	instance	of	a	given	class.

With	the	Note	class,	we	have	used	Symbol	instances	to	provide	a	small
measure	of	data	hiding.	JavaScript	classes	don't	provide	a	data-hiding

mechanism—you	can't	label	a	field	private	as	you	can	in	Java,	for	example.
It's	useful	to	know	how	to	hide	implementation	details.	This	is	an
important	attribute	of	object-oriented	programming,	because	it's	useful	to
have	the	freedom	to	change	the	implementation	at	will.	And	there's	the
issue	of	controlling	which	code	can	manipulate	the	object's	fields.	

First,	we	declared	getter	and	setter	functions	to	provide	access	to	the
values.	We	went	over	normal	getter/setter	usage	in	Chapter	4,	HTTP	Servers
and	Clients.

Access	to	a	getter-based	field	is	by	using	the	name	of	the	property,	and	not
by	calling	a	function	-	aNote.title	and	not	aNote.title().	It	looks	like	you're
accessing	an	object	property	by	assigning	a	value	or	accessing	the	value.
In	actuality,	the	function	defined	in	the	class	is	executed	on	every	access.
You	can	define	a	read-only	property	by	only	implementing	a	getter,	and	no
setter,	as	we	did	with	the	key	field.

There	are	significant	differences	between	the	preceding	and	simply
defining	anonymous	objects:

{

			key:	'foo',	title:	'The	Rain	in	Spain',

			body:	'Falls	mainly	on	the	plain'

}

We	write	code	like	that	in	JavaScript	all	the	time.	It's	easy,	it's	quick,	and
it's	a	very	fluid	way	to	share	data	between	functions.	But	there's	no
measure	of	hiding	implementation	details,	and	no	clear	identification	of
object	type.	

In	the	Note	class,	we	could	have	used	this	constructor	method:

class	Note	{

	constructor(key,	title,	body)	{

	this.key	=	key;

	this.title	=	title;

	this.body	=	body;

	}

}

That's	effectively	the	same	as	the	anonymous	object,	in	that	no	details
have	been	hidden	and	no	control	is	implemented	in	terms	of	which	code
can	do	what	to	object	instances.	The	only	advantage	over	an	anonymous
object	is	using	the	instanceof	operator	to	identify	object	instances.

The	method	we	chose	uses	the	Symbol	class,	which	is	also	new	with	ES-
2015.	A	Symbol	is	an	opaque	object	with	two	main	use	cases:

Generating	unique	keys	to	use	as	property	fields—as	in	the
previous	Note	class

Symbolic	identifiers	that	you	can	use	for	concepts	like
COLOR_RED

You	define	a	Symbol	through	a	factory	method	that	generates	Symbol
instances:

>	let	symfoo	=	Symbol('foo')

Each	time	you	invoke	the	Symbol	factory	method,	a	new	and	unique
instance	is	created.	For	example,	Symbol('foo')	===	Symbol('foo')	is	false,	as
is	symfoo	===	Symbol('foo'),	because	a	new	instance	is	created	on	each	side	of
the	equality	operator.	However,	symfoo	===	symfoo	is	true,	because	they	are
the	same	instance.

What	this	means	in	practice	is	that	if	we	try	a	direct	approach	to	access	a
field,	it	fails:

>	aNote[Symbol('title')]

undefined

Remember	that	each	time	we	use	the	Symbol	factory	method	we	get	a	new
instance.	The	new	instance	of	Symbol('title')	is	not	the	same	instance	used

within	the	Note.js	module.	

The	bottom	line	is	that	using	Symbol	objects	for	the	fields	provides	a	small
measure	of	implementation	hiding.	

Filling	out	the	in-memory	Notes
model
Create	a	file	named	notes-memory.js	in	the	models	directory,	with	this	code:

const	Note	=	require('./Note');

var	notes	=	[];

exports.update	=	exports.create	=	async	function(key,	title,	body)	{

				notes[key]	=	new	Note(key,	title,	body);

				return	notes[key];

};

exports.read	=	async	function(key)	{

				if	(notes[key])	return	notes[key];

				else	throw	new	Error(`Note	${key}	does	not	exist`);

};

exports.destroy	=	async	function(key)	{

				if	(notes[key])	{

								delete	notes[key];

				}	else	throw	new	Error(`Note	${key}	does	not	exist`);

};

exports.keylist	=	async	function()	{	return	Object.keys(notes);	};

exports.count	=	async	function()	{	return	notes.length;	};

exports.close	=	async	function()	{	}

This	is	a	simple	in-memory	data	store	that's	fairly	self-explanatory.	The	key
for	each	Note	instance	is	used	as	the	index	to	an	array,	which	in	turn	holds
the	Note	instance.	Simple,	fast,	and	easy	to	implement.	It	does	not	support
any	long-term	data	persistence.	Any	data	stored	in	this	model	will
disappear	when	the	server	is	killed.

We	have	used	async	functions	because	in	the	future	we'll	be	storing	data	in
the	file	system	or	in	databases.	Therefore,	we	need	an	asynchronous	API.

The	create	and	update	functions	are	being	handled	by	the	same	function.	At
this	stage	of	the	Notes	application,	the	code	for	both	these	functions	can	be
exactly	the	same	because	they	perform	the	exact	same	operation.	Later,
when	we	add	database	support	to	Notes,	the	create	and	update	functions	will
need	to	be	different.	For	example,	in	a	SQL	data	model,	create	would	be
implemented	with	an	INSERT	INTO	command,	while	update	would	be
implemented	with	an	UPDATE	command.

The	Notes	home	page
We're	going	to	modify	the	starter	application	to	support	creating,	editing,
updating,	viewing,	and	deleting	notes.	Let's	start	by	fixing	up	the	home
page.	It	should	show	a	list	of	notes,	and	the	top	navigation	bar	should	link
to	an	ADD	Note	page	so	that	we	can	always	add	a	new	note.

While	we	will	be	modifying	the	generated	app.js,	it	needs	no	modification
to	support	the	home	page.	These	lines	of	code	are	related	to	the	home
page:

const	index	=	require('./routes/index');	

..	

app.use('/',	index);	

Additionally,	to	support	Handlebars	templates	app.js	requires	these
changes:

const	hbs	=	require('hbs');

...

app.set('view	engine',	'hbs');

hbs.registerPartials(path.join(__dirname,	'partials'));

We'll	put	Handlebars	partials	in	a	directory,	partials,	which	is	a	sibling	to

the	views	directory.	Change	routes/index.js	to	this:

const	express	=	require('express');

const	router	=	express.Router();

const	notes	=	require('../models/notes-memory');

/*	GET	home	page.	*/

router.get('/',	async	(req,	res,	next)	=>	{

		let	keylist	=	await	notes.keylist();

		let	keyPromises	=	keylist.map(key	=>	{

				return	notes.read(key)

		});

		let	notelist	=	await	Promise.all(keyPromises);

		res.render('index',	{	title:	'Notes',	notelist:	notelist	});

});

module.exports	=	router;

This	gathers	data	about	the	notes	that	we'll	be	displaying	on	the	home
page.	By	default,	we'll	show	a	simple	table	of	note	titles.	We	do	need	to
talk	about	the	technique.

The	Promise.all	function	executes	an	array	of	Promises.	The	Promises	are
evaluated	in	parallel,	allowing	our	code	to	potentially	make	parallel
requests	to	a	service.	This	should	execute	more	quickly	than	making	the
requests	one	at	a	time	sequentially.

We	could	have	written	a	simple	for	loop	like	so:

let	keylist	=	await	notes.keylist();

let	notelist	=	[];

for	(key	of	keylist)	{

				let	note	=	await	notes.read(keylist);

				notelist.push({	key:	note.key,	title:	note.title	});

}

While	simpler	to	read,	the	notes	are	retrieved	one	at	a	time	with	no
opportunity	to	overlap	read	operations.

The	Promise	array	is	constructed	using	the	map	function.	With	map,	one
iterates	over	an	array	to	produce	a	new	array.	In	this	case,	the	new	array
contains	the	Promises	generated	by	the	notes.read	function	calls.

Because	we	wrote	await	Promise.all,	the	notelist	array	will	be	completely
filled	with	the	correct	data	once	all	the	Promises	succeed.	If	any	Promise
fails—is	rejected,	in	other	words—an	exception	will	be	thrown	instead.
What	we've	done	is	enqueue	a	list	of	asynchronous	operations	and	neatly
waited	for	them	all	to	finish.

The	notelist	array	is	then	passed	into	the	view	templates	we're	about	to
write.

Start	with	views/layout.hbs,	containing:

<!DOCTYPE	html>

<html>

	<head>

	<title>{{title}}</title>

	<link	rel='stylesheet'	href='stylesheetsstyle.css'	/>

	</head>

		<body>

		{{>	header	}}

		{{{body}}}

		</body>

</html>

This	is	the	generated	file,	with	the	addition	of	a	partial	for	the	page	header.
We	already	declared	partials	to	live	in	the	partials	directory.	Create
partials/header.hbs,	containing:

<header>

	<h1>{{	title	}}</h1>

		<div	class='navbar'>

		<p>Home	|	ADD	Note</p>

		</div>

</header>

Change	views/index.hbs	to	this:

{{#each	notelist}}

		{{	key	}}:

		{{	title	}}

		

{{/each}}

This	simply	steps	through	the	array	of	note	data	and	formats	a	simple
listing.	Each	item	links	to	the	notesview	URL	with	a	key	parameter.	We	have
yet	to	look	at	that	code,	but	this	URL	will	obviously	display	the	note.

Another	thing	of	note	is	that	no	HTML	for	the	list	is	generated	if	the
notelist	is	empty.

There's	of	course	a	whole	lot	more	that	could	be	put	into	this.	For
example,	it's	easy	to	add	jQuery	support	to	every	page	just	by	adding	the
appropriate	script	tags	here.

We	now	have	enough	written	to	run	the	application;	let's	view	the	home
page:

$	DEBUG=notes:*	npm	start

>	notes@0.0.0	start	UsersDavid/chap05/notes

>	node	./bin/www

		notes:server	Listening	on	port	3000	+0ms

GET	/	200	87.300	ms	-	308

GET	stylesheetsstyle.css	200	27.744	ms	-	111

If	we	visit	http://localhost:3000,	we	will	see	the	following	page:

Because	there	aren't	any	notes	(yet),	there's	nothing	to	show.	Clicking	on
the	Home	link	just	refreshes	the	page.	Clicking	on	the	ADD	Note	link

throws	an	error	because	we	haven't	(yet)	implemented	that	code.	This
shows	that	the	provided	error	handler	in	app.js	is	performing	as	expected.

Adding	a	new	note	–	create
Now,	let's	look	at	creating	notes.	Because	the	application	doesn't	have	a
route	configured	for	the	notesadd	URL,	we	must	add	one.	To	do	that,	we
need	a	controller	for	the	notes.

In	app.js,	make	the	following	changes.

Comment	out	these	lines:

//	var	users	=	require('./routes/users');	

..	

//	app.use('/users',	users);	

At	this	stage,	the	Notes	application	does	not	support	users,	and	these	routes
are	not	required.	That	will	change	in	a	future	chapter.

What	we	really	need	to	do	is	add	code	for	the	notes	controller:

//	const	users	=	require('./routes/users');	

const	notes		=	require('./routes/notes');	

..	

//	app.use('users',	users);	

app.use('notes',	notes);	

Now,	we'll	add	a	Controller	module	containing	the	notes	router.	Create	a
file	named	routes/notes.js,	with	this	content:

const	util	=	require('util');	

const	express	=	require('express');	

const	router	=	express.Router();	

const	notes	=	require('../models/notes-memory');	

	

//	Add	Note.	

router.get('/add',	(req,	res,	next)	=>	{	

				res.render('noteedit',	{	

								title:	"Add	a	Note",	

								docreate:	true,	

								notekey:	"",	note:	undefined	

				});	

});	

	

module.exports	=	router;	

The	resulting	notesadd	URL	corresponds	to	the	link	in	partials/header.hbs.

In	the	views	directory,	add	a	template	named	noteedit.hbs,	containing	the
following:

<form	method='POST'	action='notessave'>	

<input	type='hidden'	name='docreate'	value='<%=	

																		docreate	?	"create"	:	"update"%>'>	

<p>Key:	

{{#if	docreate	}}

				<input	type='text'	name='notekey'	value=''/>	

{{else}}	

				{{#if	note	}}{{notekey}}{{/if}}	

				<input	type='hidden'	name='notekey'

									value='{{#if	note	}}{{notekey}}{{/if}}'/>	

{{/if}}	

</p>	

<p>Title:	<input	type='text'	name='title'	

								value='{{#if	note	}}{{note.title}}{{/if}}'	><p>	

<textarea	rows=5	cols=40	name='body'	>

				{{#if	note	}}{{note.body}}{{/if}}	

				</textarea>	

<input	type='submit'	value='Submit'	/>	

</form>

We'll	be	reusing	this	template	to	support	both	editing	notes	and	creating
new	ones.

Notice	that	the	note	and	notekey	objects	passed	to	the	template	are	empty	in
this	case.	The	template	detects	this	condition	and	ensures	the	input	areas
are	empty.	Additionally,	a	flag,	docreate,	is	passed	in	so	that	the	form
records	whether	it	is	being	used	to	create	or	update	a	note.	At	this	point,
we're	adding	a	new	note,	so	no	note	object	exists.	The	template	code	is
being	written	defensively	to	not	throw	errors.

This	template	is	a	form	that	will	POST	its	data	to	the	notessave	URL.	If	you
were	to	run	the	application	at	this	time,	it	would	give	you	an	error	message
because	no	route	is	configured	for	that	URL.

To	support	the	notessave	URL,	add	this	to	routes/notes.js:

//	Save	Note	(update)

router.post('/save',	async	(req,	res,	next)	=>	{

				var	note;

				if	(req.body.docreate	===	"create")	{

								note	=	await	notes.create(req.body.notekey,

																req.body.title,	req.body.body);

				}	else	{

								note	=	await	notes.update(req.body.notekey,

																req.body.title,	req.body.body);

				}

				res.redirect('notesview?key='+	req.body.notekey);

});

Because	this	URL	will	also	be	used	for	both	creating	and	updating	notes,	it
needs	to	detect	the	docreate	flag	and	call	the	appropriate	model	operation.

The	model	returns	a	Promise	for	both	notes.create	and	notes.update.	Of
course,	we	must	call	the	corresponding	Model	function	based	on	the
docreate	flag.	

This	is	a	POST	operation	handler.	Because	of	the	bodyParser	middleware,	the
form	data	is	added	to	the	req.body	object.	The	fields	attached	to	req.body
correspond	directly	to	elements	in	the	HTML	form.

Now,	we	can	run	the	application	again	and	use	the	Add	a	Note	form:

But	upon	clicking	on	the	Submit	button,	we	get	an	error	message.	There
isn't	anything,	yet,	implementing	the	notesview	URL.

You	can	modify	the	URL	in	the	location	box	to	revisit
http://localhost:3000,	and	you'll	see	something	like	the	following	screenshot
on	the	home	page:

The	note	is	actually	there;	we	just	need	to	implement	notesview.	Let's	get	on
with	that.

Viewing	notes	–	read
Now	that	we've	looked	at	how	to	create	notes,	we	need	to	move	on	to
reading	them.	This	means	implementing	controller	logic	and	view
templates	for	the	notesview	URL.

To	routes/notes.js,	add	this	router	function:

//	Read	Note	(read)

router.get('/view',	async	(req,	res,	next)	=>	{

				var	note	=	await	notes.read(req.query.key);

				res.render('noteview',	{

								title:	note	?	note.title	:	"",

								notekey:	req.query.key,	note:	note

				});

});

Because	this	route	is	mounted	on	a	router	handling	/notes,	this	route
handles	notesview.

If	notes.read	successfully	reads	the	note,	it	is	rendered	with	the	noteview
template.	If	something	goes	wrong,	we'll	instead	display	an	error	to	the
user	through	Express.

To	the	views	directory,	add	the	noteview.hbs	template,	referenced	by	this
code:	{{#if	note}}<h3>{{	note.title	}}</h3>{{/if}}
{{#if	note}}<p>{{	note.body	}}</p>{{/if}}
<p>Key:	{{	notekey	}}</p>
{{#if	notekey	}}
<hr/>
<p>Delete
|	Edit</p>
{{/if}}

As	expected,	with	this	code,	the	application	correctly	redirects	to
notesview,	and	we	can	see	our	handiwork.	Also,	as	expected,	clicking
on	either	the	Delete	or	Edit	links	will	give	you	an	error,	because	the
code	hasn't	been	implemented.

This	is	straightforward:	taking	data	out	of	the	note	object	and	displaying
using	HTML.	At	the	bottom	are	two	links,	one	to	notesdestroy	to	delete	the
note	and	the	other	to	notesedit	to	edit	it.

The	code	for	neither	of	these	exists	at	the	moment.	But	that	won't	stop	us
from	going	ahead	and	executing	the	application:	

Editing	an	existing	note	–
update
Now	that	we've	looked	at	the	create	and	read	operations,	let's	look	at	how	to
update	or	edit	a	note.	

To	routes/notes.js,	add	this	router	function:

//	Edit	note	(update)

router.get('/edit',	async	(req,	res,	next)	=>	{

				var	note	=	await	notes.read(req.query.key);

				res.render('noteedit',	{

								title:	note	?	("Edit	"	+	note.title)	:	"Add	a	Note",

								docreate:	false,

								notekey:	req.query.key,	note:	note

				});

});

We're	reusing	the	noteedit.ejs	template,	because	it	can	be	used	for	both
create	and	update/edit	operations.	Notice	that	we	pass	false	for	docreate,
informing	the	template	that	it	is	to	be	used	for	editing.

In	this	case,	we	first	retrieve	the	note	object	and	then	pass	it	through	to	the
template.	This	way,	the	template	is	set	up	for	editing	rather	than	note
creation.	When	the	user	clicks	on	the	Submit	button,	we'll	end	up	in	the
same	notessave	route	handler	shown	in	the	preceding	screenshot.	It	already
does	the	right	thing:	calling	the	notes.update	method	in	the	model	rather
than	notes.create.

Because	that's	all	we	need	do,	we	can	go	ahead	and	rerun	the	application:

Click	on	the	Submit	button	here,	and	you	will	be	redirected	to	the	notesview
screen	and	will	then	be	able	to	read	the	newly	edited	note.	Back	to	the
notesview	screen:	we've	just	taken	care	of	the	Edit	link,	but	the	Delete	link
still	produces	an	error.

Deleting	notes	–	destroy
Now,	let's	look	at	how	to	implement	the	notesdestroy	URL	to	delete	notes.

To	routes/notes.js,	add	the	following	router	function:

//	Ask	to	Delete	note	(destroy)

router.get('/destroy',	async	(req,	res,	next)	=>	{

				var	note	=	await	notes.read(req.query.key);

				res.render('notedestroy',	{

								title:	note	?	note.title	:	"",

								notekey:	req.query.key,	note:	note

				});

});

Destroying	a	note	is	a	significant	step	if	only	because	there's	no	trash	can
to	retrieve	it	from	if	we	make	a	mistake.	Therefore,	we	want	to	ask	the
user	whether	they're	sure	they	want	to	delete	that	note.	In	this	case,	we
retrieve	the	note	and	then	render	the	following	page,	displaying	a	question
to	ensure	they	do	want	to	delete	the	note.

To	the	views	directory,	add	a	notedestroy.hbs	template:	<form	method='POST'
action='notesdestroy/confirm'>
<input	type='hidden'	name='notekey'	value='{{#if	note}}{{notekey}}
{{/if}}'>
<p>Delete	{{note.title}}?</p>

<input	type='submit'	value='DELETE'	/>	
Cancel
</form>

This	is	a	simple	form,	asking	the	user	to	confirm	by	clicking	on	the	button.
The	Cancel	link	just	sends	them	back	to	the	notesview	page.	Clicking	on	the
Submit	button	generates	a	POST	request	on	the	notesdestroy/confirm	URL.

Now	that	everything	is	working	in	the	application,	you	can	click	on
any	button	or	link	and	keep	all	the	notes	you	want.

That	URL	needs	a	request	handler.	Add	this	code	to	routes/notes.js:	//
Really	destroy	note	(destroy)
router.post('destroyconfirm',	async	(req,	res,	next)	=>	{
await	notes.destroy(req.body.notekey);
res.redirect('/');
});

This	calls	the	notes.destroy	function	in	the	model.	If	it	succeeds,	the
browser	is	redirected	to	the	home	page.	If	not,	an	error	message	is	shown
to	the	user.	Rerunning	the	application,	we	can	now	view	it	in	action:	

Theming	your	Express
application
The	Express	team	has	done	a	decent	job	of	making	sure	Express
applications	look	okay	out	of	the	gate.	Our	Notes	application	won't	win
any	design	awards,	but	at	least	it	isn't	ugly.	There's	a	lot	of	ways	to
improve	it,	now	that	the	basic	application	is	running.	Let's	take	a	quick
look	at	theming	an	Express	application.	In	Chapter	6,	Implementing	the
Mobile-First	Paradigm,	we'll	take	a	deeper	dive,	focusing	on	that	all-
important	goal	of	addressing	the	mobile	market.

If	you're	running	the	Notes	application	using	the	recommended	method,
npm	start,	a	nice	log	of	activity	is	being	printed	in	your	console	window.
One	of	those	is	the	following:

GET	stylesheetsstyle.css	304	0.702	ms	-	-	

This	is	due	to	this	line	of	code	that	we	put	in	layout.hbs:

<link	rel='stylesheet'	href='stylesheetsstyle.css'	/>	

This	file	was	autogenerated	for	us	by	the	Express	Generator	at	the	outset
and	dropped	inside	the	public	directory.	The	public	directory	is	managed	by
the	Express	static	file	server,	using	this	line	in	app.js:

app.use(express.static(path.join(__dirname,	'public')));	

Let's	open	publicstylesheetsstyle.css	and	take	a	look:

body	{	

		padding:	50px;	

		font:	14px	"Lucida	Grande",	Helvetica,	Arial,	sans-serif;	

}	

	

a	{	

		color:	#00B7FF;	

}	

Something	that	leaps	out	is	that	the	application	content	has	a	lot	of	white
space	at	the	top	and	left-hand	sides	of	the	screen.	The	reason	is	that
body	tags	have	the	padding:	50px	style.	Changing	it	is	quick	business.

Since	there	is	no	caching	in	the	Express	static	file	server,	we	can	simply
edit	the	CSS	file	and	reload	the	page,	and	the	CSS	will	be	reloaded	as
well.	It's	possible	to	turn	on	cache-control	headers	and	ETags	generation,
as	you	would	do	for	a	production	website.	Look	in	the	online	Express
documentation	for	details.

It	involves	a	little	bit	of	work:

body	{	

		padding:	5px;	

		..	

}	

..	

header	{	

				background:	#eeeeee;	

				padding:	5px;	

}	

As	a	result,	we'll	have	this:

We're	not	going	to	win	any	design	awards	with	this	either,	but	there's	the
beginning	of	some	branding	and	theming	possibilities.

Generally	speaking,	the	way	we've	structured	the	page	templates,	applying
a	site-wide	theme	is	just	a	matter	of	adding	appropriate	code	to
layout.hbs	along	with	appropriate	stylesheets	and	other	assets.	Many	of	the
modern	theming	frameworks,	such	as	Twitter's	Bootstrap,	serve	up	CSS
and	JavaScript	files	out	of	a	CDN	server,	making	it	incredibly	easy	to
incorporate	into	a	site	design.

For	jQuery,	refer	to	http://jquery.com/download/.

Google's	Hosted	Libraries	service	provides	a	long	list	of	libraries,	hosted
on	Google's	CDN	infrastructure.	Refer	to
https://developers.google.com/speed/libraries/.

While	it's	straightforward	to	use	third-party	CDNs	to	host	these	assets,	it's
safer	to	host	them	yourself.	Not	only	do	you	take	responsibility	for

http://jquery.com/download/
https://developers.google.com/speed/libraries/

bandwidth	consumption	of	your	application,	but	you're	certain	of	not
being	affected	by	any	outages	of	third-party	services.	As	reliable	as
Google	might	be,	their	service	can	go	down,	and	if	that	means	jQuery	and
Bootstrap	doesn't	load,	your	customer	will	think	your	site	is	broken.	But	if
those	files	are	loaded	from	the	same	server	as	your	application,	the
reliability	of	delivering	those	files	will	exactly	equal	the	reliability	of	your
application.

In	Chapter	6,	Implementing	the	Mobile-First	Paradigm,	we	will	look	at	a
simple	method	to	add	those	front-end	libraries	to	your	application.

Scaling	up	–	running	multiple
Notes	instances
Now	that	we've	got	ourselves	a	running	application,	you'll	have	played
around	a	bit	and	created,	read,	updated,	and	deleted	many	notes.

Suppose	for	a	moment	this	isn't	a	toy	application,	but	one	that	is
interesting	enough	to	draw	a	million	users	a	day.	Serving	a	high	load
typically	means	adding	servers,	load	balancers,	and	many	other	things.	A
core	part	is	to	have	multiple	instances	of	the	application	running	at	the
same	time	to	spread	the	load.

Let's	see	what	happens	when	you	run	multiple	instances	of	the	Notes
application	at	the	same	time.

The	first	thing	is	to	make	sure	the	instances	are	on	different	ports.	In
bin/www,	you'll	see	that	setting	the	PORT	environment	variable	controls	the
port	being	used.	If	the	PORT	variable	is	not	set,	it	defaults	to
http://localhost:3000,	or	what	we've	been	using	all	along.

Let's	open	up	package.json	and	add	these	lines	to	the	scripts	section:

"scripts":	{	

				"start":	"DEBUG=notes:*	node	./bin/www",	

				"server1":	"DEBUG=notes:*	PORT=3001	node	./bin/www",	

				"server2":	"DEBUG=notes:*	PORT=3002	node	./bin/www"	},

The	server1	script	runs	on	PORT	3001,	while	the	server2	script	runs	on	PORT	3002.
Isn't	it	nice	to	have	all	this	documented	in	one	place?

Then,	in	one	command	window,	run	this:

$	npm	run	server1

>	notes@0.0.0	server1	UsersDavid/chap05/notes

>	DEBUG=notes:*	PORT=3001	node	./bin/www

		notes:server	Listening	on	port	3001	+0ms

In	another	command	window,	run	this:

$	npm	run	server2

>	notes@0.0.0	server2	UsersDavid/chap05/notes

>	DEBUG=notes:*	PORT=3002	node	./bin/www

		notes:server	Listening	on	port	3002	+0ms

This	gives	us	two	instances	of	the	Notes	application.	Use	two	browser
windows	to	visit	http://localhost:3001	and	http://localhost:3002.	Enter	a
couple	of	notes,	and	you	might	see	something	like	this:

After	editing	and	adding	some	notes,	your	two	browser	windows	could
look	like	the	preceding	screenshot.	The	two	instances	do	not	share	the
same	data	pool.	Each	is	instead	running	in	its	own	process	and	memory
space.	You	add	a	note	in	one,	and	it	does	not	show	in	the	other	screen.

Additionally,	because	the	model	code	does	not	persist	data	anywhere,	the
notes	are	not	saved.	You	might	have	written	the	greatest	Node.js
programming	book	of	all	time,	but	as	soon	as	the	application	server
restarts,	it's	gone.

Typically,	you	run	multiple	instances	of	an	application	to	scale
performance.	That's	the	old	throw	more	servers	at	it	trick.	For	this	to	work,
the	data	of	course	must	be	shared,	and	each	instance	must	access	the	same
data	source.	Typically,	this	involves	a	database.	And	when	it	comes	to	user
identity	information,	it	might	even	entail	armed	guards.	

Hold	on—we'll	get	to	database	implementation	shortly.	Before	that,	we'll
cover	mobile-first	development.

Summary
We've	come	a	long	way	in	this	chapter.

We	started	with	the	Pyramid	of	Doom	and	how	the	Promise	object	and	async
functions	can	help	us	a	tame	asynchronous	code.	We'll	be	using	these
techniques	all	through	this	book.

We	quickly	moved	on	to	writing	the	foundation	of	a	real	application	with
Express.	At	the	moment,	it	keeps	its	data	in	memory,	but	it	has	the	basic
functionality	of	what	will	become	a	note-taking	application	supporting
real-time	collaborative	commenting	on	the	notes.

In	the	next	chapter,	we'll	dip	our	toes	in	the	water	of	responsive,	mobile-
friendly	web	design.	Due	to	the	growing	popularity	of	mobile	computing
devices,	it's	become	necessary	to	address	mobile	devices	first	before
desktop	computer	users.	In	order	to	reach	those	millions	of	users	a	day,	the
Notes	application	users	need	a	good	user	experience	when	using	their
smartphone.

In	following	chapters,	we'll	keep	growing	the	capabilities	of	the	Notes
application,	starting	with	database	storage	models.

Implementing	the	Mobile-First
Paradigm
Now	that	our	first	Express	application	is	usable,	we	act	on	the	mantra	of
this	age	of	software	development:	mobile-first.	Mobile	devices,	whether
they	be	smartphones,	tablet	computers,	automobile	dashboards,
refrigerator	doors,	or	bathroom	mirrors,	are	taking	over	the	world.	

Another	issue	is	mobile-first	indexing,	meaning	that	search	engines	are
starting	to	preference	indexing	the	mobile	version	of	a	website.	Search
engines	so	far	concentrated	on	indexing	the	desktop	version	of	websites,
but	the	growing	popularity	of	mobile	devices	means	search	engine	results
are	skewed	away	from	what	folks	are	using.	Google	says	it	is	not	fair	to
mobile	users	if	the	search	result,	which	was	derived	from	the	desktop
version,	does	not	match	the	mobile	version	of	a	website.	For	Google's
take,	including	technical	tips	on	the	markup	to	use,	see	http://webmasters.goo
gleblog.com/2017/12/getting-your-site-ready-for-mobile.html.

The	primary	considerations	in	designing	for	mobiles	are	the	small	screen
sizes,	the	touch-oriented	interaction,	that	there's	no	mouse,	and	the
somewhat	different	user	interface	expectations.	With	the	Notes
application,	our	user	interface	needs	are	modest,	and	the	lack	of	a	mouse
doesn't	make	any	difference	to	us.	

In	this	chapter,	we	won't	do	much	Node.js	development.	Instead,	we'll:

Modify	the	templates	for	better	mobile	presentation

Edit	CSS	and	SASS	files	to	customize	the	style

Learn	about	Bootstrap	4,	a	popular	framework	for	responsive	UI
design

http://webmasters.googleblog.com/2017/12/getting-your-site-ready-for-mobile.html

By	doing	so,	we'll	dip	our	toes	in	the	water	of	what	it	means	to	be	a	full
stack	web	engineer.

Problem	–	the	Notes	app	isn't
mobile	friendly
Let's	start	by	quantifying	the	problem.	We	need	to	explore	how	well	(or
not)	the	application	behaves	on	a	mobile	device.	This	is	simple	to	do:

1.	 Start	the	Notes	application.	Determine	the	IP	address	of	the	host
system.

2.	 Using	your	mobile	device,	connect	to	the	service	using	the	IP
address,	and	browse	around	the	Notes	application,	putting	it
through	its	paces,	noting	any	difficulties.

Another	way	to	approach	this	is	to	use	your	desktop	browser,	resizing	it	to
be	very	narrow.	The	Chrome	DevTools	also	includes	a	mobile	device
emulator.	Either	way,	you	can	mimic	the	small	screen	size	of	a	smartphone
on	your	desktop.

To	see	a	real	user	interface	problem	on	a	mobile	screen,	edit
views/noteedit.ejs	and	change	this	line:

<textarea	rows=5	cols=80	name='body'	>

				{{#if	note	}}{{note.body}}{{/if}}	

				</textarea>		

What's	changed	is	the	cols=80	parameter.	We	want	this	textarea	element	to
be	overly	large	so	that	you	can	experience	how	a	non-responsive	web	app
appears	on	a	mobile	device.	View	the	application	on	a	mobile	device	and
you'll	see	something	like	one	of	the	screens	in	this	screenshot:

Viewing	a	note	works	well	on	an	iPhone	6,	but	the	screen	for
editing/adding	a	note	is	not	good.	The	text	entry	area	is	so	wide	that	it	runs
off	the	side	of	the	screen.	Even	though	interaction	with	FORM	elements	work
well,	it's	clumsy.	In	general,	browsing	the	Notes	application	gives	an
acceptable	mobile	user	experience	that	doesn't	suck	and	won't	make	our
users	give	rave	reviews.

Mobile-first	paradigm
Mobile	devices	have	a	smaller	screen,	are	generally	touch	oriented,	and
have	different	user	experience	expectations	than	a	desktop	computer.

To	accommodate	smaller	screens,	we	use	responsive	web	design
techniques.	This	means	designing	the	application	to	accommodate
the	screen	size	and	ensuring	websites	provide	optimal	viewing	and
interaction	across	a	wide	range	of	devices.	Techniques	include	changing
font	sizes,	rearranging	elements	on	the	screen,	using	collapsible	elements
that	open	when	touched,	and	resizing	images	or	videos	to	fit	available
space.	This	is	called	responsive	because	the	application	responds	to
device	characteristics	by	making	these	changes.

By	mobile-first,	we	mean	that	you	design	the	application	first	to	work	well	on	a
mobile	device	and	then	move	on	to	devices	with	larger	screens.	It's	about	prioritizing
mobile	devices	first.

The	primary	technique	is	using	media	queries	in	stylesheets	to	detect
device	characteristics.	Each	media	query	section	targets	a	range	of
devices,	using	CSS	declaration	to	appropriately	restyle	content.

Let's	consult	a	concrete	example.	The	Twenty	Twelve	theme	for
Wordpress	has	a	straightforward	responsive	design	implementation.	It's
not	built	with	any	framework,	so	you	can	see	clearly	how	the	mechanism
works,	and	the	stylesheet	is	small	enough	to	be	easily	digestible.	Refer	to
its	source	code	in	the	Wordpress	repository	at
https://themes.svn.wordpress.org/twentytwelve/1.9/style.css.

The	stylesheet	starts	with	a	number	of	resets,	where	the	stylesheet
overrides	some	typical	browser	style	settings	with	clear	defaults.	Then,	the
bulk	of	the	stylesheet	defines	styling	for	mobile	devices.	Toward	the
bottom	of	the	stylesheet	is	a	section	labeled	Media	queries	where,	for
certain	sized	screens,	the	styles	defined	for	mobile	devices	are	overridden

https://themes.svn.wordpress.org/twentytwelve/1.9/style.css

to	work	on	devices	with	larger	screens.

It	does	this	with	the	following	two	media	queries:

@media	screen	and	(min-width:	600px)	{	/*	Screens	above	600px	width		}	

@media	screen	and	(min-width:	960px)	{		Screens	above	960px	width	*/	}

The	first	segment	of	the	stylesheet	configures	the	page	layout	for	all
devices.	Next,	for	any	browser	viewport	at	least	600px	wide,	reconfigure	the
page	to	display	on	the	larger	screen.	Then,	for	any	browser	viewport	at
least	960px	wide,	reconfigure	it	again.	The	stylesheet	has	a	final	media
query	to	cover	print	devices.

These	widths	are	what's	called	a	breakpoint.	Those	threshold	viewport
widths	are	where	the	design	changes	itself	around.	You	can	see
breakpoints	in	action	by	going	to	any	responsive	website,	then	resizing	the
browser	window.	Watch	how	the	design	jumps	at	certain	sizes.	Those	are
the	breakpoints	chosen	by	the	author	of	that	website.

There's	a	wide	range	of	differing	opinions	about	the	best	strategy	to
choose	your	breakpoints.	Do	you	target	specific	devices	or	do	you	target
general	characteristics?	The	Twenty	Twelve	theme	did	fairly	well	on
mobile	devices	using	only	two	viewport-size	media	queries.	The	CSS-
Tricks	blog	has	posted	an	extensive	list	of	specific	media	queries	for	every
known	device,	which	is	available	at	https://css-tricks.com/snippets/css/media-
queries-for-standard-devices/.

We	should	at	least	target	these	devices:

Small:	This	includes	iPhone	5	SE.

Medium:	This	can	refer	to	tablet	computers	or	the	larger
smartphones.

Large:	This	includes	larger	tablet	computers	or	the	smaller
desktop	computers.

https://css-tricks.com/snippets/css/media-queries-for-standard-devices/

Extra-large:	This	refers	to	larger	desktop	computers	and	other
large	screens.

Landscape/portrait:	You	may	want	to	create	a	distinction
between	landscape	mode	and	portrait	mode.	Switching	between
the	two	of	course	changes	viewport	width,	possibly	pushing	it	past
a	breakpoint.	However,	your	application	may	need	to	behave
differently	in	the	two	modes.

Enough	with	the	theory;	let's	get	back	to	our	code.

Using	Twitter	Bootstrap	on	the
Notes	application
Bootstrap	is	a	mobile-first	framework	consisting	of	HTML5,	CSS3,	and
JavaScript	code	providing	a	comprehensive	set	of	world	class,	responsive
web	design	components.	It	was	developed	by	engineers	at	Twitter	and	then
released	to	the	world	in	August	2011.

The	framework	includes	code	to	retrofit	modern	features	onto	older
browsers,	a	responsive	12-column	grid	system,	and	a	long	list	of
components	(some	using	JavaScript)	for	building	web	applications	and
websites.	It's	meant	to	provide	a	strong	foundation	on	which	to	build	your
application.

Refer	to	http://getbootstrap.com	for	more	details.

http://getbootstrap.com

Setting	it	up
The	first	step	is	to	duplicate	the	code	you	created	in	the	previous	chapter.
If,	for	example,	you	created	a	directory	named	chap05/notes,	then	create	one
named	chap06/notes	from	the	content	of	chap05/notes.

Now,	we	need	to	go	about	adding	Bootstrap's	code	in	the	Notes
application.	The	Bootstrap	website	suggests	loading	the	required	CSS	and
JavaScript	files	out	of	the	Bootstrap	(and	jQuery)	public	CDN.	While
that's	easy	to	do,	we	won't	do	this	for	two	reasons:

It	violates	the	principle	of	keeping	all	dependencies	local	to	the
application	and	not	relying	on	global	dependencies

It	prevents	us	from	generating	a	custom	theme

Instead,	we'll	install	a	local	copy	of	Bootstrap.	There	are	several	ways	to
install	Bootstrap.	For	example,	the	Bootstrap	website	offers	a
downloadable	TAR/GZIP	archive	(tarball).	The	better	approach	is	an
automated	dependency	management	tool.	

The	most	straightforward	choice	is	using	Bootstrap	(https://www.npmjs.com/pa
ckage/bootstrap),	popper.js	(https://www.npmjs.com/package/popper.js),	and	jQuery
(https://www.npmjs.com/package/jquery)	packages	in	the	npm	repository.	These
packages	provide	no	Node.js	modules,	and	instead	are	frontend	code
distributed	through	npm.	

We	install	the	packages	using	the	following	command:

$	npm	install	bootstrap@4.1.x	--save

npm	notice	created	a	lockfile	as	package-lock.json.	You	should	commit	this	

file.

https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/popper.js
https://www.npmjs.com/package/jquery

npm	WARN	bootstrap@4.1.0	requires	a	peer	of	jquery@1.9.1	-	3	but	none	is	

installed.	You	must	install	peer	dependencies	yourself.

npm	WARN	bootstrap@4.1.0	requires	a	peer	of	popper.js@^1.14.0	but	none	is	

installed.	You	must	install	peer	dependencies	yourself.

+	bootstrap@4.1.0

added	1	package	in	1.026s

$	npm	install	jquery@1.9.x	--save

+	jquery@1.9.1

$	npm	install	popper.js@1.14.x	--save

+	popper.js@1.14.0

As	we	see	here,	when	we	install	Bootstrap,	it	helpfully	tells	us	the
corresponding	versions	of	jQuery	and	popper.js	to	use.	Therefore,	we
dutifully	install	those	versions.	What's	most	important	is	to	see	what	got
downloaded:

$	ls	node_modules/bootstrap/dist/*

...	directory	contents

$	ls	node_modules/jquery/

...	directory	contents

$	ls	node_modules/popper.js/dist

...	directory	contents

Within	each	of	these	directories	are	the	CSS	and	JavaScript	files	that	are
meant	to	be	used	in	the	browser.	More	importantly,	these	files	are	located
in	a	given	directory	whose	pathname	is	known—specifically,	the
directories	we	just	inspected.	Let's	see	how	to	configure	our	Express	app
to	use	those	three	packages	on	the	browser	side.

Adding	Bootstrap	to
application	templates
On	the	Bootstrap	website,	they	give	a	recommended	HTML	structure.
We'll	be	interpolating	from	their	recommendation	to	use	Bootstrap	code
provided	through	the	CDN	to	instead	use	the	local	copies	of	Bootstrap,
jQuery,	and	Popper	that	we	just	installed.	Refer	to	the	Getting	started	page
at	http://getbootstrap.com/docs/4.0/getting-started/introduction/.

What	we'll	do	is	modify	views/layout.hbs	to	match	their	recommended
template:

<!doctype	html>

<html	lang="en">

		<head>

				<title>{{title}}</title>

				<meta	charset="utf-8">

				<meta	name="viewport"	

								content="width=device-width,	initial-scale=1,	shrink-to-

								fit=no">

				<link	rel="stylesheet"	

				href="assetsvendor/bootstrap/css/bootstrap.min.css">

				<link	rel='stylesheet'	href='assetsstylesheets/style.css'	/>

		</head>

		<body>

				{{>	header	}}

				{{{body}}}

				<!--	jQuery	first,	then	Popper.js,	then	Bootstrap	JS	-->

				<script	src="assetsvendor/jquery/jquery.min.js"></script>

				<script	src="assetsvendor/popper.js/popper.min.js"></script>

				<script	src="assetsvendor/bootstrap/js/bootstrap.min.js"></script>

		</body>

</html>

This	is	largely	the	template	shown	on	the	Bootstrap	site,	incorporating	the
previous	content	of	views/layout.hbs.	Our	own	stylesheet	is	loaded	following

http://getbootstrap.com/docs/4.0/getting-started/introduction/

the	Bootstrap	stylesheet,	giving	us	the	opportunity	to	override	anything	in
Bootstrap	we	want	to	change.	What's	different	is	that	instead	of	loading
Bootstrap,	popper.js,	and	jQuery	packages	from	their	respective	CDNs,	we
use	the	path	assetsvendor/product-name	instead.

This	is	the	same	as	recommended	on	the	Bootstrap	website	except	the	URLs	point	to
our	own	site	rather	than	relying	on	the	public	CDN.

This	assetsvendor	URL	is	not	currently	recognized	by	the	Notes	application.
To	add	this	support,	edit	app.js	to	add	these	lines:

app.use(express.static(path.join(__dirname,	'public')));

app.use('assetsvendor/bootstrap',	express.static(

		path.join(__dirname,	'node_modules',	'bootstrap',	'dist')));	

app.use('assetsvendor/jquery',	express.static(

		path.join(__dirname,	'node_modules',	'jquery')));	

app.use('assetsvendor/popper.js',	express.static(

		path.join(__dirname,	'node_modules',	'popper.js',	'dist')));	

Within	the	public	directory,	we	have	a	little	house-keeping	to	do.	When
express-generator	set	up	the	initial	project,	it	generated	public/images,
public/javascripts,	and	public/stylesheets	directories.	We	want	each	to	be
within	the	/assets	directory,	so	do	this:

$	mkdir	public/assets

$	mv	public/images/	public/javascripts/	public/stylesheets/	publicassets

We	now	have	our	asset	files,	including	Bootstrap,	popper.js,	and	jQuery,	all
available	to	the	Notes	application	under	the	/assets	directory.	The	page
layout	refers	to	these	assets	and	should	give	us	the	default	Bootstrap
theme:

$	npm	start

>	notes@0.0.0	start	/Users/David/chap06/notes

>	DEBUG=notes:*	node	./bin/www

		notes:server	Listening	on	port	3000	+0ms

GET	/	200	306.660	ms	-	883

GET	/stylesheets/style.css	404	321.057	ms	-	2439

GET	assetsstylesheets/style.css	200	160.371	ms	-	165

GET	assetsvendor/bootstrap/js/bootstrap.min.js	200	157.459	ms	-	50564

GET	assetsvendor/popper.js/popper.min.js	200	769.508	ms	-	18070

GET	assetsvendor/jquery/jquery.min.js	200	777.988	ms	-	92629

GET	assetsvendor/bootstrap/css/bootstrap.min.css	200	788.028	ms	-	127343

The	on-screen	differences	are	minor,	but	this	is	the	proof	necessary	that
the	CSS	and	JavaScript	files	for	Bootstrap	are	being	loaded.	We	have
accomplished	the	first	major	goal—using	a	modern,	mobile-friendly
framework	to	implement	a	mobile-first	design.

Alternative	layout	frameworks
Bootstrap	isn't	the	only	JavaScript/CSS	framework	providing	a	responsive
layout	and	useful	components.	We're	using	Bootstrap	in	this	project
because	of	its	popularity.	These	frameworks	are	worthy	of	a	look:

Pure.css	(https://purecss.io/):	A	responsive	CSS	framework	with
an	emphasis	on	a	small	code	footprint.

Picnic	CSS	(https://picnicss.com/):	A	responsive	CSS	framework
emphasizing	small	size	and	beauty.

Shoelace	(https://shoelace.style/):	A	CSS	framework	emphasizing
using	future	CSS,	meaning	it	uses	CSS	constructs	at	the	leading
edge	of	CSS	standardization.	Since	most	browsers	don't	support
those	features,	cssnext	(http://cssnext.io/)	is	used	to	retrofit	that
support.	Shoelace	uses	a	grid	layout	system	based	on	Bootstrap's
grid.

PaperCSS	(https://www.getpapercss.com/):	An	informal	CSS
framework	which	looks	like	it	was	hand	drawn.

Foundation	(https://foundation.zurb.com/):	Self-described	as	the	most
advanced	responsive	frontend	framework	in	the	world.

Base	(http://getbase.org/):	A	lightweight	modern	CSS	framework.

HTML5	Boilerplate	(https://html5boilerplate.com/)	is	an	extremely	useful
basis	from	which	to	code	the	HTML	and	other	assets.	It	contains	the
current	best	practices	for	the	HTML	code	in	web	pages,	as	well	as	tools	to

https://purecss.io/
https://picnicss.com/
https://shoelace.style/
http://cssnext.io/
https://www.getpapercss.com/
https://foundation.zurb.com/
http://getbase.org/
https://html5boilerplate.com/

	

normalize	CSS	support	and	configuration	files	for	several	web	servers.

	

Flexbox	and	CSS	Grids
Other	new	technologies	impacting	web	application	development	are	two
new	CSS	layout	methodologies.	The	CSS3	committee	has	been	working
on	several	fronts,	including	page	layout.	

In	the	distant	past,	we	used	nested	HTML	tables	for	page	layout.	That	is	a
bad	memory	that	we	don't	have	to	revisit.	More	recently,	we've	been	using
a	box	model	using	DIVs,	and	even	at	times	using	absolute	or	relative
placement	techniques.	All	these	techniques	have	been	suboptimal	in
several	ways,	some	more	than	others.

One	popular	layout	technique	is	to	divide	the	horizontal	space	into
columns	and	assign	a	certain	number	of	columns	to	each	thing	on	the
page.	With	some	frameworks,	we	can	even	have	nested	DIVs,	each	with
their	own	set	of	columns.	Bootstrap	3,	and	other	modern	frameworks,	used
that	layout	technique.	

The	two	new	CSS	layout	methodologies,	Flexbox	(https://en.wikipedia.org/w
iki/CSS_flex-box_layout)	and	CSS	Grids	(https://developer.mozilla.org/en-US/docs
/Web/CSS/CSS_Grid_Layout),	are	a	significant	improvement	over	all	previous
methodologies.	We	are	mentioning	these	technologies	because	they're	both
worthy	of	attention.	Both	are	somewhat	early	in	their	adoption	curve—
they've	been	standardized	by	committees	and	adopted	in	the	latest
browsers,	but	of	course	there	are	a	lot	of	old	browsers	in	the	field.

With	Bootstrap	4,	the	Bootstrap	team	chose	to	go	with	Flexbox.	Therefore,
under	the	hood	are	Flexbox	CSS	constructs.	

https://en.wikipedia.org/wiki/CSS_flex-box_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

Mobile-first	design	for	the
Notes	application
We've	learned	about	the	basics	of	responsive	design	and	Bootstrap,	and	we
hooked	the	Bootstrap	framework	into	our	application.	Now	we're	ready	to
launch	a	redesign	of	the	application	so	that	it	works	well	on	mobile
devices.

Laying	the	Bootstrap	grid
foundation
Bootstrap	uses	a	12-column	grid	system	to	control	layout,	giving
applications	a	responsive	mobile-first	foundation	on	which	to	build.	It
automatically	scales	components	as	the	viewport	changes	size	or	shape.
The	method	relies	on	<div>	elements	with	classes	to	describe	the	role	each
<div>	plays	in	the	layout.

The	basic	layout	pattern	is	as	follows:

<div	class="container-fluid">	

		<div	class="row">	

				<div	class="col-sm-3">Column	1	content</div>	<!--	25%	-->

				<div	class="col-sm-9">Column	2	content</div>	<!--	75%	-->

		</div>	

		<div	class="row">	

				<div	class="col-sm-3">Column	1	content</div>	<!--	25%	-->

				<div	class="col-sm-6">Column	2	content</div>	<!--	50%	-->

				<div	class="col-sm-3">Column	3	content</div>	<!--	25%	-->

		</div>

</div>

The	outermost	layer	is	the	.container	or	.container-fluid	element.	Containers
provide	a	means	to	center	or	horizontally	pad	the	content.	Containers
marked	as	.container-fluid	act	as	if	they	have	width:	100%,	meaning	they
expand	to	fill	the	horizontal	space.

A	.row	is	what	it	sounds	like,	a	"row".	Technically,	a	row	is	a	wrapper	for
columns.	Containers	are	wrappers	for	rows,	and	rows	are	wrappers	for
columns,	and	columns	contain	the	stuff	displayed	to	our	users.	Got	that?

Columns	are	marked	with	variations	of	the	.col	class.	With	the	basic
column	class,	.col,	the	columns	divide	equally	into	the	available	space.

You	can	specify	a	numerical	column	count	to	assign	different	widths	to
each	column.	Bootstrap	supports	up	to	12	numbered	columns,	hence	each
row	in	the	example	adds	up	to	12	columns.	

You	can	also	specify	a	breakpoint	to	which	the	column	applies:	

Using	col-xs	targets	extra-small	devices	(smartphones,	<576px)

Using	col-sm	targets	small	devices	(>=	576px)

Using	col-md	targets	medium	devices	(>=	768px)

Using	col-lg	targets	large	devices	(>=	992px)

Using	col-xl	targets	extra-large	devices	(>=	1200px)

Specifying	a	breakpoint,	for	example	col-sm,	means	that	it	applies	to
devices	matching	that	breakpoint,	or	larger.	Hence,	in	the	example	shown
earlier,	the	column	definitions	applied	to	col-sm,	col-md,	col-lg,	and	col-xl
devices,	but	not	to	col-xs	devices.

The	column	count	is	appended	to	the	class	name.	That	means	using	col-#
when	not	targeting	a	breakpoint,	for	example,	col-4,		or	col-{breakpoint}-#
when	targeting	a	breakpoint,	for	example,	col-md-4.	If	the	columns	add	up
to	more	than	12,	the	columns	beyond	the	twelfth	column	wrap	around	to
become	a	new	row.	The	word	auto	can	be	used	instead	of	a	numerical
column	count	to	size	the	column	to	the	natural	width	of	its	content.

It's	possible	to	mix	and	match	to	target	multiple	breakpoints:

<div	class="container-fluid">	

		<div	class="row">	

				<div	class="col-xs-9	col-md-3	col-lg-6">Column	1	content</div>	

				<div	class="col-xs-3	col-md-9	col-lg-6">Column	2	content</div>	

		</div>	

		...

</div>

This	declares	three	different	layouts,	one	for	extra-small	devices,	another
for	medium	devices,	and	the	last	for	large	devices.	This	gives	us	enough	to
start	modifying	the	Notes	application.	The	grid	system	can	do	a	lot	more.
For	details,	see	the	documentation:	http://getbootstrap.com/docs/4.0/layout/gri
d/.			

http://getbootstrap.com/docs/4.0/layout/grid/

<!DOCTYPE	html>

<html>

<head>	..	headerStuff	</head>

<body>

..	pageHeader

..	main	content	
..	bottomOfPageStuff

</body>

</html>

The	page	content	therefore	has	two	visible	rows:	the	header	and	the	main
content.	At	the	bottom	of	the	page	are	invisible	things	like	the	JavaScript	files
for	Bootstrap	and	jQuery.

No	change	is	required	in	views/layout.hbs.	One	might	think	the	container-
fluid	wrapper	would	be	in	that	file,	with	the	rows	and	columns	specified	in	the
other	templates.	Instead,	we'll	do	it	in	the	templates	to	give	us	the	most	layout
freedom.

Using	icon	libraries	and
improving	visual	appeal
The	world	around	us	isn't	constructed	of	words,	but	instead	things.	Hence,
a	pictorial	style,	as	icons,	should	help	computer	software	to	be	more
comprehensible.	Giving	a	good	user	experience	should	make	our	users
reward	us	with	more	likes	in	the	app	store.	

There	are	several	icon	libraries	that	can	be	used	in	a	website.	The
Bootstrap	team	has	a	curated	list	at	http://getbootstrap.com/docs/4.1/extend/ico
ns/.	For	this	project,	we'll	use	Feather	Icons	(https://feathericons.com/)	and
its	conveniently	available	npm	package,	https://www.npmjs.com/package/featheri
cons.

In	package.json,	add	this	to	the	dependencies:

"feathericons":	">=4.5.x"

Then	run	npm	install	to	download	the	new	package.	You	can	then	inspect
the	downloaded	package	and	see
that	./node_modules/feathericons/dist/feather.js	contains	browser-side	code,
making	it	easy	to	use	the	icons.

We	make	that	directory	available	by	mounting	it	in	app.js,	just	as	we	did
for	Bootstrap	and	jQuery	libraries.	Add	this	code	to	app.js:

app.use('assetsvendor/feathericons',	express.static(

			path.join(__dirname,	'node_modules',	'feathericons',	'dist')));	

Going	by	the	documentation,	we	must	put	this	at	the	bottom	of
views/layout.hbs	to	enable	feathericons	support:

http://getbootstrap.com/docs/4.1/extend/icons/
https://feathericons.com/
https://www.npmjs.com/package/feather-icons

<script	src="assetsvendor/feathericons/feather.js"></script>

<script>

	feather.replace();

</script>

To	use	one	of	the	icons,	use	a	data-feather	attribute	specifying	one	of	the
icon	names,	like	so:

<i	data-feather="circle"></i>

What's	important	is	the	data-feather	attribute,	which	the	Feather	Icons
library	uses	to	identify	the	SVG	file	to	use.	The	Feather	Icons	library
completely	replaces	the	element	where	it	found	the	data-feather	attribute.
Therefore,	if	you	want	the	icon	to	be	a	clickable	link,	it's	necessary	to
wrap	the	icon	definition	with	an	<a>	tag,	rather	than	adding	data-feather	to
the	<a>	tag.	The	next	section	shows	an	example.

Responsive	page	header
navigation	bar
The	header	section	we	designed	before	contains	a	page	title	and	a	little
navigation	bar.	Bootstrap	has	several	ways	to	spiff	this	up,	and	even	give
us	a	responsive	navigation	bar	which	neatly	collapses	to	a	menu	on	small
devices.

In	views/pageHeader.ejs,	make	this	change:

<header	class="page-header">

<h1>{{	title	}}</h1>

<nav	class="navbar	navbar-expand-md	navbar-dark	bg-dark">

		<i	data-feather="home"><i>

		<button	class="navbar-toggler"	type="button"	

					data-toggle="collapse"	data-target="#navbarSupportedContent"

					aria-controls="navbarSupportedContent"	

					aria-expanded="false"	aria-label="Toggle	navigation">

					

		</button>

		<div	class="collapse	navbar-collapse"	id="navbarSupportedContent">

					<div	class="navbar-nav	col">

					{{#if	breadcrumb}}

					

					{{breadcrumb.title}}

					{{/if}}

					</div>

					<a	class="nav-item	nav-link	btn	btn-light	col-auto"

																			href='notesadd'>ADD	Note

		</div>

</nav>

</header>

Adding	class="page-header"	informs	Bootstrap	this	is,	well,	the	page	header.
Within	that	we	have	the	<h1>	header	as	before,	giving	the	page	title,	and
then	a	responsive	Bootstrap	navbar.

By	default	the	navbar	is	expanded—meaning	the	components	inside	the
navbar	are	visible—because	of	the	navbar-expand-md	class.	This	navbar	is	using
a	navbar-toggler	button	which	governs	the	responsiveness	of	the	navbar.	By
default,	this	button	is	hidden	and	the	body	of	the	navbar	is	visible.	If	the
screen	is	small	enough,	the	navbar-toggler	is	switched	so	it's	visible,	the
body	of	the	navbar	is	invisible,	and	when	clicking	on	the	now-visible	navbar-
toggler,	a	menu	drops	down	containing	the	body	of	the	navbar:

We	chose	the	feather	icons	home	icon	because	it	says	go	home.	It's
intended	that	the	middle	portion	of	the	navbar	will	contain	a	breadcrumb	as
we	navigate	around	the	Notes	application.	

The	ADD	Note	button	is	glued	to	the	right-hand-side	with	a	little	Flexbox
magic.	The	container	is	a	Flexbox,	meaning	we	can	use	the	Bootstrap
classes	to	control	the	space	consumed	by	each	item.	The	breadcrumb	area
is	empty	in	this	case,	but	the	<div>	that	would	contain	it	is	there	and
declared	with	class="col",	meaning	that	it	takes	up	a	column	unit.	The	ADD
Note	button	is,	on	the	other	hand,	declared	with	class="col-auto",	meaning	it
takes	up	only	the	room	required	for	itself.	It	is	the	empty	breadcrumb	area
that	will	expand	to	fill	the	space,	while	the	ADD	Note	button	fills	only	its
own	space,	and	is	therefore	pushed	over	to	the	side.

Because	it's	the	same	application,	the	functionality	all	works;	we're	simply
working	on	the	presentation.	We've	added	a	few	notes	but	the	presentation
of	the	list	on	the	front	page	leaves	a	lot	to	be	desired.	The	small	size	of	the
title	is	not	very	touch-friendly,	since	it	doesn't	present	a	large	target	area

for	a	fingertip.	And	can	you	explain	why	the	notekey	value	has	to	be
displayed	on	the	home	page?		

Improving	the	Notes	list	on	the
front	page
The	current	home	page	has	a	simple	text	list	that's	not	terribly	touch-
friendly	and	showing	the	key	at	the	front	of	the	line	might	be	inexplicable
to	the	user.	Let's	fix	this.

Edit	views/index.hbs	and	make	this	change:

<div	class="container-fluid">

		<div	class="row">

				<div	class="col-12	btn-group-vertical"	role="group">

						{{#each	notelist}}

						<a	class="btn	btn-lg	btn-block	btn-outline-dark"	

										href="notesview?key={{	key	}}">{{	title	}}

						{{/each}}

				</div>

		</div>

</div>

The	first	change	is	to	switch	away	from	using	a	list	and	to	use	a	vertical
button	group.	By	making	the	text	links	look	and	behave	like	buttons,	we're
improving	the	user	interface,	especially	its	touch	friendliness.	We	chose
the	btn-outline-dark	button	style	because	it	looks	good	in	the	user	interface.
We	use	large	buttons	(btn-lg)	that	fill	the	width	of	the	container	(btn-block).

We	eliminated	showing	the	notekey	to	the	user.	This	information	doesn't
add	anything	to	the	user	experience:

This	is	beginning	to	take	shape,	with	a	decent-looking	home	page	that
handles	resizing	very	nicely	and	is	touch	friendly.	

There's	still	something	more	to	do	with	this,	since	the	header	area	is	taking
up	a	fair	amount	of	space.	We	should	always	feel	free	to	rethink	a	plan	as
we	look	at	intermediate	results.	Earlier,	we	created	one	design	for	the
header	area,	but	on	reflection	that	design	looks	to	be	too	large.	The
intention	had	been	to	insert	a	breadcrumb	just	to	the	right	of	the	home
icon,	and	to	leave	the	<h1>	title	at	the	top	of	the	header	area.	But	this	is
taking	up	vertical	space	and	we	can	tighten	up	the	header	and	possibly
improve	the	appearance.

Edit	partials/header.hbs	and	replace	it	with	the	following:

<header	class="page-header">

<nav	class="navbar	navbar-expand-md	navbar-dark	bg-dark">

	<i	data-feather="home"></i>

	<button	class="navbar-toggler"	type="button"	

	data-toggle="collapse"	data-target="#navbarSupportedContent"

	aria-controls="navbarSupportedContent"

		aria-expanded="false"

	aria-label="Toggle	navigation">

					

	</button>

	<div	class="collapse	navbar-collapse"	id="navbarSupportedContent">

	{{	title	}}

	ADD	

Note

	</div>

</nav>

</header>

This	removes	the	<h1>	tag	at	the	top	of	the	header	area,	immediately
tightening	the	presentation.	

Within	the	navbar-collapse	area,	we've	replaced	what	had	been	intended	as
the	breadcrumb,	with	a	simple	navbar-text	component.	To	keep	the	ADD
Note	button	glued	to	the	right,	we're	maintaining	the	class="col"	and
class="col-auto"	settings:

Which	header	area	design	is	better?	That's	a	good	question.	Since	beauty
is	in	the	eye	of	the	beholder,	both	designs	are	probably	equally	good.	What
we	have	demonstrated	is	the	ease	with	which	we	can	update	the	design	by
editing	the	template	files.

Cleaning	up	the	Note	viewing
experience
Viewing	a	Note	isn't	bad,	but	the	user	experience	can	be	improved.	The
user	does	not	need	to	see	the	notekey,	for	example.	
Additionally,	Bootstrap	has	nicer-looking	buttons	we	can	use.

In	views/noteview.hbs,	make	these	changes:

<div	class="container-fluid">

				<div	class="row"><div	class="col-xs-12">

								{{#if	note}}<h3>{{	note.title	}}</h3>{{/if}}

								{{#if	note}}<p>{{	note.body	}}</p>{{/if}}

								<p>Key:	{{	notekey	}}</p>

				</div></div>

				{{#if	notekey	}}

								<div	class="row"><div	class="col-xs-12">

								<div	class="btn-group">

												<a	class="btn	btn-outline-dark"	

																href="notesdestroy?key={{notekey}}"	

																role="button">Delete

												<a	class="btn	btn-outline-dark"	

																href="notesedit?key={{notekey}}"	

																role="button">Edit

								</div>

								</div></div>

				{{/if}}

</div>

We	have	declared	two	rows,	one	for	the	Note,	and	another	for	buttons	to
act	on	the	Note.	Both	are	declared	to	consume	all	12	columns,	and
therefore	take	up	the	full	available	width.	The	buttons	are	again	contained
within	a	button	group:

Do	we	really	need	to	show	the	notekey	to	the	user?		We'll	leave	it	there,
but	that's	an	open	question	for	the	user	experience	team.	Otherwise,	we've
improved	the	note-reading	experience.

Cleaning	up	the	add/edit	note
form
The	next	major	glaring	problem	is	the	form	for	adding	and	editing	notes.
As	we	said	earlier,	it's	easy	to	get	the	text	input	area	to	overflow	a	small
screen.	On	the	other	hand,	Bootstrap	has	extensive	support	for	making
nice-looking	forms	that	work	well	on	mobile	devices.

Change	the	form	in	views/noteedit.hbs	to	this:

<form	method='POST'	action='notessave'>

		<div	class="container-fluid">

				{{#if	docreate}}

						<input	type='hidden'	name='docreate'	value="create">

				{{else}}

						<input	type='hidden'	name='docreate'	value="update">

				{{/if}}

				<div	class="form-group	row	align-items-center">

						<label	for="notekey"	class="col-1	col-form-label">Key</label>

						{{#if	docreate	}}

								<div	class="col">

										<input	type='text'	class="form-control"	

																	placeholder="note	key"	name='notekey'	value=''/>	

								</div>

						{{else}}	

								{{#if	note	}}

										{{notekey}}

								{{/if}}	

								<input	type='hidden'	name='notekey'

															value='{{#if	note	}}{{notekey}}{{/if}}	'/>	

						{{/if}}	

				</div>	

				<div	class="form-group	row">

						<label	for="title"	class="col-1	col-form-label">Title</label>

						<div	class="col">

								<input	type="text"	class="form-control"	

															id='title'	name='title'	placeholder="note	title"	

															value='{{#if	note	}}{{note.title}}{{/if}}'>

						</div>

				</div>

				<div	class="form-group	row">

						<textarea	class="form-control"	name='body'	

																rows="5">{{#if	note	}}{{note.body}}{{/if}}</textarea>

				</div>

				<button	type="submit"	class="btn	btn-default">Submit</button>

	</div>

</form>

There's	a	lot	going	on	here.	What	we've	done	is	reorganize	the	form	so
Bootstrap	can	do	the	right	things	with	it.	The	first	thing	to	note	is	that	we
have	several	instances	of	this:

<div	class="form-group	row">	..	</div>	

These	are	contained	within	a	container-fluid,	meaning	that	we've	set	up
three	rows	in	the	form.	

Bootstrap	uses	form-group	elements	to	add	structure	to	forms,	and	to
encourage	proper	use	of	<label>	elements,	along	with	other	form	elements.
It's	good	practice	to	use	a	<label>	with	every	<input>	to	improve	assistive
behavior	in	the	browser,	rather	than	if	you	simply	left	some	dangling	text.	

Every	form	element	has	class="form-control".	Bootstrap	uses	this	to	identify
the	controls	so	it	can	add	styling	and	behavior.

By	default,	Bootstrap	formats	form-group	elements	so	the	label	appears	on
another	line	from	the	input	control.	Note	that	we've	added	class="col-1"	to
the	labels	and	class="col"	to	the	<div>	wrapping	the	input.	This	declares	two
columns,	the	first	consuming	one	column	unit	and	the	other	consuming	the
remainder.

The	placeholder='key'	attribute	puts	sample	text	in	an	otherwise	empty	text
input	element.	It	disappears	as	soon	as	the	user	types	something	and	is	an
excellent	way	to	prompt	the	user	with	what's	expected.

Finally,	we	changed	the	Submit	button	to	be	a	Bootstrap	button.	These

look	nice,	and	Bootstrap	makes	sure	that	they	work	great:

The	result	looks	good	and	works	well	on	the	iPhone.	It	automatically	sizes
itself	to	whatever	screen	it's	on.	Everything	behaves	nicely.	In	this
screenshot,	we've	resized	the	window	small	enough	to	cause	the	navbar	to
collapse.	Clicking	on	the	so-called	hamburger	icon	on	the	right	(the	three
horizontal	lines)	causes	the	navbar	contents	to	pop	up	as	a	menu.

Cleaning	up	the	delete-note
window
The	window	used	to	verify	the	desire	to	delete	a	Note	doesn't	look	bad,	but
it	can	be	improved.

Edit	views/notedestroy.hbs	to	contain	the	following:

<form	method='POST'	action='notesdestroy/confirm'>

		<div	class="container-fluid">

	<input	type='hidden'	name='notekey'	value='{{#if	note}}{{notekey}}{{/if}}'>

	<p	class="form-text">Delete	{{note.title}}?</p>

	<div	class="btn-group">

	<button	type="submit"	value='DELETE'	

	class="btn	btn-outline-dark">DELETE</button>

	<a	class="btn	btn-outline-dark"	

	href="notesview?key={{#if	note}}{{notekey}}{{/if}}"	

														role="button">

									Cancel

	</div>

		</div>

</form>

We've	reworked	everything	to	use	Bootstrap	form	goodness.	The	question
about	deleting	the	Note	is	wrapped	with	class="form-text"	so	that	Bootstrap
can	display	this	properly.

The	buttons	are	wrapped	with	class="btn-group"	as	before.	The	buttons	have
exactly	the	same	styling	as	on	other	screens,	giving	a	consistent	look
across	the	application:

There	is	an	issue	that	the	title	text	in	the	navbar	does	not	use	the	word
Delete.	In	routes/notes.js,	we	can	make	this	change:

//	Ask	to	Delete	note	(destroy)

router.get('/destroy',	async	(req,	res,	next)	=>	{

	var	note	=	await	notes.read(req.query.key);

	res.render('notedestroy',	{

	title:	note	?	`Delete	${note.title}`	:	"",

	notekey:	req.query.key,	note:	note

		});

});

What	we've	done	is	changed	the	title	parameter	passed	to	the	template.
We'd	done	this	in	the	notesedit	route	handler	and	seemingly	missed	doing
so	in	this	handler.

Building	a	customized
Bootstrap
One	reason	to	use	Bootstrap	is	that	you	can	easily	build	a	customized
version.	Stylesheets	are	built	using	SASS,	which	is	one	of	the	CSS
preprocessors	to	simplify	CSS	development.	In	Bootstrap's	code,	one	file
(scss/_variables.scss)	contains	variables	used	throughout	the	rest	of
Bootstrap's	.scss	files.	Change	one	variable	and	it	can	automatically	affect
the	rest	of	Bootstrap.

Earlier,	we	overrode	a	couple	of	Bootstrap	behaviors	with	our	custom	CSS
file,	public/stylesheets/style.css.	This	is	an	easy	way	to	change	a	couple	of
specific	things,	but	it	doesn't	work	for	large-scale	changes	to	Bootstrap.
Serious	Bootstrap	customization	requires	generating	a	customized
Bootstrap	build.	

The	official	documentation	on	the	Bootstrap	website	(http://getbootstrap.com
/docs/4.1/getting-started/build-tools/)	is	useful	for	reference	on	the	build
process.

If	you've	followed	the	directions	given	earlier,	you	have	a
directory,	chap06/notes,	containing	the	Notes	application	source	code.	Create
a	directory	named	chap06notestheme,	within	which	we'll	set	up	a	custom
Bootstrap	build	process.	

As	students	of	the	Twelve	Factor	Application	model,	we'll	be	using
a	package.json	in	that	directory	to	automate	the	build	process.	There	isn't
any	Node.js	code	involved;	npm	is	also	a	convenient	tool	to	automate	the
software	build	processes.

To	start,	download	the	Bootstrap	source	tree	from	https://github.com/twbs/boo
tstrap.	While	the	Bootstrap	npm	package	includes	SASS	source	files,	it

http://getbootstrap.com/docs/4.1/getting-started/build-tools/
https://github.com/twbs/bootstrap

isn't	sufficient	to	build	Bootstrap,	and	therefore	one	must	download	the
source	tree.	What	we	do	is	navigate	to	the	GitHub	repository,	click	on	the
Releases	tab,	and	select	the	URL	for	the	most	recent	release.

With	theme/package.json	containing	this	scripts	section:

{

	"scripts":	{

	"download":	"wget	-O	-	

https://github.com/twbs/bootstrap/archive/v4.1.0.tar.gz	|	tar	xvfz	-",

				"postdownload":	"cd	bootstrap-4.1.0	&&	npm	install"

		}

}

Type	this	command:

$	npm	run	download

This	downloads	the	tar-gzip	(tarball)	archive	from	the	Bootstrap	repository
and	immediately	unpacks	it.	If	you	are	on	Windows,	it	will	be	easiest	to
run	that	script	in	Windows	Subsystem	for	Linux	to	execute	these
commands.	After	downloading	and	unpacking	the	archive,	the	postdownload
step	runs	npm	install	in	the	directory.	The	Bootstrap	team	uses	their
package.json,	not	only	to	track	all	the	dependencies	required	to	build
Bootstrap,	but	to	drive	the	build	process.	

The	npm	install	for	Bootstrap	will	take	a	long	time,	so	be	patient.

This	much	only	installs	the	tools	necessary	to	build	Bootstrap.	Building
the	Bootstrap	documentation	requires	installing	additional	Ruby-based
tools	(Jekyll	and	some	plugins).	

To	build	Bootstrap,	let's	add	the	following	lines	to	the	scripts	section	in	our
theme/package.json:

"scripts":	{

...

	"build":	"cd	bootstrap-4.1.0	&&	npm	run	dist",

	"watch":	"cd	bootstrap-4.1.0	&&	npm	run	watch"

...

}

Obviously	you'll	need	to	adjust	the	directory	name	as	the	Bootstrap	project
issues	new	releases.	In	the	Bootstrap	source	tree,	running	npm	run	dist

builds	Bootstrap,	while	npm	run	watch	sets	up	an	automated	process	to	scan

for	changed	files	and	rebuilds	Bootstrap	upon	changing	any	file.	By
adding	these	lines	to	our	theme/package.json,	we	can	start	this	in	the	terminal

and	it	automatically	reruns	the	build	as	needed.

Now	run	a	build	with	this	command:

$	npm	run	build

The	built	files	land	in	the	theme/bootstrap-4.1.0/dist	directory.	The	content	of
that	directory	will	match	the	contents	of	the	corresponding	npm	package.

In	case	it	hasn't	been	obvious	all	along—there	are	Bootstrap	version
numbers	embedded	in	these	URLs	and	file	or	directory	names.	As	new
Bootstrap	releases	are	issued,	you	must	adjust	the	pathnames	to	match	the
current	version	number.	

Before	proceeding,	let's	take	a	look	around	the	Bootstrap	source	tree.	The
scss	directory	contains	the	SASS	source	that	will	be	compiled	into	the
Bootstrap	CSS	files.	To	generate	a	customized	Bootstrap	build	will	require
a	few	modifications	in	that	directory.

The	bootstrap-4.1.0/scss/bootstrap.scss	file	contains	@import	directives	to	pull
in	all	Bootstrap	components.	The	file	bootstrap-
4.1.0/scss/_variables.scss	contains	definitions	used	in	the	remainder	of	the
Bootstrap	SASS	source.	Editing,	or	overriding,	these	values	will	change
the	look	of	websites	using	the	resulting	Bootstrap	build.

For	example,	these	definitions	determine	the	main	color	values:

$white:	#fff	!default;

$gray-100:	#f8f9fa	!default;

...

$gray-800:	#343a40	!default;

...

$blue:	#007bff	!default;

...

$red:	#dc3545	!default;

$orange:	#fd7e14	!default;

$yellow:	#ffc107	!default;

$green:	#28a745	!default;

...

$primary:	$blue	!default;

$secondary:	$gray-600	!default;

$success:	$green	!default;

$info:	$cyan	!default;

$warning:	$yellow	!default;

$danger:	$red	!default;

$light:	$gray-100	!default;

$dark:	$gray-800	!default;

These	are	similar	to	CSS	statements.	The	!default	attribute	designates	these
values	as	the	default.	Any	!default	values	can	be	overridden	without
editing	_values.scss.

Create	a	file,	theme/_custom.scss,	containing	the	following:

$white:	#fff	!default;

$gray-900:	#212529	!default;

$body-bg:	$gray-900	!default;

$body-color:	$white	!default;

This	reverses	the	values	for	the	$body-bg	and	$body-color	settings	in
_variables.scss.	The	Notes	app	will	now	use	white	text	on	a	dark
background,	rather	than	the	default	white	background	with	dark	text.
Because	these	declarations	do	not	use	!default,	they'll	override	the	values
in	_variables.scss.

Then	make	a	copy	of	scss/bootstrap.scss	in	the	theme	directory	and	modify
it,	like	so:

@import	"custom";

@import	"functions";

@import	"variables";

...

We're	importing	the	_custom.scss	file	we	just	created.	Finally,	add	this	line	to
the	scripts	section	of	theme/package.json:

	"prebuild":	"cp	_custom.scss	bootstrap.scss	bootstrap-4.1.0/scss",

With	that	in	place,	before	building	Bootstrap	these	two	files	will	be	copied
in	place.	Next,	rebuild	Bootstrap:

$	npm	run	build

>	@	prebuild	UsersDavid/chap06notestheme

>	cp	_custom.scss	bootstrap.scss	bootstrap-4.1.0/scss

>	@	build	UsersDavid/chap06notestheme

>	cd	bootstrap-4.1.0	&&	npm	run	dist

...

While	that's	building,	let's	modify	notes/app.js	to	mount	the	build	directory:

//	app.use('assetsvendor/bootstrap',	express.static(

//	path.join(__dirname,	'node_modules',	'bootstrap',	'dist')));	

app.use('assetsvendor/bootstrap',	express.static(

	path.join(__dirname,	'theme',	'bootstrap-4.1.0',	'dist')));	

What	we've	done	is	switch	from	the	Bootstrap	in	node_modules	to	what	we
just	built	in	the	theme	directory.	The	Bootstrap	version	number	shows	up
here,	so	this	must	also	be	updated	as	new	Bootstrap	releases	are	adopted.

Then	reload	the	application,	and	you'll	see	the	following:

To	get	exactly	this,	you	may	need	to	make	a	change	in	the	templates.	The
Button	elements	we	used	earlier	have	the	btn-outline-dark	class,	which
works	well	on	a	light	background.	The	background	is	now	dark	and	these
buttons	need	to	use	light	coloring.	

To	change	the	buttons,	in	views/index.hbs	make	this	change:

<a	class="btn	btn-lg	btn-block	btn-outline-light"	

	href="notesview?key={{	key	}}">	{{	title	}}	

Make	a	similar	change	in	views/noteview.hbs:

<a	class="btn	btn-outline-light"	href="notesdestroy?key={{notekey}}"	

	role="button">	Delete	

<a	class="btn	btn-outline-light"	href="notesedit?key={{notekey}}"	

	role="button">	Edit	

That's	cool,	we	can	now	rework	the	Bootstrap	color	scheme	any	way	we
want.	Don't	show	this	to	your	user	experience	team,	because	they'll	throw
a	fit.	We	did	this	to	prove	the	point	that	we	can	edit	_custom.scss	and	change
the	Bootstrap	theme.

Prebuilt	custom	Bootstrap
themes
If	all	this	is	too	complicated	for	you,	several	websites	provide	prebuilt
Bootstrap	themes,	or	else	simplified	tools	to	generate	a	Bootstrap	build.	To
get	our	feet	wet,	let's	download	a	theme	from	Bootswatch	(https://bootswatc
h.com/).	This	is	both	a	collection	of	free	and	open	source	themes	and	a	build
system	for	generating	custom	Bootstrap	themes	(https://github.com/thomaspar
k/bootswatch/).

Let's	use	the	Minty	theme	from	Bootswatch	to	explore	the	needed
changes.	You	can	download	the	theme	from	the	website	or	add	the
following	to	the	scripts	section	of	package.json:

"dl-minty":	"mkdir	-p	minty	&&	npm	run	dl-minty-css	&&	npm	run	dl-minty-min-

css",

"dl-minty-css":	"wget	https://bootswatch.com/4/minty/bootstrap.css	-O	

minty/bootstrap.css",

"dl-minty-min-css":	"wget	https://bootswatch.com/4/minty/bootstrap.min.css	-O	

minty/bootstrap.min.css"		

This	will	download	the	prebuilt	CSS	files	for	our	chosen	theme.	In
passing,	notice	that	the	Bootswatch	website	offers	_variables.scss	and
_bootswatch.scss	files	which	should	be	usable	with	a	workflow	similar	to
what	we	implemented	in	the	previous	section.	The	GitHub	repository
matching	the	Bootswatch	website	has	a	complete	build	procedure	for
building	custom	themes.

Perform	the	download:

$	npm	run	dl-minty

>	notes@0.0.0	dl-minty	UsersDavid/chap06/notes

https://bootswatch.com/
https://github.com/thomaspark/bootswatch/

>	mkdir	-p	minty	&&	npm	run	dl-minty-css	&&	npm	run	dl-minty-min-css

>	notes@0.0.0	dl-minty-css	UsersDavid/chap06/notes

>	wget	https://bootswatch.com/4/minty/bootstrap.css	-O	minty/bootstrap.css

>	notes@0.0.0	dl-minty-min-css	UsersDavid/chap06/notes

>	wget	https://bootswatch.com/4/minty/bootstrap.min.css	-O	

minty/bootstrap.min.css

In	app.js	we	will	need	to	change	the	Bootstrap	mounts	to	separately	mount
the	JavaScript	and	CSS	files.	Use	the	following:

//	app.use('assetsvendor/bootstrap',	express.static(

//	path.join(__dirname,	'node_modules',	'bootstrap',	'dist')));	

//	app.use('assetsvendor/bootstrap',	express.static(

//	path.join(__dirname,	'theme',	'bootstrap-4.0.0',	'dist')));	

app.use('assetsvendor/bootstrap/js',	express.static(

		path.join(__dirname,	'node_modules',	'bootstrap',	'dist',	'js')));	

app.use('assetsvendor/bootstrap/css',	express.static(

		path.join(__dirname,	'minty')));

Instead	of	one	mount	for	vendorbootstrap,	we	now	have	two	mounts	for	each
of	the	subdirectories.	Simply	make	the	vendorbootstrap/css	mount	point	to	a
directory	containing	the	CSS	files	you	downloaded	from	the	theme
provider.

Because	Minty	is	a	light-colored	theme,	the	buttons	need	to	use	the	dark
style.	We	had	earlier	changed	the	buttons	to	use	a	light	style	because	of	the
dark	background.	We	must	now	switch	from	btn-outline-light	back	to	btn-
outline-dark.	In	partials/header.hbs,	the	color	scheme	requires	a	change	to	the
navbar	content:

<div	class="collapse	navbar-collapse"	id="navbarSupportedContent">

	{{	title	}}

	ADD	

Note

</div>

We	selected	text-dark	and	btn-dark	classes	to	provide	some	contrast	against
the	background.

Re-run	the	application	and	you'll	see	something	like	this:

Summary
The	possibilities	for	using	Bootstrap	are	endless.	While	we	covered	a	lot
of	material,	we	only	touched	the	surface,	and	we	could	have	done	much
more	to	the	Notes	application.

You	learned	what	the	Twitter	Bootstrap	framework	can	do.	Bootstrap's
goal	is	to	make	mobile-responsive	development	easy.	We	used	Bootstrap
to	make	great	improvements	to	the	way	the	Notes	app	looks	and	feels.	We
customized	Bootstrap,	dipping	our	toes	into	generating	a	custom	theme.

Now,	we	want	to	get	back	to	writing	Node.js	code.	We	left	off	Chapter	5,
Your	First	Express	Application,	with	the	problem	of	persistence	so	that	the
Notes	application	can	be	stopped	and	restarted	without	losing	our	notes.	In
Chapter	7,	Data	Storage	and	Retrieval,	we'll	dive	into	using	databases	to
store	our	data.

To	give	ourselves	some	experience	with	the	ES6	Module	format,	we'll
rewrite	the	Notes	application	accordingly.

Data	Storage	and	Retrieval
In	the	previous	two	chapters,	we	built	a	small	and	somewhat	useful
application	for	storing	notes,	and	then	made	it	work	on	mobile	devices.
While	the	application	works	reasonably	well,	it	doesn't	store	those	notes
anywhere	on	a	long-term	basis,	meaning	the	notes	are	lost	when	you	stop
the	server	and,	if	you	run	multiple	instances	of	Notes,	each	instance	has	its
own	set	of	notes.	The	typical	next	step	is	to	introduce	a	database	tier.	

In	this	chapter,	we	will	look	at	database	support	in	Node.js,	so	the	user
sees	the	same	set	of	notes	for	any	Notes	instance	accessed,	and	to	reliably
store	notes	for	long-term	retrieval.

We'll	start	with	the	Notes	application	code	used	in	the	previous	chapter.
We	started	with	a	simple,	in-memory	data	model	using	an	array	to	store
the	notes,	and	then	made	it	mobile	friendly.	In	this	chapter,	we	will:

Discover	logging	operational	and	debugging	information

Begin	using	the	ES6	module	format

Implement	data	persistence	for	Notes	objects	using	several
database	engines

Let's	get	started!

The	first	step	is	to	duplicate	the	code	from	the	previous	chapter.	For
instance,	if	you	were	working	in	chap06/notes,	duplicate	that	to	be
chap07/notes.

Data	storage	and
asynchronous	code
By	definition,	external	data	storage	systems	require	asynchronous	code	in
the	Node.js	architecture.	The	access	time	to	retrieve	data	from	disk,	from
another	process,	or	from	a	database,	always	takes	sufficient	time	to	require
deferred	execution.	

The	existing	Notes	data	model	is	an	in-memory	data	store.	In	theory,	in-
memory	data	access	does	not	require	asynchronous	code	and	therefore,	the
existing	model	module	could	have	used	regular	functions	rather	than	async
functions.

We	knew	that	Notes	must	move	to	using	databases,	and	would	require	an
asynchronous	API	to	access	Notes	data.	For	that	reason,	the	existing	Notes
model	API	uses	async	functions	so	that	in	this	chapter,	we	can	persist	Note
data	to	databases.

Logging
Before	we	get	into	databases,	we	have	to	address	one	of	the	attributes	of	a
high-quality	software	system:	managing	logged	information,	including
normal	system	activity,	system	errors,	and	debugging	information.	Logs
give	us	an	insight	into	the	behavior	of	the	system.	How	much	traffic	is	it
getting?	If	it's	a	website,	which	pages	are	people	hitting	the	most?	How
many	errors	occur	and	of	what	kind?	Do	attacks	occur?	Are	malformed
requests	being	sent?

Log	management	is	also	an	issue.	Log	rotation	means	regularly	moving
the	log	file	out	of	the	way,	to	start	with	a	fresh	log	file.	You	should	process
logged	data	to	produce	reports.	A	high	priority	on	screening	for	security
vulnerabilities	is	a	must.

The	Twelve	Factor	application	model	suggests	simply	sending	logging
information	to	the	console,	and	then	some	other	software	system	captures
that	output	and	directs	it	to	a	logging	service.	Following	their	advice	can
reduce	system	complexity	by	having	fewer	things	that	can	break.	In	a	later
chapter,	we'll	use	PM2	for	that	purpose.

Let's	first	complete	a	tour	of	information	logging	as	it	stands	right	now	in
Notes.

When	we	used	the	Express	Generator	to	initially	create	the	Notes
application,	it	configured	an	activity	logging	system	using	morgan:

const	logger	=	require('morgan');	

..	

app.use(logger('dev'));	

This	is	what	prints	the	requests	on	the	Terminal	window.	Visit
https://github.com/expressjs/morgan	for	more	information.

https://github.com/expressjs/morgan

Internally,	Express	uses	the	Debug	package	for	debugging	traces.	You	can
turn	these	on	using	the	DEBUG	environment	variable.	We	should	try	to	use
this	package	in	our	application	code.	For	more	information,	visit
https://www.npmjs.com/package/debug.

Finally,	the	application	might	generate	uncaught	exceptions.	The
uncaughtException	error	needs	to	be	captured,	logged,	and	dealt	with
appropriately.

https://www.npmjs.com/package/debug

Request	logging	with	Morgan
The	Morgan	package	has	two	general	areas	for	configuration:

Log	format

Log	location

As	it	stands,	Notes	uses	the	dev	format,	which	is	described	as	a	concise
status	output	meant	for	developers.	This	can	be	used	to	log	web	requests
as	a	way	to	measure	website	activity	and	popularity.	The	Apache	log
format	already	has	a	large	ecosystem	of	reporting	tools	and,	sure	enough,
Morgan	can	produce	log	files	in	this	format.	

To	change	the	format,	simply	change	this	line	in	app.js:

app.use(logger(process.env.REQUEST_LOG_FORMAT	||	'dev'));	

Then	run	Notes	as	follows:

$	REQUEST_LOG_FORMAT=common	npm	start

				

>	notes@0.0.0	start	Usersdavid/chap07/notes

>	node	./bin/www

::1	-	-	[12/Feb/2016:05:51:21	+0000]	"GET		HTTP1.1"	304	-

::1	-	-	[12/Feb/2016:05:51:21	+0000]	"GET	

vendorbootstrap/css/bootstrap.min.css	HTTP/1.1"	304	-

::1	-	-	[12/Feb/2016:05:51:21	+0000]	"GET	stylesheetsstyle.css	HTTP/1.1"	304	

-

::1	-	-	[12/Feb/2016:05:51:21	+0000]	"GET	vendorbootstrap/js/bootstrap.min.js	

HTTP/1.1"	304	-		

To	revert	to	the	previous	logging	output,	simply	do	not	set	this
environment	variable.	If	you've	looked	at	Apache	access	logs,	this	logging

format	will	look	familiar.	The	::1	notation	at	the	beginning	of	the	line	is
IPV6	notation	for	the	localhost,	which	you	may	be	more	familiar	with	as
127.0.0.1.

We	can	declare	victory	on	request	logging	and	move	on	to	debugging
messages.	However,	let's	look	at	logging	this	to	a	file	directly.	While	it's
possible	to	capture	stdout	through	a	separate	process,	Morgan	is	already
installed	in	Notes	and	it	does	provide	the	capability	to	direct	its	output	to	a
file.

The	Morgan	documentation	suggests	this:

//	create	a	write	stream	(in	append	mode)	

var	accessLogStream	=	fs.createWriteStream(__dirname	+	'access.log',	{flags:	

'a'})	

	

/	setup	the	logger	

app.use(morgan('combined',	{stream:	accessLogStream}));	

But	this	has	a	problem;	it's	impossible	to	perform	log	rotation	without
killing	and	restarting	the	server.	Instead,	we'll	use	their	rotating-file-
stream	package.

First,	install	the	package:

$	npm	install	rotating-file-stream	--save		

Then	we	add	this	code	to	app.js:

const	fs	=	require('fs-extra');

...

const	rfs	=	require('rotating-file-stream');

var	logStream;

//	Log	to	a	file	if	requested

if	(process.env.REQUEST_LOG_FILE)	{

		(async	()	=>	{

				let	logDirectory	=	path.dirname(process.env.REQUEST_LOG_FILE);	

				await	fs.ensureDir(logDirectory);

				logStream	=	rfs(process.env.REQUEST_LOG_FILE,	{

								size:	'10M',					//	rotate	every	10	MegaBytes	written

								interval:	'1d',		//	rotate	daily

								compress:	'gzip'	//	compress	rotated	files

				});

		})().catch(err	=>	{	console.error(err);	});

}

..	

app.use(logger(process.env.REQUEST_LOG_FORMAT	||	'dev',	{	

				stream:	logStream	?	logStream	:	process.stdout	

}));	

Here,	we're	using	an	environment	variable,	REQUEST_LOG_FILE,	to	control
whether	to	send	the	log	to	stdout	or	to	a	file.	The	log	can	go	into	a
directory,	and	the	code	will	automatically	create	that	directory	if	it	doesn't
exist.	By	using	rotating-file-stream	(https://www.npmjs.com/package/rotating-file-
stream),	we're	guaranteed	to	have	log	file	rotation	with	no	extra	systems
required.

The	fs-extra	module	is	being	used	because	it	adds	Promise-based	functions
to	the	fs	module	(https://www.npmjs.com/package/fs-extra).	In	this
case,	fs.ensureDir	checks	if	the	named	directory	structure	exists	and,	if	not,
the	directory	path	is	created.	

https://www.npmjs.com/package/rotating-file-stream
https://www.npmjs.com/package/fs-extra

$	DEBUG=express:*	npm	start	

const	debug	=	require('debug')('module-name');	..

debug('some	message');	..

debug(`got	file	${fileName}`);

	

Capturing	stdout	and	stderr
Important	messages	can	be	printed	to	process.stdout	or	process.stderr,	which
can	be	lost	if	you	don't	capture	that	output.	The	Twelve	Factor	model
suggests	using	a	system	facility	to	capture	these	output	streams.	With
Notes,	we'll	use	PM2	for	that	purpose,	which	we'll	cover	in	Chapter	10,
Deploying	Node.js	Applications.

The	logbook	module	(https://github.com/jpillora/node-logbook)	offers	some
useful	capabilities	in	term	of	not	only	capturing	process.stdout	and
process.stderr,	but	sending	that	output	to	useful	places.

	

https://github.com/jpillora/node-logbook

const	error	=	require('debug')('notes:error');

process.on('uncaughtException',	function(err)	{

				error("I've	crashed!!!	-	"+	(err.stack	||	err));	});

..

if	(app.get('env')	===	'development')	{

				app.use(function(err,	req,	res,	next)	{

				//	util.log(err.message);	res.status(err.status	||	500);	error((err.status	||	500)	+'	'+
error.message);	res.render('error',	{

				message:	err.message,	error:	err	});

});

}

..

app.use(function(err,	req,	res,	next)	{

				//	util.log(err.message);	res.status(err.status	||	500);	error((err.status	||	500)	+'	'+
error.message);	res.render('error',	{

				message:	err.message,	error:	{}

});

});

The	debug	package	has	a	convention	we're	following.	For	an	application	with
several	modules,	all	debugger	objects	should	use	the	naming	pattern	app-
name:module-name.	In	this	case,	we	used	notes:error	that	will	be	used	for	all
error	messages.	We	could	also	use	notes:memory-model	or	notes:mysql-model
for	debugging	different	models.

While	we	were	setting	up	the	handler	for	uncaught	exceptions,	it	is	also	a	good
idea	to	add	error	logging	into	the	error	handlers.

Unhandled	Promise	rejections
Using	Promise	and	async	functions	automatically	channels	errors	in	a
useful	direction.		Errors	will	cause	a	Promise	to	flip	into	a	rejected	state,
which	must	eventually	be	handled	in	a	.catch	method.		Since	we're	all
human,	we're	bound	to	forget	to	ensure	that	all	code	paths	handle	their
rejected	Promise's.

Currently,	Node.js	prints	the	following	warning	if	it	detects	an	unhandled
Promise	rejection:	(node:4796)	UnhandledPromiseRejectionWarning:
Unhandled	promise	rejection

The	warning	goes	on	to	say	that	the	default	handler	for	unhandled	Promise
rejection	has	been	deprecated	and	that	such	Promise	rejections	will	crash
the	Node	process	rather	than	print	this	message.	The	built-in	process
module	does	emit	an	event	in	this	case,	so	it's	easy	enough	to	add	a
handler:	import	util	from	'util';
...
process.on('unhandledRejection',	(reason,	p)	=>	{
error(`Unhandled	Rejection	at:	${util.inspect(p)}	reason:	${reason}`);
});

At	the	minimum,	we	can	print	an	error	message	such	as	the	following:

notes:error	Unhandled	Rejection	at:	Promise	{

		notes:error	<rejected>	TypeError:	model(...).keylist	is	not	a	function

		...	full	stack	trace

}	reason:	TypeError:	model(...).keylist	is	not	a	function	+3s

	

Using	the	ES6	module	format
We	wrote	the	Notes	application	using	CommonJS	modules,	the	traditional
Node.js	module	format.	While	the	application	could	continue	using	that
format,	the	JavaScript	community	has	chosen	to	switch	to	ES6	modules	in
both	browser	and	Node.js	code,	and	therefore	it's	important	to	switch	ES6
modules	so	we	can	all	get	on	board	with	a	common	module	format.	Let's
rewrite	the	application	using	ES6	modules,	and	then	write	ES6	modules
for	anything	new	we	add.

The	changes	required	are	large	to	replace	require	statements	with	import
statements,	and	renaming	files	from	foo.js	to	foo.mjs.	Let's	get	started.

	

Rewriting	app.js	as	an	ES6
module
Let's	start	with	app.js,	changing	its	name	to	app.mjs:

$	mv	app.js	app.mjs

Change	the	block	of	require	statements	at	the	top	to	the	following:

import	fs	from	'fs-extra';

import	url	from	'url';

import	express	from	'express';

import	hbs	from	'hbs';

import	path	from	'path';

import	util	from	'util';

import	favicon	from	'serve-favicon';

import	logger	from	'morgan';

import	cookieParser	from	'cookie-parser';

import	bodyParser	from	'body-parser';

import	DBG	from	'debug';

const	debug	=	DBG('notes:debug');	

const	error	=	DBG('notes:error');	

import	{	router	as	index	}	from	'./routes/index';

//	const	users	=	require('./routes/users');

import	{	router	as	notes	}	from	'./routes/notes';	

//	Workaround	for	lack	of	__dirname	in	ES6	modules

const	__dirname	=	path.dirname(new	URL(import.meta.url).pathname);

const	app	=	express();

import	rfs	from	'rotating-file-stream';

Then,	at	the	bottom	of	the	script,	make	this	change:

export	default	app;

Let's	talk	a	little	about	the	workaround	mentioned	here.	There	were	several
global	variables	automatically	injected	by	Node.js	into	CommonJS
modules.	Those	variables	are	not	supported	by	ES6	modules.	The	critical
variable	for	Notes	is	__dirname,	which	is	used	in	app.mjs	in	several	places.
The	code	change	shown	here	includes	a	workaround	based	on	a	brand	new
JavaScript	feature	that	is	available	starting	in	Node.js	10.x,	the
import.meta.url	variable.

The	import.meta	object	is	meant	to	inject	useful	information	into	an	ES6
module.	As	the	name	implies,	the	import.meta.url	variable	contains	the	URL
describing	where	the	module	was	loaded	from.		For	Node.js,	at	this	time,
ES6	modules	can	only	be	loaded	from	a	file://	URL	on	the	local
filesystem.	That	means,	if	we	extract	the	pathname	of	that	URL,	we	can
easily	calculate	the	directory	containing	the	module,	as	shown	here.

Why	this	solution?	Why	not	use	a	pathname	beginning	with	./?		The
answer	is	that	a	./	filename	is	evaluated	relative	to	the	process's	current
working	directory.	That	directory	is	usually	different	from	the	directory
containing	the	Node.js	module	being	executed.		Therefore	it	is	more	than
convenient	that	the	Node.js	team	has	added	the	import.meta.url	feature.

The	pattern	followed	in	most	cases	is	this	change:

const	moduleName	=	require('moduleName');		//	in	CommonJS	modules

import	moduleName	from	'moduleName';							//	in	ES6	modules

Remember	that	Node.js	uses	the	same	module	lookup	algorithm	in	both
ES6	and	CommonJS	modules.	A	Node.js	require	statement	is	synchronous,
meaning	that	by	the	time	require	finishes,	it	has	executed	the	module	and	is
returning	its	module.exports.	By	contrast,	an	ES6	module	is	asynchronous,
meaning	the	module	may	not	have	finished	loading,	and	you	can	import
just	the	required	bits	of	the	module.

Most	of	the	module	imports	shown	here	are	for	regular	Node.js	modules
installed	in	the	node_modules	directory,	most	of	which	are	CommonJS
modules.	The	rule	for	using	import	with	a	CommonJS	module	is	that	the
module.exports	object	is	treated	as	if	it	were	the	default	export.	The

import	statement	shown	earlier	name	the	default	export	(or	the	module.exports
object)	as	shown	in	the	import	statement.	For	a	CommonJS	module
imported	this	way,	you	then	use	it	as	you	would	in	a	CommonJS	context,
moduleName.functionName().

The	usage	of	the	debug	module	is	effectively	the	same,	but	is	coded
differently.	In	the	CommonJS	context,	we're	told	to	use	that	module	as
follows:

const	debug	=	require('debug')('notes:debug');	

const	error	=	require('debug')('notes:error');	

In	other	words,	the	module.exports	of	this	module	is	a	function,	which	we
immediately	invoke.	There	isn't	a	syntax	for	ES6	modules	to	use	the	debug
module	in	that	fashion.	Therefore,	we	had	to	break	it	apart	as	shown,	and
explicitly	call	that	function.

The	final	point	of	discussion	is	the	import	of	the	two	router	modules.	It	was
first	attempted	to	have	those	modules	export	the	router	as	the	default	value,
but	Express	threw	an	error	in	that	case.	Instead,	we'll	rewrite	these
modules	to	export	router	as	a	named	export	and	then	use	that	named	export
as	shown	here.

Rewriting	bin/www	as	an	ES6
module
Remember	that	bin/www	is	a	script	used	to	launch	the	application.	It	is
written	as	a	CommonJS	script,	but	because	app.mjs	is	now	an	ES6
module,	bin/www	also	must	be	rewritten	as	an	ES6	module.	A	CommonJS
module	cannot,	at	the	time	of	writing,	import	an	ES6	module.

Change	the	filename:

$	mv	bin/www	bin/www.mjs

Then,	at	the	top,	change	the	require	statements	to	import	statements:

import	app	from	'../app.mjs';

import	DBG	from	'debug';

const	debug	=	DBG('notes:server-debug');	

const	error	=	DBG('notes:server-error');	

import	http	from	'http';

We've	already	discussed	everything	here	except	that	app.mjs	exports	its	app
object	as	the	default	export.	Therefore,	we	use	it	as	shown	here.

Rewriting	models	code	as	ES6
modules
The	models	directory	contains	two	modules:	Note.js	defines	the	Note	class,
and	notes-memory.js	contains	an	in-memory	data	model.	Both	are	easy	to
convert	to	ES6	modules.

Change	the	filenames:

$	cd	models

$	mv	Note.js	Note.mjs

$	mv	notes-memory.js	notes-memory.mjs

In	Note.mjs,	simply	make	the	following	change:

export	default	class	Note	{

		...

}

This	makes	the	Note	class	the	default	export.	

Then,	in	notes-memory.mjs,	make	the	following	change:

import	Note	from	'./Note';

var	notes	=	[];

async	function	crupdate(key,	title,	body)	{

	notes[key]	=	new	Note(key,	title,	body);

	return	notes[key];

}

export	function	create(key,	title,	body)	{	return	crupdate(key,	title,	body);	

}

export	function	update(key,	title,	body)	{	return	crupdate(key,	title,	body);	

}

export	async	function	read(key)	{

	if	(notes[key])	return	notes[key];

	else	throw	new	Error(`Note	${key}	does	not	exist`);

}

export	async	function	destroy(key)	{

		if	(notes[key])	{

	delete	notes[key];

		}	else	throw	new	Error(`Note	${key}	does	not	exist`);

}

export	async	function	keylist()	{	return	Object.keys(notes);	}

export	async	function	count()	{	return	notes.length;	}

export	async	function	close()	{	}

This	is	a	straightforward	transliteration	of	assigning	functions	to
module.exports	to	using	named	exports.

By	defining	the	Note	class	as	the	default	export	of	the	Note.mjs	module,	it
imports	nicely		into	any	module	using	that	class.

Rewriting	router	modules	as
ES6	modules
The	routes	directory	contains	two	router	modules.	As	it	stands,	each	router
module	creates	a	router	object,	adds	route	functions	to	that	object,	and	then
assigns	it	to	the	module.exports	field.	That	suggests	we	should	export	the
router	as	the	default	export,	but	as	we	said	earlier,	that	didn't	work	out
right.	Instead,	we'll	export	router	as	a	named	export.

Change	the	filenames:

$	cd	routes

$	mv	index.js	index.mjs

$	mv	notes.js	notes.mjs

Then,	at	the	top	of	each,	change	the	require	statement	block	to	the
following:

import	util	from	'util';

import	express	from	'express';

import	*	as	notes	from	'../models/notes-memory';

export	const	router	=	express.Router();

It	will	be	the	same	in	both	files.	Then,	at	the	bottom	of	each	file,	delete	the
line	assigning	router	to	module.exports.

Let's	turn	to	app.mjs	and	change	how	the	router	modules	are	imported.

Because	router	is	a	named	export,	by	default	you'd	import	the	router	object,
in	app.mjs,	as	follows:

import	{	router	}	from	'./routes/index';

But	then	we'd	have	a	conflict	since	both	modules	define	a	router	object.
Instead,	we	changed	the	name	of	this	object	using	an	as	clause:

import	{	router	as	index	}	from	'./routes/index';

import	{	router	as	notes	}	from	'./routes/notes';	

The	router	object	from	each	module	is	hence	given	a	suitable	name.

Storing	notes	in	the	filesystem
The	filesystem	is	an	often	overlooked	database	engine.	While	filesystems
don't	have	the	sort	of	query	features	supported	by	database	engines,	they
are	a	reliable	place	to	store	files.	The	notes	schema	is	simple	enough	that
the	filesystem	can	easily	serve	as	its	data	storage	layer.

Let's	start	by	adding	a	function	to	Note.mjs:

export	default	class	Note	{

			...

			get	JSON()	{	

						return	JSON.stringify({	

								key:	this.key,	title:	this.title,	body:	this.body	

						});	

			}

			static	fromJSON(json)	{	

							var	data	=	JSON.parse(json);	

							var	note	=	new	Note(data.key,	data.title,	data.body);	

							return	note;	

			}	

}

JSON	is	a	getter,	which	means	it	gets	the	value	of	the	object.	In	this	case,
the	note.JSON	attribute/getter,	no	parentheses,	will	simply	give	us	the	JSON
representation	of	the	Note.	We'll	use	this	later	for	writing	to	JSON	files.

fromJSON	is	a	static	function,	or	factory	method,	to	aid	in	constructing	Note
objects	if	we	have	a	JSON	string.	The	difference	is	that	JSON	is	associated
with	an	instance	of	the	Note	class,	while	fromJSON	is	associated	with	the	class
itself.	The	two	can	be	used	as	follows:

const	note	=	new	Note("key",	"title",	"body");	

const	json	=	note.JSON;				//	produces	JSON	text

const	newnote	=	Note.fromJSON(json);	//	produces	new	Note	instance

Now,	let's	create	a	new	module,	models/notes-fs.mjs,	to	hold	the	filesystem
model:

import	fs	from	'fs-extra';

import	path	from	'path';

import	util	from	'util';

import	Note	from	'./Note';

import	DBG	from	'debug';

const	debug	=	DBG('notes:notes-fs');

const	error	=	DBG('notes:error-fs');

async	function	notesDir()	{	

				const	dir	=	process.env.NOTES_FS_DIR	||	"notes-fs-data";	

				await	fs.ensureDir(dir);

				return	dir;

}	

function	filePath(notesdir,	key)	{	return	path.join(notesdir,	`${key}.json`);	

}	

async	function	readJSON(notesdir,	key)	{	

				const	readFrom	=	filePath(notesdir,	key);	

				var	data	=	await	fs.readFile(readFrom,	'utf8');

				return	Note.fromJSON(data);

}

The	notesDir	function	will	be	used	throughout	notes-fs	to	ensure	that	the
directory	exists.	To	make	this	simple,	we're	using	the	fs-extra	module
because	it	adds	Promise-based	functions	to	the	fs	module
(https://www.npmjs.com/package/fs-extra).	In	this	case,	fs.ensureDir	verifies
whether	the	named	directory	structure	exists,	and,	if	not,	the	directory	path
is	created.	

The	environment	variable,	NOTES_FS_DIR,	configures	a	directory	within	which
to	store	notes.	We'll	have	one	file	per	note	and	store	the	note	as	JSON.	If
no	environment	variable	is	specified,	we'll	fall	back	on	using	notes-fs-data
as	the	directory	name.

Because	we're	adding	another	dependency:

$	npm	install	fs-extra	--save	

https://www.npmjs.com/package/fs-extra

The	filename	for	each	data	file	is	the	key	with	.json	appended.	That	gives
one	limitation	that	filenames	cannot	contain	the	/	character,	so	we	test	for
that	using	the	following	code:

async	function	crupdate(key,	title,	body)	{	

				var	notesdir	=	await	notesDir();

				if	(key.indexOf('/')	>=	0)	

								throw	new	Error(`key	${key}	cannot	contain	'/'`);	

				var	note	=	new	Note(key,	title,	body);	

				const	writeTo	=	filePath(notesdir,	key);	

				const	writeJSON	=	note.JSON;	

				await	fs.writeFile(writeTo,	writeJSON,	'utf8');

				return	note;

}

export	function	create(key,	title,	body)	{	return	crupdate(key,	title,	body);	

}

export	function	update(key,	title,	body)	{	return	crupdate(key,	title,	body);	

}

As	is	the	case	with	the	notes-memory	module,	the	create	and	update	functions
use	the	exact	same	code.	The	notesDir	function	is	used	to	ensure	that	the
directory	exists,	then	we	create	a	Note	object,	and	then	write	the	data	to	a
file.	

Notice	how	the	code	is	very	straightforward	because	of	the	async	function.
We	aren't	checking	for	errors	because	they'll	be	automatically	caught	by
the	async	function	and	bubble	out	to	our	caller:

export	async	function	read(key)	{	

				var	notesdir	=	await	notesDir();

				var	thenote	=	await	readJSON(notesdir,	key);

				return	thenote;	

}

Using	readJSON,	read	the	file	from	the	disk.	It	already	generates	the	Note
object,	so	all	we	have	to	do	is	return	that	object:

export	async	function	destroy(key)	{	

				var	notesdir	=	await	notesDir();

				await	fs.unlink(filePath(notesdir,	key));	

}

The	fs.unlink	function	deletes	our	file.	Because	this	module	uses	the
filesystem,	deleting	the	file	is	all	that's	necessary	to	delete	the	note	object:

export	async	function	keylist()	{	

				var	notesdir	=	await	notesDir();

				var	filez	=	await	fs.readdir(notesdir);

				if	(!filez	||	typeof	filez	===	'undefined')	filez	=	[];	

				var	thenotes	=	filez.map(async	fname	=>	{	

								var	key	=	path.basename(fname,	'.json');

								var	thenote	=	await	readJSON(notesdir,	key);

								return	thenote.key;	

				});	

				return	Promise.all(thenotes);	

}

The	contract	for	keylist	is	to	return	a	Promise	that	will	resolve	to	an	array
of	keys	for	existing	note	objects.	Since	they're	stored	as	individual	files	in
the	notesdir,	we	have	to	read	every	file	in	that	directory	to	retrieve	its	key.

Array.map	constructs	a	new	array	from	an	existing	array,	namely	the	array	of
filenames	returned	by	fs.readdir.	Each	entry	in	the	constructed	array	is	the
async	function,	which	reads	the	Note,	returning	the	key:

export	async	function	count()	{	

				var	notesdir	=	await	notesDir();

				var	filez	=	await	fs.readdir(notesdir);	

				return	filez.length;

}

export	async	function	close()	{	}

Counting	the	number	of	notes	is	simply	a	matter	of	counting	the	number
of	files	in	notesdir.

Dynamic	import	of	ES6
modules
Before	we	start	modifying	the	router	functions,	we	have	to	consider	how
to	account	for	multiple	models.	We	currently	have	two	modules	for	our
data	model,	notes-memory	and	notes-fs,	and	we'll	be	implementing	several
more	by	the	end	of	this	chapter.	We	will	need	a	simple	method	to	select
between	the	model	being	used.

There	are	several	possible	ways	to	do	this.	For	example,	in	a	CommonJS
module,	it's	possible	to	do	the	following:

const	path		=	require('path');	

const	notes	=	require(process.env.NOTES_MODEL		

																		?	path.join('..',	process.env.NOTES_MODEL)		

																		:	'../models/notes-memory');	

This	lets	us	set	an	environment	variable,	NOTES_MODEL,	to	select	the	module	to
use	for	the	data	model.

This	approach	does	not	work	with	the	regular	import	statement,	because	the
module	name	in	an	import	statement	cannot	be	such	an	expression.		The
Dynamic	Import	feature	now	in	Node.js	does	offer	a	mechanism	similar	to
the	snippet	just	shown.	

Dynamic	import	is	an	import()	function	that	returns	a	Promise	that	will
resolve	to	the	imported	module.	As	a	function-returning-a-
Promise,	import()	won't	be	useful	as	top-level	code	in	the	module.	But,
consider	this:

var	NotesModule;

async	function	model()	{

		if	(NotesModule)	return	NotesModule;

		NotesModule	=	await	import(`../models/notes-${process.env.NOTES_MODEL}`);

		return	NotesModule;

}

export	async	function	create(key,	title,	body)	{	

				return	(await	model()).create(key,	title,	body);	

}

export	async	function	update(key,	title,	body)	{	

				return	(await	model()).update(key,	title,	body);	

}

export	async	function	read(key)	{	return	(await	model()).read(key);	}

export	async	function	destroy(key)	{	return	(await	model()).destroy(key);	}

export	async	function	keylist()	{	return	(await	model()).keylist();	}

export	async	function	count()	{	return	(await	model()).count();	}

export	async	function	close()	{	return	(await	model()).close();	}

Save	that	module	in	a	file,	models/notes.mjs.	This	module	implements	the
same	API	as	we'll	use	for	all	Notes	model	modules.	The	model()	function	is
the	key	to	dynamically	selecting	a	notes	model	implementation	based	on
an	environment	variable.

This	is	an	async	function	and	therefore	its	return	value	is	a	Promise.	The
value	of	that	Promise	is	the	selected	module,	as	loaded	by	import().
Because	import()	returns	a	Promise,	we	use	await	to	know	whether	it	loaded
correctly.

Every	API	method	follows	this	pattern:

export	async	function	methodName(args)	{	

				return	(await	model()).methodName(args);	

}

Because	model()	returns	a	Promise,	it's	most	succinct	to	use	an	async
function	and	use	await	to	resolve	the	Promise.	Once	the	Promise	is
resolved,	we	simply	call	the	methodName	function	and	go	about	our	business.
Otherwise,	those	API	method	functions	would	be	as	follows:

export	function	methodName(args)	{

				return	model().then(notes	=>	{	return	notes.methodName(args);	});

}

The	two	implementations	are	equivalent,	and	it's	clear	which	is	the	more
succinct.

With	all	this	awaiting	on	Promise's	returned	from	async	functions,	it's	worth
discussing	the	overhead.	The	worst	case	is	on	the	first	call	to	model(),
because	the	selected	notes	model	has	not	been	loaded.	The	first	time
around,	the	call	flow	goes	as	follows:

The	API	method	calls	model(),	which	calls	import(),	then	await's	the
module	to	finish	loading

The	API	method	await's	the	Promise	returned	from	model(),	getting
the	module	object,	and	it	then	calls	the	API	function

The	caller	is	also	using	await	to	receive	the	final	result

The	first	time	around,	the	time	is	dominated	by	waiting	on	import()	to
finish	loading	the	module.	On	subsequent	calls,	the	module	has	already
been	loaded	and	the	first	step	is	to	simply	form	a	resolved	Promise
containing	the	module.	The	API	method	can	then	quickly	get	on	with
delegating	to	the	actual	API	method.

To	use	this,	in	routes/index.mjs,	and	in	routes/notes.mjs,	we	make	this	change:

import	util	from	'util';

import	express	from	'express';

import	*	as	notes	from	'../models/notes';

export	const	router	=	express.Router();

Running	the	Notes	application
with	filesystem	storage
In	package.json,	add	this	to	the	scripts	section:

"start-fs":	"DEBUG=notes:*	NOTES_MODEL=fs	node	--experimental-modules	

./bin/www.mjs",	

When	you	put	these	entries	in	package.json,	make	sure	that	you	use	correct	JSON
syntax.	In	particular,	if	you	leave	a	comma	at	the	end	of	the	scripts	section,	it	will	fail
to	parse	and	npm	will	throw	up	an	error	message.

With	this	code	in	place,	we	can	now	run	the	Notes	application	as	follows:

$	DEBUG=notes:*	npm	run	start-fs

				

>	notes@0.0.0	start-fs	Usersdavid/chap07/notes

>	NOTES_MODEL=models/notes-fs	node	--experimental-modules./bin/www.mjs

				

		notes:server	Listening	on	port	3000	+0ms

		notes:fs-model	keylist	dir=notes-fs-data	files=[]	+4s		

Then	we	can	use	the	application	at	http://localhost:3000	as	before.	Because
we	did	not	change	any	template	or	CSS	files,	the	application	will	look
exactly	as	you	left	it	at	the	end	of	Chapter	6,	Implementing	the	Mobile-First
Paradigm.

Because	debugging	is	turned	on	for	notes:*,	we'll	see	a	log	of	whatever	the
Notes	application	is	doing.	It's	easy	to	turn	this	off	simply	by	not	setting
the	DEBUG	variable.

You	can	now	kill	and	restart	the	Notes	application	and	see	the	exact	same
notes.	You	can	also	edit	the	notes	at	the	command	line	using	regular	text
editors	such	as	vi.	You	can	now	start	multiple	servers	on	different	ports
and	see	exactly	the	same	notes:

"server1":	"NOTES_MODEL=fs	PORT=3001	node	--experimental-

modules./bin/www.mjs",	

"server2":	"NOTES_MODEL=fs	PORT=3002	node	--experimental-

modules./bin/www.mjs",	

Then	you	start	server1	and	server2	in	separate	command	windows	as	we	did
in	Chapter	5,	Your	First	Express	Application.	Then,	visit	the	two	servers	in
separate	browser	windows,	and	you	will	see	that	both	browser	windows
show	the	same	notes.

The	final	check	is	to	create	a	note	where	the	key	has	a	/	character.
Remember	that	the	key	is	used	to	generate	the	filename	where	we	store	the
note,	and	therefore	the	key	cannot	contain	a	/	character.	With	the	browser
open,	click	on	ADD	Note	and	enter	a	note,	ensuring	that	you	use	a	/
character	in	the	key	field.	On	clicking	the	Submit	button,	you'll	see	an	error
saying	that	this	isn't	allowed.

Storing	notes	with	the	LevelUP
data	store
To	get	started	with	actual	databases,	let's	look	at	an	extremely
lightweight,	small-footprint	database	engine:	LevelUP.	This	is	a	Node.js-
friendly	wrapper	around	the	LevelDB	engine	developed	by	Google,	which
is	normally	used	in	web	browsers	for	local	data	persistence.	It	is	a	non-
indexed,	NoSQL	data	store	designed	originally	for	use	in	browsers.	The
Node.js	module,	Level,	uses	the	LevelDB	API,	and	supports	multiple
backends,	including	LevelDOWN,	which	integrates	the	C++	LevelDB	database
into	Node.js.

Visit	https://www.npmjs.com/package/level	for	information	on	the	module.	The
level	package	automatically	sets	up	the	levelup	and	leveldown	packages.	

To	install	the	database	engine,	run	this	command:

$	npm	install	level@2.1.x	--save

Then,	start	creating	the	models/notes-level.mjs	module:

import	fs	from	'fs-extra';

import	path	from	'path';

import	util	from	'util';

import	Note	from	'./Note';

import	level	from	'level';

import	DBG	from	'debug';

const	debug	=	DBG('notes:notes-level');	

const	error	=	DBG('notes:error-level');	

var	db;

async	function	connectDB()	{	

				if	(typeof	db	!==	'undefined'	||	db)	return	db;

				db	=	await	level(

https://www.npmjs.com/package/level

								process.env.LEVELDB_LOCATION	||	'notes.level',	{	

												createIfMissing:	true,	

												valueEncoding:	"json"	

				});	

				return	db;

}	

The	level	module	gives	us	a	db	object	through	which	to	interact	with	the
database.	We're	storing	that	object	as	a	global	within	the	module	for	ease
of	use.	If	the	db	object	is	set,	we	can	just	return	it	immediately.	Otherwise,
we	open	the	database	using	createIfMissing	to	go	ahead	and	create	the
database	if	needed.

The	location	of	the	database	defaults	to	notes.level	in	the	current	directory.
The	environment	variable	LEVELDB_LOCATION	can	be	set,	as	the	name	implies,
to	specify	the	database	location:

async	function	crupdate(key,	title,	body)	{	

				const	db	=	await	connectDB();

				var	note	=	new	Note(key,	title,	body);	

				await	db.put(key,	note.JSON);

				return	note;

}

export	function	create(key,	title,	body)	{

				return	crupdate(key,	title,	body);

}

export	function	update(key,	title,	body)	{

				return	crupdate(key,	title,	body);

}

Calling	db.put	either	creates	a	new	database	entry,	or	replaces	an	existing
one.	Therefore,	both	update	and	create	are	set	to	be	the	same	function.	We
convert	the	Note	to	JSON	so	it	can	be	easily	stored	in	the	database:

export	async	function	read(key)	{

				const	db	=	await	connectDB();

				var	note	=	Note.fromJSON(await	db.get(key));

				return	new	Note(note.key,	note.title,	note.body);

}

Reading	a	Note	is	easy:	just	call	db.get	and	it	retrieves	the	data,	which	must
be	decoded	from	the	JSON	representation.	

Notice	that	db.get	and	db.put	did	not	take	a	callback	function,	and	that	we
use	await	to	get	the	results	value.	The	functions	exported	by	level	can	take	a
callback	function,	in	which	the	callback	will	be	invoked.	Alternatively,	if
no	callback	function	is	provided,	the	level	function	will	instead	return	a
Promise	for	compatibility	with	async	functions:

export	async	function	destroy(key)	{	

				const	db	=	await	connectDB();

				await	db.del(key);

}

The	db.destroy	function	deletes	a	record	from	the	database:

export	async	function	keylist()	{	

				const	db	=	await	connectDB();

				var	keyz	=	[];

				await	new	Promise((resolve,	reject)	=>	{	

								db.createKeyStream()

								.on('data',	data	=>	keyz.push(data))	

								.on('error',	err	=>	reject(err))	

								.on('end',	()	=>	resolve(keyz));

				});	

				return	keyz;

}

	

export	async	function	count()	{	

				const	db	=	await	connectDB();

				var	total	=	0;

				await	new	Promise((resolve,	reject)	=>	{	

								db.createKeyStream()

								.on('data',	data	=>	total++)	

								.on('error',	err	=>	reject(err))	

								.on('end',	()	=>	resolve(total));

				});	

				return	total;

}

export	async	function	close()	{

				var	_db	=	db;

				db	=	undefined;

				return	_db	?	_db.close()	:	undefined;

}

The	createKeyStream	function	uses	an	event-oriented	interface	similar	to	the
Streams	API.	It	will	stream	through	every	database	entry,	emitting	events
as	it	goes.	A	data	event	is	emitted	for	every	key	in	the	database,	while	the
end	event	is	emitted	at	the	end	of	the	database,	and	the	error	event	is
emitted	on	errors.	The	effect	is	that	there's	no	simple	way	to	present	this	as
a	simple	Promise.	Instead,	we	invoke	createKeyStream,	let	it	run	its	course,
collecting	data	as	it	goes.	We	have	to	wrap	it	inside	a	Promise	object,	and
call	resolve	on	the	end	event.

Then	we	add	this	to	package.json	in	the	scripts	section:

"start-level":	"DEBUG=notes:*	NOTES_MODEL=level	node	--experimental-modules	

./bin/www.mjs",

Finally,	you	can	run	the	Notes	application:

$	DEBUG=notes:*	npm	run	start-level

>	notes@0.0.0	start	Usersdavid/chap07/notes

>	node	./bin/www

		

		notes:server	Listening	on	port	3000	+0ms	

The	printout	in	the	console	will	be	the	same,	and	the	application	will	also
look	the	same.	You	can	put	it	through	its	paces	and	see	that	everything
works	correctly.

Since	level	does	not	support	simultaneous	access	to	a	database	from
multiple	instances,	you	won't	be	able	to	use	the	multiple	Notes	application
scenario.	You	will,	however,	be	able	to	stop	and	restart	the	application	at
will	without	losing	any	notes.

Storing	notes	in	SQL	with
SQLite3
To	get	started	with	more	normal	databases,	let's	see	how	to	use	SQL	from
Node.js.	First,	we'll	use	SQLite3,	a	lightweight,	simple-to-set-up	database
engine	eminently	suitable	for	many	applications.

To	learn	about	that	database	engine,	visit	http://www.sqlite.org/.

To	learn	about	the	Node.js	module,	visit	https://github.com/mapbox/node-sqlite3/wiki/API	or
https://www.npmjs.com/package/sqlite3.

The	primary	advantage	of	SQLite3	is	that	it	doesn't	require	a	server;	it	is	a
self-contained,	no-set-up-required	SQL	database.

The	first	step	is	to	install	the	module:	$	npm	install	sqlite3@3.x	--save

http://www.sqlite.org/
https://github.com/mapbox/node-sqlite3/wiki/API
https://www.npmjs.com/package/sqlite3

SQLite3	database	schema
Next,	we	need	to	make	sure	that	our	database	is	configured.	We're	using
this	SQL	table	definition	for	the	schema	(save	this	as	models/schema-
sqlite3.sql):	CREATE	TABLE	IF	NOT	EXISTS	notes	(
notekey	VARCHAR(255),
title	VARCHAR(255),
body	TEXT
);

How	do	we	initialize	this	schema	before	writing	some	code?	One	way	is	to
ensure	that	the	sqlite3	package	is	installed	through	your	operating	system
package	management	system,	such	as	using	apt-get	on	Ubuntu/Debian,	and
MacPorts	on	macOS.	Once	it's	installed,	you	can	run	the	following
command:	$	sqlite3	chap07.sqlite3	
SQLite	version	3.21.0	2017-10-24	18:55:49
Enter	".help"	for	usage	hints.
sqlite>	CREATE	TABLE	IF	NOT	EXISTS	notes	(
...>	notekey	VARCHAR(255),
...>	title	VARCHAR(255),
...>	body	TEXT
...>);
sqlite>	.schema	notes
CREATE	TABLE	notes	(
notekey	VARCHAR(255),
title	VARCHAR(255),
body	TEXT
);
sqlite>	^D
$	ls	-l	chap07.sqlite3	
-rwx------	1	david	staff	8192	Jan	14	20:40	chap07.sqlite3

While	we	can	do	that,	the	Twelve	Factor	application	model	says	we	must

automate	any	administrative	processes	in	this	way.	To	that	end,	we	should
instead	write	a	little	script	to	run	an	SQL	operation	on	SQLite3	and	use
that	to	initialize	the	database.

Fortunately,	the	sqlite3	command	offers	us	a	way	to	do	this.	Add	the
following	to	the	scripts	section	of	package.json:	"sqlite3-setup":	"sqlite3
chap07.sqlite3	--init	models/schema-sqlite3.sql",

Run	the	setup	script:

$	npm	run	sqlite3-setup

				

>	notes@0.0.0	sqlite3-setup	Usersdavid/chap07/notes

>	sqlite3	chap07.sqlite3	--init	models/schema-sqlite3.sql	

				

--	Loading	resources	from	models/schema-sqlite3.sql

				

SQLite	version	3.10.2	2016-01-20	15:27:19

Enter	".help"	for	usage	hints.

sqlite>	.schema	notes

CREATE	TABLE	notes	(

				notekey	VARCHAR(255),

				title			VARCHAR(255),

				body				TEXT

);

sqlite>	^D

We	could	have	written	a	small	Node.js	script	to	do	this,	and	it's	easy	to	do
so.	However,	by	using	the	tools	provided	by	the	package,	we	have	less
code	to	maintain	in	our	own	project.

SQLite3	model	code
Now,	we	can	write	code	to	use	this	database	in	the	Notes	application.

Create	models/notes-sqlite3.mjs	file:

import	util	from	'util';

import	Note	from	'./Note';

import	sqlite3	from	'sqlite3';

import	DBG	from	'debug';

const	debug	=	DBG('notes:notes-sqlite3');	

const	error	=	DBG('notes:error-sqlite3');	

var	db;	//	store	the	database	connection	here	

	

async	function	connectDB()	{	

				if	(db)	return	db;	

				var	dbfile	=	process.env.SQLITE_FILE	||	"notes.sqlite3";	

				await	new	Promise((resolve,	reject)	=>	{

								db	=	new	sqlite3.Database(dbfile,	

												sqlite3.OPEN_READWRITE	|	sqlite3.OPEN_CREATE,	

												err	=>	{	

																if	(err)	return	reject(err);	

																resolve(db);

								});

				});

				return	db;

}

This	serves	the	same	purpose	as	the	connectDB	function	in	notes-level.mjs:	to
manage	the	database	connection.	If	the	database	is	not	open,	it'll	go	ahead
and	do	so,	and	even	make	sure	that	the	database	file	is	created	(if	it	doesn't
exist).	But	if	it	is	already	open,	it	is	immediately	returned:

export	async	function	create(key,	title,	body)	{	

				var	db	=	await	connectDB();

				var	note	=	new	Note(key,	title,	body);	

				await	new	Promise((resolve,	reject)	=>	{	

								db.run("INSERT	INTO	notes	(notekey,	title,	body)	"+	

												"VALUES	(?,	?	,	?);",	[key,	title,	body],	err	=>	{	

																if	(err)	return	reject(err);	

																resolve(note);	

								});	

				});

				return	note;

}

	

export	async	function	update(key,	title,	body)	{	

				var	db	=	await	connectDB();

				var	note	=	new	Note(key,	title,	body);	

				await	new	Promise((resolve,	reject)	=>	{	

								db.run("UPDATE	notes	"+	

												"SET	title	=	?,	body	=	?	WHERE	notekey	=	?",	

												[title,	body,	key],	err	=>	{	

																if	(err)	return	reject(err);	

																resolve(note);	

								});	

				});

				return	note;

}

These	are	our	create	and	update	functions.	As	promised,	we	are	now
justified	in	defining	the	Notes	model	to	have	separate	functions	for	create
and	update	operations,	because	the	SQL	statement	for	each	is	different.

Calling	db.run	executes	an	SQL	query,	giving	us	the	opportunity	to	insert
parameters	into	the	query	string.

The	sqlite3	module	uses	a	parameter	substitution	paradigm	that's	common
in	SQL	programming	interfaces.	The	programmer	puts	the	SQL	query	into
a	string,	and	then	places	a	question	mark	in	each	place	where	the	aim	is	to
insert	a	value	into	the	query	string.	Each	question	mark	in	the	query	string
has	to	match	a	value	in	the	array	provided	by	the	programmer.	The	module
takes	care	of	encoding	the	values	correctly	so	that	the	query	string	is
properly	formatted,	while	preventing	SQL	injection	attacks.

The	db.run	function	simply	runs	the	SQL	query	it	is	given,	and	does	not
retrieve	any	data.	Because	the	sqlite3	module	doesn't	produce	any	kind	of
Promise,	we	have	to	wrap	function	calls	in	a	Promise	object:

export	async	function	read(key)	{

		var	db	=	await	connectDB();

		var	note	=	await	new	Promise((resolve,	reject)	=>	{

				db.get("SELECT	*	FROM	notes	WHERE	notekey	=	?",	[key],	(err,row)	=>	{

								if	(err)	return	reject(err);

								const	note	=	new	Note(row.notekey,	row.title,	row.body);

								resolve(note);

					});

		});

		return	note;

}

To	retrieve	data	using	the	sqlite3	module,	you	use	the	db.get,	db.all,	or
db.each	functions.	The	db.get	function	used	here	returns	only	the	first	row	of
the	result	set.	The	db.all	function	returns	all	rows	of	the	result	set	at	once,
which	can	be	a	problem	for	available	memory	if	the	result	set	is	large.	The
db.each	function	retrieves	one	row	at	a	time,	while	still	allowing	processing
of	the	entire	result	set.

For	the	Notes	application,	using	db.get	to	retrieve	a	note	is	sufficient
because	there	is	only	one	note	per	notekey.	Therefore,	our	SELECT	query	will
return	at	most	one	row	anyway.	But	what	if	your	application	will	see
multiple	rows	in	the	result	set?	We'll	see	what	to	do	about	that	in	a	minute.

By	the	way,	this	read	function	has	a	bug	in	it.	See	if	you	can	spot	the	error.
We'll	read	more	about	this	in	Chapter	11,	Unit	Testing	and	Functional
Testing,	when	our	testing	efforts	uncover	the	bug:

export	async	function	destroy(key)	{

		var	db	=	await	connectDB();

		return	await	new	Promise((resolve,	reject)	=>	{

				db.run("DELETE	FROM	notes	WHERE	notekey	=	?;",	[key],	err	=>	{

								if	(err)	return	reject(err);

								resolve();

				});

		});

}

To	destroy	a	note,	we	simply	execute	the	DELETE	FROM	statement:

export	async	function	keylist()	{

				var	db	=	await	connectDB();

				var	keyz	=	await	new	Promise((resolve,	reject)	=>	{

								var	keyz	=	[];

								db.all("SELECT	notekey	FROM	notes",	(err,	rows)	=>	{

																if	(err)	return	reject(err);

																resolve(rows.map(row	=>	row.notekey));

												});

				});

				return	keyz;

}

The	db.all	function	retrieves	all	rows	of	the	result	set.	

The	contract	for	this	function	is	to	return	an	array	of	note	keys.	The	rows
object	is	an	array	of	results	from	the	database	that	contains	the	data	we	are
to	return,	but	in	a	different	format.	Therefore,	we	use	the	map	function	to
convert	the	array	into	the	format	required	to	fulfill	the	contract:

export	async	function	count()	{

				var	db	=	await	connectDB();

				var	count	=	await	new	Promise((resolve,	reject)	=>	{

								db.get("select	count(notekey)	as	count	from	notes",(err,	row)	

								=>	{

																if	(err)	return	reject(err);

																resolve(row.count);

												});

				});

				return	count;

}

export	async	function	close()	{

				var	_db	=	db;

				db	=	undefined;

				return	_db	?	new	Promise((resolve,	reject)	=>	{

												_db.close(err	=>	{

																if	(err)	reject(err);

																else	resolve();

												});

								})	:	undefined;

}

We	can	simply	use	SQL	to	count	the	number	of	notes	for	us.	In	this	case,
db.get	returns	a	row	with	a	single	column,	count,	which	is	the	value	we	want

to	return.

Running	Notes	with	SQLite3
Finally,	we're	ready	to	run	the	Notes	application	with	SQLite3.	Add	the
following	code	to	the	scripts	section	of	package.json:	"start-sqlite3":
"SQLITE_FILE=chap07.sqlite3	NOTES_MODEL=sqlite3	node	--
experimental-modules	./bin/www.mjs",

Run	the	Notes	application:

$	DEBUG=notes:*	npm	run	start-sqlite3

				

>	notes@0.0.0	start-sqlite3	Usersdavid/chap07/notes

>	SQLITE_FILE=chap07.sqlite3	NOTES_MODEL=models/notes-sqlite3	node	

./bin/www.mjs

				

		notes:server	Listening	on	port	3000	+0ms

		notes:sqlite3-model	Opened	SQLite3	database	chap07.sqlite3	+5s		

You	can	now	browse	the	application	at	http://localhost:3000,	and	run	it
through	its	paces	as	before.

Because	SQLite3	supports	simultaneous	access	from	multiple	instances,
you	can	run	the	multiserver	example	by	adding	this	to	the	scripts	section	of
package.json:	"server1-sqlite3":	"SQLITE_FILE=chap07.sqlite3
NOTES_MODEL=sqlite3	PORT=3001	node	./bin/www.mjs",	"server2-
sqlite3":	"SQLITE_FILE=chap07.sqlite3	NOTES_MODEL=sqlite3
PORT=3002	node	./bin/www.mjs",

Then,	run	each	of	these	in	separate	command	Windows,	as	before.

Because	we	still	haven't	made	any	changes	to	the	View	templates	or	CSS
files,	the	application	will	look	the	same	as	before.

Of	course,	you	can	use	the	sqlite	command,	or	other	SQLite3	client

applications,	to	inspect	the	database:

$	sqlite3	chap07.sqlite3	

SQLite	version	3.10.2	2016-01-20	15:27:19

Enter	".help"	for	usage	hints.

sqlite>	select	*	from	notes;

hithere|Hi	There||ho	there	what	there

himom|Hi	Mom||This	is	where	we	say	thanks		

Storing	notes	the	ORM	way
with	Sequelize
There	are	several	popular	SQL	database	engines,	such	as	PostgreSQL,
MySQL	(https://www.npmjs.com/package/mysql),	and	MariaDB
(https://www.npmjs.com/package/mariasql).	Corresponding	to	each	are	Node.js
client	modules	similar	in	nature	to	the	sqlite3	module	that	we	just	used.
The	programmer	is	close	to	the	SQL,	which	can	be	good	in	the	same	way
that	driving	a	stick	shift	car	is	fun.	But	what	if	we	want	a	higher-level
view	of	the	database	so	that	we	can	think	in	terms	of	objects	rather	than
rows	of	a	database	table?	Object	Relation	Mapping	(ORM)	systems
provide	such	a	higher-level	interface	and	even	offer	the	ability	to	use	the
same	data	model	with	several	databases.

The	Sequelize	module	(http://www.sequelizejs.com/)	is	Promise-based,	offers
strong,	well-developed	ORM	features,	and	can	connect	with	SQLite3,
MySQL,	PostgreSQL,	MariaDB,	and	MSSQL.	Because	Sequelize	is
Promise-based,	it	will	fit	naturally	with	the	Promise-based	application
code	we're	writing.

A	prerequisite	to	most	SQL	database	engines	is	having	access	to	a
database	server.	In	the	previous	section,	we	skirted	around	that	issue	by
using	SQLite3,	which	requires	no	database	server	setup.	While	it's
possible	to	install	a	database	server	on	your	laptop,	we	want	to	avoid	the
complexity	of	doing	so,	and	will	use	Sequelize	to	manage	an	SQLite3
database.	We'll	also	see	that	it's	simply	a	matter	of	a	configuration	file	to
run	the	same	Sequelize	code	against	a	hosted	database	such	as	MySQL.	In	
Chapter	10,	Deploying	Node.js	Applications,	we'll	learn	how	to	use	Docker
to	easily	set	up	any	service,	including	database	servers,	on	our	laptop	and
deploy	the	exact	same	configuration	to	a	live	server.	Most	web	hosting
providers	offer	MySQL	or	PostgreSQL	as	part	of	the	service.

https://www.npmjs.com/package/mysql
https://www.npmjs.com/package/mariasql
http://www.sequelizejs.com/

Before	we	start	on	the	code,	let's	install	two	modules:

$	npm	install	sequelize@4.31.x	--save

$	npm	install	js-yaml@3.10.x	--save

The	first	obviously	installs	the	Sequelize	package.	The	second,	js-yaml,	is
installed	so	that	we	can	implement	a	YAML-formatted	file	to	store	the
Sequelize	connection	configuration.	YAML	is	a	human-readable	data
serialization	language,	which	simply	means	YAML	is	an	easy-to-use	text
file	format	to	describe	data	objects.	Perhaps	the	best	place	to	learn	about
YAML	is	its	Wikipedia	page	at	https://en.wikipedia.org/wiki/YAML.

https://en.wikipedia.org/wiki/YAML

Sequelize	model	for	the	Notes
application
Let's	create	a	new	file,	models/notes-sequelize.mjs:

import	fs	from	'fs-extra';

import	util	from	'util';

import	jsyaml	from	'js-yaml';

import	Note	from	'./Note';

import	Sequelize	from	'sequelize';

import	DBG	from	'debug';

const	debug	=	DBG('notes:notes-sequelize');	

const	error	=	DBG('notes:error-sequelize');	

var	SQNote;	

var	sequlz;

async	function	connectDB()	{	

		if	(typeof	sequlz	===	'undefined')	{

				const	YAML	=	await	fs.readFile(process.env.SEQUELIZE_CONNECT,'utf8');

				const	params	=	jsyaml.safeLoad(YAML,	'utf8');	

				sequlz	=	new	Sequelize(params.dbname,	params.username,

																											params.password,	params.params);	

		}

		if	(SQNote)	return	SQNote.sync();	

		SQNote	=	sequlz.define('Note',	{	

								notekey:	{	type:	Sequelize.STRING,	primaryKey:	true,	unique:	

								true	},	

								title:	Sequelize.STRING,	

								body:	Sequelize.TEXT	

		});	

		return	SQNote.sync();

}

The	database	connection	is	stored	in	the	sequlz	object,	and	is	established	by
reading	a	configuration	file	(we'll	go	over	this	file	later),	and	instantiating
a	Sequelize	instance.	The	data	model,	SQNote,	describes	our	object
structure	to	Sequelize	so	that	it	can	define	corresponding	database	table(s).

If	SQNote	is	already	defined,	we	simply	return	it,	otherwise	we	define	and
return	SQNote.	

The	Sequelize	connection	parameters	are	stored	in	a	YAML	file	we
specify	in	the	SEQUELIZE_CONNECT	environment	variable.	The	line	new
Sequelize(..)	opens	the	database	connection.	The	parameters	obviously
contain	any	needed	database	name,	username,	password,	and	other	options
required	to	connect	with	the	database.

The	line	sequlz.define	is	where	we	define	the	database	schema.	Instead	of
defining	the	schema	as	the	SQL	command	to	create	the	database	table,
we're	giving	a	high-level	description	of	the	fields	and	their	characteristics.
Sequelize	maps	the	object	attributes	into	columns	in	tables.	

We're	telling	Sequelize	to	call	this	schema	Note,	but	we're	using	a	SQNote
variable	to	refer	to	that	schema.	That's	because	we	already	defined	Note	as
a	class	to	represent	notes.	To	avoid	a	clash	of	names,	we'll	keep	using	the
Note	class,	and	use	SQNote	to	interact	with	Sequelize	about	the	notes
stored	in	the	database.

Online	documentation	can	be	found	at	the	following	locations:
Sequelize	class:	http://docs.sequelizejs.com/en/latest/api/sequelize/.
Defining	models:	http://docs.sequelizejs.com/en/latest/api/model/.

Add	these	functions	to	models/notes-sequelize.mjs:

export	async	function	create(key,	title,	body)	{	

				const	SQNote	=	await	connectDB();

				const	note	=	new	Note(key,	title,	body);	

				await	SQNote.create({	notekey:	key,	title:	title,	body:	body	});

				return	note;

}

	

export	async	function	update(key,	title,	body)	{	

				const	SQNote	=	await	connectDB();

				const	note	=	await	SQNote.find({	where:	{	notekey:	key	}	})	

				if	(!note)	{	throw	new	Error(`No	note	found	for	${key}`);	}	else	{	

								await	note.updateAttributes({	title:	title,	body:	body	});

								return	new	Note(key,	title,	body);

				}	

}

http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/sequelize/
http://docs.sequelizejs.com/en/latest/api/model/

There	are	several	ways	to	create	a	new	object	instance	in	Sequelize.	The
simplest	is	to	call	an	object's	create	function	(in	this	case,	SQNote.create).
That	function	collapses	together	two	other	functions,	build	(to	create	the
object),	and	save	(to	write	it	to	the	database).

Updating	an	object	instance	is	a	little	different.	First,	we	must	retrieve	its
entry	from	the	database	using	the	find	operation.	The	find	operation	is
given	an	object	specifying	the	query.	Using	find,	we	retrieve	one	instance,
whereas	the	findAll	operation	retrieves	all	matching	instances.

For	documentation	on	Sequelize	queries,	visit
http://docs.sequelizejs.com/en/latest/docs/querying/.

Like	most	or	all	other	Sequelize	functions,	SQNote.find	returns	a	Promise.
Therefore,	inside	an	async	function,	we	await	the	result	of	the	operation.	

The	update	operation	requires	two	steps,	the	first	being	to	find	the
corresponding	object	to	read	it	in	from	the	database.	Once	the	instance	is
found,	we	can	update	its	values	simply	with	the	updateAttributes	function:

export	async	function	read(key)	{	

				const	SQNote	=	await	connectDB();

				const	note	=	await	SQNote.find({	where:	{	notekey:	key	}	})	

				if	(!note)	{	throw	new	Error(`No	note	found	for	${key}`);	}	else	{	

								return	new	Note(note.notekey,	note.title,	note.body);	

				}	

}

To	read	a	note,	we	use	the	find	operation	again.	There	is	the	possibility	of
an	empty	result,	and	we	have	to	throw	an	error	to	match.

The	contract	for	this	function	is	to	return	a	Note	object.	That	means	taking
the	fields	retrieved	using	Sequelize	and	using	that	to	create	a	Note	object:

export	async	function	destroy(key)	{	

				const	SQNote	=	await	connectDB();

				const	note	=	await	SQNote.find({	where:	{	notekey:	key	}	})	

				return	note.destroy();	

http://docs.sequelizejs.com/en/latest/docs/querying/

}

To	destroy	a	note,	we	use	the	find	operation	to	retrieve	its	instance,	and
then	call	its	destroy()	method:

export	async	function	keylist()	{	

				const	SQNote	=	await	connectDB();

				const	notes	=	await	SQNote.findAll({	attributes:	['notekey']	});

				return	notes.map(note	=>	note.notekey);	

}

Because	the	keylist	function	acts	on	all	Note	objects,	we	use	the	findAll
operation.	We	query	for	the	notekey	attribute	on	all	notes.	We're	given	an
array	of	objects	with	a	field	named	notekey,	and	we	use	the	.map	function	to
convert	this	into	an	array	of	the	note	keys:

export	async	function	count()	{	

				const	SQNote	=	await	connectDB();

				const	count	=	await	SQNote.count();

				return	count;	

}

export	async	function	close()	{

				if	(sequlz)	sequlz.close();

				sequlz	=	undefined;

				SQNote	=	undefined;

}

For	the	count	function,	we	can	just	use	the	count()	method	to	calculate
the	needed	result.

Configuring	a	Sequelize
database	connection
Sequelize	supports	the	same	API	on	several	SQL	database	engines.	The
database	connection	is	initialized	using	parameters	on	the	Sequelize
constructor.	The	Twelve	Factor	Application	model	suggests	that
configuration	data	such	as	this	should	be	kept	outside	the	code	and
injected	using	environment	variables	or	a	similar	mechanism.	What	we'll
do	is	use	a	YAML-formatted	file	to	store	the	connection
parameters,	specifying	the	filename	with	an	environment	variable.

The	Sequelize	library	does	not	define	any	such	file	for	storing	connection
parameters.	But	it's	simple	enough	to	develop	such	a	file.	Let's	do	so.

The	API	for	the	Sequelize	constructor	is:	constructor(database:	String,
username:	String,	password:	String,	options:	Object).

In	the	connectDB	function,	we	wrote	the	constructor	as	follows:

sequlz	=	new	Sequelize(params.dbname,	params.username,	params.password,	

params.params);	

This	file,	named	models/sequelize-sqlite.yaml,	provides	with	us	a	simple
mapping	that	looks	like	this	for	an	SQLite3	database:

dbname:	notes	

username:	

password:	

params:	

				dialect:	sqlite	

				storage:	notes-sequelize.sqlite3	

The	YAML	file	is	a	direct	mapping	to	the	Sequelize	constructor

parameters.	The	dbname,	username,	and	password	fields	in	this	file	correspond
directly	to	the	connection	credentials,	and	the	params	object	gives	additional
parameters.	There	are	many,	many,	possible	attributes	to	use	in	the	params
field,	and	you	can	read	about	them	in	the	Sequelize	documentation	at	http:
//docs.sequelizejs.com/manual/installation/usage.html.

The	dialect	field	tells	Sequelize	what	kind	of	database	to	use.	For	an
SQLite	database,	the	database	filename	is	given	in	the	storage	field.	

Let's	first	use	SQLite3,	because	no	further	setup	is	required.	After	that,
we'll	get	adventurous	and	reconfigure	our	Sequelize	module	to	use
MySQL.	

If	you	already	have	a	different	database	server	available,	it's	simple	to
create	a	corresponding	configuration	file.	For	a	plausible	MySQL	database
on	your	laptop,	create	a	new	file,	such	as	models/sequelize-mysql.yaml,
containing	something	like	the	following	code:

dbname:	notes	

username:	..	user	name	

password:	..	password	

params:	

				host:	localhost	

				port:	3306	

				dialect:	mysql	

This	is	straightforward.	The	username	and	password	must	correspond	to	the
database	credentials,	while	host	and	port	will	specify	where	the	database	is
hosted.		Set	the	database	dialect	and	other	connection	information,	and
you're	good	to	go.

To	use	MySQL,	you	will	need	to	install	the	base	MySQL	driver	so	that
Sequelize	can	use	MySQL:

$	npm	install	mysql@2.x	--save

Running	with	Sequelize	against	other	databases	it	supports,	such	as

http://docs.sequelizejs.com/manual/installation/usage.html

PostgreSQL,	is	just	as	simple.	Just	create	a	configuration	file,	install	the
Node.js	driver,	and	install/configure	the	database	engine.

Running	the	Notes	application
with	Sequelize
Now	we	can	get	ready	to	run	the	Notes	application	using	Sequelize.	We
can	run	this	against	both	SQLite3	and	MySQL,	but	let's	start	with	SQLite.
Add	this	entry	to	the	scripts	entry	in	package.json:

"start-sequelize":	"SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	node		--experimental-modules	./bin/www.mjs"	

Then	run	it	as	follows:

$	DEBUG=notes:*	npm	run	start-sequelize

				

>	notes@0.0.0	start-sequelize	Usersdavid/chap07/notes

>	SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	NOTES_MODEL=sequelize	node	-

-experimental-modules./bin/www.mjs

				

		notes:server	Listening	on	port	3000	+0ms	

As	before,	the	application	looks	exactly	the	same	because	we've	not
changed	the	View	templates	or	CSS	files.	Put	it	through	its	paces	and
everything	should	work.

With	Sequelize,	multiple	Notes	application	instances	is	as	simple	as
adding	these	lines	to	the	scripts	section	of	package.json,	and	then	starting
both	instances	as	before:

"server1-sequelize":	"SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	PORT=3001	node	--experimental-modules	./bin/www.mjs",	

"server2-sequelize":	"SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	PORT=3002	node	--experimental-modules	./bin/www.mjs",

You	will	be	able	to	start	both	instances,	use	separate	browser	windows	to
visit	both	instances,	and	see	that	they	show	the	same	set	of	notes.

To	reiterate	using	the	Sequelize-based	model	on	a	given	database	server:

1.	 Install	and	provision	the	database	server	instance,	or	else	get	the
connection	parameters	for	an	already-provisioned	database	server.

2.	 Install	the	corresponding	Node.js	driver.
3.	 Write	a	YAML	configuration	file	corresponding	to	the	connection

parameters.
4.	 Create	new	scripts	entries	in	package.json	to	automate	starting	Notes

against	that	database.

Storing	notes	in	MongoDB
MongoDB	is	widely	used	with	Node.js	applications,	a	sign	of	which	is	the
popular	MEAN	acronym:	MongoDB	(or	MySQL),	Express,	Angular,	and
Node.js.	MongoDB	is	one	of	the	leading	NoSQL	databases.	It	is	described
as	a	scalable,	high-performance,	open	source,	document-oriented
database.	It	uses	JSON-style	documents	with	no	predefined,	rigid	schema
and	a	large	number	of	advanced	features.	You	can	visit	their	website	for
more	information	and	documentation	at	http://www.mongodb.org.

Documentation	on	the	Node.js	driver	for	MongoDB	can	be	found	at
https://www.npmjs.com/package/mongodb	and	http://mongodb.github.io/node-mongodb-native/.

Mongoose	is	a	popular	ORM	for	MongoDB	(http://mongoosejs.com/).	In	this
section,	we'll	use	the	native	MongoDB	driver	instead,	but	Mongoose	is	a
worthy	alternative.

You	will	need	a	running	MongoDB	instance.	The	compose.io
(https://www.compose.io/)	and	ScaleGrid.io	(https://scalegrid.io/)	hosted	service
providers	offer	hosted	MongoDB	services.	Nowadays,	it	is	straightforward
to	host	MongoDB	as	a	Docker	container	as	part	of	a	system	built	of	other
Docker	containers.	We'll	do	this	in	Chapter	11,	Unit	Testing	and	Functional
Testing.

It's	possible	to	set	up	a	temporary	MongoDB	instance	for	testing	on,	say,
your	laptop.	It	is	available	in	all	the	operating	system	package
management	systems,	and	the	MongoDB	website	has	instructions
(https://docs.mongodb.org/manual/installation/).

Once	installed,	it's	not	necessary	to	set	up	MongoDB	as	a	background
service.	Instead,	you	can	run	a	couple	of	simple	commands	to	get	a
MongoDB	instance	running	in	the	foreground	of	a	command	window,
which	you	can	kill	and	restart	any	time	you	like.

http://www.mongodb.org
https://www.npmjs.com/package/mongodb
http://mongodb.github.io/node-mongodb-native/
http://mongoosejs.com/
https://www.compose.io/
https://scalegrid.io/
https://docs.mongodb.org/manual/installation/

In	one	command	window,	run	the	following:

$	mkdir	data

$	mongod	--dbpath	data

In	another	command	window,	you	can	test	it	as	follows:

$	mongo

MongoDB	shell	version:	3.0.8

connecting	to:	test

Welcome	to	the	MongoDB	shell.

For	interactive	help,	type	"help".

For	more	comprehensive	documentation,	see

		http://docs.mongodb.org/

Questions?	Try	the	support	group

		http://groups.google.com/group/mongodb-user

>	db.foo.save({	a:	1});

WriteResult({	"nInserted"	:	1	})

>	db.foo.find();

{	"_id"	:	ObjectId("56c0c98673f65b7988a96a77"),	"a"	:	1	}

>	

bye

This	saves	a	document	in	the	collection	named	foo.	The	second	command
finds	all	documents	in	foo,	printing	them	out	for	you.	The	_id	field	is	added
by	MongoDB	and	serves	as	a	document	identifier.	This	is	useful	for
testing	and	debugging.	For	a	real	deployment,	your	MongoDB	server	must
be	properly	installed	on	a	server.	See	the	MongoDB	documentation	for
these	instructions.

MongoDB	model	for	the	Notes
application
Now	that	you've	proved	you	have	a	working	MongoDB	server,	let's	get	to
work.

Installing	the	Node.js	driver	is	as	simple	as	running	the	following
command:

$	npm	install	mongodb@3.x	--save

Now	create	a	new	file,	models/notes-mongodb.mjs:

import	util	from	'util';

import	Note	from	'./Note';

import	mongodb	from	'mongodb';	

const	MongoClient	=	mongodb.MongoClient;

import	DBG	from	'debug';

const	debug	=	DBG('notes:notes-mongodb');	

const	error	=	DBG('notes:error-mongodb');	

var	client;

async	function	connectDB()	{	

				if	(!client)	client	=	await	MongoClient.connect(process.env.MONGO_URL);

				return	{	

								db:	client.db(process.env.MONGO_DBNAME),	

								client:	client

				};

}

The	MongoClient	class	is	used	to	connect	with	a	MongoDB	instance.	The
required	URL,	which	will	be	specified	through	an	environment	variable,
uses	a	straightforward	format:	mongodb://localhost/.	The	database	name	is
specified	via	another	environment	variable.

Documentation	for	the	corresponding	objects	can	be	found	at
http://mongodb.github.io/node-mongodb-native/2.2/api/MongoClient.html

for	MongoClient	and	http://mongodb.github.io/node-mongodb-native/2.2/api/Db.html	for	Db

This	creates	the	database	client,	and	then	opens	the	database	connection.
Both	objects	are	returned	from	connectDB	in	an	anonymous	object.	The
general	pattern	for	MongoDB	operations	is	as	follows:

(async	()	=>	{

		const	client	=	await	MongoClient.connect(process.env.MONGO_URL);

		const	db	=	client.db(process.env.MONGO_DBNAME);

		//	perform	database	operations	using	db	object

		client.close();

})();

Therefore,	our	model	methods	require	both	client	and	db	objects,	because
they	will	use	both.	Let's	see	how	that's	done:

export	async	function	create(key,	title,	body)	{	

				const	{	db,	client	}	=	await	connectDB();

				const	note	=	new	Note(key,	title,	body);	

				const	collection	=	db.collection('notes');	

				await	collection.insertOne({	notekey:	key,	title,	body	});

				return	note;

}

	

export	async	function	update(key,	title,	body)	{	

				const	{	db,	client	}	=	await	connectDB();

				const	note	=	new	Note(key,	title,	body);	

				const	collection	=	db.collection('notes');	

				await	collection.updateOne({	notekey:	key	},	{	$set:	{	title,	body	}	});

				return	note;

}

We	retrieve	db	and	client	into	individual	variables	using	a	destructuring
assignment.	

MongoDB	stores	all	documents	in	collections.	A	collection	is	a	group	of
related	documents,	and	a	collection	is	analogous	to	a	table	in	a	relational
database.	This	means	creating	a	new	document	or	updating	an	existing	one
starts	by	constructing	it	as	a	JavaScript	object,	and	then	asking	MongoDB
to	save	that	object	to	the	database.	MongoDB	automatically	encodes	the

http://mongodb.github.io/node-mongodb-native/2.2/api/MongoClient.html
http://mongodb.github.io/node-mongodb-native/2.2/api/Db.html

object	into	its	internal	representation.

The	db.collection	method	gives	us	a	Collection	object	with	which	we	can
manipulate	the	named	collection.	See	its	documentation	at	http://mongodb.gi
thub.io/node-mongodb-native/2.2/api/Collection.html.

As	the	method	name	implies,	insertOne	inserts	one	document	into	the
collection.	Likewise,	the	updateOne	method	first	finds	a	document	(in	this
case,	by	looking	up	the	document	with	the	matching	notekey	field),	and	then
changes	fields	in	the	document	as	specified.

You'll	see	that	these	methods	return	a	Promise.	The	mongodb	driver	supports
both	callbacks	and	Promises.	Many	methods	will	invoke	the	callback
function	if	one	is	provided,	otherwise	it	returns	a	Promise	that	will	deliver
the	results	or	errors.	And,	of	course,	since	we're	using	async	functions,	the
await	keyword	makes	this	so	clean.

Further	documentation	can	be	found	at	the	following	links:
Insert:	https://docs.mongodb.org/getting-started/node/insert/.
Update:	https://docs.mongodb.org/getting-started/node/update/.

Next,	let's	look	at	reading	a	note	from	MongoDB:

export	async	function	read(key)	{	

				const	{	db,	client	}	=	await	connectDB();

				const	collection	=	db.collection('notes');

				const	doc	=	await	collection.findOne({	notekey:	key	});

				const	note	=	new	Note(doc.notekey,	doc.title,	doc.body);

				return	note;	

}

The	mongodb	driver	supports	several	variants	of	find	operations.	In	this	case,
the	Notes	application	ensures	that	there	is	exactly	one	document	matching
a	given	key.	Therefore,	we	can	use	the	findOne	method.	As	the	name
implies,	findOne	will	return	the	first	matching	document.

The	argument	to	findOne	is	a	query	descriptor.	This	simple	query	looks	for
documents	whose	notekey	field	matches	the	requested	key.	An	empty	query
will,	of	course,	match	all	documents	in	the	collection.	You	can	match

http://mongodb.github.io/node-mongodb-native/2.2/api/Collection.html
https://docs.mongodb.org/getting-started/node/insert/
https://docs.mongodb.org/getting-started/node/insert/
https://docs.mongodb.org/getting-started/node/update/

against	other	fields	in	a	similar	way,	and	the	query	descriptor	can	do	much
more.	For	documentation	on	queries,	visit	https://docs.mongodb.org/getting-
started/node/query/.

The	insertOne	method	we	used	earlier	also	took	the	same	kind	of	query
descriptor.

In	order	to	satisfy	the	contract	for	this	function,	we	create	a	Note	object	and
then	return	it	to	the	caller.	Hence,	we	create	a	Note	using	the	data
retrieved	from	the	database:

export	async	function	destroy(key)	{	

				const	{	db,	client	}	=	await	connectDB();

				const	collection	=	db.collection('notes');	

				await	collection.findOneAndDelete({	notekey:	key	});

}

One	of	the	find	variants	is	findOneAndDelete.	As	the	name	implies,	it	finds	one
document	matching	the	query	descriptor,	and	then	deletes	that	document:

export	async	function	keylist()	{	

				const	{	db,	client	}	=	await	connectDB();

				const	collection	=	db.collection('notes');	

				const	keyz	=	await	new	Promise((resolve,	reject)	=>	{	

								var	keyz	=	[];	

								collection.find({}).forEach(

												note	=>	{	keyz.push(note.notekey);	},	

												err	=>	{	

																if	(err)	reject(err);	

																else	resolve(keyz);	

												}	

);	

				});	

				return	keyz;

}

Here,	we're	using	the	base	find	operation	and	giving	it	an	empty	query	so
that	it	matches	every	document.	What	we're	to	return	is	an	array
containing	the	notekey	for	every	document.

https://docs.mongodb.org/getting-started/node/query/

All	of	the	find	operations	return	a	Cursor	object.	The	documentation	can	be
found	at	http://mongodb.github.io/node-mongodb-native/2.1/api/Cursor.html.

The	Cursor	object	is,	as	the	name	implies,	a	pointer	into	a	result	set	from	a
query.	It	has	a	number	of	useful	functions	related	to	operating	on	a	result
set.	For	example,	you	can	skip	the	first	few	items	in	the	results,	or	limit	the
size	of	the	result	set,	or	perform	the	filter	and	map	operations.

The	Cursor.forEach	method	takes	two	callback	functions.	The	first	is	called
on	every	element	in	the	result	set.	In	this	case,	we	can	use	that	to	record
just	the	notekey	in	an	array.	The	second	callback	is	called	after	all	elements
in	the	result	set	have	been	processed.	We	use	this	to	indicate	success	or
failure,	and	to	return	the	keyz	array.

Because	forEach	uses	this	pattern,	it	does	not	have	an	option	for	supplying	a
Promise,	and	we	have	to	create	the	Promise	ourselves,	as	shown	here:

export	async	function	count()	{	

				const	{	db,	client	}	=	await	connectDB();

				const	collection	=	db.collection('notes');

				const	count	=	await	collection.count({});

				return	count;

}

export	async	function	close()	{

				if	(client)	client.close();

				client	=	undefined;

}

The	count	method	takes	a	query	descriptor	and,	as	the	name	implies,	counts
the	number	of	matching	documents.

http://mongodb.github.io/node-mongodb-native/2.1/api/Cursor.html

Running	the	Notes	application
with	MongoDB
Now	that	we	have	our	MongoDB	model,	we	can	get	ready	to	run	Notes
with	it.

By	now	you	know	the	drill;	add	this	to	the	scripts	section	of	package.json:
"start-mongodb":	"MONGO_URL=mongodb://localhost/
MONGO_DBNAME=chap07	NOTES_MODEL=mongodb	node	--
experimental-modules	./bin/www.mjs",

The	MONGO_URL	environment	variable	is	the	URL	to	connect	with	your
MongoDB	database.

You	can	start	the	Notes	application	as	follows:

$	DEBUG=notes:*	npm	run	start-mongodb

>	notes@0.0.0	start-mongodb	Usersdavid/chap07/notes

>	MONGO_URL=mongodb://localhost/	MONGO_DBNAME=chap07	NOTES_MODEL=mongodb	node	

--experimental-modules	./bin/www

				

		notes:server	Listening	on	port	3000	+0ms		

You	can	browse	the	application	at	http://localhost:3000	and	put	it	through	its
paces.	You	can	kill	and	restart	the	application,	and	your	notes	will	still	be
there.

Add	this	to	the	scripts	section	of	package.json:	"server1-mongodb":
"MONGO_URL=mongodb://localhost/	MONGO_DBNAME=chap07
NOTES_MODEL=mongodb	PORT=3001	node	--experimental-modules
./bin/www.mjs",	
"server2-mongodb":	"MONGO_URL=mongodb://localhost/
MONGO_DBNAME=chap07	NOTES_MODEL=mongodb	PORT=3002

node	--experimental-modules	./bin/www.mjs",

You	will	be	able	to	start	two	instances	of	the	Notes	application,	and	see
that	both	share	the	same	set	of	notes.

Summary
In	this	chapter,	we	went	through	a	real	whirlwind	of	different	database
technologies.	While	we	looked	at	the	same	seven	functions	over	and	over,
it's	useful	to	be	exposed	to	the	various	data	storage	models	and	ways	of
getting	things	done.	Even	so,	we	only	touched	the	surface	of	options	for
accessing	databases	and	data	storage	engines	from	Node.js.

By	abstracting	the	model	implementations	correctly,	we	were	able	to
easily	switch	data	storage	engines	while	not	changing	the	rest	of	the
application.	We	did	skip	around	the	issue	of	setting	up	database	servers.
As	promised,	we'll	get	to	that	in	Chapter	10,	Deploying	Node.js
Applications,	when	we	explore	production	deployment	of	Node.js
applications.

By	focusing	the	model	code	on	the	purpose	of	storing	data,	both	the
models	and	the	application	should	be	easier	to	test.	The	application	can	be
tested	with	a	mock	data	module	that	provides	known	predictable	notes	that
can	be	checked	predictably.	We'll	look	at	this	in	more	depth	in	Chapter	11,
Unit	Testing	and	Functional	Testing.

In	the	next	chapter,	we'll	focus	on	authenticating	our	users	using	OAuth2.

	

Multiuser	Authentication	the
Microservice	Way
Now	that	our	Notes	application	can	save	its	data	in	a	database,	we	can
think	about	the	next	phase	of	making	this	a	real	application,	namely
authenticating	our	users.	

It's	so	natural	to	log	in	to	a	website	to	use	its	services.	We	do	it	every	day,
and	we	even	trust	banking	and	investment	organizations	to	secure	our
financial	information	through	login	procedures	on	a	website.	HTTP	is	a
stateless	protocol,	and	a	web	application	cannot	tell	much	about	one	HTTP
request	versus	another.	Because	HTTP	is	stateless,	HTTP	requests	do	not
natively	know	whether	the	user	driving	the	web	browser	is	logged	in,	the
user's	identity,	or	even	whether	the	HTTP	request	was	initiated	by	a	human
being.

The	typical	method	for	user	authentication	is	to	send	a	cookie	to	the
browser	containing	a	token	to	carry	user	identity.	The	cookie	needs	to
contain	data	identifying	the	browser	and	whether	that	browser	is	logged	in.
The	cookie	will	then	be	sent	with	every	request,	letting	the	application
track	which	user	account	is	associated	with	the	browser.

With	Express,	the	best	way	to	do	this	is	with	the	express-session
middleware.	It	stores	data	as	a	cookie	and	looks	for	that	data	on	every
browser	request.	It	is	easy	to	configure,	but	is	not	a	complete	solution	for
user	authentication.	There	are	several	add-on	modules	that	handle	user
authentication,	and	some	even	support	authenticating	users	against	third-
party	websites,	such	as	Facebook	or	Twitter.

One	package	appears	to	be	leading	the	pack	in	user	authentication	–
Passport	(http://passportjs.org/).	It	supports	a	long	list	of	services	against
which	to	authenticate,	making	it	easy	to	develop	a	website	that	lets	users

http://passportjs.org/

sign	up	with	credentials	from	another	website,	for	example,	Twitter.
Another,	express-authentication	(https://www.npmjs.com/package/express-
authentication),	bills	itself	as	the	opinionated	alternative	to	Passport.

We	will	use	Passport	to	authenticate	users	against	both	a	locally	stored
user	credentials	database	and	using	OAuth2	to	authenticate	against	a
Twitter	account.	We'll	also	take	this	as	an	opportunity	to	explore	REST-
based	microservice	implementation	with	Node.js.	

	In	this	chapter,	we'll	discuss	the	following	three	aspects	of	this	phase:

Creating	a	microservice	to	store	user	profile/authentication	data.

User	authentication	with	a	locally	stored	password.

Using	OAuth2	to	support	authentication	via	third-party	services.
Specifically,	we'll	use	Twitter	as	a	third-party	authentication
service.

Let's	get	started!

The	first	thing	to	do	is	duplicate	the	code	used	for	the	previous	chapter.
For	example,	if	you	kept	that	code	in	chap07/notes,	create	a	new	directory,
chap08/notes.

https://www.npmjs.com/package/express-authentication

Creating	a	user	information
microservice
We	could	implement	user	authentication	and	accounts	by	simply	adding	a
user	model,	and	a	few	routes	and	views	to	the	existing	Notes	application.
While	it	would	be	accomplishable,	is	this	what	we	would	do	in	a	real-
world	production	application?

Consider	the	high	value	of	user	identity	information,	and	the	super-strong
need	for	robust	and	reliable	user	authentication.	Website	intrusions	happen
regularly,	and	it	seems	the	item	most	frequently	stolen	is	user	identities.	

Can	you	design	and	build	a	user	authentication	system	with	the	required
level	of	security?		One	that	is	probably	safe	against	all	kinds	of	intruders?

As	with	so	many	other	software	development	problems,	it's	best	to	use	a
pre-existing	authentication	library,	preferably	one	with	a	long	track	record,
where	significant	bugs	have	been	fixed	already.

Another	issue	is	architectural	choices	to	promote	security.	Bugs	will	occur
and	the	talented	miscreants	will	break	in.	Walling	off	the	user	information
database	is	an	excellent	idea	to	limit	the	risk.

Keeping	a	user	information	database	enables	you	to	authenticate	your
users,	present	user	profiles,	help	users	connect	with	each	other,	and	so
forth.	Those	are	useful	services	to	offer	to	website	users,	but	how	can	you
limit	the	risk	that	data	will	fall	into	the	wrong	hands?

In	this	chapter,	we'll	develop	a	user	authentication	microservice.	The	plan
is	to	eventually	segregate	that	service	into	a	well-protected	barricaded
area.	This	mimics	an	architectural	choice	made	by	some	sites,	to	strictly
control	API	and	even	physical	access	to	the	user	information	database,

implementing	as	many	technological	barriers	as	possible	against
unapproved	access.

Microservices	are,	of	course,	not	a	panacea,	meaning	we	shouldn't	try	to
force-fit	every	application	into	the	microservice	box.	By	analogy,
microservices	are	like	the	Unix	philosophy	of	small	tools	each	doing	one
thing	well,	which	we	mix/match/combine	into	larger	tools.	Another	word
for	this	is	composability.	While	we	can	build	a	lot	of	useful	software	tools
with	that	philosophy,	does	it	work	for	applications	such	as	Photoshop	or
LibreOffice?		While	composing	a	system	out	of	single-purpose	tools	is
highly	flexible,	one	loses	the	advantages	gained	by	tight	integration	of
components.

The	first	question	is	whether	to	use	a	REST-service	oriented	framework,
code	the	REST	application	on	bare	Node.js,	or	what?	You	could
implement	REST	services	on	the	built-in	http	module.	The	advantage	of
using	an	application	framework	is	the	framework	authors	will	have
already	baked-in	a	lot	of	best	practices	and	bug	fixing	and	security
measures.	Express,	for	example,	is	widely	used,	very	popular,	and	can
easily	be	used	for	REST	services.	There	are	other	frameworks	more
aligned	with	developing	REST	services,	and	we'll	use	one	of	them	–
Restify	(http://restify.com/).

The	user	authentication	server	will	require	two	modules:

Using	Restify,	implementing	the	REST	interface

A	data	model	using	Sequelize	to	store	user	data	objects	in	an	SQL
database

To	test	the	service,	we'll	write	a	couple	of	simple	scripts	for	administering
user	information	in	the	database.	We	won't	be	implementing	an
administrative	user	interface	in	the	Notes	application,	and	will	rely	on	the
scripts	to	administer	the	users.	As	a	side	effect,	we'll	have	a	tool	to	run	a
couple	of	simple	tests	against	the	user	service.

http://restify.com/

After	this	service	is	functioning	correctly,	we'll	set	about	modifying	the
Notes	application	to	access	user	information	from	the	service,	while	using
Passport	to	handle	authentication.

The	first	step	is	creating	a	new	directory	to	hold	the	User	Information
microservice.	This	should	be	a	sibling	directory	to	the	Notes	application.
If	you	created	a	directory	named	chap08/notes	to	hold	the	Notes	application,
then	create	a	directory	named	chap08/users	to	hold	the	microservice.

Then	run	the	following	commands:

$	cd	users

$	npm	init

..	answer	questions	

..	name	-	user-auth-server

$	npm	install	debug@^2.6.x	fs-extra@^5.x	js-yaml@^3.10.x	\

							restify@^6.3.x	restify-clients@^1.5.x	sequelize@^4.31.x	\

							sqlite3@^3.1.x	--save

This	gets	us	ready	to	start	coding.	We'll	use	the	debug	module	for	logging
messages,	js-yaml	to	read	the	Sequelize	configuration	file,	restify	for	its
REST	framework,	and	sequelize/mysql/sqlite3	for	database	access.

User	information	model
We'll	be	storing	the	user	information	using	a	Sequelize-based	model	in	an
SQL	database.	As	we	go	through	this,	ponder	a	question:	should	we
integrate	the	database	code	directly	into	the	REST	API	implementation?
Doing	so	would	reduce	the	user	information	microservice	to	one	module,
with	database	queries	mingled	with	REST	handlers.	By	separating	the
REST	service	from	the	data	storage	model,	we	have	the	freedom	to	adopt
other	data	storage	systems	besides	Sequelize/SQL.	Further,	the	data
storage	model	could	conceivably	be	used	in	ways	other	than	the	REST
service.

Create	a	new	file	named	users-sequelize.mjs	in	users,	containing	the
following:

import	Sequelize	from	"sequelize";

import	jsyaml	from	'js-yaml';

import	fs	from	'fs-extra';

import	util	from	'util';

import	DBG	from	'debug';

const	log	=	DBG('users:model-users');	

const	error	=	DBG('users:error');	

var	SQUser;

var	sequlz;

async	function	connectDB()	{

				

				if	(SQUser)	return	SQUser.sync();

				

				const	yamltext	=	await	fs.readFile(process.env.SEQUELIZE_CONNECT,	

				'utf8');

				const	params	=	await	jsyaml.safeLoad(yamltext,	'utf8');

				

				if	(!sequlz)	sequlz	=	new	Sequelize(params.dbname,	params.username,

																																								params.password,	

				params.params);

				

				//	These	fields	largely	come	from	the	Passport	/	Portable	Contacts	

				schema.

				//	See	http://www.passportjs.org/docs/profile

				//

				//	The	emails	and	photos	fields	are	arrays	in	Portable	Contacts.	

				//	We'd	need	to	set	up	additional	tables	for	those.

				//

				//	The	Portable	Contacts	"id"	field	maps	to	the	"username"	field	

				here

				if	(!SQUser)	SQUser	=	sequlz.define('User',	{

								username:	{	type:	Sequelize.STRING,	unique:	true	},

								password:	Sequelize.STRING,

								provider:	Sequelize.STRING,

								familyName:	Sequelize.STRING,

								givenName:	Sequelize.STRING,

								middleName:	Sequelize.STRING,

								emails:	Sequelize.STRING(2048),

								photos:	Sequelize.STRING(2048)

				});

				return	SQUser.sync();

}

As	with	our	Sequelize-based	model	for	Notes,	we	use	a	YAML	file	to	store
connection	configuration.	We're	even	using	the	same	environment
variable,	SEQUELIZE_CONNECT.

What	is	the	best	storage	service	for	user	authentication	data?	By	using
Sequelize,	we	have	our	pick	of	SQL	databases	to	choose	from.	While
NoSQL	databases	are	all	the	rage,	is	there	any	advantage	to	using	one	to
store	user	authentication	data?		Nope.	An	SQL	server	will	do	the	job	just
fine,	and	Sequelize	allows	us	the	freedom	of	choice.

It's	tempting	to	simplify	the	overall	system	by	using	the	same	database
instance	to	store	notes	and	user	information,	and	to	use	Sequelize	for	both.
But	we've	chosen	to	simulate	a	secured	server	for	user	data.	That	calls	for
the	data	to	be	in	separate	database	instances,	preferably	on	separate
servers.	A	highly	secure	application	deployment	might	put	the	user
information	service	on	completely	separate	servers,	perhaps	in	a
physically	isolated	data	center,	with	carefully	configured	firewalls,	and
there	might	even	be	armed	guards	at	the	door.	

The	user	profile	schema	shown	here	is	derived	from	the	normalized	profile

provided	by	Passport;	refer	to	http://www.passportjs.org/docs/profile	for	more
information.	Passport	will	harmonize	information	given	by	third-party
services	into	a	single	object	definition.	To	simplify	our	code,	we're	simply
using	the	schema	defined	by	Passport:

export	async	function	create(username,	password,	provider,	familyName,	

givenName,	middleName,	emails,	photos)	{

				const	SQUser	=	await	connectDB();

				return	SQUser.create({

								username,	password,	provider,

								familyName,	givenName,	middleName,

								emails:	JSON.stringify(emails),	photos:	JSON.stringify(photos)

				});

}

export	async	function	update(username,	password,	provider,	familyName,	

givenName,	middleName,	emails,	photos)	{

				const	user	=	await	find(username);

				return	user	?	user.updateAttributes({

								password,	provider,

								familyName,	givenName,	middleName,

								emails:	JSON.stringify(emails),

								photos:	JSON.stringify(photos)

				})	:	undefined;

}

Our	create	and	update	functions	take	user	information	and	either	add	a	new
record	or	update	an	existing	record:

export	async	function	find(username)	{

				const	SQUser	=	await	connectDB();

				const	user	=	await	SQUser.find({	where:	{	username:	username	}	});

				const	ret	=	user	?	sanitizedUser(user)	:	undefined;

				return	ret;

}

This	lets	us	look	up	a	user	information	record,	and	we	return	a	sanitized
version	of	that	data.

Remember	that	Sequelize	returns	a	Promise	object.	Because	this	is	executed	inside
an	async	function,	the	await	keyword	will	resolve	the	Promise,	causing	any	error	to	be
thrown	or	results	to	be	provided	as	the	return	value.	In	turn,	async	functions	return
a	Promise	to	the	caller.

http://www.passportjs.org/docs/profile

Because	we're	segregating	the	user	data	from	the	rest	of	the	Notes
application,	we	want	to	return	a	sanitized	object	rather	than	the	actual
SQUser	object.	What	if	there	was	some	information	leakage	because	we
simply	sent	the	SQUser	object	back	to	the	caller?	The	sanitizedUser	function,
shown	later,	creates	an	anonymous	object	with	exactly	the	fields	we	want
exposed	to	the	other	modules:

export	async	function	destroy(username)	{

				const	SQUser	=	await	connectDB();

				const	user	=	await	SQUser.find({	where:	{	username:	username	}	});

				if	(!user)	throw	new	Error('Did	not	find	requested	'+	username	+'	to	

delete');

				user.destroy();

}

This	lets	us	support	deleting	user	information.	We	do	this	as	we	did	for	the
Notes	Sequelize	model,	by	first	finding	the	user	object	and	then	calling	its
destroy	method:

export	async	function	userPasswordCheck(username,	password)	{

				const	SQUser	=	await	connectDB();

				const	user	=	await	SQUser.find({	where:	{	username:	username	}	});

				if	(!user)	{

								return	{	check:	false,	username:	username,	message:	"Could	not	

								find	user"	};

				}	else	if	(user.username	===	username	&&	user.password	===	

				password)	{

								return	{	check:	true,	username:	user.username	};

				}	else	{

								return	{	check:	false,	username:	username,	message:	"Incorrect	

								password"	};

				}

}

This	lets	us	support	the	checking	of	user	passwords.	The	three	conditions
to	handle	are	as	follows:

Whether	there's	no	such	user

Whether	the	passwords	matched

Whether	they	did	not	match

The	object	we	return	lets	the	caller	distinguish	between	those	cases.	The
check	field	indicates	whether	to	allow	this	user	to	be	logged	in.	If	check	is
false,	there's	some	reason	to	deny	their	request	to	log	in,	and	the	message	is
what	should	be	displayed	to	the	user:

export	async	function	findOrCreate(profile)	{

				const	user	=	await	find(profile.id);

				if	(user)	return	user;

				return	await	create(profile.id,	profile.password,	profile.provider,

																				profile.familyName,	profile.givenName,	

profile.middleName,

																				profile.emails,	profile.photos);

}

This	combines	two	actions	in	one	function:	first,	to	verify	whether	the
named	user	exists	and,	if	not,	to	create	that	user.	Primarily,	this	will	be
used	while	authenticating	against	third-party	services:

export	async	function	listUsers()	{

				const	SQUser	=	await	connectDB();

				const	userlist	=	await	SQUser.findAll({});

				return	userlist.map(user	=>	sanitizedUser(user));

}

List	the	existing	users.	The	first	step	is	using	findAll	to	give	us	the	list	of
the	users	as	an	array	of	SQUser	objects.	Then	we	sanitize	that	list	so	we	don't
expose	any	data	that	we	don't	want	exposed:

export	function	sanitizedUser(user)	{

				var	ret	=	{

								id:	user.username,	username:	user.username,

								provider:	user.provider,

								familyName:	user.familyName,	givenName:	user.givenName,

								middleName:	user.middleName,

								emails:	JSON.parse(user.emails),

								photos:	JSON.parse(user.photos)

				};

				try	{

								ret.emails	=	JSON.parse(user.emails);

				}	catch(e)	{	ret.emails	=	[];	}

				try	{

								ret.photos	=	JSON.parse(user.photos);

				}	catch(e)	{	ret.photos	=	[];	}

				return	ret;

}

This	is	our	utility	function	to	ensure	we	expose	a	carefully	controlled	set
of	information	to	the	caller.	With	this	service,	we're	emulating	a	secured
user	information	service	that's	walled	off	from	other	applications.	As
we	said	earlier,	this	function	returns	an	anonymous	sanitized	object	where
we	know	exactly	what's	in	the	object.

It's	very	important	to	decode	the	JSON	string	we	put	into	the	database.
Remember	that	we	stored	the	emails	and	photos	data	using	JSON.stringify	in
the	database.	Using	JSON.parse,	we	decode	those	values,	just	like	adding	hot
water	to	instant	coffee	produces	a	drinkable	beverage.

A	REST	server	for	user
information
We	are	building	our	way	towards	integrating	user	information	and
authentication	into	the	Notes	application.	The	next	step	is	to	wrap	the	user
data	model	we	just	created	into	a	REST	server.	After	that,	we'll	create	a
couple	of	scripts	so	that	we	can	add	some	users,	perform	other
administrative	tasks,	and	generally	verify	that	the	service	works.	Finally,
we'll	extend	the	Notes	application	with	login	and	logout	support.

In	the	package.json	file,	change	the	main	tag	to	the	following	line	of	code:

"main":	"user-server.mjs",	

Then	create	a	file	named	user-server.mjs,	containing	the	following	code:

import	restify	from	'restify';

import	util	from	'util';

import	DBG	from	'debug';

const	log	=	DBG('users:service');	

const	error	=	DBG('users:error');	

import	*	as	usersModel	from	'./users-sequelize';

var	server	=	restify.createServer({

				name:	"User-Auth-Service",

				version:	"0.0.1"

});

server.use(restify.plugins.authorizationParser());

server.use(check);

server.use(restify.plugins.queryParser());

server.use(restify.plugins.bodyParser({

				mapParams:	true

}));

The	createServer	method	can	take	a	long	list	of	configuration	options.	These
two	may	be	useful	for	identifying	information.

As	with	Express	applications,	the	server.use	calls	initialize	what	Express
would	call	middleware	functions,	but	which	Restify	calls	handler
functions.	These	are	callback	functions	whose	API	is	function	(req,	res,
next).	As	with	Express,	these	are	the	request	and	response	objects,	and	next
is	a	function	which,	when	called,	carries	execution	to	the	next	handler
function.

Unlike	Express,	every	handler	function	must	call	the	next	function.	In
order	to	tell	Restify	to	stop	processing	through	handlers,	the	next	function
must	be	called	as	next(false).	Calling	next	with	an	error	object	also	causes
the	execution	to	end,	and	the	error	is	sent	back	to	the	requestor.

The	handler	functions	listed	here	do	two	things:	authorize	requests	and
handle	parsing	parameters	from	both	the	URL	and	the	post	request	body.
The	authorizationParser	function	looks	for	HTTP	basic	auth	headers.	The
check	function	is	shown	later	and	emulates	the	idea	of	an	API	token	to
control	access.

Refer	to	http://restify.com/docs/plugins-api/	for	more	information	on	the
built-in	handlers	available	in	Restify.

Add	this	to	user-server.mjs:

//	Create	a	user	record

server.post('/create-user',	async	(req,	res,	next)	=>	{

				try	{

								var	result	=	await	usersModel.create(

																	req.params.username,	req.params.password,	

								req.params.provider,

																	req.params.familyName,	req.params.givenName,	

								req.params.middleName,

																	req.params.emails,	req.params.photos);

								res.send(result);

								next(false);

				}	catch(err)	{	res.send(500,	err);	next(false);	}

});

http://restify.com/docs/plugins-api/

As	for	Express,	the	server.VERB	functions	let	us	define	the	handlers	for
specific	HTTP	actions.	This	route	handles	a	POST	on	/create-user,	and,	as
the	name	implies,	this	will	create	a	user	by	calling	the	usersModel.create
function.

As	a	POST	request,	the	parameters	arrive	in	the	body	of	the	request	rather
than	as	URL	parameters.	Because	of	the	mapParams	flag	on	the	bodyParams
handler,	the	arguments	passed	in	the	HTTP	body	are	added	to	req.params.

We	simply	call	usersModel.create	with	the	parameters	sent	to	us.	When
completed,	the	result	object	should	be	a	user	object,	which	we	send	back	to
the	requestor	using	res.send:

//	Update	an	existing	user	record

server.post('update-user:username',	async	(req,	res,	next)	=>	{

				try	{

								var	result	=	await	usersModel.update(

														req.params.username,	req.params.password,	

								req.params.provider,

														req.params.familyName,	req.params.givenName,		

								req.params.middleName,

														req.params.emails,	req.params.photos);

								res.send(usersModel.sanitizedUser(result));

								next(false);

				}	catch(err)	{	res.send(500,	err);	next(false);	}

});

The	/update-user	route	is	handled	in	a	similar	way.	However,	we	have	put
the	username	parameter	on	the	URL.	Like	Express,	Restify	lets	you	put
named	parameters	in	the	URL	like	as	follows.	Such	named	parameters	are
also	added	to	req.params.

We	simply	call	usersModel.update	with	the	parameters	sent	to	us.	That,	too,
returns	an	object	we	send	back	to	the	caller	with	res.send:

//	Find	a	user,	if	not	found	create	one	given	profile	information

server.post('/find-or-create',	async	(req,	res,	next)	=>	{

				log('find-or-create	'+	util.inspect(req.params));

				try	{

								var	result	=	await	usersModel.findOrCreate({

												id:	req.params.username,	username:	req.params.username,

												password:	req.params.password,	provider:		

												req.params.provider,

												familyName:	req.params.familyName,	givenName:	

												req.params.givenName,

												middleName:	req.params.middleName,

												emails:	req.params.emails,	photos:	req.params.photos

								});

								res.send(result);

								next(false);

				}	catch(err)	{	res.send(500,	err);	next(false);	}

});

This	handles	our	findOrCreate	operation.	We	simply	delegate	this	to	the
model	code,	as	done	previously.

As	the	name	implies,	we'll	look	to	see	whether	the	named	user	already
exists	and,	if	so,	simply	return	that	user,	otherwise	it	will	be	created:

//	Find	the	user	data	(does	not	return	password)

server.get('find:username',	async	(req,	res,	next)	=>	{

				try	{

								var	user	=	await	usersModel.find(req.params.username);

								if	(!user)	{

												res.send(404,	new	Error("Did	not	find	"+	

												req.params.username));

								}	else	{

												res.send(user);

								}

								next(false);

				}	catch(err)	{	res.send(500,	err);	next(false);	}

});

Here,	we	support	looking	up	the	user	object	for	the	provided	username.

If	the	user	was	not	found,	then	we	return	a	404	status	code	because	it
indicates	a	resource	that	does	not	exist.	Otherwise,	we	send	the	object	that
was	retrieved:

//	Delete/destroy	a	user	record

server.del('destroy:username',	async	(req,	res,	next)	=>	{

				try	{

								await	usersModel.destroy(req.params.username);

								res.send({});	

								next(false);	

				}	catch(err)	{	res.send(500,	err);	next(false);	}

});

This	is	how	we	delete	a	user	from	the	Notes	application.	The	DEL	HTTP
verb	is	meant	to	be	used	to	delete	things	on	a	server,	making	it	the	natural
choice	for	this	functionality:

//	Check	password

server.post('/passwordCheck',	async	(req,	res,	next)	=>	{

				try	{

								await	usersModel.userPasswordCheck(

																								req.params.username,	req.params.password);

								res.send(check);

								next(false);	

				}	catch(err)	{	res.send(500,	err);	next(false);	}

});

This	is	another	aspect	of	keeping	the	password	solely	within	this	server.
The	password	check	is	performed	by	this	server,	rather	than	in	the	Notes
application.	We	simply	call	the	usersModel.userPasswordCheck	function	shown
earlier	and	send	back	the	object	it	returns:

//	List	users

server.get('/list',	async	(req,	res,	next)	=>	{

				try	{

								var	userlist	=	await	usersModel.listUsers();

								if	(!userlist)	userlist	=	[];

								res.send(userlist);

								next(false);

				}	catch(err)	{	res.send(500,	err);	next(false);	}

});

Then,	finally,	if	required,	we	send	a	list	of	Notes	application	users	back	to
the	requestor.	In	case	no	list	of	users	is	available,	we	at	least	send	an
empty	array:

server.listen(process.env.PORT,	"localhost",	function()	{	

		log(server.name	+'	listening	at	'+	server.url);	

});	

	

//	Mimic	API	Key	authentication.	

	

var	apiKeys	=	[{	

				user:	'them',	

				key:	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF'	

}];	

	

function	check(req,	res,	next)	{	

				if	(req.authorization)	{	

								var	found	=	false;	

								for	(let	auth	of	apiKeys)	{	

												if	(auth.key		===	req.authorization.basic.password	

													&&	auth.user	===	req.authorization.basic.username)	{	

																found	=	true;	

																break;	

												}	

								}	

								if	(found)	next();	

								else	{	

												res.send(401,	new	Error("Not	authenticated"));	

												next(false);	

								}	

				}	else	{	

								res.send(500,	new	Error('No	Authorization	Key'));

								next(false);	

				}	

}	

As	with	the	Notes	application,	we	listen	to	the	port	named	in	the	PORT
environment	variable.	By	explicitly	listening	only	on	localhost,	we'll	limit
the	scope	of	systems	that	can	access	the	user	authentication	server.	In	a
real	deployment,	we	might	have	this	server	behind	a	firewall	with	a	tight
list	of	host	systems	allowed	to	have	access.

This	last	function,	check,	implements	authentication	for	the	REST	API
itself.	This	is	the	handler	function	we	added	earlier.

It	requires	the	caller	to	provide	credentials	on	the	HTTP	request	using	the
basic	auth	headers.	The	authorizationParser	handler	looks	for	this	and	gives
it	to	us	on	the	req.authorization.basic	object.	The	check	function	simply
verifies	that	the	named	user	and	password	combination	exists	in	the	local
array.

This	is	meant	to	mimic	assigning	an	API	key	to	an	application.	There	are
several	ways	of	doing	so;	this	is	just	one.

This	approach	is	not	limited	to	just	authenticating	using	HTTP	basic	auth.
The	Restify	API	lets	us	look	at	any	header	in	the	HTTP	request,	meaning
we	could	implement	any	kind	of	security	mechanism	we	like.	The	check
function	could	implement	some	other	security	method,	with	the	right	code.

Because	we	added	check	with	the	initial	set	of	server.use	handlers,	it	is
called	on	every	request.	Therefore,	every	request	to	this	server	must
provide	the	HTTP	basic	auth	credentials	required	by	this	check.

This	strategy	is	good	if	you	want	to	control	access	to	every	single	function
in	your	API.	For	the	user	authentication	service,	that's	probably	a	good
idea.	Some	REST	services	in	the	world	have	certain	API	functions	that	are
open	to	the	world	and	others	protected	by	an	API	token.	To	implement
that,	the	check	function	should	not	be	configured	among	the	server.use
handlers.	Instead,	it	should	be	added	to	the	appropriate	route	handlers	as
follows:

server.get('requesturl',	authHandler,	(req,	res,	next)	=>	{	

		..	

});

Such	an	authHandler	would	be	coded	similarly	to	our	check	function.	A
failure	to	authenticate	is	indicated	by	sending	an	error	code	and	using
next(false)	to	end	the	routing	function	chain.

We	now	have	the	complete	code	for	the	user	authentication	server.	It
defines	several	request	URLs,	and	for	each,	the	corresponding	function	in
the	user	model	is	called.

Now	we	need	a	YAML	file	to	hold	the	database	credentials,	so	create
sequelize-sqlite.yaml,	containing	the	following	code:

dbname:	users	

username:	

password:	

params:	

				dialect:	sqlite	

				storage:	users-sequelize.sqlite3	

Since	this	is	Sequelize,	it's	easy	to	switch	to	other	database	engines	simply
by	supplying	a	different	configuration	file.	Remember	that	the	filename	of
this	configuration	file	must	appear	in	the	SEQUELIZE_CONNECT	environment
variable.

Finally,	package.json	should	look	as	follows:

{

		"name":	"user-auth-server",

		"version":	"0.0.1",

		"description":	"",

		"main":	"user-server.js",

		"scripts":	{

				"start":	"DEBUG=users:*	PORT=3333	SEQUELIZE_CONNECT=sequelize-sqlite.yaml	

node	--experimental-modules	user-server"

		},

		"author":	"",

		"license":	"ISC",

		"engines":	{

				"node":	">=8.9"

		},

		"dependencies":	{

				"debug":	"^2.6.9",

				"fs-extra":	"^5.x",

				"js-yaml":	"^3.10.x",

				"mysql":	"^2.15.x",

				"restify":	"^6.3.x",

				"restify-clients":	"^1.5.x",

				"sqlite3":	"^3.1.x",

				"sequelize":	"^4.31.x"

		}

}

We	configure	this	server	to	listen	on	port	3333	using	the	database
credentials	we	just	gave	and	with	debugging	output	for	the	server	code.

You	can	now	start	the	user	authentication	server:

$	npm	start

				

>	user-auth-server@0.0.1	start	Usersdavid/chap08/users

>	DEBUG=users:*	PORT=3333	SEQUELIZE_CONNECT=sequelize-mysql.yaml	node	user-

server

				

		users:server	User-Auth-Service	listening	at	http://127.0.0.1:3333	+0ms	

But	we	don't	have	any	way	to	interact	with	this	server,	yet.

Scripts	to	test	and	administer
the	user	authentication	server
To	give	ourselves	assurance	that	the	user	authentication	server	works,	let's
write	a	couple	of	scripts	to	exercise	the	API.	Because	we're	not	going	to
take	the	time	to	write	an	administrative	backend	to	the	Notes	application,
these	scripts	will	let	us	add	and	delete	users	who	are	allowed	access	to
Notes.	These	scripts	will	live	within	the	user	authentication	server	package
directory.	

The	Restify	package	supports	coding	REST	servers.	For	the	REST	clients,
we're	using	a	companion	library,	restify-clients,	which	has	been	spun	out
of	Restify.	

Create	a	file	named	users-add.js,	containing	the	following	code:

'use	strict';

const	util	=	require('util');

const	restify	=	require('restify-clients');

var	client	=	restify.createJsonClient({

		url:	'http://localhost:'+process.env.PORT,

		version:	'*'

});

client.basicAuth('them',	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF');

client.post('/create-user',	{

				username:	"me",	password:	"w0rd",	provider:	"local",

				familyName:	"Einarrsdottir",	givenName:	"Ashildr",	middleName:	"",

				emails:	[],	photos:	[]

},

(err,	req,	res,	obj)	=>	{

				if	(err)	console.error(err.stack);

				else	console.log('Created	'+	util.inspect(obj));

});

This	is	the	basic	structure	of	a	Restify	client.	We	create	the	Client	object	–
we	have	a	choice	between	the	JsonClient,	as	used	here,	the	StringClient,	and
the	HttpClient.	The	HTTP	basicAuth	credentials	are	easy	to	set,	as	shown
here.

Then	we	make	the	request,	in	this	case	a	POST	request	on	/create-user.
Because	it	is	a	POST	request,	the	object	we	specify	here	is	formatted	by
Restify	into	HTTP	POST	body	parameters.	As	we	saw	earlier,	the	server	has
the	bodyParser	handler	function	configured,	which	converts	those	body
parameters	into	the	req.param	object.

In	the	Restify	client,	as	for	the	Restify	server,	we	use	the	various	HTTP
methods	by	calling	client.METHOD.	Because	it	is	a	POST	request,	we	use
client.post.	When	the	request	finishes,	the	callback	function	is	invoked.

Before	running	these	scripts,	start	the	authentication	server	in	one	window
using	the	following	command:

$	npm	start

Now	run	the	test	script	using	the	following	command:

$	PORT=3333	node	users-add.js	

Created	{	id:	1,	username:	'me',	password:	'w0rd',	provider:	'local',

		familyName:	'Einarrsdottir',	givenName:	'Ashildr',

		middleName:	'',

		emails:	'[]',	photos:	'[]',

		updatedAt:	'2016-02-24T02:34:41.661Z',

		createdAt:	'2016-02-24T02:34:41.661Z'	}		

We	can	inspect	our	handiwork	using	the	following	command:

$	sqlite3	users-sequelize.sqlite3	

SQLite	version	3.10.2	2016-01-20	15:27:19

Enter	".help"	for	usage	hints.

sqlite>	.schema	users

CREATE	TABLE	`Users`	(`id`	INTEGER	PRIMARY	KEY	AUTOINCREMENT,	`username`	

VARCHAR(255)	UNIQUE,	`password`	VARCHAR(255),	`provider`	VARCHAR(255),	

`familyName`	VARCHAR(255),	`givenName`	VARCHAR(255),	`middleName`	

VARCHAR(255),	`emails`	VARCHAR(2048),	`photos`	VARCHAR(2048),	`createdAt`	

DATETIME	NOT	NULL,	`updatedAt`	DATETIME	NOT	NULL,	UNIQUE	(`username`));

sqlite>	select	*	from	users;

2|me|w0rd|local|Einarrsdottir|Ashildr||[]|[]|2018-01-21	05:34:56.629	

+00:00|2018-01-21	05:34:56.629	+00:00

sqlite>	^D		

Now	let's	write	a	script,	users-find.js,	to	look	up	a	given	user:

'use	strict';

const	util	=	require('util');

const	restify	=	require('restify-clients');

var	client	=	restify.createJsonClient({

		url:	'http://localhost:'+process.env.PORT,

		version:	'*'

});

client.basicAuth('them',	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF');

client.get('find'+	process.argv[2],	

(err,	req,	res,	obj)	=>	{

				if	(err)	console.error(err.stack);

				else	console.log('Found	'+	util.inspect(obj));

});

This	simply	calls	the	/find	URL,	specifying	the	username	that	the	user
supplies	as	a	command-line	argument.	Note	that	the	get	operation	does	not
take	an	object	full	of	parameters.	Instead,	any	parameters	would	be	added
to	the	URL.

It's	run	as	follows:

$	PORT=3333	node	users-find.js	me

Found	{	username:	'me',	provider:	'local',

		familyName:	'Einarrsdottir',	givenName:	'Ashildr',

		middleName:	'',

		emails:	'[]',	photos:	'[]'	}		

Similarly,	we	can	write	scripts	against	the	other	REST	functions.	But	we

need	to	get	on	with	the	real	goal	of	integrating	this	into	the	Notes
application.

	

Login	support	for	the	Notes
application
Now	that	we	have	proved	that	the	user	authentication	service	is	working,
we	can	set	up	the	Notes	application	to	support	user	logins.	We'll	be	using
Passport	to	support	login/logout,	and	the	authentication	server	to	store	the
required	data.

Among	the	available	packages,	Passport	stands	out	for	simplicity	and
flexibility.	It	integrates	directly	with	the	Express	middleware	chain,	and
the	Passport	community	has	developed	hundreds	of	so-called	Strategy
modules	to	handle	authentication	against	a	long	list	of	third-party	services.
See	http://www.passportjs.org/	for	information	and	documentation.

	

http://www.passportjs.org/

Accessing	the	user
authentication	REST	API
The	first	step	is	to	create	a	user	data	model	for	the	Notes	application.
Rather	than	retrieving	data	from	data	files	or	a	database,	it	will	use	REST
to	query	the	server	we	just	created.	We	could	have	created	user	model
code	that	directly	accesses	the	database	but,	for	reasons	already	discussed,
we've	decided	to	segregate	user	authentication	into	a	separate	service.

Let	us	now	turn	to	the	Notes	application,	which	you	may	have	stored
as	chap08/notes.	We'll	be	modifying	the	application,	first	to	access	the	user
authentication	REST	API,	and	then	to	use	Passport	for	authorization	and
authentication.

For	the	test/admin	scripts	that	we	created	earlier,	we	used	the	restify-
clients	module.	That	package	is	a	companion	to	the	restify	library,	where
restify	supports	the	server	side	of	the	REST	protocol	and	restify-clients
supports	the	client	side.	Their	names	might	give	away	the	purpose.

However	nice	the	restify-clients	library	is,	it	doesn't	support	a	Promise-
oriented	API,	as	is	required	to	play	well	with	async	functions.	Another
library,	superagent,	does	support	a	Promise-oriented	API,	plays	well	in	async
functions,	and	there	is	a	companion	to	that	package,	Supertest,	that's	useful
in	unit	testing.	We'll	use	Supertest	in	Chapter	11,	Unit	Testing	and
Functional	Testing,	when	we	talk	about	unit	testing.	For	documentation,
see	https://www.npmjs.com/package/superagent:

	$	npm	install	superagent@^3.8.x

Create	a	new	file,	models/users-superagent.mjs,	containing	the	following	code:

https://www.npmjs.com/package/superagent

import	request	from	'superagent';

import	util	from	'util';

import	url	from	'url';	

const	URL	=	url.URL;

import	DBG	from	'debug';

const	debug	=	DBG('notes:users-superagent');	

const	error	=	DBG('notes:error-superagent');	

	

function	reqURL(path)	{

				const	requrl	=	new	URL(process.env.USER_SERVICE_URL);

				requrl.pathname	=	path;

				return	requrl.toString();

}

The	reqURL	function	replaces	the	connectXYZZY	functions	that	we	wrote	in
earlier	modules.	With	superagent,	we	don't	leave	a	connection	open	to	the
service,	but	open	a	new	connection	on	each	request.	The	common	thing	to
do	is	to	formulate	the	request	URL.	The	user	is	expected	to	provide	a	base
URL,	such	as	http://localhost:3333/,	in	the	USER_SERVICE_URL	environment
variable.	This	function	modifies	that	URL,	using	the	new	WHATWG	URL
support	in	Node.js,	to	use	a	given	URL	path:

export	async	function	create(username,	password,	

												provider,	familyName,	givenName,	middleName,	

												emails,	photos)	{

				var	res	=	await	request

								.post(reqURL('/create-user'))

								.send({	

												username,	password,	provider,	

												familyName,	givenName,	middleName,	emails,	photos	

								})

								.set('Content-Type',	'application/json')

								.set('Acccept',	'application/json')

								.auth('them',	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF');

				return	res.body;

}

	

export	async	function	update(username,	password,	

												provider,	familyName,	givenName,	middleName,	

												emails,	photos)	{	

				var	res	=	await	request

								.post(reqURL(`/update-user/${username}`))

								.send({	

												username,	password,	provider,	

												familyName,	givenName,	middleName,	emails,	photos	

								})

								.set('Content-Type',	'application/json')

								.set('Acccept',	'application/json')

								.auth('them',	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF');

				return	res.body;

}

These	are	our	create	and	update	functions.	In	each	case,	they	take	the	data
provided,	construct	an	anonymous	object,	and	POST	it	to	the	server.

The	superagent	library	uses	an	API	style	where	one	chains	together	method
calls	to	construct	a	request.	The	chain	of	method	calls	can	end	in	a	.then	or
.end	clause,	either	of	which	take	a	callback	function.	But	leave	off	both,
and	it	will	return	a	Promise.

All	through	this	library,	we'll	use	the	.auth	clause	to	set	up	the	required
authentication	key.	

These	anonymous	objects	are	a	little	different	than	usual.	We're	using	a	new	ES-2015
feature	here	that	we	haven't	discussed	so	far.	Rather	than	specifying	the	object	fields
using	the	fieldName:	fieldValue	notation,	ES-2015	gives	us	the	option	to	shorten	this
when	the	variable	name	used	for	fieldValue	matches	the	desired	fieldName.	In	other
words,	we	can	just	list	the	variable	names,	and	the	field	name	will	automatically
match	the	variable	name.

In	this	case,	we've	purposely	chosen	variable	names	for	the	parameters	to
match	field	names	of	the	object	with	parameter	names	used	by	the	server.
By	doing	so,	we	can	use	this	shortened	notation	for	anonymous	objects,
and	our	code	is	a	little	cleaner	by	using	consistent	variable	names	from
beginning	to	end:

export	async	function	find(username)	{

				var	res	=	await	request

								.get(reqURL(`/find/${username}`))

								.set('Content-Type',	'application/json')

								.set('Acccept',	'application/json')

								.auth('them',	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF');

				return	res.body;

}

Our	find	operation	lets	us	look	up	user	information:

export	async	function	userPasswordCheck(username,	password)	{	

				var	res	=	await	request

								.post(reqURL(`/passwordCheck`))

								.send({	username,	password	})

								.set('Content-Type',	'application/json')

								.set('Acccept',	'application/json')

								.auth('them',	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF');

				return	res.body;

}	

We're	sending	the	request	to	check	passwords	to	the	server.	

A	point	about	this	method	is	useful	to	note.	It	could	have	taken	the
parameters	in	the	URL,	instead	of	the	request	body	as	is	done	here.	But
since	request	URL	are	routinely	logged	to	files,	putting	the	username	and
password	parameters	in	the	URL	means	user	identity	information	would
be	logged	to	files	and	part	of	activity	reports.	That	would	obviously	be	a
very	bad	choice.	Putting	those	parameters	in	the	request	body	not	only
avoids	that	bad	result,	but	if	an	HTTPS	connection	to	the	service	were
used,	the	transaction	would	be	encrypted:

export	async	function	findOrCreate(profile)	{		

				var	res	=	await	request

								.post(reqURL('/find-or-create'))

								.send({	

												username:	profile.id,	password:	profile.password,	

												provider:	profile.provider,	

												familyName:	profile.familyName,	

												givenName:	profile.givenName,	

												middleName:	profile.middleName,	

												emails:	profile.emails,	photos:	profile.photos	

								})

								.set('Content-Type',	'application/json')

								.set('Acccept',	'application/json')

								.auth('them',	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF');

				return	res.body;

}

The	findOrCreate	function	either	discovers	the	user	in	the	database,	or
creates	a	new	user.	The	profile	object	will	come	from	Passport,	but	take
careful	note	of	what	we	do	with	profile.id.	The	Passport	documentation
says	it	will	provide	the	username	in	the	profile.id	field.	But	we	want	to

store	it	as	username,	instead:

export	async	function	listUsers()	{	

				var	res	=	await	request

								.get(reqURL('/list'))

								.set('Content-Type',	'application/json')

								.set('Acccept',	'application/json')

								.auth('them',	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF');	

				return	res.body;

}

Finally,	we	can	retrieve	a	list	of	users.

Login	and	logout	routing
functions
What	we've	built	so	far	is	a	user	data	model,	with	a	REST	API	wrapping
that	model	to	create	our	authentication	information	service.	Then,	within
the	Notes	application,	we	have	a	module	that	requests	user	data	from	this
server.	As	of	yet,	nothing	in	the	Notes	application	knows	that	this	user
model	exists.	The	next	step	is	to	create	a	routing	module	for	login/logout
URLs	and	to	change	the	rest	of	Notes	to	use	user	data.

The	routing	module	is	where	we	use	passport	to	handle	user	authentication.
The	first	task	is	to	install	the	required	modules:

$	npm	install	passport@^0.4.x	passport-local@1.x	--save

The	passport	module	gives	us	the	authentication	algorithms.	To	support
different	authentication	mechanisms,	the	passport	authors	have	developed
several	strategy	implementations.	The	authentication	mechanisms,	or
strategies,	correspond	to	the	various	third-party	services	that	support
authentication,	such	as	using	OAuth2	to	authenticate	against	services	such
as	Facebook,	Twitter,	or	GitHub.

The	LocalStrategy	authenticates	solely	using	data	stored	local	to	the
application,	for	example,	our	user	authentication	information	service.

Let's	start	by	creating	the	routing	module,	routes/users.mjs:

import	path	from	'path';

import	util	from	'util';

import	express	from	'express';	

import	passport	from	'passport';	

import	passportLocal	from	'passport-local';

const	LocalStrategy	=	passportLocal.Strategy;	

import	*	as	usersModel	from	'../models/users-superagent';

import	{	sessionCookieName	}	from	'../app';

export	const	router	=	express.Router();

import	DBG	from	'debug';

const	debug	=	DBG('notes:router-users');	

const	error	=	DBG('notes:error-users');	

This	brings	in	the	modules	we	need	for	the	/users	router.	This	includes	the
two	passport	modules	and	the	REST-based	user	authentication	model.	

In	app.mjs,	we	will	be	adding	session	support	so	our	users	can	log	in	and
log	out.	That	relies	on	storing	a	cookie	in	the	browser,	and	the	cookie
name	is	found	in	this	variable	exported	from	app.mjs.	We'll	be	using	that
cookie	in	a	moment:

export	function	initPassport(app)	{	

		app.use(passport.initialize());	

		app.use(passport.session());	

}

	

export	function	ensureAuthenticated(req,	res,	next)	{	

		try	{

				//	req.user	is	set	by	Passport	in	the	deserialize	function	

				if	(req.user)	next();	

				else	res.redirect('userslogin');	

		}	catch	(e)	{	next(e);	}

}

The	initPassport	function	will	be	called	from	app.mjs,	and	it	installs	the
Passport	middleware	into	the	Express	configuration.	We'll	discuss	the
implications	of	this	later	when	we	get	to	app.mjs	changes,	but	Passport	uses
sessions	to	detect	whether	this	HTTP	request	is	authenticated	or	not.	It
looks	at	every	request	coming	into	the	application,	looks	for	clues	about
whether	this	browser	is	logged	in	or	not,	and	attaches	data	to	the	request
object	as	req.user.

The	ensureAuthenticated	function	will	be	used	by	other	routing	modules	and
is	to	be	inserted	into	any	route	definition	that	requires	an	authenticated

logged-in	user.	For	example,	editing	or	deleting	a	note	requires	the	user	to
be	logged	in,	and	therefore	the	corresponding	routes	in	routes/notes.mjs
must	use	ensureAuthenticated.	If	the	user	is	not	logged	in,	this	function
redirects	them	to	userslogin	so	that	they	can	do	so:

outer.get('/login',	function(req,	res,	next)	{	

		try	{

				res.render('login',	{	title:	"Login	to	Notes",	user:	req.user,	});	

		}	catch	(e)	{	next(e);	}

});	

	

router.post('/login',	

		passport.authenticate('local',	{	

				successRedirect:	'',	/	SUCCESS:	Go	to	home	page	

				failureRedirect:	'login',	//	FAIL:	Go	to	userlogin	

		})	

);

	

Because	this	router	is	mounted	on	/users,	all	these	routes	will	have	/user
prepended.	The	userslogin	route	simply	shows	a	form	requesting	a
username	and	password.	When	this	form	is	submitted,	we	land	in	the
second	route	declaration,	with	a	POST	on	userslogin.	If	passport	deems	this	a
successful	login	attempt	using	LocalStrategy,	then	the	browser	is	redirected
to	the	home	page.	Otherwise,	it	is	redirected	to	the	userslogin	page:

router.get('/logout',	function(req,	res,	next)	{	

		try	{

				req.session.destroy();

				req.logout();	

				res.clearCookie(sessionCookieName);

	res.redirect('/');	

	}	catch	(e)	{	next(e);	}

});

When	the	user	requests	to	log	out	of	Notes,	they	are	to	be	sent	to
userslogout.	We'll	be	adding	a	button	to	the	header	template	for	this
purpose.	The	req.logout	function	instructs	Passport	to	erase	their	login
credentials,	and	they	are	then	redirected	to	the	home	page.

This	function	deviates	from	what's	in	the	Passport	documentation.	There,

we	are	told	to	simply	call	req.logout.	But	calling	only	that	function
sometimes	results	in	the	user	not	being	logged	out.	It's	necessary	to
destroy	the	session	object,	and	to	clear	the	cookie,	in	order	to	ensure	that
the	user	is	logged	out.	The	cookie	name	is	defined	in	app.mjs,	and	we
imported	sessionCookieName	for	this	function:

passport.use(new	LocalStrategy(

		async	(username,	password,	done)	=>	{	

				try	{

						var	check	=	await	usersModel.userPasswordCheck(username,	

						password);

						if	(check.check)	{	

								done(null,	{	id:	check.username,	username:	check.username	});	

						}	else	{	

								done(null,	false,	check.message);	

						}	

				}	catch	(e)	{	done(e);	}

		}	

));	

Here	is	where	we	define	our	implementation	of	LocalStrategy.	In	the
callback	function,	we	call	usersModel.userPasswordCheck,	which	makes	a	REST
call	to	the	user	authentication	service.	Remember	that	this	performs	the
password	check	and	then	returns	an	object	indicating	whether	they're
logged	in	or	not.

A	successful	login	is	indicated	when	check.check	is	true.	For	this	case,	we
tell	Passport	to	use	an	object	containing	the	username	in	the	session	object.
Otherwise,	we	have	two	ways	to	tell	Passport	that	the	login	attempt	was
unsuccessful.	In	one	case,	we	use	done(null,	false)	to	indicate	an	error
logging	in,	and	pass	along	the	error	message	we	were	given.	In	the	other
case,	we'll	have	captured	an	exception,	and	pass	along	that	exception.

You'll	notice	that	Passport	uses	a	callback-style	API.	Passport	provides	a
done	function,	and	we	are	to	call	that	function	when	we	know	what's	what.
While	we	use	an	async	function	to	make	a	clean	asynchronous	call	to	the
backend	service,	Passport	doesn't	know	how	to	grok	the	Promise	that
would	be	returned.	Therefore,	we	have	to	throw	a	try/catch	around	the
function	body	to	catch	any	thrown	exception:

passport.serializeUser(function(user,	done)	{	

		try	{

				done(null,	user.username);	

		}	catch	(e)	{	done(e);	}

});	

	

passport.deserializeUser(async	(username,	done)	=>	{	

		try	{

				var	user	=	await	usersModel.find(username);

				done(null,	user);

		}	catch(e)	{	done(e);	}

});	

The	preceding	functions	take	care	of	encoding	and	decoding
authentication	data	for	the	session.	All	we	need	to	attach	to	the	session	is
the	username,	as	we	did	in	serializeUser.	The	deserializeUser	object	is	called
while	processing	an	incoming	HTTP	request	and	is	where	we	look	up	the
user	profile	data.	Passport	will	attach	this	to	the	request	object.

Login/logout	changes	to	app.js
We	have	a	few	changes	required	in	app.mjs,	some	of	which	we've	already
touched	on.	We	did	carefully	isolate	the	Passport	module	dependencies	to
routes/users.mjs.	The	changes	required	in	app.mjs	support	the	code	in
routes/users.mjs.

It's	now	time	to	uncomment	a	line	we	told	you	to	comment	out	way	back
in	Chapter	5,	Your	First	Express	Application.	The	imports	for	the	routing
modules	will	now	look	as	follows:

import	{	router	as	index	}	from	'./routes/index';

import	{	router	as	users,	initPassport	}	from	'./routes/users';

import	{	router	as	notes	}	from	'./routes/notes';	

The	User	router	supports	the	/login	and	/logout	URL's	as	well	as	using
Passport	for	authentication.	We	need	to	call	initPassport	for	a	little	bit	of
initialization:

import	session	from	'express-session';

import	sessionFileStore	from	'session-file-store';

const	FileStore	=	sessionFileStore(session);	

export	const	sessionCookieName	=	'notescookie.sid';

Because	Passport	uses	sessions,	we	need	to	enable	session	support	in
Express,	and	these	modules	do	so.	The	session-file-store	module	saves	our
session	data	to	disk	so	that	we	can	kill	and	restart	the	application	without
losing	sessions.	It's	also	possible	to	save	sessions	to	databases	with
appropriate	modules.	A	filesystem	session	store	is	suitable	only	when	all
Notes	instances	are	running	on	the	same	server	computer.	For	a	distributed
deployment	situation,	you'll	need	to	use	a	session	store	that	runs	on	a
network-wide	service,	such	as	a	database.

We're	defining	sessionCookieName	here	so	it	can	be	used	in	multiple	places.
By	default,	express-session	uses	a	cookie	named	connect.sid	to	store	the
session	data.	As	a	small	measure	of	security,	it's	useful	when	there's	a
published	default	to	use	a	different	non-default	value.	Any	time	we	use	the
default	value,	it's	possible	that	an	attacker	might	know	a	security	flaw
depending	on	that	default.	

Use	the	following	command	to	install	the	modules:

$	npm	install	express-session@1.15.x	session-file-store@1.2.x	--save

Express	Session	support,	including	all	the	various	Session	Store
implementations,	is	documented	on	its	GitHub	project	page	at
https://github.com/expressjs/session.	

Add	this	in	app.mjs:

app.use(session({	

		store:	new	FileStore({	path:	"sessions"	}),	

		secret:	'keyboard	mouse',

		resave:	true,

		saveUninitialized:	true,

		name:	sessionCookieName

}));	

initPassport(app);

Here	we	initialize	the	session	support.	The	field	named	secret	is	used	to
sign	the	session	ID	cookie.	The	session	cookie	is	an	encoded	string	that	is
encrypted	in	part	using	this	secret.	In	the	Express	Session	documentation,
they	suggest	the	string	keyboard	cat	for	the	secret.	But,	in	theory,	what	if
Express	has	a	vulnerability,	such	that	knowing	this	secret	can	make	it
easier	to	break	the	session	logic	on	your	site?	Hence,	we	chose	a	different
string	for	the	secret	just	to	be	a	little	different	and	perhaps	a	little	more
secure.

Similarly,	the	default	cookie	name	used	by	express-session	is	connect.sid.
Here's	where	we	change	the	cookie	name	to	a	non-default	name.

https://github.com/expressjs/session

The	FileStore	will	store	its	session	data	records	in	a	directory	named
sessions.	This	directory	will	be	auto-created	as	needed:

app.use('',	index);	

app.use('users',	users);	

app.use('/notes',	notes);	

The	preceding	are	the	three	routers	used	in	the	Notes	application.	

Login/logout	changes	in
routes/index.mjs
This	router	module	handles	the	home	page.	It	does	not	require	the	user	to
be	logged	in,	but	we	want	to	change	the	display	a	little	if	they	are	logged
in:

router.get('/',	async	(req,	res,	next)	=>	{

		try	{

				let	keylist	=	await	notes.keylist();

				let	keyPromises	=	keylist.map(key	=>	{	return	notes.read(key)	});

				let	notelist	=	await	Promise.all(keyPromises);

				res.render('index',	{	

						title:	'Notes',	notelist:	notelist,

						user:	req.user	?	req.user	:	undefined

				});

		}	catch	(e)	{	next(e);	}

});

Remember	that	we	ensured	that	req.user	has	the	user	profile	data,	which	we
did	in	deserializeUser.	We	simply	check	for	this	and	make	sure	to	add	that
data	when	rendering	the	views	template.

We'll	be	making	similar	changes	to	most	of	the	other	route	definitions.
After	that,	we'll	go	over	the	changes	to	the	view	templates	in	which	we	use
req.user	to	show	the	correct	buttons	on	each	page.

Login/logout	changes	required
in	routes/notes.mjs
The	changes	required	here	are	more	significant,	but	still	straightforward:

import	{	ensureAuthenticated	}	from	'./users';	

We	need	to	use	the	ensureAuthenticated	function	to	protect	certain	routes
from	being	used	by	users	who	are	not	logged	in.	Notice	how	ES6	modules
let	us	import	just	the	function(s)	we	require.	Since	that	function	is	in	the
user	router	module,	we	need	to	import	it	from	there:

router.get('/add',	ensureAuthenticated,	(req,	res,	next)	=>	{

				try	{

								res.render('noteedit',	{

												title:	"Add	a	Note",

												docreate:	true,	notekey:	"",

												user:	req.user,	note:	undefined

								});

				}	catch	(e)	{	next(e);	}

});

The	first	thing	we	added	is	to	call	usersRouter.ensureAuthenticated	in	the	route
definition.	If	the	user	is	not	logged	in,	they'll	redirect	to	/users/login,	thanks
to	that	function.

Because	we've	ensured	that	the	user	is	authenticated,	we	know	that	req.user
will	already	have	their	profile	information.	We	can	then	simply	pass	it	to
the	view	template.

For	the	other	routes,	we	need	to	make	similar	changes:

router.post('/save',	ensureAuthenticated,	(req,	res,	next)	=>	{	

		..	

});	

The	/save	route	requires	only	this	change	to	call	ensureAuthenticated	to	make
sure	that	the	user	is	logged	in:

router.get('/view',	(req,	res,	next)	=>	{

				try	{

								var	note	=	await	notes.read(req.query.key);

								res.render('noteview',	{

												title:	note	?	note.title	:	"",

												notekey:	req.query.key,

												user:	req.user	?	req.user	:	undefined,	

												note:	note

								});

				}	catch	(e)	{	next(e);	}

});	

For	this	route,	we	don't	require	the	user	to	be	logged	in.	We	do	need	the
user's	profile	information,	if	any,	sent	to	the	view	template:

router.get('/edit',	ensureAuthenticated,	(req,	res,	next)	=>	{	

				try	{

								var	note	=	await	notes.read(req.query.key);

								res.render('noteedit',	{

												title:	note	?	("Edit	"	+	note.title)	:	"Add	a	Note",

												docreate:	false,

												notekey:	req.query.key,

												user:	req.user	?	req.user	:	undefined,	

												note:	note

								});

				}	catch	(e)	{	next(e);	}

});	

router.get('/destroy',	ensureAuthenticated,	(req,	res,	next)	=>	{	

				try	{

								var	note	=	await	notes.read(req.query.key);

								res.render('notedestroy',	{

												title:	note	?	`Delete	${note.title}`	:	"",

												notekey:	req.query.key,

												user:	req.user	?	req.user	:	undefined,	

												note:	note

								});

				}	catch	(e)	{	next(e);	}

});	

router.post('/destroy/confirm',	ensureAuthenticated,	(req,	res,	next)	=>	{	

		..	

});	

For	these	routes,	we	require	the	user	to	be	logged	in.	In	most	cases,	we
need	to	send	the	req.user	value	to	the	view	template.

View	template	changes
supporting	login/logout
So	far,	we've	created	a	backend	user	authentication	service,	a	REST
module,	to	access	that	service,	a	router	module	to	handle	routes	related	to
logging	in	and	out	of	the	website,	and	changes	in	app.mjs	to	use	those
modules.	We're	almost	ready,	but	we've	got	a	number	of	outstanding
changes	to	make	in	the	templates.	We're	passing	the	req.user	object	to
every	template	because	each	one	must	be	changed	to	accommodate
whether	the	user	is	logged	in	or	not.

In	partials/header.hbs,	make	the	following	additions:

...

				{{#if	user}}

								<div	class="collapse	navbar-collapse"			

									id="navbarSupportedContent">

												{{	title	}}

												

												Log	Out	{{	user.username	}}

									

												<a	class="nav-item	nav-link	btn	btn-dark	col-auto"	

									href='notesadd'>

																																				ADD	Note

								</div>

				{{else}}

								<div	class="collapse	navbar-collapse"	id="navbarLogIn">

												Log	in

								</div>

				{{/if}}

...

What	we're	doing	here	is	controlling	which	buttons	to	display	at	the	top	of
the	screen	depending	on	whether	the	user	is	logged	in	or	not.	The	earlier
changes	ensure	that	the	user	variable	will	be	undefined	if	the	user	is	logged
out,	otherwise	it	will	have	the	user	profile	object.	Therefore,	it's	sufficient

to	check	the	user	variable	as	shown	here	to	render	different	user	interface
elements.

A	logged-out	user	doesn't	get	the	ADD	Note	button,	and	gets	a	Log	in
button.	Otherwise,	the	user	gets	an	ADD	Note	button	and	a	Log	Out
button.	The	Log	in	button	takes	the	user	to	userslogin,	while	the	Log	Out
button	takes	them	to	userslogout.	Both	of	those	are	handled	in
routes/users.js,	and	perform	the	expected	function.

The	Log	Out	button	has	a	Bootstrap	badge	component	displaying	the
username.	This	adds	a	little	visual	splotch,	in	which	we'll	put	the	username
that's	logged	in.	As	we'll	see	later,	it	will	serve	as	a	visual	cue	to	the	user
as	to	their	identity.

We	need	to	create	views/login.hbs:

<div	class="container-fluid">

		<div	class="row">

				<div	class="col-12	btn-group-vertical"	role="group">

								<form	method='POST'	action='userslogin'>	

								<div	class="form-group">	

								<label	for="username">User	name:</label>	

								<input	class="form-control"	type='text'	id='username'	

															name='username'	value=''	placeholder='User	Name'/>	

								</div>	

								<div	class="form-group">	

								<label	for="password">Password:</label>	

								<input	class="form-control"	type='password'	id='password'	

															name='password'	value=''	placeholder='Password'/>	

								</div>	

								<button	type="submit"	class="btn	btn-default">Submit</button>	

								</form>	

				</div>

		</div>

</div>

This	is	a	simple	form	decorated	with	Bootstrap	goodness	to	ask	for	the
username	and	password.	When	submitted,	it	creates	a	POST	request	to
userslogin,	which	invokes	the	desired	handler	to	verify	the	login	request.

The	handler	for	that	URL	will	start	the	Passport's	process	to
decide	whether	the	user	is	authenticated	or	not.

In	views/notedestroy.hbs,	we	want	to	display	a	message	if	the	user	is	not
logged	in.	Normally,	the	form	to	cause	the	note	to	be	deleted	is	displayed,
but	if	the	user	is	not	logged	in,	we	want	to	explain	the	situation:

<form	method='POST'	action='notesdestroy/confirm'>

<div	class="container-fluid">

				{{#if	user}}

				<input	type='hidden'	name='notekey'	value='{{#if	note}}{{notekey}}

{{/if}}'>

				<p	class="form-text">Delete	{{note.title}}?</p>

				<div	class="btn-group">

								<button	type="submit"	value='DELETE'	

																class="btn	btn-outline-dark">DELETE</button>

								<a	class="btn	btn-outline-dark"	

												href="notesview?key={{#if	note}}{{notekey}}{{/if}}"	

												role="button">Cancel

				</div>

				{{else}}

				{{>	not-logged-in	}}

				{{/if}}

</div>

</form>

That's	straightforward;	if	the	user	is	logged	in,	display	the	form,	otherwise
display	the	message	in	partials/not-logged-in.hbs.	We	determine	our
approach	based	on	the	user	variable.

We	could	put	something	like	this	in	partials/not-logged-in.hbs:

<div	class="jumbotron">	

	<h1>Not	Logged	In</h1>	

	<p>You	are	required	to	be	logged	in	for	this	action,	but	you	are	not.	

	You	should	not	see	this	message.	It's	a	bug	if	this	message	appears.			

	</p>	

	<p>Log	in</p>	

</div>

In	views/noteedit.hbs,	we	need	a	similar	change:

..	

<div	class="row"><div	class="col-xs-12">	

{{#if	user}}

..	

{{else}}

{{>	not-logged-in	}}

{{/if}}

</div></div>	

..	

That	is,	at	the	bottom	we	add	a	segment	that,	for	non-logged-in	users,	pulls
in	the	not-logged-in	partial.

The	Bootstrap	jumbotron	component	makes	a	nice	and	large	text	display
that	stands	out	nicely,	and	will	catch	the	viewer's	attention.	However,	the
user	should	never	see	this	because	each	of	those	templates	is	used	only
when	we've	preverified	that	the	user	is	logged	in.

A	message	such	as	this	is	useful	as	a	check	against	bugs	in	your	code.
Suppose	that	we	slipped	up	and	failed	to	properly	ensure	that	these	forms
were	displayed	only	to	logged-in	users.	Suppose	that	we	had	other	bugs
that	didn't	check	the	form	submission	to	ensure	it's	requested	only	by	a
logged-in	user.	Fixing	the	template	in	this	way	is	another	layer	of
prevention	against	displaying	forms	to	users	who	are	not	allowed	to	use
that	functionality.

Running	the	Notes	application
with	user	authentication
Now	we're	ready	to	run	the	Notes	application	and	try	our	hand	at	logging
in	and	out.

We	need	to	change	the	scripts	section	of	package.json	as	follows:

"scripts":	{

				"start":	"DEBUG=notes:*	SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	node	--

experimental-modules	./bin/www.mjs",

				"dl-minty":	"mkdir	-p	minty	&&	npm	run	dl-minty-css	&&	npm	run	dl-

				minty-min-css",

				"dl-minty-css":	"wget	https://bootswatch.com/4/minty/bootstrap.css	

				-O	minty/bootstrap.css",

				"dl-minty-min-css":	"wget	

https://bootswatch.com/4/minty/bootstrap.min.css	-O	minty/bootstrap.min.css"

},

In	the	previous	chapters,	we	built	up	quite	a	few	combinations	of	models
and	databases	for	running	the	Notes	application.	This	leaves	us	with	one,
configured	to	use	the	Sequelize	model	for	Notes,	using	the	SQLite3
database,	and	to	use	the	new	user	authentication	service	that	we	wrote
earlier.	We	can	simplify	the	scripts	section	by	deleting	those	other
configurations.	All	the	other	Notes	data	models	are	still	available	just	by
setting	the	environment	variables	appropriately.

The	USER_SERVICE_URL	needs	to	match	the	port	number	that	we	designated	for
that	service.

In	one	window,	start	the	user	authentication	service	as	follows:

$	cd	users

$	npm	start

				

>	user-auth-server@0.0.1	start	Usersdavid/chap08/users

>	DEBUG=users:*	PORT=3333	SEQUELIZE_CONNECT=sequelize-sqlite.yaml	node	user-

server

				

		users:server	User-Auth-Service	listening	at	http://127.0.0.1:3333		

		+0ms

Then,	in	another	window,	start	the	Notes	application:

$	cd	notes

$	DEBUG=notes:*	npm	start

				

>	notes@0.0.0	start	Usersdavid/chap08/notes

>	SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	NOTES_MODEL=models/notes-

sequelize	USERS_MODEL=models/users-rest	

USER_SERVICE_URL=http://localhost:3333	node	./bin/www

				

		notes:server	Listening	on	port	3000	+0ms

You'll	be	greeted	with	the	following:

Notice	the	new	button,	Log	in,	and	the	lack	of	an	ADD	Note	button.	We're
not	logged	in,	and	therefore	partials/header.hbs	is	rigged	to	show	only	the
Log	in	button.

Click	on	the	Log	in	button,	and	you	will	see	the	login	screen:

This	is	our	login	form	from	views/login.hbs.	You	can	now	log	in,	create	a
note	or	three,	and	you	might	end	up	with	the	following	on	the	home	page:

You	now	have	both	Log	Out	and	ADD	Note	buttons.

You'll	notice	that	the	Log	Out	button	has	the	username	(me)	shown.	After
some	thought	and	consideration,	this	seemed	the	most	compact	way	to
show	whether	the	user	is	logged	in	or	not,	and	which	user	is	logged	in.

This	might	drive	the	user	experience	team	nuts,	and	you	won't	know
whether	this	user	interfaces	design	works	until	it's	tested	with	users,	but
it's	good	enough	for	our	purpose	at	the	moment.

	

Twitter	login	support	for	the
Notes	application
If	you	want	your	application	to	hit	the	big	time,	it's	a	great	idea	to	allow
users	to	register	using	third-party	credentials.	Websites	all	over	the	internet
allow	you	to	log	in	using	Facebook,	Twitter,	or	accounts	from	other
services.	Doing	so	removes	hurdles	to	prospective	users	signing	up	for
your	service.	Passport	makes	it	extremely	easy	to	do	this.

Supporting	Twitter	requires	installing	TwitterStrategy,	registering	a	new
application	with	Twitter,	and	adding	a	couple	of	routes	into	routes/user.mjs
and	a	small	change	in	partials/header.hbs.	Integrating	other	third-party
services	requires	similar	steps.

	

Registering	an	application	with
Twitter
Twitter,	as	with	every	other	third-party	service,	uses	OAuth	to	handle
authentication	and	requires	an	authentication	key	to	write	software	using
their	API.	It's	their	service,	so	you	have	to	play	by	their	rules,	of	course.

To	register	a	new	application	with	Twitter,	go	to
https://apps.twitter.com/.	Then	you	click	on	the	Create	New	App	button.
Since	we	haven't	deployed	the	Notes	application	to	a	regular	server	and,
more	importantly,	there	isn't	a	valid	domain	name	for	the	application,	we
have	to	give	Twitter	the	configuration	required	for	testing	on	our	local
laptop.

Every	service	offering	OAuth2	authentication	has	an	administrative
backend	for	registering	new	applications.	The	common	purpose	is	to
describe	the	application	to	the	service	so	that	the	service	can	correctly
recognize	the	application	when	requests	are	made	using	the	authentication
tokens.	The	normal	situation	is	that	the	application	is	deployed	to	a	regular
server,	and	is	accessed	through	a	domain	name	such	as	MyNotes.info.		We've
done	neither	as	of	this	moment.

At	the	time	of	writing,	there	are	four	pieces	of	information	requested	by
the	Twitter	sign-up	process:

Name:	This	is	the	application	name,	and	it	can	be	anything	you
like.	It	would	be	good	form	to	use	test	in	the	name	in	case
Twitter's	staff	decide	to	do	some	validation.

Description:	Descriptive	phrase,	and	again	it	can	be	anything	you
like.	Again,	it	would	be	good	form	to,	at	this	time,	describe	it	as	a

https://apps.twitter.com/

test	application.

Website:	This	would	be	your	desired	domain	name.	Here,	the	help
text	helpfully	suggests	If	you	don't	have	a	URL	yet,	just	put	a
placeholder	here	but	remember	to	change	it	later.

Callback	URL:	This	is	the	URL	to	return	to	after	successful
authentication.	Since	we	don't	have	a	public	URL	to	supply,	this	is
where	we	specify	a	value	referring	to	your	laptop.	It's	been	found
that	http://localhost:3000	works	just	fine.	macOS	users	have	another
option	because	of	the	.local	domain	name,	which	is	automatically
assigned	to	their	laptop.	All	along,	we	could	have	used	a	URL
similar	to	this	to	access	the	Notes	application	at	http://MacBook-Pro-
2.local:3000/.	

It	was	found	by	attempting	this	procedure	with	different	services	that
Facebook	(and	other)	services	are	not	lenient	about	test	applications
hosted	on	laptops.	At	least	Twitter	is	keen	for	developers	to	configure	a
test	application	on	their	laptop.	Passport's	other	OAuth-based	strategies
will	work	similarly	enough	to	Twitter,	so	the	knowledge	we're	gaining	will
transfer	to	those	other	authentication	strategies.

The	last	thing	to	notice	is	the	extremely	sensitive	nature	of	the
authentication	keys.	It's	bad	form	to	check	these	into	a	source	code
repository	or	otherwise	put	them	in	a	place	where	anybody	can	access	the
key.	We'll	tackle	this	issue	in	Chapter	12,	Security.

Twitter	does	change	the	signup	page	from	time	to	time,	but	it	should	look
something	like	the	following:

Implementing	TwitterStrategy
As	with	many	web	applications,	we	have	decided	to	allow	our	users	to	log
in	using	Twitter	credentials.	The	OAuth2	protocol	is	widely	used	for	this
purpose	and	is	the	basis	for	authenticating	on	one	website	using
credentials	maintained	by	another	website.

The	application	registration	process	you	just	followed	at	apps.twitter.com
generated	for	you	a	pair	of	API	keys,	a	consumer	key,	and,	consumer
secret.	These	keys	are	part	of	the	OAuth	protocol,	and	will	be	supplied	by
any	OAuth	service	you	register	with,	and	the	keys	should	be	treated	with
the	utmost	care.	Think	of	them	as	the	username	and	password	your	service
uses	to	access	the	OAuth-based	service	(Twitter	et	al).	The	more	people
who	can	see	these	keys,	the	more	likely	a	miscreant	can	see	them	and	then
cause	trouble.	Anybody	with	those	secrets	can	write	access	the	service
API	as	if	they	are	you.

Dozens	of	Strategy	packages	for	various	third-party	services	are	available
within	the	Passport	ecosystem.	Let's	install	the	package	required	to	use
TwitterStrategy:

$	npm	install	passport-twitter@1.x	--save

In	routes/users.mjs,	let's	start	making	some	changes:

import	passportTwitter	from	'passport-twitter';

const	TwitterStrategy	=	passportTwitter.Strategy;	

To	bring	in	the	package	we	just	installed,	add	the	following:

const	twittercallback	=	process.env.TWITTER_CALLBACK_HOST

				?	process.env.TWITTER_CALLBACK_HOST

				:	"http://localhost:3000";

passport.use(new	TwitterStrategy({	

		consumerKey:	process.env.TWITTER_CONSUMER_KEY,	

		consumerSecret:	process.env.TWITTER_CONSUMER_SECRET,	

		callbackURL:	`${twittercallback}/usersauthtwitter/callback`	

},	

async	function(token,	tokenSecret,	profile,	done)	{	

		try	{

				done(null,	await	usersModel.findOrCreate({	

						id:	profile.username,	username:	profile.username,	password:	"",	

						provider:	profile.provider,	familyName:	profile.displayName,	

						givenName:	"",	middleName:	"",	

						photos:	profile.photos,	emails:	profile.emails	

				}));

		}	catch(err)	{	done(err);	}

}));	

This	registers	TwitterStrategy	with	passport,	arranging	to	call	the	user
authentication	service	as	users	register	with	the	Notes	application.	This
callback	function	is	called	when	users	successfully	authenticate	using
Twitter.

We	defined	the	usersModel.findOrCreate	function	specifically	to	handle	user
registration	from	third-party	services	such	as	Twitter.	Its	task	is	to	look	for
the	user	described	in	the	profile	object	and,	if	that	user	does	not	exist,	to
autocreate	that	user	account	in	Notes.

The	consumerKey	and	consumerSecret	values	are	supplied	by	Twitter,	after	you've	registered
your	application.	These	secrets	are	used	in	the	OAuth	protocol	as	proof	of	identity	to
Twitter.

The	callbackURL	setting	in	the	TwitterStrategy	configuration	is	a	holdover
from	Twitter's	OAuth1-based	API	implementation.	In	OAuth1,	the
callback	URL	was	passed	as	part	of	the	OAuth	request.
Since	TwitterStrategy	uses	Twitter's	OAuth1	service,	we	have	to	supply	the
URL	here.	We'll	see	in	a	moment	where	that	URL	is	implemented	in
Notes.

The	callbackURL,	consumerKey,	and	consumerSecret	are	all	injected	using
environment	variables.	It	is	tempting,	because	of	the	convenience,	to	just
put	those	keys	in	the	source	code.	But,	how	widely	distributed	is	your

source	code?		In	the	Slack	API	documentation	(https://api.slack.com/docs/oau
th-safety),	we're	warned	Do	not	distribute	client	secrets	in	email,
distributed	native	applications,	client-side	JavaScript,	or	public	code
repositories.

In	Chapter	10,	Deploying	Node.js	Applications,	we'll	put	these	keys	into	a
Dockerfile.	That's	not	entirely	secure	because	the	Dockerfile	will	also	be
committed	to	a	source	repository	somewhere.

It	was	found	while	debugging	that	the	profile	object	supplied	by	the
TwitterStrategy	did	not	match	the	documentation	on	the	passport	website.
Therefore,	we	have	mapped	the	object	actually	supplied	by	passport	into
something	that	Notes	can	use:

router.get('authtwitter',	passport.authenticate('twitter'));	

To	start	the	user	logging	in	with	Twitter,	we'll	send	them	to	this	URL.
Remember	that	this	URL	is	really	/usersauthtwitter,	and,	in	the	templates,
we'll	have	to	use	that	URL.	When	this	is	called,	the	passport	middleware
starts	the	user	authentication	and	registration	process	using	TwitterStrategy.

Once	the	user's	browser	visits	this	URL,	the	OAuth	dance	begins.	It's
called	a	dance	because	the	OAuth	protocol	involves	carefully	designed
redirects	between	several	websites.	Passport	sends	the	browser	over	to	the
correct	URL	at	Twitter,	where	Twitter	asks	the	user	whether	they	agree	to
authenticate	using	Twitter,	and	then	Twitter	redirects	the	user	back	to	your
callback	URL.	Along	the	way,	specific	tokens	are	passed	back	and	forth	in
a	very	carefully	designed	dance	between	websites.

Once	the	OAuth	dance	concludes,	the	browser	lands	here:

router.get('authtwitter/callback',	

		passport.authenticate('twitter',	{	successRedirect:	'/',	

																							failureRedirect:	'userslogin'	}));	

This	route	handles	the	callback	URL,	and	it	corresponds	to	the	callbackURL

https://api.slack.com/docs/oauth-safety

setting	configured	earlier.	Depending	on	whether	it	indicates	a	successful
registration	or	not,	passport	will	redirect	the	browser	to	either	the	home
page	or	back	to	the	userslogin	page.	

Because	router	is	mounted	on	/user,	this	URL	is	actually
/userauthtwitter/callback.	Therefore,	the	full	URL	to	use	in	configuring	the
TwitterStrategy,	and	to	supply	to	Twitter,
is	http://localhost:3000/userauthtwitter/callback

In	the	process	of	handling	the	callback	URL,	Passport	will	invoke	the
callback	function	shown	earlier.	Because	our	callback	uses	the
usersModel.findOrCreate	function,	the	user	will	be	automatically	registered	if
necessary.

We're	almost	ready,	but	we	need	to	make	a	couple	of	small	changes
elsewhere	in	Notes.

In	partials/header.hbs,	make	the	following	changes	to	the	code:

...

{{else}}

<div	class="collapse	navbar-collapse"	id="navbarLogIn">

				

				

																																Log	in

				<a	class="nav-item	nav-link	btn	btn-dark	col-auto"	

href="/usersauthtwitter">

				<img	width="15px"

									

src="assetsvendor/twitter/Twitter_Social_Icon_Rounded_Square_Color.png"/>

									Log	in	with	Twitter	

</div>

{{/if}}

This	adds	a	new	button	that,	when	clicked,	takes	the	user	to
/usersauthtwitter,	which,	of	course,	kicks	off	the	Twitter	authentication
process.	

The	image	being	used	is	from	the	official	Twitter	brand	assets	page	at
https://about.twitter.com/company/brand-assets.	Twitter	recommends	using	these

https://about.twitter.com/company/brand-assets

branding	assets	for	a	consistent	look	across	all	services	using	Twitter.
Download	the	whole	set	and	then	pick	one	you	like.	For	the	URL	shown
here,	place	the	chosen	image	in	a	directory	named	publicassetsvendor/twitter.
Notice	that	we	force	the	size	to	be	small	enough	for	the	navigation	bar.

With	these	changes,	we're	ready	to	try	logging	in	with	Twitter.

Start	the	Notes	application	server	as	done	previously:

$	npm	start

>	notes@0.0.0	start	UsersDavid/chap08/notes

>	DEBUG=notes:*	SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	node	--

experimental-modules	./bin/www.mjs

(node:42095)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

		notes:server-debug	Listening	on	port	3000	+0ms

Then	use	a	browser	to	visit	http://localhost:3000:

Notice	the	new	button.	It	looks	about	right,	thanks	to	having	used	the
official	Twitter	branding	image.	The	button	is	a	little	large,	so	maybe	you
want	to	consult	a	designer.	Obviously,	a	different	design	is	required	if
you're	going	to	support	dozens	of	authentication	services.

Clicking	on	this	button	takes	the	browser	to	/usersauthtwitter,	which	starts
Passport	running	the	OAuth2	protocol	transactions	necessary	to
authenticate.	And	then,	once	you're	logged	in	with	Twitter,	you'll	see
something	like	the	following	screenshot:

We're	now	logged	in,	and	notice	that	our	Notes	username	is	the	same	as
our	Twitter	username.	You	can	browse	around	the	application	and	create,
edit,	or	delete	notes.	In	fact,	you	can	do	this	to	any	note	you	like,	even
ones	created	by	others.	That's	because	we	did	not	create	any	sort	of	access
control	or	permissions	system,	and	therefore	every	user	has	complete
access	to	every	note.	That's	a	feature	to	put	on	the	backlog.

By	using	multiple	browsers	or	computers,	you	can	simultaneously	log	in
as	different	users,	one	user	per	browser.

You	can	run	multiple	instances	of	the	Notes	application	by	doing	what	we
did	earlier:

"scripts":	{	

				"start":	"SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=models/notes-sequelize	USERS_MODEL=models/users-rest	

USER_SERVICE_URL=http://localhost:3333	node	./bin/www",	

				"start-server1":	"SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=models/notes-sequelize	USERS_MODEL=models/users-rest	

USER_SERVICE_URL=http://localhost:3333	PORT=3000	node	./bin/www",	

				"start-server2":	"SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=models/notes-sequelize	USERS_MODEL=models/users-rest	

USER_SERVICE_URL=http://localhost:3333	PORT=3002	node	./bin/www",	

				"dl-minty":	"mkdir	-p	minty	&&	npm	run	dl-minty-css	&&	npm	run	dl-minty-

min-css",

				"dl-minty-css":	"wget	https://bootswatch.com/4/minty/bootstrap.css	-O	

minty/bootstrap.css",

				"dl-minty-min-css":	"wget	

https://bootswatch.com/4/minty/bootstrap.min.css	-O	minty/bootstrap.min.css"

		},

Then,	in	one	command	window,	run	the	following	command:

$	npm	run	start-server1

>	notes@0.0.0	start-server1	UsersDavid/chap08/notes

>	DEBUG=notes:*	SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	PORT=3000	node	-

-experimental-modules	./bin/www.mjs

(node:43591)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

		notes:server-debug	Listening	on	port	3000	+0ms

In	another	command	window,	run	the	following	command:

$	npm	run	start-server2

>	notes@0.0.0	start-server2	UsersDavid/chap08/notes

>	DEBUG=notes:*	SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	PORT=3002	node	-

-experimental-modules	./bin/www.mjs

(node:43755)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

		notes:server-debug	Listening	on	port	3002	+0ms

As	previously,	this	starts	two	instances	of	the	Notes	server,	each	with	a
different	value	in	the	PORT	environment	variable.	In	this	case,	each	instance
will	use	the	same	user	authentication	service.	As	shown	here,	you'll	be
able	to	visit	the	two	instances	at	http://localhost:3000	and
http://localhost:3002.	And,	as	previously,	you'll	be	able	to	start	and	stop	the
servers	as	you	wish,	see	the	same	notes	in	each,	and	see	that	the	notes	are
retained	after	restarting	the	server.

Another	thing	to	try	is	to	fiddle	with	the	session	store.	Our	session	data	is

being	stored	in	the	sessions	directory.	These	are	just	files	in	the	filesystem,
and	we	can	take	a	look:

$	ls	-l	sessions/

total	32

-rw-r--r--	1	david	wheel	139	Jan	25	19:28	-QOS7eX8ZBAfmK9CCV8Xj8v-

3DVEtaLK.json

-rw-r--r--	1	david	wheel	139	Jan	25	21:30	

T7VT4xt3_e9BiU49OMC6RjbJi6xB7VqG.json

-rw-r--r--	1	david	wheel	223	Jan	25	19:27	ermh-

7ijiqY7XXMnA6zPzJvsvsWUghWm.json

-rw-r--r--	1	david	wheel	139	Jan	25	21:23	

uKzkXKuJ8uMN_ROEfaRSmvPU7NmBc3md.json

$	cat	sessions/T7VT4xt3_e9BiU49OMC6RjbJi6xB7VqG.json	

{"cookie":

{"originalMaxAge":null,"expires":null,"httpOnly":true,"path":"/"},"__lastAcce

ss":1516944652270,"passport":{"user":"7genblogger"}}

This	is	after	logging	in	using	a	Twitter	account;	you	can	see	that	the
Twitter	account	name	is	stored	here	in	the	session	data.

What	if	you	want	to	clear	a	session?	It's	just	a	file	in	the	filesystem.
Deleting	the	session	file	erases	the	session,	and	the	user's	browser	will	be
forcefully	logged	out.

The	session	will	time	out	if	the	user	leaves	their	browser	idle	for	long
enough.	One	of	the	session-file-store	options,	ttl,	controls	the	timeout
period,	which	defaults	to	3,600	seconds	(an	hour).	With	a	timed-out
session,	the	application	reverts	to	a	logged-out	state.

	

Securely	keeping	secrets	and
passwords
We've	cautioned	several	times	about	the	importance	of	safely	handling
user	identification	information.	The	intention	to	safely	handle	that	data	is
one	thing,	but	it	is	important	to	follow	through	and	actually	do	so.	While
we're	using	a	few	good	practices	so	far,	as	it	stands,	the	Notes	application
would	not	withstand	any	kind	of	security	audit:

User	passwords	are	kept	in	clear	text	in	the	database

The	authentication	tokens	for	Twitter	et	al,	are	in	the	source	code
in	clear	text

The	authentication	service	API	key	is	not	a	cryptographically
secure	anything,	it's	just	a	cleartext	UUID

If	you	don't	recognize	the	phrase	clear	text,	it	simply	means	unencrypted.
Anyone	could	read	the	text	of	user	passwords	or	the	authentication	tokens.
It's	best	to	keep	both	encrypted	to	avoid	information	leakage.

Keep	this	issue	in	the	back	of	your	mind	because	we'll	revisit	these	and
other	security	issues	in	Chapter	12,	Security.

	

The	Notes	application	stack
Did	you	notice	earlier	when	we	said	run	the	Notes	application	stack?	It's
time	to	explain	to	the	marketing	team	what's	meant	by	that	phrase.	They'll
perhaps	need	to	put	an	architecture	diagram	on	marketing	brochures	and
the	like.	It's	also	useful	for	developers	like	us	to	take	a	step	back	and	draw
a	picture	of	what	we've	created,	or	are	planning	to	create.	

Here's	the	sort	of	diagram	that	an	engineer	might	draw	to	show	the
marketing	team	the	system	design.	The	marketing	team	will,	of	course,
hire	a	graphics	artist	to	clean	it	up:	

The	box	labeled	Notes	Application	is	the	public-facing	code
implemented	by	the	templates	and	the	router	modules.	As	currently
configured,	it's	visible	from	our	laptop	on	port	3000.	It	can	use	one	of
several	data	storage	services.	It	communicates	with	the	backend	User
Authentication	Service	over	port	3333	(as	currently	configured).
In	Chapter	10,	Deploying	Node.js	Applications,	we'll	be	expanding
this	picture	a	bit	as	we	learn	how	to	deploy	on	a	real	server.

Summary
You've	covered	a	lot	of	ground	in	this	chapter,	looking	at	not	only	user
authentication	in	Express	applications,	but	also	microservice	development.

Specifically,	you	covered	session	management	in	Express,	using	Passport
for	user	authentication,	including	Twitter/OAuth,	using	router	middleware
to	limit	access,	creating	a	REST	service	with	Restify,	and	when	to	create	a
microservice.

In	the	next	chapter,	we'll	take	the	Notes	application	to	a	new	level-semi-
real-time	communication	between	application	users.	To	do	this,	we'll	write
some	browser-side	JavaScript	and	explore	how	the	Socket.io	package	can
let	us	send	messages	between	users.

Dynamic	Client/Server
Interaction	with	Socket.IO
The	original	design	model	of	the	web	is	similar	to	the	way	that
mainframes	worked	in	the	1970s.	Both	old-school	dumb	terminals,	such	as
the	IBM	3270,	and	web	browsers,	follow	a	request-response	paradigm.
The	user	sends	a	request	and	the	far-off	computer	sends	a	response	screen.
While	web	browsers	can	show	more	complex	information	than	old-school
dumb	terminals,	the	interaction	pattern	in	both	cases	is	a	back	and	forth	of
user	requests,	each	resulting	in	a	screen	of	data	sent	by	the	server	screen
after	screen	or,	in	the	case	of	web	browsers,	page	after	page.

In	case	you're	wondering	what	this	history	lesson	is	about,	that	request-
response	paradigm	is	evident	in	the	Node.js	HTTP	Server	API,	as	shown
in	the	following	code:

http.createServer(function	(request,	response)	{

			...	handle	request

}).listen();

The	paradigm	couldn't	be	more	explicit	than	this.	The	request	and
the	response	are	right	there.

The	first	web	browsers	were	an	advancement	over	text-based	user
interfaces,	with	HTML	mixing	images,	and	text	with	varying	colors,	fonts,
and	sizes.	As	CSS	came	along,	HTML	improved,	iframes	allowed
embedded	media	of	all	kinds,	and	JavaScript	improved,	so	we	have	a	quite
different	paradigm.	The	web	browser	is	still	sending	requests	and
receiving	a	page	of	data,	but	that	data	can	be	quite	complex	and,	more
importantly,	JavaScript	adds	interactivity.	

One	new	technique	is	keeping	an	open	connection	to	the	server	for

continual	data	exchange	between	server	and	client.	This	change	in	the	web
application	model	is	called,	by	some,	the	real-time	web.	In	some	cases,
websites	keep	an	open	connection	to	the	web	browser,	with	real-time
updates	to	web	pages	being	one	goal.	

Some	observe	that	traditional	web	applications	can	untruthfully	display
their	data;	that	is,	if	two	people	are	looking	at	a	page,	and	one	person	edits
that	page,	that	person's	browser	will	update	with	the	correct	copy	of	the
page,	while	the	other	browser	is	not	updated.	The	two	browsers	show
different	versions	of	the	page,	one	of	which	is	untruthful.	The	second
browser	can	even	show	a	page	that	no	longer	exists,	if	the	user	at	the	first
browser	deletes	that	page.	Some	think	it	would	be	better	if	the	other
person's	browser	is	refreshed	to	show	the	new	content	as	soon	as	the	page
is	edited.

This	is	one	possible	role	of	the	real-time	web;	pages	that	update
themselves	as	page	content	changes.	All	kinds	of	systems	support	real-
time	interactivity	between	folks	on	the	same	website.	Whether	it's	seeing
Facebook	comments	pop	up	as	they're	written,	or	collaboratively	edited
documents,	there's	a	new	interactivity	paradigm	on	the	web.	

We're	about	to	implement	this	behavior	in	the	Notes	application.

One	of	the	original	purposes	for	inventing	Node.js	was	to	support	the	real-
time	web.	The	Comet	application	architecture	(Comet	is	related	to	AJAX,
and	both	happen	to	be	names	of	household	cleaning	products)	involves
holding	the	HTTP	connection	open	for	a	long	time,	with	data	flowing	back
and	forth	between	browser	and	server	over	that	channel.	The	term	Comet
was	introduced	by	Alex	Russell	in	his	blog	in	2006
(http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/)	as	a
general	term	for	the	architectural	pattern	to	implement	this	real-time,	two-
way	data	exchange	between	client	and	server.	That	blog	post	called	for	the
development	of	a	programming	platform	very	similar	to	Node.js.

To	simplify	the	task,	we'll	lean	on	the	Socket.IO	library	(http://socket.io/).
This	library	simplifies	two-way	communication	between	the	browser	and
server,	and	can	support	a	variety	of	protocols	with	fallback	to	old-school

http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
http://socket.io/

web	browsers.

We'll	be	covering	the	following	topics:

Real-time	communications	in	modern	web	browsers

The	Socket.IO	library

Integrating	Socket.IO	with	an	Express	application	to	support	real-
time	communication

User	experience	for	real-time	communication

Introducing	Socket.IO
The	aim	of	Socket.IO	is	to	make	real-time	apps	possible	in	every	browser
and	mobile	device.	It	supports	several	transport	protocols,	choosing	the
best	one	for	the	specific	browser.

If	you	were	to	implement	your	application	with	WebSockets,	it	would	be
limited	to	the	modern	browsers	supporting	that	protocol.	Because	Socket.IO
falls	back	on	so	many	alternate	protocols	(WebSockets,	Flash,	XHR,	and
JSONP),	it	supports	a	wide	range	of	web	browsers,	including	some	old
crufty	browsers.	

As	the	application	author,	you	don't	have	to	worry	about	the	specific
protocol	Socket.IO	uses	in	a	given	browser.	Instead,	you	can	implement	the
business	logic	and	the	library	takes	care	of	the	details	for	you.

Socket.IO	requires	that	a	client	library	make	its	way	into	the	browser.	That
library	is	provided,	and	is	easy	to	instantiate.	You'll	be	writing	code	on
both	the	browser	side	and	server	side	using	similar	Socket.IO	APIs	at	each
end.

The	model	that	Socket.IO	provides	is	similar	to	the	EventEmitter	object.	The
programmer	uses	the	.on	method	to	listen	for	events	and	the	.emit	method
to	send	them.	The	emitted	events	are	sent	between	the	browser	and	the
server	with	the	Socket.IO	library	taking	care	of	sending	them	back	and	forth.

Information	about	Socket.IO	is	available	at	https://socket.io/.

https://socket.io/

Initializing	Socket.IO	with
Express
Socket.IO	works	by	wrapping	itself	around	an	HTTP	Server	object.	Think
back	to	Chapter	4,	HTTP	Servers	and	Clients,	where	we	wrote	a	module	that
hooked	into	HTTP	Server	methods	so	that	we	could	spy	on	HTTP
transactions.	The	HTTP	Sniffer	attaches	a	listener	to	every	HTTP	event	to
print	out	the	events.	But	what	if	you	used	that	idea	to	do	real	work?
Socket.IO	uses	a	similar	concept,	listening	to	HTTP	requests	and
responding	to	specific	ones	by	using	the	Socket.IO	protocol	to
communicate	with	client	code	in	the	browser.

To	get	started,	let's	first	make	a	duplicate	of	the	code	from	the	previous
chapter.	If	you	created	a	directory	named	chap08	for	that	code,	create	a	new
directory	named	chap09	and	copy	the	source	tree	there.

We	won't	make	changes	to	the	user	authentication	microservice,	but	we
will	use	it	for	user	authentication,	of	course.

In	the	Notes	source	directory,	install	these	new	modules:

$	npm	install	socket.io@2.x	passport.socketio@3.7.x	--save

We	will	incorporate	user	authentication	with	the	passport	module,	used	in
Chapter	8,	Multiuser	Authentication	the	Microservice	Way,	into	some	of	the
real-time	interactions	we'll	implement.

To	initialize	Socket.IO,	we	must	do	some	major	surgery	on	how	the	Notes
application	is	started.	So	far,	we	used	the	bin/www.mjs	script	along	with
app.mjs,	with	each	script	hosting	different	steps	of	launching	Notes.
Socket.IO	initialization	requires	that	these	steps	occur	in	a	different	order	to
what	we've	been	doing.	Therefore,	we	must	merge	these	two	scripts	into

one.	What	we'll	do	is	copy	the	content	of	the	bin/www.mjs	script	into
appropriate	sections	of	app.mjs,	and	from	there,	we'll	use	app.mjs	to	launch
Notes.

At	the	beginning	of	app.mjs,	add	this	to	the	import	statements:

import	http	from	'http';

import	passportSocketIo	from	'passport.socketio';	

import	session	from	'express-session';

import	sessionFileStore	from	'session-file-store';

const	FileStore	=	sessionFileStore(session);	

export	const	sessionCookieName	=	'notescookie.sid';

const	sessionSecret	=	'keyboard	mouse';	

const	sessionStore	=	new	FileStore({	path:	"sessions"	});	

The	passport.socketio	module	integrates	Socket.IO	with	PassportJS-based	user
authentication.	We'll	configure	this	support	shortly.	The	configuration	for
session	management	is	now	shared	between	Socket.IO,	Express,	and
Passport.	These	lines	centralize	that	configuration	to	one	place	in	app.mjs,
so	we	can	change	it	once	to	affect	every	place	it's	needed.

Use	this	to	initialize	the	HTTP	Server	object:

const	app	=	express();

export	default	app;

const	server	=	http.createServer(app);

import	socketio	from	'socket.io';

const	io	=	socketio(server);	

	

io.use(passportSocketIo.authorize({	

		cookieParser:	cookieParser,	

		key:	sessionCookieName,	

		secret:	sessionSecret,	

		store:	sessionStore	

}));	

This	moves	the	export	default	app	line	from	the	bottom	of	the	file	to	this
location.	Doesn't	this	location	make	more	sense?

The	io	object	is	our	entry	point	into	the	Socket.IO	API.	We	need	to	pass	this
object	to	any	code	that	needs	to	use	that	API.	It	won't	be	enough	to	simply
require	the	socket.io	module	in	other	modules	because	the	io	object	is	what
wraps	the	server	object.	Instead,	we'll	be	passing	the	io	object	into
whatever	modules	are	to	use	it.

The	io.use	function	installs	in	Socket.IO	functions	similar	to	Express
middleware.	In	this	case,	we	integrate	Passport	authentication	into
Socket.IO:

var	port	=	normalizePort(process.env.PORT	||	'3000');

app.set('port',	port);

server.listen(port);

server.on('error',	onError);

server.on('listening',	onListening);

This	code	is	copied	from	bin/www.mjs,	and	sets	up	the	port	to	listen	to.	It
relies	on	three	functions	that	will	also	be	copied	into	app.mjs	from
bin/www.mjs:

app.use(session({	

		store:	sessionStore,	

		secret:	sessionSecret,

		resave:	true,	

		saveUninitialized:	true,

		name:	sessionCookieName

}));	

initPassport(app);

This	changes	the	configuration	of	Express	session	support	to	match	the
configuration	variables	we	set	up	earlier.	It's	the	same	variables	used	when
setting	up	the	Socket.IO	session	integration,	meaning	they're	both	on	the
same	page.

Use	this	to	initialize	Socket.IO	code	in	the	router	modules:

app.use('/',	index);

app.use('/users',	users);	

app.use('/notes',	notes);

	

indexSocketio(io);	

//	notesSocketio(io);	

This	is	where	we	pass	the	io	object	into	modules	that	must	use	it.	This	is
so	that	the	Notes	application	can	send	messages	to	the	web	browsers	about
changes	in	Notes.	What	that	means	will	be	clearer	in	a	second.	What's
required	is	analogous	to	the	Express	router	functions,	and	therefore	the
code	to	send/receive	messages	from	Socket.IO	clients	will	also	be	located	in
the	router	modules.	

We	haven't	written	either	of	these	functions	yet	(have	patience).	To
support	this,	we	need	to	make	a	change	in	an	import	statement	at	the	top:

import	{	socketio	as	indexSocketio,	router	as	index	}	from	'./routes/index';

Each	router	module	will	export	a	function	named	socketio,	which	we'll
have	to	rename	as	shown	here.	This	function	is	what	will	receive	the	io
object,	and	handle	any	Socket.IO-based	communications.	We	haven't	written
these	functions	yet.	

Then,	at	the	end	of	app.mjs,	we'll	copy	in	the	remaining	code	from
bin/www.mjs	so	the	HTTP	Server	starts	listening	on	our	selected	port:

function	normalizePort(val)	{

		var	port	=	parseInt(val,	10);

		if	(isNaN(port))	{	//	named	pipe

				return	val;

		}

		if	(port	>=	0)	{	//	port	number

				return	port;

		}

		return	false;

}

/**

	*	Event	listener	for	HTTP	server	"error"	event.

	*/

function	onError(error)	{

		if	(error.syscall	!==	'listen')	{	throw	error;	}

		var	bind	=	typeof	port	===	'string'	?	'Pipe	'	+	port	:	'Port	'	+	

		port;

		//	handle	specific	listen	errors	with	friendly	messages

		switch	(error.code)	{

				case	'EACCES':

						console.error(bind	+	'	requires	elevated	privileges');

						process.exit(1);

						break;

				case	'EADDRINUSE':

						console.error(bind	+	'	is	already	in	use');

						process.exit(1);

						break;

				default:

						throw	error;

		}

}

/**

	*	Event	listener	for	HTTP	server	"listening"	event.

	*/

function	onListening()	{

		var	addr	=	server.address();

		var	bind	=	typeof	addr	===	'string'	?	'pipe	'	+	addr	:	'port	'	+	addr.port;

		debug('Listening	on	'	+	bind);

}

Then,	in	package.json,	we	must	start	app.mjs	rather	than	bin/www.mjs:

"scripts":	{	

				"start":	"DEBUG=notes:*	SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	node	--

experimental-modules	./app",

				"start-server1":	"DEBUG=notes:*	SEQUELIZE_CONNECT=models/sequelize-

sqlite.yaml	NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	

PORT=3000	node	--experimental-modules	./app",

				"start-server2":	"DEBUG=notes:*	SEQUELIZE_CONNECT=models/sequelize-

sqlite.yaml	NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	

PORT=3002	node	--experimental-modules	./app",

			...	

		},

At	this	point,	you	can	delete	bin/www.mjs	if	you	like.	You	can	also	try

starting	the	server,	but	it'll	fail	because	the	indexSocketio	function	does	not
exist	yet.

Real-time	updates	on	the	Notes
homepage
The	goal	we're	working	towards	is	for	the	Notes	home	page	to
automatically	update	the	list	of	notes,	as	notes	are	edited	or	deleted.	What
we've	done	so	far	is	to	restructure	the	application	startup	so	that	Socket.IO	is
initialized	in	the	Notes	application.	There's	no	change	of	behavior	yet,
except	that	it	will	crash	due	to	a	missing	function.

The	approach	is	for	the	Notes	model	classes	to	send	messages	whenever	a
note	is	created,	updated,	or	deleted.	In	the	router	classes,	we'll	listen	to
those	messages,	then	send	a	list	of	note	titles	to	all	browsers	attached	to
the	Notes	application.	

Where	the	Notes	model	so	far	has	been	a	passive	repository	of	documents,
it	now	needs	to	emit	events	to	any	interested	parties.	This	is	the	listener
pattern	and,	in	theory,	there	will	be	code	that	is	interested	in	knowing
when	notes	are	created,	edited,	or	destroyed.	At	the	moment,	we'll	use	that
knowledge	to	update	the	Notes	home	page,	but	there	are	many	potential
other	uses	of	that	knowledge.

The	Notes	model	as	an
EventEmitter	class
The	EventEmitter	is	the	class	that	implements	listener	support.	Let's	create	a
new	module,	models/notes-events.mjs,	containing	the	following:

import	EventEmitter	from	'events';	

class	NotesEmitter	extends	EventEmitter	{

				noteCreated(note)		{	this.emit('notecreated',	note);	}

				noteUpdate	(note)		{	this.emit('noteupdate',	note);	}

				noteDestroy	(data)	{	this.emit('notedestroy',	data);	}

}	

export	default	new	NotesEmitter();	

This	module	maintains	the	listeners	to	Notes-related	events	for	us.	We've
created	a	subclass	of	EventEmitter	because	it	already	knows	how	to	manage
the	listeners.	An	instance	of	that	object	is	exported	as	the	default	export.	

Let's	now	update	models/notes.mjs	to	use	notes-events	to	emit	events.	Because
we	have	a	single	module,	notes.mjs,	to	dispatch	calls	to	the	individual	Notes
models,	this	module	provides	a	key	point	at	which	we	can	intercept	the
operations	and	send	events.	Otherwise,	we'd	have	to	integrate	the	event-
sending	code	into	every	Notes	model.	

import	_events	from	'./notes-events';	

export	const	events	=	_events;

We	need	to	import	this	module	for	use	here,	but	also	export	it	so	that	other
modules	can	also	emit	Notes	events.	By	doing	this,	another	module	that
imports	Notes	can	call	notes.events.function	to	use	the	notes-events	module.

This	technique	is	called	re-exporting.	Sometimes,	you	need	to	export	a

function	from	module	A	that	is	actually	defined	in	module	B.	Module	A
therefore	imports	the	function	from	module	B,	adding	it	to	its	exports.

Then	we	do	a	little	rewriting	of	these	functions:

export	async	function	create(key,	title,	body)	{

				const	note	=	await	model().create(key,	title,	body);

				_events.noteCreated(note);

				return	note;

}

export	async	function	update(key,	title,	body)	{

				const	note	=	await	model().update(key,	title,	body);

				_events.noteUpdate(note);

				return	note;

}

export	async	function	destroy(key)	{

				await	model().destroy(key);

				_events.noteDestroy({	key	});

				return	key;

}

The	contract	for	the	Notes	model	functions	is	that	they	return	a	Promise,	and
therefore	our	caller	will	be	using	await	to	resolve	the	Promise.	There	are
three	steps:

1.	 Call	the	corresponding	function	in	the	current	model	class,	and	await
its	result

2.	 Send	the	corresponding	message	to	our	listeners
3.	 Return	the	value,	and	because	this	is	an	async	function,	the	value

will	be	received	as	a	Promise	that	fulfills	the	contract	for	these
functions

Real-time	changes	in	the	Notes
home	page
The	Notes	model	now	sends	events	as	Notes	are	created,	updated,	or
destroyed.	For	this	to	be	useful,	the	events	must	be	displayed	to	our	users.
Making	the	events	visible	to	our	users	means	the	controller	and	view
portions	of	the	application	must	consume	those	events.

Let's	start	making	changes	to	routes/index.mjs:

router.get('/',	async	(req,	res,	next)	=>	{

		try	{

				let	notelist	=	await	getKeyTitlesList();

				res.render('index',	{	

						title:	'Notes',	notelist:	notelist,

						user:	req.user	?	req.user	:	undefined

				});

		}	catch	(e)	{	next(e);	}

});

We	need	to	reuse	part	of	the	original	routing	function,	to	use	it	in	another
function.	Therefore,	we've	pulled	code	that	used	to	be	in	this	block	into	a
new	function,	getKeyTitlesList:

async	function	getKeyTitlesList()	{	

		const	keylist	=	await	notes.keylist();

		var	keyPromises	=	keylist.map(key	=>	{	

						return	notes.read(key).then(note	=>	{	

										return	{	key:	note.key,	title:	note.title	};	

						});	

		});	

		return	Promise.all(keyPromises);	

};	

This	portion	of	the	original	routing	function	is	now	its	own	function.	It

generates	an	array	of	items	containing	the	key	and	title	for	all	existing
Notes,	using	Promise.all	to	manage	the	process	of	reading	everything.

export	function	socketio(io)	{	

		var	emitNoteTitles	=	async	()	=>	{	

						const	notelist	=	await	getKeyTitlesList()

						io.of('/home').emit('notetitles',	{	notelist	});	

		};	

		notes.events.on('notecreated',	emitNoteTitles);	

		notes.events.on('noteupdate',	emitNoteTitles);	

		notes.events.on('notedestroy',	emitNoteTitles);	

};

Here	is	the	socketio	function	we	discussed	while	modifying	app.mjs.	We
receive	the	io	object,	then	use	it	to	emit	a	notestitles	event	to	all	connected
browsers.

The	io.of('/namespace')	method	restricts	whatever	follows	to	the	given
namespace.	In	this	case,	we're	emitting	a	notestitle	message	to	the	/home
namespace.

The	io.of	method	defines	what	Socket.IO	calls	a	namespace.	Namespaces	limit	the
scope	of	messages	sent	through	Socket.IO.	The	default	namespace	is	/,	and	namespaces
look	like	pathnames,	in	that	they're	a	series	of	slash-separated	names.	An	event
emitted	into	a	namespace	is	delivered	to	any	socket	listening	to	that	namespace.

The	code,	in	this	case,	is	fairly	straightforward.	It	listens	to	the	events	we
just	implemented,	notecreated,	noteupdate,	and	notedestroy.	For	each	of	these
events,	it	emits	an	event,	notetitles,	containing	the	list	of	note	keys	and
titles.

That's	it!

As	Notes	are	created,	updated,	and	destroyed,	we	ensure	that	the
homepage	will	be	refreshed	to	match.	The	homepage	template,
views/index.hbs,	will	require	code	to	receive	that	event	and	rewrite	the	page
to	match.

Changing	the	homepage	and
layout	templates
Socket.IO	runs	on	both	client	and	server,	with	the	two	communicating	back
and	forth	over	the	HTTP	connection.	This	requires	loading	the	client
JavaScript	library	into	the	client	browser.	Each	page	of	the	Notes
application	in	which	we	seek	to	implement	Socket.IO	services	must	load	the
client	library	and	have	custom	client	code	for	our	application.

Each	page	in	Notes	will	require	a	different	Socket.IO	client	implementation,
since	each	page	has	different	requirements.	This	affects	how	we	load
JavaScript	code	in	Notes.	

Initially,	we	simply	put	JavaScript	code	at	the	bottom	of	layout.hbs,	because
every	page	required	the	same	set	of	JavaScript	modules.	But	now	we've
identified	the	need	for	a	different	set	of	JavaScript	on	each	page.
Furthermore,	some	of	the	JavaScript	needs	to	be	loaded	following	the
JavaScript	currently	loaded	at	the	bottom	of	layout.hbs.	Specifically,	jQuery
is	loaded	currently	in	layout.hbs,	but	we	want	to	use	jQuery	in	the	Socket.IO
clients	to	perform	DOM	manipulations	on	each	page.	Therefore,	some
template	refactoring	is	required.

Create	a	file,	partials/footerjs.hbs,	containing:

<!--	jQuery	first,	then	Popper.js,	then	Bootstrap	JS	-->

<script	src="assetsvendor/jquery/jquery.min.js"></script>

<script	src="assetsvendor/popper.js/umd/popper.min.js"></script>

<script	src="assetsvendor/bootstrap/js/bootstrap.min.js"></script>

<script	src="assetsvendor/feather-icons/feather.js"></script>

<script>

	feather.replace()

</script>

This	had	been	at	the	bottom	of	views/layout.hbs.	We	now	need	to	modify
that	file	as	follows:

<body>

				{{>	header	}}

				{{{body}}}

</body>

Then,	at	the	bottom	of	every	template	(error.hbs,	index.hbs,	login.hbs,
notedestroy.hbs,	noteedit.hbs,	and	noteview.hbs),	add	this	line:

{{>	footerjs}}

So	far,	this	hasn't	changed	what	will	be	loaded	in	the	pages,	because
footerjs	contains	exactly	what	was	already	at	the	bottom	of	layout.hbs.	But	it
gives	us	the	freedom	to	load	Socket.IO	client	code	after	the	scripts	in	footerjs
are	loaded.

In	views/index.hbs	add	this	at	the	bottom,	after	the	footerjs	partial:

{{>	footerjs}}

<script	src="socket.iosocket.io.js"></script>	

<script>	

$(document).ready(function	()	{	

	var	socket	=	io('/home');	

	socket.on('notetitles',	function(data)	{	

	var	notelist	=	data.notelist;	

	$('#notetitles').empty();	

	for	(var	i	=	0;	i	<	notelist.length;	i++)	{	

	notedata	=	notelist[i];	

	$('#notetitles')	

						.append('<a	class="btn	btn-lg	btn-block	btn-outline-dark"	

						href="/notes/view?key='+	

	notedata.key	+'">'+	notedata.title	+'');	

				}	

		});	

});	

</script>	

The	first	line	is	where	we	load	the	Socket.IO	client	library.	You'll	notice	that
we	never	set	up	any	Express	route	to	handle	the	/socket.io	URL.	Instead,
the	Socket.IO	library	did	that	for	us.

Because	we've	already	loaded	jQuery	(to	support	Bootstrap),	we	can	easily
ensure	that	this	code	is	executed	once	the	page	is	fully	loaded	using
$(document).ready.

This	code	first	connects	a	socket	object	to	the	/home	namespace.	That
namespace	is	being	used	for	events	related	to	the	Notes	homepage.	We
then	listen	for	the	notetitles	events,	for	which	some	jQuery	DOM
manipulation	erases	the	current	list	of	Notes	and	renders	a	new	list	on	the
screen.

That's	it.	Our	code	in	routes/index.mjs	listened	to	various	events	from	the
Notes	model,	and,	in	response,	sent	a	notetitles	event	to	the	browser.	The
browser	code	takes	that	list	of	note	information	and	redraws	the	screen.

You	might	notice	that	our	browser-side	JavaScript	is	not	using	ES-2015/2016/2017
features.	This	code	would,	of	course,	be	cleaner	if	we	were	to	do	so.	How	can	we
know	whether	our	visitors	use	a	browser	modern	enough	for	those	language
features?		We	could	use	Babel	to	transpile	ES-2015/2016/2017	code	into	ES5	code
capable	of	running	on	any	browser.	However,	it	may	be	a	useful	trade-off	to	still	write
ES5	code	in	the	browser.

Running	Notes	with	real-time
homepage	updates
We	now	have	enough	implemented	to	run	the	application	and	see
some	real-time	action.

As	you	did	earlier,	start	the	user	information	microservice	in	one	window:

$	npm	start

>	user-auth-server@0.0.1	start	Usersdavid/chap09/users

>	DEBUG=users:*	PORT=3333	SEQUELIZE_CONNECT=sequelize-sqlite.yaml	node	--

experimental-modules	user-server

(node:11866)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

		users:service	User-Auth-Service	listening	at	http://127.0.0.1:3333	+0ms

Then,	in	another	window,	start	the	Notes	application:

$	npm	start	

	

>	notes@0.0.0	start	Usersdavid/chap09/notes	

>	DEBUG=notes:*	SEQUELIZE_CONNECT=models/sequelize-sqlite.yaml	

NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	node	--

experimental-modules	./app	

	

(node:11998)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.	

		notes:debug-INDEX	Listening	on	port	3000	+0ms

Then,	in	a	browser	window,	go	to	http://localhost:3000	and	log	in	to	the
Notes	application.	To	see	the	real-time	effects,	open	multiple	browser
windows.	If	you	can	use	Notes	from	multiple	computers,	then	do	that	as
well.

In	one	browser	window,	start	creating	and	deleting	notes,	while	leaving	the
other	browser	windows	viewing	the	home	page.	Create	a	note,	and	it
should	show	up	immediately	on	the	home	page	in	the	other	browser
windows.	Delete	a	note	and	it	should	disappear	immediately	as	well.

Real-time	action	while	viewing
notes
It's	cool	how	we	can	now	see	real-time	changes	in	a	part	of	the	Notes
application.	Let's	turn	to	the	notesview	page	to	see	what	we	can	do.	What
comes	to	mind	is	this	functionality:

Update	the	note	if	someone	else	edits	it

Redirect	the	viewer	to	the	home	page	if	someone	else	deletes	the
note

Allow	users	to	leave	comments	on	the	note

For	the	first	two	features,	we	can	rely	on	the	existing	events	coming	from
the	Notes	model.	The	third	feature	will	require	a	messaging	subsystem,	so
we'll	get	to	that	later	in	this	chapter.

In	routes/notes.mjs,	add	this	to	the	end	of	the	module:

export	function	socketio(io)	{	

				notes.events.on('noteupdate',		newnote	=>	{	

								io.of('view').emit('noteupdate',	newnote);	

				});	

				notes.events.on('notedestroy',	data	=>	{	

								io.of('view').emit('notedestroy',	data);	

				});	

};	

At	the	top	of	app.mjs,	make	this	change:

import	{	socketio	as	indexSocketio,	router	as	index	}	from	'./routes/index';

import	{	router	as	users,	initPassport	}	from	'./routes/users';

import	{	socketio	as	notesSocketio,	router	as	notes	}	from	'./routes/notes';	

Uncomment	that	line	of	code	in	app.mjs	because	we've	now	implemented
the	function	we	said	we'd	get	to	later:

indexSocketio(io);	

notesSocketio(io);	

This	sets	up	the	Notes	application	to
send	noteupdate	and	notedestroy	messages	when	notes	are	updated	or
destroyed.	The	destination	is	the	/view	namespace.	We'll	need	to	make	a
corresponding	modification	to	the	note	view	template	so	it	does	the	right
thing.	This	means	any	browser	viewing	any	note	in	the	application	will
connect	to	this	namespace.	Every	such	browser	will	receive	events	about
any	note	being	changed,	even	those	notes	that	are	not	being	viewed.	This
means	that	the	client	code	will	have	to	check	the	key,	and	only	take	action
if	the	event	refers	to	the	note	being	displayed.

Changing	the	note	view
template	for	real-time	action
As	we	did	earlier,	in	order	to	make	these	events	visible	to	the	user,	we
must	not	only	add	client	code	to	the	template,	views/noteview.hbs;	we	need	a
couple	of	small	changes	to	the	template:

<div	class="container-fluid">

				<div	class="row"><div	class="col-xs-12">

								{{#if	note}}<h3	id="notetitle">{{	note.title	}}</h3>{{/if}}

								{{#if	note}}<div	id="notebody">{{	note.body	}}</div>{{/if}}

								<p>Key:	{{	notekey	}}</p>

				</div></div>

				{{#if	user	}}

				{{#if	notekey	}}

								<div	class="row"><div	class="col-xs-12">

								<div	class="btn-group">

												<a	class="btn	btn-outline-dark"	

																href="notesdestroy?key={{notekey}}"	

																role="button">Delete

												<a	cl	e	template,	views/noteview.hb	

	ass="btn	btn-outline-dark"	

																href="notesedit?key={{notekey}}"	

																role="button">Edit

								</div>

								</div></div>

				{{/if}}

				{{/if}}

</div>

{{>	footerjs}}

{{#if	notekey	}}

<script	src="socket.iosocket.io.js"></script>	

<script>	

$(document).ready(function	()	{	

				io('/view').on('noteupdate',	function(note)	{	

								if	(note.key	===	"{{	notekey	}}")	{	

												$('h3#notetitle').empty();	

												$('h3#notetitle').text(note.title);	

												$('#notebody').empty();	

												$('#notebody').text(note.body);	

								}	

				});	

				io('/view').on('notedestroy',	function(data)	{	

								if	(data.key	===	"{{	notekey	}}")	{	

												window.location.href	=	"/";	

								}	

				});	

});	

</script>	

{{/if}}

We	connect	to	the	/view	namespace	where	the	messages	are	sent.	As
noteupdate	or	notedestroy	messages	arrive,	we	check	the	key	to	see	whether	it
matches	the	key	for	the	note	being	displayed.	

A	technique	is	used	here	that's	important	to	understand.	We	have	mixed
JavaScript	executed	on	the	server,	with	JavaScript	executed	in	the	browser.
We	must	compare	the	notekey	received	by	the	client	code	against	the	notekey
for	the	note	being	viewed	by	this	page.	The	latter	notekey	value	is	known	on
the	server,	while	the	former	is	known	in	the	client.

Remember	that	code	within	the	{{	..	}}	delimiters	is	interpreted	by	the
Handlebars	template	engine	on	the	server.	Consider	the	following:

if	(note.key	===	"{{	notekey	}}")	{	

		..	

}	

This	comparison	is	between	the	notekey	value	in	the	browser,	which
arrived	inside	the	message	from	the	server,	and	the	notekey	variable	on	the
server.	That	variable	contains	the	key	of	the	note	being	displayed.
Therefore,	in	this	case,	we	are	able	to	ensure	these	code	snippets	are
executed	only	for	the	note	being	shown	on	the	screen.

For	the	noteupdate	event,	we	take	the	new	note	content	and	display	it	on	the
screen.	For	this	to	work,	we	had	to	add	id=	attributes	to	the	HTML	so	we
could	use	jQuery	selectors	in	manipulating	the	DOM.

For	the	notedestroy	event,	we	simply	redirect	the	browser	window	back	to
the	home	page.	The	note	being	viewed	has	been	deleted,	and	there's	no
point	the	user	continuing	to	look	at	a	note	that	no	longer	exists.

Running	Notes	with	real-time
updates	while	viewing	a	note
At	this	point,	you	can	now	rerun	the	Notes	application	and	try	this	out.

Launch	the	user	authentication	server	and	the	Notes	application	as	before.
Then,	in	the	browser,	open	multiple	windows	on	the	Notes	application.
This	time,	have	one	viewing	the	home	page,	and	two	viewing	a	note.	In
one	of	those	windows,	edit	the	note	to	make	a	change,	and	see	the	text
change	on	both	the	home	page	and	the	page	viewing	the	note.

Then	delete	the	note,	and	watch	it	disappear	from	the	home	page,	and	the
browser	window	that	had	viewed	the	note	is	now	on	the	home	page.

Inter-user	chat	and
commenting	for	Notes
This	is	cool!	We	now	have	real-time	updates	in	Notes	as	we	edit	delete	or
create	notes.	Let's	now	take	it	to	the	next	level	and	implement	something
akin	to	inter-user	chatting.

It's	possible	to	pivot	our	Notes	application	concept	and	take	it	in	the
direction	of	a	social	network.	In	the	majority	of	such	networks,	users	post
things	(notes,	pictures,	videos,	and	so	on),	and	other	users	comment	on
those	things.	Done	well,	these	basic	elements	can	develop	a	large
community	of	people	sharing	notes	with	each	other.	While	the	Notes
application	is	kind	of	a	toy,	it's	not	too	terribly	far	from	being	a	basic
social	network.	Commenting	the	way	we	will	do	now	is	a	tiny	step	in	that
direction.

On	each	note	page,	we'll	have	an	area	to	display	messages	from	Notes
users.	Each	message	will	show	the	username,	a	timestamp,	and	their
message.	We'll	also	need	a	method	for	users	to	post	a	message,	and	we'll
also	allow	users	to	delete	messages.

Each	of	those	operations	will	be	performed	without	refreshing	the	screen.
Instead,	code	running	inside	the	web	page	will	send	commands	to/from	the
server	and	take	actions	dynamically.

Let's	get	started.

Data	model	for	storing
messages
We	need	to	start	by	implementing	a	data	model	for	storing	messages.	The
basic	fields	required	are	a	unique	ID,	the	username	of	the	person	sending
the	message,	the	namespace	the	message	is	sent	to,	their	message,	and
finally	a	timestamp	for	when	the	message	was	sent.	As	messages	are
received	or	deleted,	events	must	be	emitted	from	the	model	so	we	can	do
the	right	thing	on	the	web	page.

This	model	implementation	will	be	written	for	Sequelize.	If	you	prefer	a
different	storage	solution,	you	can	,	by	all	means,	re-implement	the	same
API	on	other	data	storage	systems.

Create	a	new	file,	models/messages-sequelize.mjs,	containing	the	following:

import	Sequelize	from	'sequelize';

import	jsyaml	from	'js-yaml';	

import	fs	from	'fs-extra';	

import	util	from	'util';	

import	EventEmitter	from	'events';	

	

class	MessagesEmitter	extends	EventEmitter	{}	

import	DBG	from	'debug';

const	debug	=	DBG('notes:model-messages');	

const	error	=	DBG('notes:error-messages');	

	

var	SQMessage;	

var	sequlz;	

export	const	emitter	=	new	MessagesEmitter();

This	sets	up	the	modules	being	used	and	also	initializes	the	EventEmitter
interface.	We're	also	exporting	the	EventEmitter	as	emitter	so	other	modules

can	use	it:

async	function	connectDB()	{	

				if	(typeof	sequlz	===	'undefined')	{

								const	yamltext	=	await	

								fs.readFile(process.env.SEQUELIZE_CONNECT,	'utf8');

								const	params	=	jsyaml.safeLoad(yamltext,	'utf8');	

								sequlz	=	new	Sequelize(params.dbname,	

																	params.username,	params.password,	params.params);	

				}

				if	(SQMessage)	return	SQMessage.sync();	

								

				SQMessage	=	sequlz.define('Message',	{	

								id:	{	type:	Sequelize.INTEGER,	autoIncrement:	true,	primaryKey:	

								true	},	

								from:	Sequelize.STRING,	

								namespace:	Sequelize.STRING,	

								message:	Sequelize.STRING(1024),	

								timestamp:	Sequelize.DATE	

				});	

				return	SQMessage.sync();	

}

This	defines	our	message	schema	in	the	database.	We'll	use	the	same
database	that	we	used	for	Notes,	but	the	messages	will	be	stored	in	their
own	table.

The	id	field	won't	be	supplied	by	the	caller;	instead,	it	will	be
autogenerated.	Because	it	is	an	autoIncrement	field,	each	message	that's
added	will	be	assigned	a	new	id	number	by	the	database:

export	async	function	postMessage(from,	namespace,	message)	{	

				const	SQMessage	=	await	connectDB();

				const	newmsg	=	await	SQMessage.create({	

								from,	namespace,	message,	timestamp:	new	Date()	

				});	

				var	toEmit	=	{	

								id:	newmsg.id,	from:	newmsg.from,	

								namespace:	newmsg.namespace,	message:	newmsg.message,	

								timestamp:	newmsg.timestamp	

				};	

				emitter.emit('newmessage',	toEmit);	

}

This	is	to	be	called	when	a	user	posts	a	new	comment/message.	We	first
store	it	in	the	database,	and	then	we	emit	an	event	saying	the	message	was
created:

export	async	function	destroyMessage(id,	namespace)	{	

				const	SQMessage	=	await	connectDB();

				const	msg	=	await	SQMessage.find({	where:	{	id	}	});

				if	(msg)	{

								msg.destroy();

								emitter.emit('destroymessage',	{	id,	namespace	});	

				}

}

This	is	to	be	called	when	a	user	requests	that	a	message	should	be	deleted.
With	Sequelize,	we	must	first	find	the	message	and	then	delete	it	by	calling
its	destroy	method.	Once	that's	done,	we	emit	a	message	saying	the
message	was	destroyed:

export	async	function	recentMessages(namespace)	{	

				const	SQMessage	=	await	connectDB();

				const	messages	=	SQMessage.findAll({	

								where:	{	namespace	},	order:	['timestamp'],	limit:	20	

				});

				return	messages.map(message	=>	{	

								return	{	

												id:	message.id,	from:	message.from,	

												namespace:	message.namespace,	message:	message.message,	

												timestamp:	message.timestamp	

								};	

				});	

}

While	this	is	meant	to	be	called	when	viewing	a	note,	it	is	generalized	to
work	for	any	Socket.IO	namespace.	It	finds	the	most	recent	20	messages
associated	with	the	given	namespace	and	returns	a	cleaned-up	list	to	the
caller.

Adding	messages	to	the	Notes
router
Now	that	we	can	store	messages	in	the	database,	let's	integrate	this	into	the
Notes	router	module.

In	routes/notes.mjs,	add	this	to	the	import	statements:

import	*	as	messages	from	'../models/messages-sequelize';	

If	you	wish	to	implement	a	different	data	storage	model	for	messages,
you'll	need	to	change	this	import	statement.	You	should	consider	using	an
environment	variable	to	specify	the	module	name,	as	we've	done
elsewhere:

//	Save	incoming	message	to	message	pool,	then	broadcast	it	

router.post('/make-comment',	ensureAuthenticated,	async	(req,	res,	next)	=>	{	

				try	{

								await	messages.postMessage(req.body.from,	

												req.body.namespace,	req.body.message);

								res.status(200).json({	});

				}	catch(err)	{

								res.status(500).end(err.stack);	

				}

});	

	

//	Delete	the	indicated	message	

router.post('/del-message',	ensureAuthenticated,	async	(req,	res,	next)	=>	{	

				try	{

								await	messages.destroyMessage(req.body.id,	req.body.namespace);

								res.status(200).json({	});

				}	catch(err)	{	

								res.status(500).end(err.stack);	

				}

});	

This	pair	of	routes,	notesmake-comment	and	notesdel-message,	is	used	to	post	a
new	comment	or	delete	an	existing	one.	Each	calls	the	corresponding	data
model	function	and	then	sends	an	appropriate	response	back	to	the	caller.

Remember	that	postMessage	stores	a	message	in	the	database,	and	then	it
turns	around	and	emits	that	message	to	other	browsers.	Likewise,
destroyMessage	deletes	the	message	from	the	database,	then	emits	a	message
to	other	browsers	saying	that	the	message	has	been	deleted.	Finally,	the
results	from	recentMessages	will	reflect	the	current	set	of	messages	in	the
database.

Both	of	these	will	be	called	by	AJAX	code	in	the	browser:

module.exports.socketio	=	function(io)	{	

				io.of('/view').on('connection',	function(socket)	{

								//	'cb'	is	a	function	sent	from	the	browser,	to	which	we

								//	send	the	messages	for	the	named	note.

								socket.on('getnotemessages',	(namespace,	cb)	=>	{

												messages.recentMessages(namespace).then(cb)

												.catch(err	=>	console.error(err.stack));

								});

				});

				messages.emitter.on('newmessage',	newmsg	=>	{

								io.of('/view').emit('newmessage',	newmsg);	

				});

				messages.emitter.on('destroymessage',	data	=>	{

								io.of('/view').emit('destroymessage',	data);	

				});

	..	

};	

This	is	the	Socket.IO	glue	code,	which	we	will	add	to	the	code	we	looked
at	earlier.

The	getnotemessages	message	from	the	browser	requests	the	list	of	messages
for	the	given	Note.	This	calls	the	recentMessages	function	in	the	model.	This
uses	a	feature	of	Socket.IO	where	the	client	can	pass	a	callback	function,
and	server-side	Socket.IO	code	can	invoke	that	callback,	giving	it	some
data.

We	also	listen	to	the	newmessage	and	destroymessage	messages	emitted	by	the
messages	model,	sending	corresponding	messages	to	the	browser.	These
are	sent	using	the	method	described	earlier.

	

Changing	the	note	view
template	for	messages
We	need	to	dive	back	into	views/noteview.hbs	with	more	changes	so	that	we
can	view,	create,	and	delete	messages.	This	time,	we	will	add	a	lot	of	code,
including	using	a	Bootstrap	modal	popup	to	get	the	message,	several
AJAX	calls	to	communicate	with	the	server,	and,	of	course,	more
Socket.IO	stuff.

	

Using	a	Modal	window	to
compose	messages
The	Bootstrap	framework	has	a	Modal	component	that	serves	a	similar
purpose	to	Modal	dialogs	in	desktop	applications.	You	pop	up	the	Modal,
it	prevents	interaction	with	other	parts	of	the	web	page,	you	enter	stuff	into
fields	in	the	Modal,	and	then	click	a	button	to	make	it	close.

This	new	segment	of	code	replaces	the	existing	segment	defining	the	Edit
and	Delete	buttons,	in	views/noteview.hbs:

{{#if	user}}

{{#if	notekey}}

				<div	class="row"><div	class="col-xs-12">

				<div	class="btn-group">

								<a	class="btn	btn-outline-dark"	href="notesdestroy?key=

								{{notekey}}"	

												role="button">Delete

								<a	class="btn	btn-outline-dark"	href="notesedit?key=

								{{notekey}}"	

												role="button">Edit

								<button	type="button"	class="btn	btn-outline-dark"	

												data-toggle="modal"	

												data-target="#notes-comment-modal">Comment</button>	

				</div>

				</div></div>

				<div	id="noteMessages"></div>	

{{/if}}

{{/if}}

This	adds	support	for	posting	comments	on	a	note.	The	user	will	see	a
Modal	pop-up	window	in	which	they	write	their	comment.	We'll	show	the
code	for	the	Modal	later.

We	added	a	new	button	labeled	Comment	that	the	user	will	click	to	start

the	process	of	posting	a	message.	This	button	is	connected	to	the	Modal	by
way	of	the	element	ID	specified	in	the	data-target	attribute.	The	ID	will
match	the	outermost	div	wrapping	the	Modal.	This	structure	of	div
elements	and	class	names	are	from	the	Bootstrap	website	at	http://getbootst
rap.com/docs/4.0/components/modal/.

Let's	add	the	code	for	the	Modal	at	the	bottom	of	views/noteview.hbs.

{{>	footerjs}}

{{#if	notekey}}

{{#if	user}}

<div	class="modal	fade"	id="notes-comment-modal"	tabindex="-1"	

	role="dialog"	aria-labelledby="noteCommentModalLabel"	aria-hidden="true">

	<div	class="modal-dialog	modal-dialog-centered"	role="document">

	<div	class="modal-content">

	<div	class="modal-header">

	<button	type="button"	class="close"	data-dismiss="modal"	aria-

									label="Close">	

	×	

	</button>	

	<h4	class="modal-title"	id="noteCommentModalLabel">Leave	a	

									Comment</h4>	

	</div>

	<div	class="modal-body">

	<form	method="POST"	id="submit-comment"	class="well"	data-async		

	data-target="#rating-modal"	action="notesmake-comment">	

	<input	type="hidden"	name="from"	value="{{	user.id	}}">	

	<input	type="hidden"	name="namespace"	value="/view-

									{{notekey}}">	

	<input	type="hidden"	name="key"	value="{{notekey}}">	

	<fieldset>	

	<div	class="form-group">	

	<label	for="noteCommentTextArea">	

													Your	Excellent	Thoughts,	Please</label>	

	<textarea	id="noteCommentTextArea"	name="message"	

	class="form-control"	rows="3"></textarea>	

	</div>	

	

	<div	class="form-group">	

	<div	class="col-sm-offset-2	col-sm-10">	

	<button	id="submitNewComment"	type="submit"	class="btn	

															btn-default">

															Make	Comment</button>	

	</div>	

	</div>	

http://getbootstrap.com/docs/4.0/components/modal/

	</fieldset>	

	</form>	

	</div>

	</div>

	</div>

</div>

{{/if}}	

{{/if}}	

The	key	portion	of	this	is	the	HTML	form	contained	within	the	div.modal-
body	element.	It's	a	straightforward,	normal	Bootstrap,	augmented	form
with	a	normal	Submit	button	at	the	bottom.	A	few	hidden	input	elements
are	used	to	pass	extra	information	inside	the	request.

With	the	HTML	set	up	this	way,	Bootstrap	will	ensure	that	this	Modal	is
triggered	when	the	user	clicks	on	the	Comment	button.	The	user	can	close
the	Modal	by	clicking	on	the	Close	button.	Otherwise,	it's	up	to	us	to
implement	code	to	handle	the	form	submission	using	AJAX	so	that	it
doesn't	cause	the	page	to	reload.

Sending,	displaying,	and
deleting	messages
Note	that	these	code	snippets	are	wrapped	with	{{#if}}	statements,	so	that
certain	user	interface	elements	are	displayed	only	to	sufficiently	privileged
users.	A	user	that	isn't	logged	in	certainly	shouldn't	be	able	to	post	a
message.

Now	we	have	a	lot	of	Socket.IO	code	to	add:

{{#if	notekey}}

{{#if	user}}

<script>	

$(document).ready(function	()	{	...	});

{{/if}}

{{/if}}

There's	another	code	section	to	handle	the	noteupdate	and	notedestroy
messages.	This	new	section	has	to	do	with	messages	that	manage	the
comments.

We	need	to	handle	the	form	submission	for	posting	a	new	comment,	get
the	recent	messages	when	first	viewing	a	note,	listen	for	events	from	the
server	about	new	messages	or	deleted	messages,	render	the	messages	on
the	screen,	and	handle	requests	to	delete	a	message:

$(document).ready(function	()	{	

				io('view').emit('getnotemessages',	'view-{{notekey}}',	function(msgs)	{

								$('#noteMessages').empty();

								if	(msgs.length	>	0)	{

												msgs.forEach(function(newmsg)	{

																$('#noteMessages').append(formatMessage(newmsg));

												});

												$('#noteMessages').show();

												connectMsgDelButton();

								}	else	$('#noteMessages').hide();

				});

				var	connectMsgDelButton	=	function()	{

								$('.message-del-button').on('click',	function(event)	{

												$.post('notesdel-message',	{

																id:	$(this).data("id"),

																namespace:	$(this).data("namespace")

												},

												function(response)	{	});

												event.preventDefault();

								});

				};

				var	formatMessage	=	function(newmsg)	{

								return	'<div	id="notemessage-'+	newmsg.id	+'"	class="card">'

												+'<div	class="card-body">'

												+'<h5	class="card-title">'+	newmsg.from	+'</h5>'

												+'<div	class="card-text">'+	newmsg.message

												+'	<small	style="display:	block">'+	newmsg.timestamp	

												+'</small></div>'

												+'	<button	type="button"	class="btn	btn-primary	message-

												del-button"	data-id="'

												+	newmsg.id	+'"	data-namespace="'+	newmsg.namespace	+'">'

												+'Delete</button>'

												+'</div>'

												+'</div>';

				};

				io('/view').on('newmessage',	function(newmsg)	{

								if	(newmsg.namespace	===	'/view-{{notekey}}')	{

												$('#noteMessages').prepend(formatMessage(newmsg));

												connectMsgDelButton();

								}

				});

				io('/view').on('destroymessage',	function(data)	{

								if	(data.namespace	===	'/view-{{notekey}}')	{

												$('#noteMessages	#notemessage-'+	data.id).remove();

								}

				});

				$('form#submit-comment').submit(function(event)	{

								//	Abort	any	pending	request

								if	(request)	{	request.abort();	}

								var	$form	=	$('form#submit-comment');

								var	$target	=	$($form.attr('data-target'));

								var	request	=	$.ajax({

												type:	$form.attr('method'),

												url:	$form.attr('action'),

												data:	$form.serialize()

								});

								request.done(function	(response,	textStatus,	jqXHR)	{	});

								request.fail(function	(jqXHR,	textStatus,	errorThrown)	{

												alert("ERROR	"+	jqXHR.responseText);

								});

								request.always(function	()	{

												//	Reenable	the	inputs

												$('#notes-comment-modal').modal('hide');

								});

								event.preventDefault();

				});

});	

The	code	within	$('form#submit-comment').submit	handles	the	form	submission
for	the	comment	form.	Because	we	already	have	jQuery	available,	we	can
use	its	AJAX	support	to	POST	a	request	to	the	server	without	causing	a
page	reload.

Using	event.preventDefault,	we	ensure	that	the	default	action	does	not	occur.
For	the	FORM	submission,	that	means	the	browser	page	does	not	reload.
What	happens	is	an	HTTP	POST	is	sent	to	notesmake-comment	with	a	data
payload	consisting	of	the	values	of	the	form's	input	elements.	Included	in
those	values	are	three	hidden	inputs,	from,	namespace,	and	key,	providing
useful	identification	data.

If	you	refer	to	the	notesmake-comment	route	definition,	this	calls
messagesModel.postMessage	to	store	the	message	in	the	database.	That	function
then	posts	an	event,	newmessage,	which	our	server-side	code	forwards	to	any
browser	that's	connected	to	the	namespace.	Shortly	after	that,	a	newmessage
event	will	arrive	in	browsers.

The	newmessage	event	adds	a	message	block,	using	the	formatMessage	function.
The	HTML	for	the	message	is	prepended	to	#noteMessages.

When	the	page	is	first	loaded,	we	want	to	retrieve	the	current	messages.
This	is	kicked	off	with	io('/view').emit('getnotemessages',	...	This	function,
as	the	name	implies,	sends	a	getnotemessages	message	to	the	server.	We
showed	the	implementation	of	the	server-side	handler	for	this	message
earlier,	in	routes/notes.mjs.

If	you	remember,	we	said	that	Socket.IO	supports	the	provision	of	a
callback	function	that	is	called	by	the	server	in	response	to	an	event.	You

simply	pass	a	function	as	the	last	parameter	to	a	.emit	call.	That	function	is
made	available	at	the	other	end	of	the	communication,	to	be	called	when
appropriate.	To	make	this	clear,	we	have	a	callback	function	on	the
browser	being	invoked	by	server-side	code.

In	this	case,	the	server-side	calls	our	callback	function	with	a	list	of
messages.	The	message	list	arrives	in	the	client-side	callback	function,
which	displays	them	in	the	#noteMessages	area.	It	uses	jQuery	DOM
manipulation	to	erase	any	existing	messages,	then	renders	each	message
into	the	messages	area	using	the	formatMessage	function.

The	message	display	template,	in	formatMessage,	is	straightforward.	It	uses	a
Bootstrap	card	to	give	a	nice	visual	effect.	And,	there	is	a	button	for
deleting	messages.

In	formatMessage	we	created	a	Delete	button	for	each	message.	Those	buttons
need	an	event	handler,	and	the	event	handler	is	set	up	using	the
connectMsgDelButton	function.	In	this	case,	we	send	an	HTTP	POST	request	to
notesdel-message.	We	again	use	the	jQuery	AJAX	support	to	post	that	HTTP
request.

The	notesdel-message	route	in	turn	calls	messagesModel.destroyMessage	to	do	the
deed.	That	function	then	emits	an	event,	destroymessage,	which	gets	sent
back	to	the	browser.	As	you	see	here,	the	destroymessage	event	handler
causes	the	corresponding	message	to	be	removed	using	jQuery	DOM
manipulation.	We	were	careful	to	add	an	id=	attribute	to	every	message	to
make	removal	easy.

Since	the	flip	side	of	destruction	is	creation,	we	need	to	have	the	newmessage
event	handler	sitting	next	to	the	destroymessage	event	handler.	It	also	uses
jQuery	DOM	manipulation	to	insert	the	new	message	into	the	#noteMessages
area.

While	entering	a	message,	the	Modal	looks	like	this:	

Running	Notes	and	passing
messages
That	was	a	lot	of	code,	but	we	now	have	the	ability	to	compose	messages,
display	them	on	the	screen,	and	delete	them,	all	with	no	page	reloads.

You	can	run	the	application	as	we	did	earlier,	first	starting	the	user
authentication	server	in	one	command-line	window	and	the	Notes
application	in	another:	

Try	this	with	multiple	browser	windows	viewing	the	same	note	or
different	notes.	This	way,	you	can	verify	that	notes	show	up	only	on
the	corresponding	note	window.

Other	applications	of	Modal
windows
We	used	a	Modal	and	some	AJAX	code	to	avoid	one	page	reload	due	to	a
form	submission.	In	the	Notes	application,	as	it	stands,	a	similar	technique
could	be	used	when	creating	a	new	note,	editing	existing	notes,	and
deleting	existing	notes.	In	each	case,	we	would	use	a	Modal,	some	AJAX
code	to	handle	the	form	submission,	and	some	jQuery	code	to	update	the
page	without	causing	a	reload.

But	wait,	that's	not	all.	Consider	the	sort	of	dynamic	real-time	user
interface	wizardry	on	the	popular	social	networks.	Imagine	what	events
and/or	AJAX	calls	are	required.

When	you	click	on	an	image	in	Twitter,	it	pops	up,	you	guessed	it,	a
Modal	window	to	show	a	larger	version	of	the	image.	The	Twitter
Compose	new	Tweet	window	is	also	a	Modal	window.	Facebook	uses
many	different	Modal	windows,	such	as	when	sharing	a	post,	reporting	a
spam	post,	or	while	doing	a	lot	of	other	things	Facebook's	designers	deem
to	require	a	pop-up	window.

Socket.IO,	as	we've	seen,	gives	us	a	rich	foundation	of	events	passing
between	server	and	client	that	can	build	multiuser,	multichannel
communication	experiences	for	your	users.

Summary
While	we	came	a	long	way	in	this	chapter,	maybe	Facebook	doesn't	have
anything	to	fear	from	the	baby	steps	we	took	toward	converting	the	Notes
application	into	a	social	network.	This	chapter	gave	us	the	opportunity	to
explore	some	really	cool	technology	for	pseudo	real-time	communication
between	browser	sessions.

Look	up	the	technical	definition	for	the	phrase	real	time	and	you'll	see	the
real-time	web	is	not	truly	real	time.	The	actual	meaning	of	real	time
involves	software	with	strict	time	boundaries	that	must	respond	to	events
within	a	specified	time	constraint.	Real-time	software	is	typically	used	in
embedded	systems	to	respond	to	button	presses,	for	applications	as	diverse
as	junk	food	dispensers	and	medical	devices	in	intensive	care	units.	Eat
too	much	junk	food	and	you	could	end	up	in	intensive	care,	and	be	served
by	real-time	software	in	both	cases.	Try	and	remember	the	distinction
between	different	meanings	for	this	phrase.

In	this	chapter,	you	learned	about	using	Socket.IO	for	pseudo	real-time
web	experiences,	using	the	EventEmitter	class	to	send	messages	between
parts	of	an	application,	jQuery,	AJAX,	and	other	browser-side	JavaScript
technologies,	while	avoiding	page	reloads	while	making	AJAX	calls.

In	the	next	chapter,	we	will	look	into	Node.js	application	deployment	on
real	servers.	Running	code	on	our	laptop	is	cool,	but	to	hit	the	big	time,	the
application	needs	to	be	properly	deployed.

	

Deploying	Node.js	Applications
Now	that	the	Notes	application	is	fairly	complete,	it's	time	to	think	about
how	to	deploy	it	to	a	real	server.	We've	created	a	minimal	implementation
of	the	collaborative	note	concept	that	works	fairly	well.	To	grow,	Notes
must	escape	our	laptop	and	live	on	a	real	server.	The	goal	is	to	look	at
deployment	methods	for	Node.js	applications.

In	this	chapter,	we	will	cover	the	following	topics:

Traditional	LSB-compliant	Node.js	deployment

Using	PM2	to	improve	reliability

Deployment	to	a	Virtual	Private	Server	(VPS)	provider

Microservice	deployment	with	Docker	(we	have	four	distinct
services	to	deploy)

Deployment	to	a	Docker	hosting	provider

The	first	task	is	to	duplicate	the	source	code	from	the	previous	chapter.	It's
suggested	you	create	a	new	directory,	chap10,	as	a	sibling	of	the	chap09
directory,	and	copy	everything	from	chap09	to	chap10.

	

Notes	application	architecture
and	deployment
considerations
Before	we	get	into	deploying	the	Notes	application,	we	need	to	review	its
architecture.	To	deploy	the	Notes	application,	we	must	understand	what
we're	planning	to	do.	We	have	segmented	the	services	into	two	groups,	as
shown	in	the	following	diagram:

The	user	authentication	server	should	be	the	more	secure	portion	of	the

system.	On	our	laptop,	we	weren't	able	to	create	the	envisioned	protective
wall	around	that	service,	but	we're	about	to	implement	such	protection.

One	strategy	to	enhance	security	is	to	expose	as	few	ports	as	possible.
That	reduces	the	so-called	attack	surface,	simplifying	our	work	in
hardening	the	application	against	security	bugs.	With	the	Notes
application,	we	have	exactly	one	port	to	expose,	the	HTTP	service	through
which	users	access	the	application.	The	other	ports,	the	two	for	MySQL
servers	and	the	user	authentication	service	port,	should	be	hidden.

Internally,	the	Notes	application	needs	to	access	both	the	Notes	database
and	the	user	authentication	service.	That	service,	in	turn,	needs	to	access
the	user	authentication	database.	As	currently	envisaged,	no	service
outside	the	Notes	application	requires	access	to	either	database	or	to	the
authentication	service.

Implementation	of	this	segmentation	requires	either	two	or	three	subnets,
depending	on	the	lengths	you	wish	to	go	to.	The	first,	FrontNet,	contains
the	Notes	application	and	its	database.	The	second,	AuthNet,	contains	the
authentication	service	and	its	database.	A	third	possible	subnet	would
contain	the	Notes	and	authentication	services.	The	subnet	configuration
must	limit	the	hosts	with	access	to	the	subnet,	and	create	a	security	wall
between	subnets.

Traditional	Linux	Node.js
service	deployment
Traditional	Linux/Unix	server	application	deployment	uses	an	init	script
to	manage	background	processes.	They	are	to	start	every	time	the	system
boots	and	cleanly	shut	down	when	the	system	is	halted.	While	it's	a	simple
model,	the	specifics	of	this	vary	widely	from	one	operating	system	(OS)
to	another.

A	common	method	is	for	the	init	process	to	manage	background	processes
using	shell	scripts	in	the	etcinit.d	directory.	Other	OSes	use	other	process
managers,	such	as	upstart	or	launchd.	

The	Node.js	project	itself	does	not	include	any	scripts	to	manage	server
processes	on	any	OS.	Node.js	is	more	like	a	construction	kit,	with	the
pieces	and	parts	to	build	servers,	and	is	not	a	complete	polished	server
framework	itself.	Implementing	a	complete	web	service	based	on	Node.js
means	creating	the	scripting	to	integrate	with	process	management	on	your
OS.	It's	up	to	us	to	develop	those	scripts.

Web	services	have	to	be:

Reliable:	For	example,	to	auto-restart	when	the	server	process
crashes

Manageable:	Meaning	it	integrates	well	with	system	management
practices

Observable:	Meaning	the	administrator	must	be	able	to	get	status
and	activity	information	from	the	service

To	demonstrate	what's	involved,	let's	use	PM2	to	implement	background
server	process	management	for	Notes.	PM2	detects	the	system	type	and
can	automatically	integrate	itself	with	the	process	management	system.	It
will	create	an	LSB-style	init	script	(http://wiki.debian.org/LSBInitScripts),	or
other	scripts,	as	required	by	the	process	management	system	on	your
server.	

For	this	deployment,	we'll	set	up	a	single	Ubuntu	17.10	server.	You	should
provision	a	Virtual	Private	Server	(VPS)	from	a	hosting	provider	and	do
all	installation	and	configuration	there.	Renting	a	small	machine	instance
from	one	of	the	major	providers	for	the	time	needed	to	go	through	this
chapter	will	only	cost	a	couple	of	dollars.

You	can	also	do	the	tasks	in	this	section	using	VirtualBox	on	your	laptop.
Simply	install	Debian	or	Ubuntu	as	a	virtual	machine	in	VirtualBox,	then
follow	the	instructions	in	this	section.	It	won't	be	quite	the	same	as	using	a
remote	VPS	hosting	provider,	but	does	not	require	renting	a	server.

Both	the	Notes	and	user	authentication	services	will	be	on	that	server,
along	with	a	single	MySQL	instance.	While	our	goal	is	a	strong	separation
between	FrontNet	and	AuthNet,	with	two	MySQL	instances,	we	won't	do
so	at	this	time.

http://wiki.debian.org/LSBInitScripts

Prerequisite	–	provisioning	the
databases
The	Linux	package	management	system	doesn't	allow	us	to	install	two
MySQL	instances.	Instead,	we	implement	separation	in	the	same	MySQL
instance	by	using	separate	databases	with	different	usernames	and	access
privileges	for	each	database.

The	first	step	is	to	ensure	that	MySQL	is	installed	on	your	server.	For
Ubuntu,	DigitalOcean	has	a	fairly	good	tutorial:
https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-ubuntu-14-

04.	While	the	Ubuntu	version	for	that	tutorial	is	old,	the	instructions	are
still	accurate	enough.

The	MySQL	server	must	support	TCP	connections	from	localhost.	Edit	the
configuration	file,	etcmysql/my.cnf,	to	have	the	following	line:

bind-address	=	127.0.0.1

This	limits	MySQL	server	connections	to	the	processes	on	the	server.	A
miscreant	would	have	to	break	into	the	server	to	access	your	database.
Now	that	our	database	server	is	available,	let's	set	up	two	databases.

In	the	chap10/notes/models	directory,	create	a	file	named	mysql-create-db.sql
containing	the	following:

CREATE	DATABASE	notes;

CREATE	USER	'notes'@'localhost'	IDENTIFIED	BY	'notes';

GRANT	ALL	PRIVILEGES	ON	notes.*	TO	'notes'@'localhost'	WITH	GRANT	OPTION;		

In	the	chap10/users	directory,	create	a	file	named	mysql-create-db.sql
containing	the	following:

https://www.digitalocean.com/community/tutorials/how-to-install-mysql-on-ubuntu-14-04

CREATE	DATABASE	userauth;

CREATE	USER	'userauth'@'localhost'	IDENTIFIED	BY	'userauth';

GRANT	ALL	PRIVILEGES	ON	userauth.*	TO	'userauth'@'localhost'	WITH	GRANT	

OPTION;		

We	can't	run	those	scripts	on	the	server,	because	the	Notes	application	has
not	yet	been	copied	to	the	server.	When	that's	accomplished,	we'll	run	the
scripts	as:

$	mysql	-u	root	-p	<chap10/users/mysql-create-db.sql

$	mysql	-u	root	-p	<chap10/notes/models/mysql-create-db.sql		

This	will	create	the	two	databases,	notes	and	userauth,	with	associated
usernames	and	passwords.	Each	user	can	access	only	their	associated
database.	Later,	we'll	set	up	Notes	and	the	user	authentication	service	with
YAML	configuration	files	to	access	these	databases.

$	curl	-sL	https://deb.nodesource.com/setup_10.x	|	sudo	-E	bash	-

$	sudo	apt-get	update

$	sudo	apt-get	install	-y	nodejs	build-essential	

We've	seen	this	before,	so	substitute	the	Node.js	desired	version	number	in	the
URL.	Installing	this	way	means	that	as	new	Node.js	releases	are	issued,
upgrades	are	easily	accomplished	with	the	normal	package	management
procedures.	

Setting	up	Notes	and	user
authentication	on	the	server
Before	copying	the	Notes	and	user	authentication	code	to	this	server,	let's
do	a	little	coding	to	prepare	for	the	move.	We	know	that	the	Notes	and
authentication	services	must	access	the	MySQL	instance	on	localhost	using
the	usernames	and	passwords	given	earlier.

Using	the	approach	we've	followed	so	far,	this	means	a	pair	of	YAML	files
for	Sequelize	parameters,	and	changing	environment	variables	in	the
package.json	files	to	match.

Create	a	chap10/notes/models/sequelize-server-mysql.yaml	file	containing:

dbname:	notes	

username:	notes	

password:	notes12345

params:	

				host:	localhost	

				port:	3306	

				dialect:	mysql	

It	was	discovered	during	testing	that	a	simple	password	such	as	notes	was
not	acceptable	to	the	MySQL	server,	and	that	a	longer	password	was
required.	In	chap10/notes/package.json,	add	the	following	line	to	the	scripts
section:

"on-server":	"SEQUELIZE_CONNECT=models/sequelize-server-mysql.yaml	

NOTES_MODEL=sequelize	USER_SERVICE_URL=http://localhost:3333	PORT=3000	node	-

-experimental-modules	./app",		

Then	create	a	chap10/users/sequelize-server-mysql.yaml	file	containing	the
following	code	the	following	code:

dbname:	userauth	

username:	userauth	

password:	userauth	

params:	

				host:	localhost	

				port:	3306	

				dialect:	mysql	

The	passwords	shown	in	these	configuration	files	obviously	will	not	pass
any	security	audits.

In	chap10/users/package.json,	add	the	following	line	to	the	scripts	section:

"on-server":	"PORT=3333	SEQUELIZE_CONNECT=sequelize-server-mysql.yaml	node	--

experimental-modules	./user-server",	

This	configures	the	authentication	service	to	access	the	databases	just
created.

Now	we	need	to	select	a	place	on	the	server	to	install	the	application	code:

#	ls	/opt		

This	empty	directory	looks	to	be	as	good	a	place	as	any.	Simply	upload
chap10/notes	and	chap10/users	to	your	preferred	location.	Before	uploading,
remove	the	node_modules	directory	in	both	directories.	That's	both	to	save
time	on	the	upload,	and	because	of	the	simple	fact	that	any	native-code
modules	installed	on	your	laptop	will	be	incompatible	with	the	server.	On
your	laptop,	you	might	run	a	command	like	this:

$	rsync	--archive	--verbose	./	root@159.89.145.190:opt

Use	the	actual	IP	address	or	domain	name	assigned	to	the	server	being
used.

You	should	end	up	with	something	like	the	following:

#	ls	/opt

notes		users		

Then,	in	each	directory,	run	these	commands:

#	rm	-rf	node_modules

#	npm	install		

We're	running	these	commands	as	root	rather	than	a	user	ID	that	can	use
the	sudo	command.	The	machine	offered	by	the	chosen	hosting	provider
(DigitalOcean)	is	configured	so	users	log	in	as	root.	Other	VPS	hosting	providers	will
provide	machines	where	you	log	in	as	a	regular	user	and	then	use	sudo	to	perform
privileged	operations.	As	you	read	these	instructions,	pay	attention	to	the	command
prompt	we	show.	We've	followed	the	convention	where	$	is	used	for	commands	run	as
a	regular	user	and	#	is	used	for	commands	run	as	root.	If	you're	running	as	a	regular
user,	and	need	to	run	a	root	command,	then	run	the	command	with	sudo.

The	simplest	way	of	doing	this	is	to	just	delete	the	whole	node_modules
directory	and	then	let	npm	install	do	its	job.	Remember	that	we	set	up	the
PATH	environment	variable	the	following	way:

#	export	PATH=./node_modules/.bin:${PATH}		

You	can	place	this	in	the	login	script	(.bashrc,	.cshrc,	and	so	on)	on	your
server	so	it's	automatically	enabled.	

Finally,	you	can	now	run	the	SQL	scripts	written	earlier	to	set	up	the
database	instances:

#	mysql	-u	root	-p	<users/mysql-create-db.sql

#	mysql	-u	root	-p	<notes/models/mysql-create-db.sql		

Then	you	should	be	able	to	start	up	the	services	by	hand	to	check	that
everything	is	working	correctly.	The	MySQL	instance	has	already	been
tested,	so	we	just	need	to	start	the	user	authentication	and	Notes	services:

#	cd	optusers

#	DEBUG=users:*	npm	run	on-server

>	userauth-server@0.0.1	on-server	optusers

>	PORT=3333	SEQUELIZE_CONNECT=sequelize-server-mysql.yaml	node	--

experimental-modules	./user-server

(node:9844)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

Then	log	in	to	the	server	on	another	Terminal	session	and	run	the
following:

#	cd	optusers/

#	PORT=3333	node	users-add.js	

Created	{	id:	1,	username:	'me',	password:	'w0rd',	provider:	'local',

		familyName:	'Einarrsdottir',	givenName:	'Ashildr',	middleName:	'',

		emails:	'[]',	photos:	'[]',

		updatedAt:	'2018-02-02T00:43:16.923Z',	createdAt:	'2018-02-

02T00:43:16.923Z'	}

#	PORT=3333	node	users-list.js	

List	[{	id:	'me',	username:	'me',	provider:	'local',

				familyName:	'Einarrsdottir',	givenName:	'Ashildr',	middleName:	'',

				emails:	'[]',	photos:	'[]'	}]

The	preceding	command	both	tests	that	the	backend	user	authentication
service	is	functioning	and	gives	us	a	user	account	we	can	use	to	log	in.
The	users-list	command	demonstrates	that	it	works.

You	may	get	an	error:

	users:error	/create-user	Error:	Please	install	mysql2	package	manually

This	is	generated	inside	of	Sequelize.	The	mysql2	driver	is	an	alternate
MySQL	driver,	implemented	in	pure	JavaScript,	and	includes	support	for
returning	Promises	for	smooth	usage	in	async	functions.	If	you	do	get	this
message,	go	ahead	and	install	the	package	and	remember	to	add	this
dependency	to	your	package.json.

Now	we	can	start	the	Notes	service:

#	cd	../notes

#	npm	run	on-server

>	notes@0.0.0	on-server	optnotes

>	SEQUELIZE_CONNECT=models/sequelize-server-mysql.yaml	NOTES_MODEL=sequelize	

USER_SERVICE_URL=http://localhost:3333	PORT=3000	node	--experimental-modules	

./app

(node:9932)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

Then	we	can	use	our	web	browser	to	connect	to	the	application.	Since	you
probably	do	not	have	a	domain	name	associated	with	this	server,	Notes
can	be	accessed	via	the	IP	address	of	the	server,	such
as	http://159.89.145.190:3000/.

In	these	examples,	we're	using	the	IP	address	of	the	VPS	used	to	test	the	instructions
in	this	section.	The	IP	address	you	use	will,	of	course,	be	different.

By	now,	you	know	that	the	drill	for	verifying	Notes	is	working.	Create	a
few	notes,	open	a	few	browser	windows,	see	that	real-time	notifications
work,	and	so	on.	Once	you're	satisfied	that	Notes	is	working	on	the	server,
kill	the	processes	and	move	on	to	the	next	section,	where	we'll	set	this	up
to	run	when	the	server	starts.

Adjusting	Twitter
authentication	to	work	on	the
server
The	Twitter	application	we	set	up	for	Notes	previously	won't	work
because	the	authentication	URL	is	incorrect	for	the	server.	For	now,	we
can	log	in	using	the	user	profile	created	previously.	If	you	want	to	see
OAuth	work	with	Twitter,	go	to	apps.twitter.com	and	reconfigure	the
application	to	use	the	IP	address	of	your	server.

By	hosting	somewhere	other	than	our	laptop,	the	Twitter	callbackURL	must
point	to	the	correct	location.	The	default	value	was	http://localhost:3000	for
use	on	our	laptop.	But	we	now	need	to	use	the	IP	address	for	the	server.
In	notes/package.json,	add	the	following	environment	variable	to	the	on-server
script:

TWITTER_CALLBACK_HOST=http://159.89.145.190:3000	

Use	the	actual	IP	address	or	domain	name	assigned	to	the	server	being
used.	In	a	real	deployment,	we'll	have	a	domain	name	to	use	here.	

Setting	up	PM2	to	manage
Node.js	processes
There	are	many	ways	to	manage	server	processes,	to	ensure	restarts	if	the
process	crashes,	and	so	on.	We'll	use	PM2	(http://pm2.keymetrics.io/)
because	it's	optimized	for	Node.js	processes.	It	bundles	process
management	and	monitoring	into	one	application.

Let's	create	a	directory,	init,	in	which	to	use	PM2.	The	PM2	website
suggests	you	install	the	tool	globally	but,	as	students	of	the	Twelve	Factor
Application	model,	we	recognize	it's	best	to	use	explicitly	declared
dependencies	and	avoid	global	unmanaged	dependencies.

Create	a	package.json	file	containing:

{

		"name":	"pm2deploy",

		"version":	"1.0.0",

		"scripts":	{

				"start":	"pm2	start	ecosystem.json",

				"stop":	"pm2	stop	ecosystem.json",

				"restart":	"pm2	restart	ecosystem.json",

				"status":	"pm2	status",

				"save":	"pm2	save",

				"startup":	"pm2	startup"

		},

		"dependencies":	{

				"pm2":	"^2.9.3"

		}

}

Install	PM2	using	npm	install	as	usual.

In	normal	PM2	usage,	we	launch	scripts	with	pm2	start	script-name.js.	We
could	make	an	etcinit	script	which	does	that,	but	PM2	also	supports	a	file

http://pm2.keymetrics.io/

named	ecosystem.json	that	can	be	used	to	manage	a	cluster	of	processes.	We
have	two	processes	to	manage	together,	the	user-facing	Notes	application,
and	the	user	authentication	service	on	the	back	end.

Create	a	file	named	ecosystem.json	containing	the	following:

{

		"apps"	:	[

				{

						"name":	"User	Authentication",

						"script":	"user-server.mjs",

						"cwd":	"optusers",

						"node_args":	"--experimental-modules",

						"env":	{

								"PORT":	"3333",

								"SEQUELIZE_CONNECT":	"sequelize-server-mysql.yaml"

						},

						"env_production":	{	"NODE_ENV":	"production"	}

				},

				{

						"name":	"Notes",

						"script":	"app.mjs",

						"cwd":	"optnotes",

						"node_args":	"--experimental-modules",

						"env":	{

								"PORT":	"3000",

								"SEQUELIZE_CONNECT":	"models/sequelize-server-mysql.yaml",

								"NOTES_MODEL":	"sequelize",

								"USER_SERVICE_URL":	"http://localhost:3333",

								"TWITTER_CONSUMER_KEY":	"..",

								"TWITTER_CONSUMER_SECRET":	"..",

								"TWITTER_CALLBACK_HOST":	"http://45.55.37.74:3000"

						},

						"env_production":	{	"NODE_ENV":	"production"	}

				}

]

}

	

This	file	describes	the	directories	containing	both	services,	the	script	to
run	each	service,	the	command-line	options,	and	the	environment
variables	to	use.	It's	the	same	information	that	is	in	the	package.json	scripts,
but	spelled	out	more	clearly.	Adjust	TWITTER_CALLBACK_HOST	for	the	IP	address
of	the	server.	For	documentation,	see	http://pm2.keymetrics.io/docs/usage/appli

http://pm2.keymetrics.io/docs/usage/application-declaration/

cation-declaration/.

We	then	start	the	services	with	npm	run	start,		which	looks	like	the
following	on	the	screen:

You	can	again	navigate	your	browser	to	the	URL	for	your	server,	such	as
http://159.89.145.190:3000,	and	check	that	Notes	is	working.	Once	started,
some	useful	commands	are	as	follows:

#	pm2	list

#	pm2	describe	1

#	pm2	logs	1		

These	commands	let	you	query	the	status	of	the	services.

The	pm2	monit	command	gives	you	a	pseudo-graphical	monitor	of	system
activity.	For	documentation,

see	http://pm2.keymetrics.io/docs/usage/monitoring/.

The	pm2	logs	command	addresses	the	application	log	management	issue	we
raised	elsewhere.	Activity	logs	should	be	treated	as	an	event	stream,	and
should	be	captured	and	managed	appropriately.	With	PM2,	the	output	is
automatically	captured,	can	be	viewed,	and	the	log	files	can	be	rotated	and
purged.	See	http://pm2.keymetrics.io/docs/usage/log-management/	for
documentation.

If	we	restart	the	server,	these	processes	don't	start	with	the	server.	How	do
we	handle	that?	It's	very	simple	because	PM2	can	generate	an	init	script
for	us:

#	pm2	save

[PM2]	Saving	current	process	list...

[PM2]	Successfully	saved	in	root.pm2/dump.pm2

	

#	pm2	startup

[PM2]	Init	System	found:	systemd

Platform	systemd

Template

[Unit]

Description=PM2	process	manager

Documentation=https://pm2.keymetrics.io/

After=network.target

...	more	output	is	printed

The	pm2	save	command	saves	the	current	state.	Whatever	services	are
running	at	that	time	will	be	saved	and	managed	by	the	generated	start	up
script.	

The	next	step	is	to	generate	the	startup	script,	using	the	pm	startup
command.	PM2	supports	generating	start	up	scripts	on	several	OSes,	but
when	run	this	way,	it	autodetects	the	system	type	and	generates	the	correct
start	up	script.	It	also	installs	the	start	up	script,	and	starts	it	running.	See
the	documentation	at	http://pm2.keymetrics.io/docs/usage/startup/	for	more
information.

If	you	look	closely	at	the	output,	some	useful	commands	will	be	printed.

http://pm2.keymetrics.io/docs/usage/monitoring/
http://pm2.keymetrics.io/docs/usage/log-management/
http://pm2.keymetrics.io/docs/usage/startup/

The	details	will	vary	based	on	your	operating	system,	because	each
operating	system	has	its	own	commands	for	managing	background
processes.	In	this	case,	the	installation	is	geared	to	use
the	systemctl	command,	as	verified	by	this	output:

Command	list	

['systemctl	enable	pm2-root',	

		'systemctl	start	pm2-root',	

		'systemctl	daemon-reload',	

		'systemctl	status	pm2-root']	

[PM2]	Writing	init	configuration	in	etcsystemd/system/pm2-root.service	

[PM2]	Making	script	booting	at	startup...	

...

[DONE]		

>>>	Executing	systemctl	start	pm2-root	

[DONE]		

>>>	Executing	systemctl	daemon-reload	

[DONE]		

>>>	Executing	systemctl	status	pm2-root

You	are	free	to	run	these	commands	yourself:

#	systemctl	status	pm2-root	

●	pm2-root.service	-	PM2	process	manager	

			Loaded:	loaded	(etcsystemd/system/pm2-root.service;	enabled;	vendor	

preset:	enabled)	

			Active:	active	(running)	since	Fri	2018-02-02	22:27:45	UTC;	29min	ago	

					Docs:	https://pm2.keymetrics.io/	

		Process:	738	ExecStart=optinit/node_modules/pm2/bin/pm2	resurrect	

(code=exited,	status=0/SUCCESS)	

	Main	PID:	873	(PM2	v2.9.3:	God)	

				Tasks:	30	(limit:	4915)	

			Memory:	171.6M	

						CPU:	11.528s	

			CGroup:	system.slicepm2-root.service	

											├─873	PM2	v2.9.3:	God	Daemon	(root.pm2)	

											├─895	node	optusers/user-server.mjs	

											└─904	node	optnotes/app.mjs

To	verify	that	PM2	starts	the	services	as	advertised,	reboot	your	server,
then	use	PM2	to	check	the	status:

The	first	thing	to	notice	is	that	upon	initially	logging	in	to	the	root	account,
the	pm2	status	command	is	not	available.	We	installed	PM2	locally	to
optinit,	and	the	command	is	only	available	in	that	directory.

After	going	to	that	directory,	we	can	now	run	the	command	and	see	the
status.	Remember	to	set	the	correct	IP	address	or	domain	name	in
the	TWITTER_CALLBACK_HOST	environment	variable.	Otherwise,	logging	in	with
Twitter	will	fail.

We	now	have	the	Notes	application	under	a	fairly	good	management
system.	We	can	easily	update	its	code	on	the	server	and	restart	the	service.
If	the	service	crashes,	PM2	will	automatically	restart	it.	Log	files	are
automatically	kept	for	our	perusal.

PM2	also	supports	deployment	from	the	source	on	our	laptop,	which	we
can	push	to	staging	or	production	environments.	To	support	this,	we	must
add	deployment	information	to	the	ecosystem.json	file	and	then	run	the	pm2
deploy	command	to	push	the	code	to	the	server.	See	the	PM2	website	for
more	information:	http://pm2.keymetrics.io/docs/usage/deployment/.

While	PM2	does	a	good	job	at	managing	server	processes,	the	system

http://pm2.keymetrics.io/docs/usage/deployment/

we've	developed	is	insufficient	for	an	internet-scale	service.	What	if	the
Notes	application	were	to	become	a	viral	hit	and	suddenly	we	need	to
deploy	a	million	servers	spread	around	the	planet?	Deploying	and
maintaining	servers	one	at	a	time,	like	this,	is	not	scalable.

We	also	skipped	over	implementing	the	architectural	decisions	at	the
beginning.	Putting	the	user	authentication	data	on	the	same	server	is	a
security	risk.	We	want	to	deploy	that	data	on	a	different	server,	under
tighter	security.

In	the	next	section,	we'll	explore	a	new	system,	Docker,	that	solves	these
problems	and	more.

Node.js	microservice
deployment	with	Docker
Docker	(http://docker.com)	is	the	new	attraction	in	the	software	industry.
Interest	is	taking	off	like	crazy,	spawning	many	projects,	often	with	names
containing	puns	around	shipping	containers.

It	is	described	as	an	open	platform	for	distributed	applications	for
developers	and	sysadmins.	It	is	designed	around	Linux	containerization
technology	and	focuses	on	describing	the	configuration	of	software	on	any
variant	of	Linux.

Docker	automates	the	application	deployment	within	software	containers.
The	basic	concepts	of	Linux	containers	date	back	to	chroot	jail's	first
implementation	in	the	1970s,	and	other	systems	such	as	Solaris	Zones.
The	Docker	implementation	creates	a	layer	of	software	isolation	and
virtualization	based	on	Linux	cgroups,	kernel	namespaces,	and	union-
capable	filesystems,	which	blend	together	to	make	Docker	what	it	is.	That
was	some	heavy	geek-speak,	so	let's	try	a	simpler	explanation.

A	Docker	container	is	a	running	instantiation	of	a	Docker	image.	An
image	is	a	given	Linux	OS	and	application	configuration	designed	by
developers	for	whatever	purpose	they	have	in	mind.	Developers	describe
an	image	using	a	Dockerfile.	The	Dockerfile	is	a	fairly	simple-to-write
script	showing	Docker	how	to	build	an	image.	Docker	images	are
designed	to	be	copied	to	any	server,	where	the	image	is	instantiated	as	a
Docker	container.

A	running	container	will	make	you	feel	like	you're	inside	a	virtual	server
running	on	a	virtual	machine.	But	Docker	containerization	is	very	different
from	a	virtual	machine	system	such	as	VirtualBox.	The	processes	running
inside	the	container	are	actually	running	on	the	host	OS.	The

http://docker.com

containerization	technology	(cgroups,	kernel	namespaces,	and	so	on)
create	the	illusion	of	running	on	the	Linux	variant	specified	in	the
Dockerfile,	even	if	the	host	OS	is	completely	different.	Your	host	OS
could	be	Ubuntu	and	the	container	OS	could	be	Fedora	or	OpenSUSE;
Docker	makes	it	all	work.	

By	contrast,	with	Virtual	Machine	software	(VirtualBox,	and	VMWare,
among	others),	you're	using	what	feels	like	a	real	computer.	There	is	a
virtual	BIOS	and	virtualized	system	hardware,	and	you	must	install	a	full-
fledged	guest	OS.	You	must	follow	every	ritual	of	computer	ownership,
including	securing	licenses	if	it's	a	closed	source	system	such	as
Windows.	

While	Docker	is	primarily	targeted	at	x86	flavors	of	Linux,	it	is	available
on	several	ARM-based	OSes,	as	well	as	other	processors.	You	can	even
run	Docker	on	single-board	computers,	such	as	Raspberry	Pis,	for
hardware-oriented	Internet	of	Things	projects.	Operating	systems	such	as
Resin.IO	are	optimized	to	solely	run	Docker	containers.

The	Docker	ecosystem	contains	many	tools,	and	their	number	is	quickly
increasing.	For	our	purposes,	we'll	be	focusing	on	the	following	three
specific	tools:

Docker	engine:	This	is	the	core	execution	system	that	orchestrates
everything.	It	runs	on	a	Linux	host	system,	exposing	a	network-
based	API	that	client	applications	use	to	make	Docker	requests,
such	as	building,	deploying,	and	running	containers.

Docker	machine:	This	is	a	client	application	performing	functions
around	provisioning	Docker	Engine	instances	on	host	computers.

Docker	compose:	This	helps	you	define,	in	a	single	file,	a
multicontainer	application,	with	all	its	dependencies	defined.

With	the	Docker	ecosystem,	you	can	create	a	whole	universe	of	subnets

and	services	to	implement	your	dream	application.	That	universe	can	run
on	your	laptop	or	be	deployed	to	a	globe-spanning	network	of	cloud-
hosting	facilities	around	the	world.	The	surface	area	through	which
miscreants	can	attack	is	strictly	defined	by	the	developer.	A	multicontainer
application	will	even	limit	access	so	strongly	between	services	that
miscreants	who	do	manage	to	break	into	a	container	will	find	it	difficult	to
break	out	of	the	container.

Using	Docker,	we'll	first	design	on	our	laptop	the	system	shown	in	the
previous	diagram.	Then	we'll	migrate	that	system	to	a	Docker	instance	on
a	server.

Installing	Docker	on	your
laptop
The	best	place	to	learn	how	to	install	Docker	on	your	laptop	is	the	Docker
documentation	website.	What	we're	looking	for	is	the	Docker	Community
Edition	(CE).	There	is	the	Docker	Enterprise	Edition	(EE),	with	more
features	and	some	opportunities	to	pay	support	fees:

macOS	installation	–	https://docs.docker.com/docker-for-mac/install/

Windows	installation	–	https://docs.docker.com/docker-for-windows/insta
ll/

Ubuntu	installation	–	https://docs.docker.com/install/linux/docker-ce/ub
untu/

Instructions	are	available	for	several	other	distros.	Some	useful
postinstall	Linux	instructions	are	at	https://docs.docker.com/install/li
nux/linux-postinstall/

Because	Docker	runs	on	Linux,	it	does	not	run	natively	on	macOS	or
Windows.	Installation	on	either	OS	requires	installing	Linux	inside	a
virtual	machine	and	then	running	Docker	tools	within	that	virtual	Linux
machine.	The	days	when	you	had	to	handcraft	that	setup	yourself	are	long
gone.	The	Docker	team	has	made	this	easy	by	developing	easy-to-use
Docker	applications	for	Mac	and	Windows.	The	Docker	for	Windows	and
Docker	for	Mac	bundles	package	the	Docker	tools	and	lightweight	virtual
machine	software.	The	result	is	very	lightweight,	and	the	Docker
containers	can	be	left	running	in	the	background	with	little	impact.	

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/linux-postinstall/

	

You	may	find	references	to	Docker	Toolbox	as	the	method	to	install
Docker	on	macOS.	That	application	is	long	gone,	and	has	been	replaced
by	Docker	for	Windows	and	Docker	for	Mac.

	

Starting	Docker	with	Docker	for
Windows/macOS
To	start	Docker	for	Windows	or	Mac	is	very	simple.	You	simply	find	and
double-click	on	the	application	icon.	It	launches	as	would	any	other	native
application.	When	started,	it	manages	a	virtual	machine	(not	VirtualBox)
within	which	is	a	Linux	instance	running	the	Docker	Engine.	On	macOS,	a
menu	bar	icon	shows	up	with	which	you	control	Docker.app,	and	on
Windows,	an	icon	is	available	in	the	system	tray.	

There	are	settings	available	so	that	Docker	automatically	launches	every
time	you	start	your	laptop.

On	both,	the	CPU	must	support	Virtualization.	Bundled	inside	Docker	for
Windows	and	Docker	for	Mac	is	an	ultra-lightweight	hypervisor,	which,	in
turn,	requires	virtualization	support	from	the	CPU.	

For	Windows,	this	may	require	BIOS	configuration.	See	https://docs.docker.
com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled.

For	Mac,	this	requires	hardware	from	2010	or	newer,	with	Intel’s	hardware
support	for	memory	management	unit	(MMU)	virtualization,	including
Extended	Page	Tables	(EPT)	and	Unrestricted	Mode.	You	can	check	for
this	support	by	running	sysctl	kern.hv_support.	It	also	requires	macOS	10.11
or	later.

https://docs.docker.com/docker-for-windows/troubleshoot/#virtualization-must-be-enabled

Kicking	the	tires	of	Docker
With	the	setup	accomplished,	we	can	use	the	local	Docker	instance	to
create	Docker	containers,	run	a	few	commands,	and,	in	general,	learn	how
to	use	this	amazing	system.

As	in	so	many	software	journeys,	this	one	starts	with	saying	Hello	World:

$	docker	run	hello-world		

Unable	to	find	image	'hello-world:latest'	locally	

latest:	Pulling	from	library/hello-world	

ca4f61b1923c:	Pull	complete		

Digest:	

sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158df3ee0176d32b751	

Status:	Downloaded	newer	image	for	hello-world:latest	

	

Hello	from	Docker!	

This	message	shows	that	your	installation	appears	to	be	working	correctly.	

	

To	generate	this	message,	Docker	took	the	following	steps:	

	1.	The	Docker	client	contacted	the	Docker	daemon.	

	2.	The	Docker	daemon	pulled	the	"hello-world"	image	from	the	Docker	Hub.	

				(amd64)	

	3.	The	Docker	daemon	created	a	new	container	from	that	image	which	runs	the	

				executable	that	produces	the	output	you	are	currently	reading.	

	4.	The	Docker	daemon	streamed	that	output	to	the	Docker	client,	which	sent	

it	

				to	your	terminal.	

	

To	try	something	more	ambitious,	you	can	run	an	Ubuntu	container	with:	

	$	docker	run	-it	ubuntu	bash	

	

Share	images,	automate	workflows,	and	more	with	a	free	Docker	ID:	

	https://cloud.docker.com/	

	

For	more	examples	and	ideas,	visit:	

	https://docs.docker.com/engine/userguide/

The	docker	run	command	downloads	a	Docker	image,	named	on	the

command	line,	initializes	a	Docker	container	from	that	image,	and	then
runs	that	container.	In	this	case,	the	image,	named	hello-world,	was	not
present	on	the	local	computer	and	had	to	be	downloaded	and	initialized.
Once	that	was	done,	the	hello-world	container	was	executed	and	it	printed
out	these	instructions.

You	can	query	your	computer	to	see	that	while	the	hello-world	container	has
executed	and	finished,	it	still	exists:

The	docker	ps	command	lists	the	running	Docker	containers.	As	we	see
here,	the	hello-world	container	is	no	longer	running,	but	with	the	-a	switch,
docker	ps	also	shows	those	containers	that	exist	but	are	not	currently
running.	We	also	see	that	this	computer	has	a	Nextcloud	instance	installed
along	with	its	associated	database.

When	you're	done	using	a	container,	you	can	clean	up	with	the	following
command:

$	docker	rm	boring_lumiere

boring_lumiere

The	name	boring_lumiere	is	the	container	name	automatically	generated	by
Docker.	While	the	image	name	was	hello-world,	that's	not	the	container
name.	Docker	generated	the	container	name	so	you	have	a	more	user-
friendly	identifier	for	the	containers	than	the	hex	ID	shown	in	the
container	ID	column.	When	creating	a	container,	it's	easy	to	specify	any
container	name	you	like.

	

Creating	the	AuthNet	for	the
user	authentication	service
With	all	that	theory	spinning	around	our	heads,	it's	time	to	do	something
practical.	Let's	start	by	setting	up	the	user	authentication	service.	In	the
diagram	shown	earlier,	this	will	be	the	box	labeled	AuthNet	containing	a
MySQL	instance	and	the	authentication	server.

	

MySQL	container	for	Docker
To	find	publicly	available	Docker	images,	go	to	https://hub.docker.com/	and
search.	You'll	find	many	Docker	images	ready	to	go.	For	example,
Nextcloud,	and	its	associated	database,	was	shown	earlier	installed
alongside	the	hello-world	application	when	we	kicked	the	tires.	Both	are
available	from	their	respective	project	teams	and	it's	simply	(more	or	less)
a	matter	of	typing	docker	run	nextcloud	to	install	and	run	the	containers.	The
process	of	installing	Nextcloud,	and	its	associated	database,	as	well	as
many	other	packaged	applications,	such	as	GitLab,	is	very	similar	to	what
we're	about	to	do	to	build	AuthNet,	so	the	skills	you're	about	to	learn	are
very	practical.

Just	for	MySQL,	there	are	over	11,000	containers	available.	Fortunately,
the	two	containers	provided	by	the	MySQL	team	are	very	popular	and
easy	to	use.	The	mysql/mysql-server	image	is	a	little	easier	to	configure,	so
let's	use	that.	

A	Docker	image	name	can	be	specified,	along	with	a	tag	that	is	usually	the
software	version	number.	In	this	case,	we'll	use	mysql/mysql-server:5.7,	where
mysql/mysql-server	is	the	container	name,	and	5.7	is	the	tag.	MySQL	5.7	is	the
current	GA	release.	Download	the	image	as	follows:

$	docker	pull	mysql/mysql-server:5.7

5.7:	Pulling	from	mysql/mysql-server

4040fe120662:	Pull	complete	

d049aa45d358:	Pull	complete	

a6c7ed00840d:	Pull	complete	

853789d8032e:	Pull	complete	

Digest:	

sha256:1b4c7c24df07fa89cdb7fe1c2eb94fbd2c7bd84ac14bd1779e3dec79f75f37c5

Status:	Downloaded	newer	image	for	mysql/mysql-server:5.7

This	downloaded	four	images	in	total,	because	this	image	is	built	on	top	of

https://hub.docker.com/

three	other	images.	We'll	see	later	how	that	works	when	we	learn	how	to
build	a	Dockerfile.	

A	container	can	be	started	using	this	image	as	follows:

$	docker	run	--name=mysql	--env	MYSQL_ROOT_PASSWORD=f00bar		mysql/mysql-

server:5.7	

[Entrypoint]	MySQL	Docker	Image	5.7.21-1.1.4	

[Entrypoint]	Initializing	database	

[Entrypoint]	Database	initialized	

...	

[Entrypoint]	ignoring	docker-entrypoint-initdb.d*	

[Entrypoint]	Server	shut	down	

[Entrypoint]	MySQL	init	process	done.	Ready	for	start	up.	

[Entrypoint]	Starting	MySQL	5.7.21-1.1.4

We	started	this	service	in	the	foreground.	The	container	name	is	mysql.	We
set	an	environment	variable,	which,	in	turn	(according	to	the	image
documentation),	initializes	the	root	password	as	shown.	In	another
window,	we	can	get	into	the	container	and	run	the	MySQL	client	as
follows:

$	docker	exec	-it	mysql	mysql	-u	root	-p	

Enter	password:		

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.	

Your	MySQL	connection	id	is	4	

Server	version:	5.7.21	MySQL	Community	Server	(GPL)	

	

Copyright	(c)	2000,	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.	

	

Oracle	is	a	registered	trademark	of	Oracle	Corporation	and/or	its	

affiliates.	Other	names	may	be	trademarks	of	their	respective	

owners.	

	

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	

statement.	

	

mysql>	show	databases;	

+--------------------+	

|	Database											|	

+--------------------+	

|	information_schema	|	

|	mysql														|	

|	performance_schema	|	

|	sys																|	

+--------------------+	

4	rows	in	set	(0.00	sec)	

	

mysql>	

The	docker	exec	command	lets	you	run	programs	inside	the	container.	The	-
it	option	says	the	command	is	run	interactively,	on	an	assigned	terminal.
Substitute	bash	for	mysql,	and	you	have	an	interactive	bash	command	shell.

This	mysql	command	instance	is	running	inside	the	container.	The	container
is	configured	by	default	to	not	expose	any	external	port,	and	it	has	a
default	my.cnf	file.	

The	database	files	are	locked	inside	the	container.	As	soon	as	that
container	is	deleted,	the	database	will	go	away.	Docker	containers	are
meant	to	be	ephemeral,	being	created	and	destroyed	as	needed,	while
databases	are	meant	to	be	permanent,	with	lifetimes	measured	in	decades
sometimes.

In	other	words,	it's	cool	that	we	can	easily	install	and	launch	a	MySQL
instance.	But	there	are	several	deficiencies:

	

Access	to	the	database	from	other	software

Storing	the	database	files	outside	the	container	for	a	longer
lifespan

Custom	configuration,	because	database	admins	love	to	tweak	the
settings

It	needs	to	be	connected	to	AuthNet	along	with	the	user
authentication	service

Before	proceeding,	let's	clean	up.	In	a	Terminal	window,	type:

$	docker	stop	mysql	

mysql

$	docker	rm	mysql

mysql

This	closes	out	and	cleans	up	the	containers.	And,	to	reiterate	the	point
made	earlier,	the	database	in	that	container	went	away.		If	that	database
contained	critical	information,	you	just	lost	it	with	no	chance	to	recover
the	data.

Initializing	AuthNet
Docker	supports	creating	virtual	bridge	networks	between	containers.
Remember	that	a	Docker	container	has	many	of	the	features	of	an	installed
Linux	OS.	Each	container	can	have	its	own	IP	address(es)	and	exposed
ports.	Docker	supports	creating	what	amounts	to	being	a	virtual	Ethernet
segment,	called	a	bridge	network.	These	networks	live	solely	within	the
host	computer	and,	by	default,	are	not	reachable	by	anything	outside	the
host	computer.

A	Docker	bridge	network,	therefore,	has	strictly	limited	access.	Any
Docker	container	attached	to	a	bridge	network	can	communicate	with
other	containers	attached	to	that	network.	The	containers	find	each	other
by	hostname,	and	Docker	includes	an	embedded	DNS	server	to	set	up	the
hostnames	required.	That	DNS	server	is	configured	to	not	require	dots	in
domain	names,	meaning	that	the	DNS/hostname	of	each	container	is
simply	the	container	name,	rather	than	something	such	as	container-
name.service.	This	policy	of	using	hostnames	to	identify	containers	is
Docker's	implementation	of	service	discovery.

Create	a	directory	named	authnet	as	a	sibling	to
the	users	and	notes	directories.	We'll	be	working	on	AuthNet	in	that
directory.

Create	a	file,	buildauthnet.sh,	containing	the	following:

docker	network	create	--driver	bridge	authnet

Type	the	following:

$	sh	-x	buildauthnet.sh

+	docker	network	create	--driver	bridge	authnet	

3021e2069278c2acb08d94a2d31507a43f089db1c02eecc97792414b498eb785

This	creates	a	Docker	bridge	network.

Script	execution	on	Windows
Executing	scripts	on	Windows	is	different	because	it	uses	PowerShell
rather	than	bash,	and	a	large	number	of	other	considerations.	For	this,	and
the	scripts	which	follow,	make	these	changes.

Powershell	script	filenames	must	end	with	the	.ps1	extension.	For	most	of
these	scripts,	that's	all	that	is	required	because	the	scripts	are	so	simple.	To
execute	the	script,	simply	type	.\scriptname.ps1	in	the	Powershell	window.
In	other	words,	on	Windows,	the	script	just	shown	must	be	named
buildauthnet.ps1,	and	is	executed	as	.\buildauthnet.ps1.

To	execute	the	scripts,	you	may	need	to	change	the	Powershell	Execution
Policy:

PS	C:\Users\david\chap10\authnet>	Get-ExecutionPolicy

Restricted

PS	C:\Users\david\chap10\authnet>	Set-ExecutionPolicy	Unrestricted

Obviously,	there	are	security	considerations	with	this	change,	so	change
the	Execution	Policy	back	when	you're	done.

A	simpler	method	on	Windows	is	to	simply	paste	these	commands	into	a
PowerShell	window.	

Linking	Docker	containers
In	the	older	days	of	Docker,	we	were	told	to	link	containers	using	the	--
link	option.	With	that	option,	Docker	would	create	entries	in	etchosts	so
that	one	container	can	refer	to	another	container	by	its	hostname.	That
option	also	arranged	access	to	TCP	ports	and	volumes	between	linked
containers.	This	allowed	the	creation	of	multicontainer	services,	using
private	TCP	ports	for	communication	that	exposed	nothing	to	processes
outside	the	containers.

Today,	we	are	told	that	the	--link	option	is	a	legacy	feature,	and	that
instead	we	should	use	bridge	networks.		In	this	chapter,	we'll	focus	solely
on	using	bridge	networks.

You	can	list	the	networks	as	follows:

$	docker	network	ls	

NETWORK	ID										NAME																DRIVER														SCOPE	

3021e2069278								authnet													bridge														local

Look	at	details	about	the	network	with	this	command:

$	docker	network	inspect	authnet

				...	much	JSON	output

At	the	moment,	this	won't	show	any	containers	attached	to	authnet.	The
output	shows	the	network	name,	the	IP	range	of	this	network,	the	default
gateway,	and	other	useful	network	configuration	information.	Since
nothing	is	connected	to	the	network,	let's	get	started	with	building	the
required	containers.

The	db-userauth	container
Now	that	we	have	a	network,	we	can	start	connecting	containers	to	that
network.	And	then	we'll	explore	the	containers	to	see	how	private	they	are.

Create	a	script,	startdb.sh,	containing:

docker	run	--name	db-userauth	--env	MYSQL_RANDOM_ROOT_PASSWORD=true	\	

				--env	MYSQL_USER=userauth	--env	MYSQL_PASSWORD=userauth	\	

				--env	MYSQL_DATABASE=userauth	\	

				--volume	`pwd`/my.cnf:etcmy.cnf	\

				--volume	`pwd`/../userauth-data:varlib/mysql	\	

				--network	authnet	mysql/mysql-server:5.7

On	Windows,	you	will	need	to	name	the	script	startdb.ps1	instead,	and	put
the	text	all	on	one	line	rather	than	extend	the	lines	with	backslashes.	And,
the	volume	mounted	on	varlib/mysql	must	be	created	separately.	Use	these
commands	instead:

docker	volume	create	db-userauth-volume

docker	run	--name	db-userauth	--env	MYSQL_RANDOM_ROOT_PASSWORD=true	--env	

MYSQL_USER=userauth	--env	MYSQL_PASSWORD=userauth	--env	

MYSQL_DATABASE=userauth	--volume	$PSScriptRoot\my.cnf:/etc/my.cnf	--volume	

db-userauth-volume:/var/lib/mysql	--network	authnet	mysql/mysql-server:5.7

When	run,	the	container	will	be	named	db-userauth.	To	give	a	little	bit	of
security,	the	root	password	has	been	randomized.	We've	instead	defined	a
database	named	userauth,	accessed	by	a	user	named	userauth,	using	the
password	userauth.	That's	not	exactly	secure,	so	feel	free	to	choose	better
names	and	passwords.	The	container	is	attached	to	the	authnet	network.

There	are	two	--volume	options	that	we	must	talk	about.	In	Dockerese,
a	volume	is	a	thing	inside	a	container	that	can	be	mounted	from	outside

the	container.	In	this	case,	we're	defining	a	volume,	userauth-data,	in	the
host	filesystem	to	be	mounted	as	varlib/mysql	inside	the	container.	And,
we're	defining	a	local	my.cnf	file	to	be	used	as	etcmy.cnf	inside	the	container.

For	the	Windows	version,	we	have	two	changes	to	the	--volume	mounts.	We
specify	the	mount	for	etcmy.cnf	as	$PSScriptRoot\my.cnf:etcmy.cnf,	because
that's	how	you	reference	a	local	file	in	Powershell.	

For	varlib/mysql,	we	referenced	a	separately	created	volume.	The	volume	is
created	using	the	volume	create	command,	and	with	that	command	there	is
no	opportunity	to	control	the	location	of	the	volume.	It's	important	that	the
volume	lives	outside	the	container,	so	that	the	database	files	survive	the
destruction/creation	cycle	for	this	container.	

Taken	together,	those	settings	mean	the	database	files	and	the
configuration	file	live	outside	the	container	and	will	therefore	exist	beyond
the	lifetime	of	one	specific	container.	To	get	the	my.cnf,	you	will	have	to
run	the	container	once	without	the	--volume	`pwd`/my.cnf:etcmy.cnf	option	so
you	can	copy	the	default	my.cnf	file	into	the	authnet	directory.

Run	the	script	once	without	that	option:

$	sh	startdb.sh	

...	much	output

[Entrypoint]	GENERATED	ROOT	PASSWORD:	UMyh@q]@j4qijyj@wK4s4SkePIkq

...	much	output

The	output	is	similar	to	what	we	saw	earlier,	but	for	this	newline	giving
the	randomized	password:

$	docker	network	inspect	authnet

This	will	tell	you	the	db-userauth	container	is	attached	to	authnet:

$	docker	exec	-it	db-userauth	mysql	-u	userauth	-p	

Enter	password:		

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

			...	much	output

mysql>	show	databases;	

+--------------------+	

|	Database											|	

+--------------------+	

|	information_schema	|	

|	userauth											|	

+--------------------+	

2	rows	in	set	(0.00	sec)	

	

mysql>	use	userauth;	

Database	changed	

mysql>	show	tables;	

Empty	set	(0.00	sec)

We	see	our	database	has	been	created	and	it's	empty.	But	we	did	this	so	we
could	grab	the	my.cnf	file:

$	docker	cp	db-userauth:etcmy.cnf	.	

$	ls	

my.cnf		mysql-data		startdb.sh	

The	docker	cp	command	is	used	for	copying	files	in	and	out	of	containers.	If
you've	used	scp,	the	syntax	will	be	familiar.

Once	you	have	the	my.cnf	file,	there's	a	big	pile	of	setting	changes	you
might	want	to	make.	The	first	specific	change	to	make	is	commenting	out
the	line	reading	socket=varlib/mysql/mysql.sock,	and	the	second	is	adding	a
line	reading		bind-address	=	0.0.0.0.	The	purpose	with	these	changes	is	to
configure	the	MySQL	service	to	listen	on	a	TCP	port	rather	than	a	Unix
domain	socket.	This	makes	it	possible	to	communicate	with	the	MySQL
service	from	outside	the	container.	The	result	would	be:

#	socket=varlib/mysql/mysql.sock	

bind-address	=	0.0.0.0

Now	stop	the	db-userauth	service,	and	remove	the	container,	as	we	did
earlier.	Edit	the	startdb	script	to	enable	the	line	mounting	etcmy.cnf	into	the
container,	and	then	restart	the	container:

$	docker	stop	db-userauth	

db-userauth

$	docker	rm	db-userauth			

db-userauth

$	sh	./startdb.sh		

[Entrypoint]	MySQL	Docker	Image	5.7.21-1.1.4	

[Entrypoint]	Starting	MySQL	5.7.21-1.1.4

Now,	if	we	inspect	the	authnet	network,	we	see	the	following:

$	docker	network	inspect	authnet	

								"Name":	"authnet",

									...

																				"Subnet":	"172.18.0.0/16",	

																				"Gateway":	"172.18.0.1"

								...	

								"Containers":	{	

																"Name":	"db-userauth",	

																"MacAddress":	"02:42:ac:12:00:02",	

																"IPv4Address":	"172.18.0.2/16",

			...

In	other	words,	the	authnet	network	has	the	network	number	172.18.0.0/16,
and	the	db-userauth	container	was	assigned	172.18.0.2.	This	level	of	detail	is
rarely	important,	but	it	is	useful	on	our	first	time	through	to	carefully
examine	the	setup	so	we	understand	what	we're	dealing	with:

#	cat	etcresolv.conf		

search	attlocal.net	

nameserver	127.0.0.11	

options	ndots:0

As	we	said	earlier,	there	is	a	DNS	server	running	within	the	Docker	bridge
network	setup,	and	domain	name	resolution	is	configured	to	use	nodots.
That's	so	Docker	container	names	are	the	DNS	hostname	for	the	container:

#	mysql	-h	db-userauth	-u	userauth	-p	

Enter	password:		

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.	

Your	MySQL	connection	id	is	33	

Server	version:	5.7.21	MySQL	Community	Server	(GPL)

Access	the	MySQL	server	using	the	container	name	as	the	hostname.

Dockerfile	for	the
authentication	service
In	the	users	directory,	create	a	file	named	Dockerfile	containing	the
following:

FROM	node:10

ENV	DEBUG="users:*"	

ENV	PORT="3333"	

ENV	SEQUELIZE_CONNECT="sequelize-docker-mysql.yaml"	

ENV	REST_LISTEN="0.0.0.0"	

	

RUN	mkdir	-p	/userauth

COPY	package.json	sequelize-docker-mysql.yaml	.mjs	.js	userauth

WORKDIR	/userauth

RUN	apt-get	update	-y	\

				&&	apt-get	-y	install	curl	python	build-essential	git	ca-certificates	\

				&&	npm	install	--unsafe-perm	

	

EXPOSE	3333	

CMD	npm	run	docker	

Dockerfiles	describe	the	installation	of	an	application	on	a	server.	See	https
://docs.docker.com/engine/reference/builder/	for	documentation.	They
document	assembly	of	the	bits	in	a	Docker	container	image,	and	the
instructions	in	a	Dockerfile	are	used	to	build	a	Docker	image.	

The	FROM	command	specifies	a	pre-existing	image	from	which	to	derive	a
given	image.	We	talked	about	this	earlier;	you	can	build	a	Docker
container	starting	from	an	existing	image.	The	official	Node.js	Docker
image	(https://hub.docker.com/_/node/)	we're	using	is	derived
from	debian:jessie.	Therefore,	commands	available	within	the	container	are
what	Debian	offers,	and	we	use	apt-get	to	install	more	packages.	We	use
Node.js	10		because	it	supports	ES6	modules	and	the	other	features	we've

https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/_/node/

been	using.

The	ENV	commands	define	environment	variables.	In	this	case,	we're	using
the	same	environment	variables	defined	within	the	user	authentication
service,	except	we	have	a	new	REST_LISTEN	variable.	We'll	take	a	look	at	that
shortly.

The	RUN	commands	are	where	we	run	the	shell	commands	required	to	build
the	container.	The	first	thing	is	to	make	a	/userauth	directory	that	will
contain	the	service	source	code.	The	COPY	command	copies	files	into	that
directory.	And	then	we'll	need	to	run	an	npm	install	so	that	we	can	run	the
service.	But	first	we	use	the	WORKDIR	command	to	move	the	current	working
directory	into	/userauth	so	that	the	npm	install	is	run	in	the	correct	place.	We
also	install	the	requisite	Debian	packages	so	that	any	native	code	Node.js
packages	can	be	installed.

It's	recommended	that	you	always	combine	apt-get	update	with	apt-get
install	in	the	same	command	line,	like	this,	because	of	the	Docker	build
cache.	When	rebuilding	an	image,	Docker	starts	with	the	first	changed
line.	By	putting	those	two	together,	you	ensure	that	apt-get	update	is
executed	any	time	you	change	the	list	of	packages	to	be	installed.	For	a
complete	discussion,	see	the	documentation	at	https://docs.docker.com/develop
/develop-images/dockerfile_best-practices/.

At	the	end	of	this	command	is	npm	install	--unsafe-perm.	The	issue	here	is
that	these	commands	are	being	run	as	root.	Normally,	when	npm	is	run
as	root,	it	changes	its	user	ID	to	a	nonprivileged	user.	This	can	cause
failure,	however,	and	the	--unsafe-perm	option	prevents	changing	the	user
ID.

The	EXPOSE	command	informs	Docker	that	the	container	listens	on	the
named	TCP	port.	This	does	not	expose	the	port	beyond	the	container.

Finally,	the	CMD	command	documents	the	process	to	launch	when	the
container	is	executed.	The	RUN	commands	are	executed	while	building	the
container,	while	CMD	says	what's	executed	when	the	container	starts.

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

We	could	have	installed	PM2	in	the	container,	then	used	a	PM2	command
to	launch	the	service.		But	Docker	is	able	to	fulfill	the	same	function,
because	it	supports	automatically	restarting	a	container	if	the	service
process	dies.	We'll	see	how	to	do	this	later.

Configuring	the	authentication
service	for	Docker
We're	using	a	different	file	for	SEQUELIZE_CONNECT.	Create	a	new	file
named	users/sequelize-docker-mysql.yaml	containing	the	following:

dbname:	userauth	

username:	userauth	

password:	userauth	

params:	

				host:	db-userauth	

				port:	3306	

				dialect:	mysql	

The	difference	is	that	instead	of	localhost	as	the	database	host,	we	use	db-
userauth.	Earlier,	we	explored	the	db-userauth	container	and	determined	that
was	the	hostname	of	the	container.	By	using	db-userauth	in	this	file,	the
authentication	service	will	use	the	database	in	the	container.

Now	we	need	to	take	care	of	the	environment	variable	named	REST_LISTEN.
Previously,	the	authentication	server	had	listened	only
to	http://localhost:3333.	We'd	done	this	for	security	purposes,	that	is,	to	limit
which	processes	could	connect	to	the	service.	Under	Docker,	we	need	to
connect	to	this	service	from	outside	its	container	so	that	other	containers
can	connect	to	this	service.	Therefore,	it	must	listen	to	connections	from
outside	the	localhost.	In	users-server.mjs,	we	need	to	make	the	following
change:

server.listen(process.env.PORT,	

		process.env.REST_LISTEN	?	process.env.REST_LISTEN	:	"localhost",	

		()	=>	{	log(server.name	+'	listening	at	'+	server.url);	});	

That	is,	if	the	REST_LISTEN	variable	exists,	the	REST	server	is	told	to	listen	to

whatever	it	says,	otherwise	the	service	is	to	listen	to	localhost.	With	the
environment	variable	in	the	Dockerfile,	the	authentication	service	will
listen	to	the	world	(0.0.0.0).	Are	we	throwing	caution	to	the	wind	and
abrogating	our	fiduciary	duty	in	keeping	the	sacred	trust	of	storing	all	this
user	identification	information?	No.	Be	patient.	We'll	describe
momentarily	how	to	connect	this	service	and	its	database	to	AuthNet	and
will	prevent	access	to	AuthNet	by	any	other	process.

Building	and	running	the
authentication	service	Docker
container
In	users/package.json	add	the	following	line	to	the	scripts	section:

"docker":	"node	--experimental-modules	./user-server",

"docker-build":	"docker	build	-t	node-web-development/userauth	."

Previously,	we've	put	the	configuration	environment	variables
into	package.json.	In	this	case,	the	configuration	environment	variables	are
in	the	Dockerfile.	This	means	we	need	a	way	to	run	the	server	with	no
environment	variables	other	than	those	in	the	Dockerfile.	With
this	scriptsentry,	we	can	do	npm	run	docker	and	then	the	Dockerfile
environment	variables	will	supply	all	configuration.

We	can	build	the	authentication	service	as	follows:

$	npm	run	docker-build

>	userauth-server@0.0.1	docker-build	Usersdavid/chap10/users

>	docker	build	-t	node-web-development/userauth	.

Sending	build	context	to	Docker	daemon	33.8MB

Step	1/11	:	FROM	node:9.5

	--->	a696309517c6

Step	2/11	:	ENV	DEBUG="users:*"

	--->	Using	cache

	--->	f8cc103432e8

Step	3/11	:	ENV	PORT="3333"

	--->	Using	cache

	--->	39b24b8b554e

...	more	output

The	docker	build	command	builds	a	container	from	a	Dockerfile.	As	we	said
earlier,	the	process	begins	with	the	image	defined	in	the	FROM	command.
Then	the	build	proceeds	step	by	step,	and	the	output	shows	literally	each
step	as	it	is	executed.

Then	create	a	script,	authnet/startserver.sh,	or	on	Windows	call	it
startserver.ps1,	containing	the	following	command:

docker	run	-it	--name	userauth	--net=authnet	node-web-development/userauth

This	launches	the	newly	built	container,	giving	it	the	name	userauth,
attaching	it	to	authnet:

$	sh	-x	startserver.sh	

+	docker	run	-it	--name	userauth	--net=authnet	node-web-development/userauth

>	userauth-server@0.0.1	docker	/userauth

>	node	--experimental-modules	./user-server

(node:17)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

		users:service	UserAuth-Service	listening	at	http://0.0.0.0:3333	+0ms

That	starts	the	user	authentication	service.	On	Windows,	start	it	as
.\startserver.ps1.	You	should	recall	that	it's	a	REST	service,	and	therefore
running	it	through	its	paces	is	done	with	users-add.js	and	the	other	scripts.
But,	since	we	did	not	expose	a	public	port	from	the	service	we	must	run
those	scripts	from	inside	the	container.

We	determine	whether	a	container	exposes	a	public	port	in	one	of	two
ways.	The	easiest	is	running	docker	ps	-a	and	viewing	the	container	listing
details.	There	is	a	column	marked	PORTS,	and	for	userauth	we	see	3333/tcp.
This	is	a	side	effect	of	the	EXPOSE	command	in	the	Dockerfile.	If	that
port	were	exposed,	it	would	appear	in	the	PORTS	column	as	0.0.0.0:3333-
>3333/tcp.	Remember	the	goal	for	the	userauth	container,	and	authnet	overall,
was	that	it	would	not	be	publicly	accessible	because	of	security	concerns.

Exploring	Authnet
Let's	explore	what	we	just	created:

$	docker	network	inspect	authnet		

This	prints	out	a	large	JSON	object	describing	the	network,	and	its
attached	containers,	which	we've	looked	at	before.	If	all	went	well,	we'll
see	there	are	now	two	containers	attached	to	authnet	where
there'd	previously	been	only	one.

Let's	go	into	the	userauth	container	and	poke	around:

$	docker	exec	-it	userauth	bash

root@a29d833287bf:/userauth#	ls	

node_modules																	user-server.mjs		users-list.js	

package-lock.json												users-add.js					users-sequelize.mjs	

package.json																	users-delete.js	

sequelize-docker-mysql.yaml		users-find.js

The	/userauth	directory	is	inside	the	container	and	is	exactly	the	files	placed
in	the	container	using	the	COPY	command,	plus	the	installed	files	in
node_modules:

root@a29d833287bf:/userauth#	PORT=3333	node	users-list.js		

List	[]	

root@a29d833287bf:/userauth#	PORT=3333	node	users-add.js		

Created	{	id:	1,	username:	'me',	password:	'w0rd',	provider:	'local',	

		familyName:	'Einarrsdottir',	givenName:	'Ashildr',	

		middleName:	'',	emails:	'[]',	photos:	'[]',	

		updatedAt:	'2018-02-05T01:54:53.320Z',	createdAt:	'2018-02-

		05T01:54:53.320Z'	}	

root@a29d833287bf:/userauth#	PORT=3333	node	users-list.js	

List	[{	id:	'me',	username:	'me',	provider:	'local',	

				familyName:	'Einarrsdottir',	givenName:	'Ashildr',	middleName:	'',	

				emails:	'[]',	photos:	'[]'	}]

Our	test	of	adding	a	user	to	the	authentication	service	works:

root@a29d833287bf:/userauth#	ps	-eafw	

UID								PID		PPID		C	STIME	TTY										TIME	CMD	

root									1					0		0	01:52	pts/0				00:00:00	binsh	-c	npm	run	docker	

root									9					1		0	01:52	pts/0				00:00:00	npm																																

root								19					9		0	01:52	pts/0				00:00:00	sh	-c	node	--experimental-

modules	./user-server	

root								20				19		0	01:52	pts/0				00:00:01	node	--experimental-modules	

./user-server	

root								30					0		0	01:54	pts/1				00:00:00	bash	

root								70				30		0	01:57	pts/1				00:00:00	ps	-eafw	

root@a29d833287bf:/userauth#	ping	db-userauth	

PING	db-userauth	(172.18.0.2):	56	data	bytes	

64	bytes	from	172.18.0.2:	icmp_seq=0	ttl=64	time=0.105	ms	

64	bytes	from	172.18.0.2:	icmp_seq=1	ttl=64	time=0.077	ms	

^C---	db-userauth	ping	statistics	---	

2	packets	transmitted,	2	packets	received,	0%	packet	loss	

round-trip	min/avg/max/stddev	=	0.077/0.091/0.105/0.000	ms	

root@a29d833287bf:/userauth#	ping	userauth	

PING	userauth	(172.18.0.3):	56	data	bytes	

64	bytes	from	172.18.0.3:	icmp_seq=0	ttl=64	time=0.132	ms	

64	bytes	from	172.18.0.3:	icmp_seq=1	ttl=64	time=0.095	ms	

^C---	userauth	ping	statistics	---	

2	packets	transmitted,	2	packets	received,	0%	packet	loss

The	process	listing	is	interesting	to	study.	Process	PID	1	is	the	npm	run
docker	command	in	the	Dockerfile.	Processes	proceed	from	there	to	the	node
process	running	the	actual	server.

A	ping	command	proves	the	two	containers	are	available	as	hostnames
matching	the	container	names.

Then,	you	can	log	in	to	the	db-userauth	container	and	inspect	the	database:

$	docker	exec	-it	db-userauth	bash	

bash-4.2#	mysql	-u	userauth	-p	

Enter	password:		

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

	...

mysql>	use	userauth	

	

Database	changed	

mysql>	show	tables;	

+--------------------+	

|	Tables_in_userauth	|	

+--------------------+	

|	Users														|	

+--------------------+	

1	row	in	set	(0.00	sec)	

	

mysql>	select	*	from	Users;	

+----+----------+----------+----------+---------------+-----------+--...

|	id	|	username	|	password	|	provider	|	familyName				|	givenName	|		...

+----+----------+----------+----------+---------------+-----------+--...

|		1	|	me							|	w0rd					|	local				|	Einarrsdottir	|	Ashildr			|		...

+----+----------+----------+----------+---------------+-----------+--...

1	row	in	set	(0.00	sec)

We	have	successfully	Dockerized	the	user	authentication	service	in	two
containers,	db-userauth	and	userauth.	We've	poked	around	the	insides	of	a
running	container	and	found	some	interesting	things.	But,	our	users	need
the	fantastic	Notes	application	to	be	running,	and	we	can't	afford	to	rest	on
our	laurels.

Creating	FrontNet	for	the	Notes
application
We	have	the	back	half	of	our	system	set	up	in	a	Docker	container,	as	well
as	the	private	bridge	network	to	connect	the	backend	containers.	We	now
need	to	set	up	another	private	bridge	network,	frontnet,	and	attach	the	other
half	of	our	system	to	that	network.

Create	a	directory,	frontnet,	which	is	where	we'll	develop	the	tools	to	build
and	run	that	network.	In	that	directory,	create	a	file,	buildfrontnet.sh,	or	on
Windows,	buildfrontnet.ps1,	containing:	docker	network	create	--driver
bridge	frontnet

Let's	go	ahead	and	create	the	frontnet	bridge	network:

$	sh	-x	buildfrontnet.sh	

+	docker	network	create	--driver	bridge	frontnet

f3df227d4bfff57bc7aed1e096a2ad16f6cebce4938315a54d9386a42d1ae3ed

$	docker	network	ls

NETWORK	ID	NAME	DRIVER	SCOPE

3021e2069278	authnet	bridge	local

f3df227d4bff	frontnet	bridge	local		

We'll	proceed	from	here	similarly	to	how	authnet	was	created.	However,	we
can	work	more	quickly	because	we've	already	gone	over	the	basics.

MySQL	container	for	the	Notes
application
From	the	authnet	directory,	copy	the	my.cnf	and	startdb.sh	files	into	the
frontnet	directory.	The	my.cnf	file	can	probably	be	used	unmodified,	but	we
have	a	few	changes	to	make	to	the	startdb.sh	file:

docker	run	--name	db-notes	--env	MYSQL_RANDOM_ROOT_PASSWORD=true	\

	--env	MYSQL_USER=notes	--env	MYSQL_PASSWORD=notes12345	\

	--env	MYSQL_DATABASE=notes	\

	--volume	`pwd`/my.cnf:/etc/my.cnf	\

	--volume	`pwd`/../notes-data:/var/lib/mysql	\

	--network	frontnet	mysql/mysql-server:5.7

On	Windows,	name	the	file	startdb.ps1	containing	this:

docker	volume	create	notes-data-volume

docker	run	--name	db-notes	--env	MYSQL_RANDOM_ROOT_PASSWORD=true	--env	

MYSQL_USER=notes	--env	MYSQL_PASSWORD=notes12345	--env	MYSQL_DATABASE=notes	-

-volume	$PSScriptRoot\my.cnf:/etc/my.cnf	--volume	notes-data-

volume:/var/lib/mysql	--network	frontnet	mysql/mysql-server:5.7

The	changes	are	simple	substitutions	to	transliterate	from	userauth	to	notes.
And	then	run	it:

$	mkdir	../notes-data

$	sh	-x	startdb.sh	

+	pwd

+	pwd

+	docker	run	--name	db-notes	--env	MYSQL_RANDOM_ROOT_PASSWORD=true	--env	

MYSQL_USER=notes	--env	MYSQL_PASSWORD=notes12345	--env	MYSQL_DATABASE=notes	-

-volume	homedavid/nodewebdev/nodeweb-development-code-4th-

edition/chap10/frontnet/my.cnf:/etc/my.cnf	--volume	

homedavid/nodewebdev/nodeweb-development-code-4th-

edition/chap10/frontnet/../notes-data:/var/lib/mysql	--network	frontnet	

mysql/mysql-server:5.7

[Entrypoint]	MySQL	Docker	Image	5.7.21-1.1.4

[Entrypoint]	Initializing	database

[Entrypoint]	Database	initialized

[Entrypoint]	GENERATED	ROOT	PASSWORD:	3kZ@q4hBItYGYj3Mes!AdiP83Nol

[Entrypoint]	ignoring	docker-entrypoint-initdb.d*

[Entrypoint]	Server	shut	down

[Entrypoint]	MySQL	init	process	done.	Ready	for	start	up.

[Entrypoint]	Starting	MySQL	5.7.21-1.1.4

For	Windows,	simply	run	.\startdb.ps1.

This	database	will	be	available	at	the	db-notes	domain	name	on	frontnet.
Because	it's	attached	to	frontnet,	it	won't	be	reachable	by	containers
connected	to	authnet.

$	docker	exec	-it	userauth	bash				

root@0a2009334b79:/userauth#	ping	db-notes	

ping:	unknown	host

Since	db-notes	is	on	a	different	network	segment,	we've	achieved
separation.

Dockerizing	the	Notes
application
In	the	notes	directory,	create	a	file	named	Dockerfile	containing	the
following:

FROM	node:10	

	

ENV	DEBUG="notes:*,messages:*"	

ENV	SEQUELIZE_CONNECT="models/sequelize-docker-mysql.yaml"	

ENV	NOTES_MODEL="sequelize"	

ENV	USER_SERVICE_URL="http://userauth:3333"	

ENV	PORT="3000"	

ENV	NOTES_SESSIONS_DIR="/sessions"	

#	ENV	TWITTER_CONSUMER_KEY="..."

#	ENV	TWITTER_CONSUMER_SECRET="..."

#	Use	this	line	when	the	Twitter	Callback	URL

#	has	to	be	other	than	localhost:3000

#	ENV	TWITTER_CALLBACK_HOST=http://45.55.37.74:3000	

	

RUN	mkdir	-p	notesapp	notesapp/minty	notesapppartials	notesapppublic	

notesapproutes	notesapptheme	notesappviews

COPY	minty/	notesappminty/

COPY	models/*.mjs	models/sequelize-docker-mysql.yaml	notesappmodels/

COPY	partials/	notesapppartials/

COPY	public/	notesapppublic/

COPY	routes/	notesapproutes/

COPY	theme/	notesapptheme/

COPY	views/	notesappviews/

COPY	app.mjs	package.json	notesapp

WORKDIR	/notesapp

RUN	apt-get	update	-y	\

				&&	apt-get	-y	install	curl	python	build-essential	git	ca-certificates	\

				&&	npm	install	--unsafe-perm

#	Uncomment	to	build	the	theme	directory

#	WORKDIR	notesapptheme

#	RUN	npm	run	download	&&	npm	run	build	&&	npm	run	clean

WORKDIR	/notesapp

VOLUME	/sessions	

EXPOSE	3000	

CMD	node	--experimental-modules	./app

This	is	similar	to	the	Dockerfile	we	used	for	the	authentication	service.
We're	using	the	environment	variables	from	notes/package.json,	plus	a	new
one,	and	there's	a	couple	of	new	tricks	involved	here,	so	let's	take	a	look.

The	most	obvious	change	is	the	number	of	COPY	commands.	The	Notes
application	is	a	lot	more	involved	given	the	number	of	subdirectories	full
of	files	that	must	be	installed.		We	start	by	creating	the	top-level
directories	of	the	Notes	application	deployment	tree.	Then,	one	by	one,	we
copy	each	subdirectory	into	its	corresponding	subdirectory	in	the	container
filesystem.

In	a	COPY	command,	the	trailing	slash	on	the	destination	directory	is
important.	Why?		Because	the	documentation	says	that	the	trailing	slash	is
important.

The	big	question	is:	Why	use	multiple	COPY	commands	such	as	this?		This
would	have	been	trivially	simple:

COPY	.	/notesapp

But,	it	is	important	to	avoid	copying	the	node_modules	directory	into	the
container.	The	container	node_modules	must	be	built	inside	the	container,
because	the	container	operating	system	is	almost	certainly	different	to	the
host	operating	system.	Any	native	code	modules	must	be	built	for	the
correct	operating	system.	That	constraint	led	to	the	question	of	concisely
copying	specific	files	to	the	destination.

We've	developed	a	process	to	build	a	Bootstrap	4	theme,	which	we
developed	in	Chapter	6,	Implementing	the	Mobile-First	Paradigm.		If	you
have	a	Bootstrap	4	theme	to	build,	simply	uncomment	the	corresponding
lines	in	the	Dockerfile.	Those	lines	move	the	working	directory	to

notesapptheme	and	then	run	the	scripts	to	build	the	theme.	A	new	script	is
required	in	theme/package.json	to	remove	the	theme/node_modules	directory	after
the	theme	has	been	built:

	"scripts":	{

				...

				"clean":	"rm	-rf	bootstrap-4.0.0/node_modules"

				...

}

We	also	have	a	new	SEQUELIZE_CONNECT	file.	Create	models/sequelize-docker-
mysql.yaml	containing	the	following:

dbname:	notes	

username:	notes	

password:	notes12345

params:	

				host:	db-notes	

				port:	3306	

				dialect:	mysql	

This	will	access	a	database	server	on	the	db-notes	domain	name	using	the
named	database,	username,	and	password.	

Notice	that	the	USER_SERVICE_URL	variable	no	longer	accesses	the
authentication	service	at	localhost,	but	at	userauth.	The	userauth	domain	name
is	currently	only	advertised	by	the	DNS	server	on	AuthNet,	but	the	Notes
service	is	on	FrontNet.	This	means	we'll	have	to	connect	the	userauth
container	to	the	FrontNet	bridge	network	so	that	its	name	is	known	there
as	well.	We'll	get	to	that	in	a	minute.

In	Chapter	8,	we	discussed	the	need	to	protect	the	API	keys	supplied	by
Twitter.

We	didn't	want	to	commit	the	keys	in	the	source	code,	but	they	have	to	go
somewhere.		Placeholders	are	in	the	Dockerfile	for
specifying	TWITTER_CONSUMER_KEY	and	TWITTER_CONSUMER_SECRET.

The	value	for	TWITTER_CALLBACK_HOST	needs	to	reflect	where	Notes	is	deployed.
Right	now,	it	is	still	on	your	laptop,	but	by	the	end	of	the	chapter,	it	will	be
deployed	to	the	server,	and,	at	that	time,	it	will	need	the	IP	address	or
domain	name	of	the	server.

A	new	variable	is	NOTES_SESSIONS_DIR	and	the	matching	VOLUME	declaration.	If
we	were	to	run	multiple	Notes	instances,	they	could	share	session	data
by	sharing	this	volume.

Supporting	the	NOTES_SESSIONS_DIR	variable	requires	one	change	in	app.mjs:

const	sessionStore		=	new	FileStore({	

				path:	process.env.NOTES_SESSIONS_DIR	?													

										process.env.NOTES_SESSIONS_DIR	:	"sessions"	

});	

Instead	of	a	hardcoded	directory	name,	we	can	use	an	environment
variable	to	define	the	location	where	session	data	is	stored.	Alternatively,
there	are	sessionStore	implementations	for	various	servers	such	as	REDIS,
enabling	session	data	sharing	between	containers	on	separate	host	systems.

In	notes/package.json,	add	these	scripts:

"scripts":	{

				...

				"docker":	"node	--experimental-modules	./app",

				"docker-build":	"docker	build	-t	node-web-development/notes	."

				...

}

As	for	the	authentication	server,	this	lets	us	build	the	container	and	then,
within	the	container,	we	can	run	the	service.	

Now	we	can	build	the	container	image:

$	npm	run	docker-build

>	notes@0.0.0	docker-build	Usersdavid/chap10/notes

>	docker	build	-t	node-web-development/notes	.

Sending	build	context	to	Docker	daemon	76.27MB

Step	1/22	:	FROM	node:9.5

	--->	a696309517c6

Step	2/22	:	ENV	DEBUG="notes:*,messages:*"

	--->	Using	cache

	--->	8628ecad9fa4

Next,	in	the	frontnet	directory,	create	a	file	named	startserver.sh,	or,	on
Windows,	startserver.ps1:

docker	run	-it	--name	notes	--net=frontnet	-p	3000:3000	node-web-

development/notes

Unlike	the	authentication	service,	the	Notes	application	container	must
export	a	port	to	the	public.	Otherwise,	the	public	will	never	be	able	to
enjoy	this	wonderful	creation	we're	building.	The	-p	option	is	how	we
instruct	Docker	to	expose	a	port.	

The	first	number	is	a	TCP	port	number	published	from	the	container,	and
the	second	number	is	the	TCP	port	inside	the	container.	Generally
speaking,	this	option	maps	a	port	inside	the	container	to	one	reachable	by
the	public.

Then	run	it	as	follows:

$	sh	-x	startserver.sh	

+	docker	run	-it	--name	notes	--net=frontnet	-p	3000:3000	node-web-

development/notes

(node:6)	ExperimentalWarning:	The	ESM	module	loader	is	experimental.

		notes:debug-INDEX	Listening	on	port	3000	+0ms

On	Windows,	run	.\startserver.ps1.

At	this	point,	we	can	connect	our	browser	to	http://localhost:3000	and	start
using	the	Notes	application.	But	we'll	quickly	run	into	a	problem:

The	user	experience	team	is	going	to	scream	about	this	ugly	error
message,	so	put	it	on	your	backlog	to	generate	a	prettier	error	screen.	For
example,	a	flock	of	birds	pulling	a	whale	out	of	the	ocean	is	popular.

This	error	means	that	Notes	cannot	access	anything	at	the	host	named
userauth.	That	host	does	exist,	because	the	container	is	running,	but	it's	not
on	frontnet,	and	is	not	reachable	from	the	notes	container.	Namely:

$	docker	exec	-it	notes	bash	

root@125a196c3fd5:/notesapp#	ping	userauth	

ping:	unknown	host	

root@125a196c3fd5:/notesapp#	ping	db-notes	

PING	db-notes	(172.19.0.2):	56	data	bytes	

64	bytes	from	172.19.0.2:	icmp_seq=0	ttl=64	time=0.136	ms	

^C---	db-notes	ping	statistics	---	

1	packets	transmitted,	1	packets	received,	0%	packet	loss	

round-trip	min/avg/max/stddev	=	0.136/0.136/0.136/0.000	ms	

root@125a196c3fd5:/notesapp#	

If	you	inspect	FrontNet	and	AuthNet,	you'll	see	the	containers	attached	to
each	do	not	overlap:

$	docker	network	inspect	frontnet

$	docker	network	inspect	authnet

In	the	architecture	diagram	at	the	beginning	of	the	chapter,	we	showed	a
connection	between	the	notes	and	userauth	containers.	The	connection	is
required	so	notes	can	authenticate	its	users.	But	that	connection	does	not

exist,	yet.

Unfortunately,	a	simple	change	to	startserver.sh	(startserver.ps1)	does	not
work:

docker	run	-it	--name	notes	--net=authnet	--net=frontnet	-p	3000:3000	node-

web-development/notes

While	it	is	conceptually	simple	to	specify	multiple	--net	options	when
starting	a	container,	Docker	does	not	support	this.	It	silently	accepts	the
command	as	shown,	but	only	connects	the	container	to	the	last	network
mentioned	in	the	options.	Instead,	Docker	requires	that	you	take	a	second
step	to	attach	the	container	to	a	second	network:

$	docker	network	connect	authnet	notes

With	no	other	change,	the	Notes	application	will	now	allow	you	to	log	in
and	start	adding	and	editing	notes.	

There	is	a	glaring	architecture	question	staring	at	us.	Do	we	connect	the
userauth	service	to	frontnet,	or	do	we	connect	the	notes	service	to	authnet?			
To	verify	that	either	direction	solves	the	problem,	run	these	commands:

$	docker	network	disconnect	authnet	notes	

$	docker	network	connect	frontnet	userauth

	

The	first	time	around,	we	connected	notes	to	authnet,	then	we	disconnected
it	from	authnet,	and	then	connected	userauth	to	frontnet.	That	means	we	tried
both	combinations	and,	as	expected,	in	both	cases	notes	and	userauth	were
able	to	communicate.

This	is	a	question	for	security	experts	since	the	consideration	is	the	attack
vectors	available	to	any	intruders.	Suppose	Notes	has	a	security	hole
allowing	an	invader	to	gain	access.	How	do	we	limit	what	is	reachable	via

that	hole?		

The	primary	observation	is	that	by	connecting	notes	to	authnet,	notes	not
only	has	access	to	userauth,	but	also	to	db-userauth:

$	docker	network	disconnect	frontnet	userauth

$	docker	network	connect	authnet	notes

$	docker	exec	-it	notes	bash

root@7fce818e9a4d:/notesapp#	ping	userauth

PING	userauth	(172.18.0.3):	56	data	bytes

64	bytes	from	172.18.0.3:	icmp_seq=0	ttl=64	time=0.103	ms

^C---	userauth	ping	statistics	---

1	packets	transmitted,	1	packets	received,	0%	packet	loss

round-trip	min/avg/max/stddev	=	0.103/0.103/0.103/0.000	ms

root@7fce818e9a4d:/notesapp#	ping	db-userauth

PING	db-userauth	(172.18.0.2):	56	data	bytes

64	bytes	from	172.18.0.2:	icmp_seq=0	ttl=64	time=0.201	ms

^C---	db-userauth	ping	statistics	---

1	packets	transmitted,	1	packets	received,	0%	packet	loss

round-trip	min/avg/max/stddev	=	0.201/0.201/0.201/0.000	ms

root@7fce818e9a4d:/notesapp#	

This	sequence	reconnects	notes	to	authnet,	and	demonstrates	the	ability	to
access	both	the	userauth	and	db-userauth	containers.	Therefore,	a	successful
invader	could	access	the	db-userauth	database,	a	result	we	wanted	to
prevent.	Our	diagram	at	the	beginning	showed	no	such	connection
between	notes	and	db-userauth.

Given	that	our	goal	for	using	Docker	was	to	limit	the	attack	vectors,	we
have	a	clear	distinction	between	the	two	container/network	connection
setups.	Attaching	userauth	to	frontnet	limits	the	number	of	containers	that
can	access	db-userauth.	For	an	intruder	to	access	the	user	information
database,	they	must	first	break	into	notes,	and	then	break	into	userauth.
Unless,	that	is,	our	amateur	attempt	at	a	security	audit	is	flawed.

Controlling	the	location	of
MySQL	data	volumes
The	db-userauth	and	db-notes	Dockerfiles	contain	VOLUME	varlib/mysql,	and
when	we	started	the	containers,	we	gave	--volume	options,	assigning	a	host
directory	for	that	container	directory:

docker	run	--name	db-notes	\

		...

		--volume	`pwd`/../notes-data:varlib/mysql	\

		...

We	can	easily	see	this	connects	a	host	directory,	so	it	appears	within	the
container	at	that	location.	Simply	inspecting	the	host	directory	with	tools
such	as	ls	shows	that	files	are	created	in	that	directory	corresponding	to	a
MySQL	database.

The	VOLUME	instruction	instructs	Docker	to	create	a	directory	outside	the
container	and	to	map	that	directory	so	that	it's	mounted	inside	the
container	on	the	named	path.	The	VOLUME	instruction	by	itself	doesn't	control
the	directory	name	on	the	host	computer.	If	no	--volume	option	is	given,
Docker	still	arranges	for	the	content	of	said	directory	to	be	kept	outside
the	container.	That's	useful,	and	at	least	the	data	is	available	outside	the
container,	but	you	haven't	controlled	the	location.

If	we	restart	the	db-notes	container	without	using	the	--volume	option	for
varlib/mysql,	we	can	inspect	the	container	to		discover	where	Docker	put	the
volume:

$	docker	inspect	--format	'{{json	.Mounts}}'	db-notes

[{"Type":"bind",

"Source":"Usersdavid/chap10/frontnet/my.cnf","Destination":"etcmy.cnf",

"Mode":"","RW":true,"Propagation":"rprivate"},

{"Type":"volume","Name":"39f9a80b49e3ecdebc7789de7b7dd2366c400ee7fbfedd6e4df1

8f7e60bad409",

"Source":"varlib/docker/volumes/39f9a80b49e3ecdebc7789de7b7dd2366c400ee7fbfed

d6e4df18f7e60bad409/_data","Destination":"varlib/mysql",

"Driver":"local","Mode":"","RW":true,"Propagation":""}]

That's	not	exactly	a	user-friendly	pathname,	but	you	can	snoop	into	that
directory	and	see	that	indeed	the	MySQL	database	is	stored	there.	The
simplest	way	to	use	a	user-friendly	pathname	for	a	volume	is	with	the	--
volume	options	we	showed	earlier.

Another	advantage	we	have	is	to	easily	switch	databases.	For	example,	we
could	test	Notes	with	pre-cooked	test	databases	full	of	notes	written	in
Swahili	(notes-data-swahili),	Romanian	(notes-data-romanian),	German	(notes-
data-german)	and	English	(notes-data-english).	Each	test	database	could	be
stored	in	the	named	directory,	and	testing	against	the	specific	language	is
as	simple	as	running	the	notes	container	with	different	--volume	options.	

In	any	case,	if	you	restart	the	notes	container	with	the	--volume	option,	you
can	inspect	the	container	and	see	the	directory	is	mounted	on	the	directory
you	specified:

$	docker	inspect	--format	'{{json	.Mounts}}'	db-notes	

[{"Type":"bind",

"Source":"Usersdavid/chap10/frontnet/my.cnf","Destination":"etcmy.cnf",

"Mode":"","RW":true,"Propagation":"rprivate"},

{"Type":"bind",

"Source":"Usersdavid/chap10/notes-data","Destination":"varlib/mysql",

"Mode":"","RW":true,"Propagation":"rprivate"}]

With	the	--volume	options,	we	have	controlled	the	location	of	the	host
directory	corresponding	to	the	container	directory.

The	last	thing	to	note	is	that	controlling	the	location	of	such	directories
makes	it	easier	to	make	backups	and	take	other	administrative	actions	with
that	data.

Docker	deployment	of
background	services
With	the	scripts	we've	written	so	far,	the	Docker	container	is	run	in	the
foreground.		That	makes	it	easier	to	debug	the	service	since	you	see	the
errors.			For	a	production	deployment,	we	need	the	Docker	container
detached	from	the	terminal,	and	an	assurance	that	it	will	restart	itself
automatically.			Those	two	attributes	are	simple	to	implement.

Simply	change	this	pattern:	$	docker	run	-it	...

To	this	pattern:

$	docker	run	--detach	--restart	always	...

The	-it	option	is	what	causes	the	Docker	container	to	run	in	the
foreground.		Using	these	options	causes	the	Docker	container	to	run
detached	from	your	terminal,	and	if	the	service	process	dies,	the	container
will	automatically	restart.

Deploying	to	the	cloud	with
Docker	compose
This	is	cool	that	we	can	create	encapsulated	instantiations	of	the	software
services	we've	created.	But	the	promise	was	to	use	the	Dockerized
application	for	deployment	on	cloud	services.	In	other	words,	we	need	to
take	all	this	learning	and	apply	it	to	the	task	of	deploying	Notes	on	a
public	internet	server	with	a	fairly	high	degree	of	security.

We've	demonstrated	that,	with	Docker,	Notes	can	be	decomposed	into	four
containers	that	have	a	high	degree	of	isolation	from	each	other,	and	from
the	outside	world.	

There	is	another	glaring	problem:		our	process	in	the	previous	section	was
partly	manual,	partly	automated.	We	created	scripts	to	launch	each	portion
of	the	system,	which	is	a	good	practice	according	to	the	Twelve	Factor
Application	model.	But	we	did	not	automate	the	entire	process	to	bring	up
Notes	and	the	authentication	services.	Nor	is	this	solution	scalable	beyond
one	machine.

Let's	start	with	the	last	issue	first—scalability.	Within	the	Docker
ecosystem,	several	Docker	orchestrator	services	are	available.	An
Orchestrator	automatically	deploys	and	manages	Docker	containers	over	a
group	of	machines.	Some	examples	of	Docker	Orchestrators	are	Docker
Swarm	(which	is	built	into	the	Docker	CLI),	Kubernetes,	CoreOS	Fleet,
and	Apache	Mesos.	These	are	powerful	systems	able	to	automatically
increase/decrease	resources	as	needed,	to	move	containers	from	one	host
to	another,	and	more.	We	mention	these	systems	for	your	further	study	as
your	needs	grow.

Docker	compose	(https://docs.docker.com/compose/overview/)	will	solve	the
other	problems	we've	identified.	It	lets	us	easily	define	and	run	several

https://docs.docker.com/compose/overview/

Docker	containers	together	as	a	complete	application.	It	uses	a	YAML	file,
docker-compose.yml,	to	describe	the	containers,	their	dependencies,	the	virtual
networks,	and	the	volumes.	While	we'll	be	using	it	to	describe	the
deployment	onto	a	single	host	machine,	Docker	compose	can	be	used	for
multimachine	deployments,	especially	when	combined	with	Docker
Swarm.	Understanding	Docker	compose	will	provide	a	basis	upon	which
to	understand/use	the	other	tools,	such	as	Swarm	or	Kubernetes.

Docker	machine	(https://docs.docker.com/machine/overview/)	is	a	tool	for
installing	Docker	Engine	on	virtual	hosts,	either	local	or	remote,	and	for
managing	Docker	containers	on	those	hosts.	We'll	be	using	this	to
provision	a	server	on	a	cloud	hosting	service,	and	push	containers	into	that
server.	It	can	also	be	used	to	provision	a	virtual	host	on	your	laptop	within
a	VirtualBox	instance.

Before	proceeding,	ensure	Docker	compose	and	Docker	machine	are
installed.	If	you've	installed	Docker	for	Windows	or	Docker	for	Mac,	both
are	installed	along	with	everything	else.	On	Linux,	you	must	install	both
separately	by	following	the	instructions	at	the	links	given	earlier.

https://docs.docker.com/machine/overview/

Docker	compose	files
Let's	start	by	creating	a	directory,	compose,	as	a	sibling	to	the	users	and	notes
directories.	In	that	directory,	create	a	file	named	docker-compose.yml:

version:	'3'

services:

		db-userauth:

				image:	"mysql/mysql-server:5.7"

				container_name:	db-userauth

				command:	["mysqld",	"--character-set-server=utf8mb4",	

														"--collation-server=utf8mb4_unicode_ci",

														"--bind-address=0.0.0.0"]

				expose:

						-	"3306"

				networks:

						-	authnet

				volumes:

						-	db-userauth-data:/var/lib/mysql

						-	../authnet/my.cnf:/etc/my.cnf

				environment:

						MYSQL_RANDOM_ROOT_PASSWORD:	"true"

						MYSQL_USER:	userauth

						MYSQL_PASSWORD:	userauth

						MYSQL_DATABASE:	userauth

				restart:	always

		userauth:

				build:	../users

				container_name:	userauth

				depends_on:

						-	db-userauth

				networks:

						-	authnet

						-	frontnet

				restart:	always

		db-notes:

				image:	"mysql/mysql-server:5.7"

				container_name:	db-notes

				command:	["mysqld",	"--character-set-server=utf8mb4",	

														"--collation-server=utf8mb4_unicode_ci",

														"--bind-address=0.0.0.0"]

				expose:

						-	"3306"

				networks:

						-	frontnet

				volumes:

						-	db-notes-data:/var/lib/mysql

						-	../frontnet/my.cnf:/etc/my.cnf

				environment:

						MYSQL_RANDOM_ROOT_PASSWORD:	"true"

						MYSQL_USER:	notes

						MYSQL_PASSWORD:	notes12345

						MYSQL_DATABASE:	notes

				restart:	always

		notes:

				build:	../notes

				container_name:	notes

				restart:	always

				depends_on:

						-	db-notes

				networks:

						-	frontnet

				ports:

						-	"3000:3000"

				restart:	always

networks:

		frontnet:

				driver:	bridge

		authnet:

				driver:	bridge

volumes:	

		db-userauth-data:	

		db-notes-data:

That's	the	description	of	the	entire	Notes	deployment.	It's	at	a	fairly	high
level	of	abstraction,	roughly	equivalent	to	the	options	on	the	command-
line	tools	we've	used	so	far.	Further	details	are	located	inside	the
Dockerfiles,	which	are	referenced	from	this	compose	file.

The	version	line	says	that	this	is	a	version	3	compose	file.	The	version
number	is	inspected	by	the	docker-compose	command,	so	it	can	correctly
interpret	its	content.	The	full	documentation	is	worth	reading	at		https://doc

https://docs.docker.com/compose/compose-file/

s.docker.com/compose/compose-file/.

There	are	three	major	sections	used	here:	services,	volumes,	and
networks.	The	services	section	describes	the	containers	being	used,	the
networks	section	describes	the	networks,	and	the	volumes	section
describes	the	volumes.	The	content	of	each	section	matches	the
intent/purpose	of	the	commands	we	ran	earlier.	The	information	we've
already	dealt	with	is	all	here,	just	rearranged.	

There	are	two	database	containers,	db-userauth	and	db-notes.	Both	reference
the	Dockerhub	image	using	the	image	tag.	For	the	databases,	we	did	not
create	a	Dockerfile,	but	instead	built	directly	from	the	Dockerhub	image.
The	same	happens	here	in	the	compose	file.

For	the	userauth	and	notes	containers,	we	created	a	Dockerfile.	The
directory	containing	that	file	is	referenced	by	the	build	tag.	To	build	the
container,	docker-compose	looks	for	a	file	named	Dockerfile	in	the	named
directory.	There	are	more	options	for	the	build	tag,	which	are	discussed	in
the	official	documentation.

The	container_name	attribute	is	equivalent	to	the	--name	attribute	and	specifies
a	user-friendly	name	for	the	container.	We	must	specify	the	container
name	in	order	to	specify	the	container	hostname	in	order	to	do	Docker-
style	service	discovery.

The	command	tag	overrides	the	CMD	tag	in	the	Dockerfile.	We've	specified	this
for	the	two	database	containers,	so	we	can	instruct	MySQL	to	bind	to	IP
address	0.0.0.0.	Even	though	we	didn't	create	a	Dockerfile	for	the	database
containers,	there	is	a	Dockerfile	created	by	the	MySQL	maintainers.	

The	networks	attribute	lists	the	networks	to	which	this	container	must	be
connected	and	is	exactly	equivalent	to	the	--net	argument.	Even	though	the
docker	command	doesn't	support	multiple	--net	options,	we	can	list	multiple
networks	in	the	compose	file.	In	this	case,	the	networks	are	bridge
networks.	As	we	did	earlier,	the	networks	themselves	must	be	created
separately,	and	in	a	compose	file,	that's	done	in	the	networks	section.

Each	of	the	networks	in	our	system	is	a	bridge	network.	This	fact	is
described	in	the	compose	file.

The	expose	attribute	declares	which	ports	are	exposed	from	the	container,
and	is	equivalent	to	the	EXPOSE	tag.	The	exposed	ports	are	not	published
outside	the	host	machine,	however.	The	ports	attribute	declares	the	ports
that	are	to	be	published.	In	the	ports	declaration,	we	have	two	port
numbers:	the	first	being	the	published	port	number	and	the	second	being
the	port	number	inside	the	container.	This	is	exactly	equivalent	to	the	-p
option	used	earlier.

The	notes	container	has	a	few	environment	variables,	such
as	TWITTER_CONSUMER_KEY	and	TWITTER_CONSUMER_SECRET,	that	you	may	prefer	to
store	in	this	file	rather	than	in	the	Dockerfile.	

The	depends_on	attribute	lets	us	control	the	start	up	order.	A	container	that
depends	on	another	will	wait	to	start	until	the	depended-upon	container	is
running.

The	volumes	attribute	describes	mappings	of	a	container	directory	to	a	host
directory.	In	this	case,	we've	defined	two	volume	names,	db-userauth-data
and	db-notes-data,	and	then	used	them	for	the	volume	mapping.	To	explore
the	volumes,	start	with	this	command:

$	docker	volume	ls	

DRIVER														VOLUME	NAME	

...	

local															compose_db-notes-data	

local															compose_db-userauth-data	

...

The	volume	names	are	the	same	as	in	the	compose	file,	but	with	compose_
tacked	on	the	front.

You	can	inspect	the	volume	location	using	the	docker	command	line:

$	docker	volume	inspect	compose_db-notes-data

$	docker	volume	inspect	compose_db-userauth-data		

If	it's	preferable,	you	can	specify	a	pathname	in	the	compose	file:

db-auth:	

		..	

		volumes:	

				#	-	db-userauth-data:/var/lib/mysql	

				-	../userauth-data:/var/lib/mysql	

	

db-notes:	

		..	

		volumes:	

				#	-	db-notes-data:/var/lib/mysql	

				-	../notes-data:/var/lib/mysql	

This	is	the	same	configuration	we	made	earlier.	It	uses	the	userauth-data	and
notes-data	directories	for	the	MySQL	data	files	for	their	respective	database
containers.

The	environment	tag	describes	the	environment	variables	that	will	be
received	by	the	container.	As	before,	environment	variables	should	be
used	to	inject	configuration	data.	

The	restart	attribute	controls	what	happens	if,	or	when,	the	container	dies.
When	a	container	starts,	it	runs	the	program	named	in	the	CMD	instruction,
and	when	that	program	exits,	the	container	exits.	But	what	if	that	program
is	meant	to	run	forever,	shouldn't	Docker	know	it	should	restart	the
process?	We	could	use	a	background	process	supervisor,	such	as
Supervisord	or	PM2.	But,	we	can	also	use	the	Docker	restart	option.

The	restart	attribute	can	take	one	of	the	following	four	values:

no	–	do	not	restart

on-failure:count	–	restart	up	to	N	times

always	–	always	restart

unless-stopped	–	start	the	container	unless	it	was	explicitly	stopped

Running	the	Notes	application
with	Docker	compose
On	Windows,	we're	able	to	run	the	commands	in	this	section	unchanged.

Before	deploying	this	to	a	server,	let's	run	it	on	our	laptop	using	docker-
compose:

$	docker	stop	db-notes	userauth	db-auth	notesapp

db-notes

userauth

db-auth

notesapp

$	docker	rm	db-notes	userauth	db-auth	notesapp

db-notes

userauth

db-auth

notesapp		

We	first	needed	to	stop	and	delete	the	existing	containers.	Because	the
compose	file	wants	to	launch	containers	with	the	same	names	as	we'd	built
earlier,	we	also	have	to	remove	the	existing	containers:

$	docker-compose	build

Building	db-auth

..	lots	of	output

$	docker-compose	up

Creating	db-auth

Recreating	compose_db-notes_1

Recreating	compose_userauth_1

Recreating	compose_notesapp_1

Attaching	to	db-auth,	db-notes,	userauth,	notesapp		

Once	that's	done,	we	can	build	the	containers,	docker-compose	build,	and	then
start	them	running,	docker-compose	up.

The	first	test	is	to	execute	a	shell	in	userauth	to	run	our	user	database	script:

$	docker	exec	-it	userauth	bash

root@9972adbbdbb3:/userauth#	PORT=3333	node	users-add.js	

Created	{	id:	2,

		username:	'me',	password:	'w0rd',	provider:	'local',

		familyName:	'Einarrsdottir',	givenName:	'Ashildr',	middleName:	'',

		emails:	'[]',	photos:	'[]',

		updatedAt:	'2018-02-07T02:24:04.257Z',	createdAt:	'2018-02-

07T02:24:04.257Z'	}

root@9972adbbdbb3:/userauth#	

Now	that	we've	proved	that	the	authentication	service	will	work,	and,	by
the	way,	created	a	user	account,	you	should	be	able	to	browse	to	the	Notes
application	and	run	it	through	its	paces.

You	can	also	try	pinging	different	containers	to	ensure	that	the	application
network	topology	has	been	created	correctly.

If	you	use	Docker	command-line	tools	to	explore	the	running	containers	and
networks,	you'll	see	they	have	new	names.	The	new	names	are	similar	to	the	old
names,	but	prefixed	with	the	string	compose_.	This	is	a	side	effect	of	using	Docker
compose.

By	default,	docker-compose	attaches	to	the	containers	so	that	logging	output	is
printed	on	the	Terminal.	Output	from	all	four	containers	will	be
intermingled	together.	Thankfully,	each	line	is	prepended	by	the	container
name.

When	you're	done	testing	the	system,	simply	type	CTRL	+	C	on	the
Terminal:

^CGracefully	stopping...	(press	Ctrl+C	again	to	force)	

Stopping	db-userauth	...	done	

Stopping	userauth				...	done	

Stopping	db-notes				...	done	

Stopping	notes							...	done

To	avoid	running	with	the	containers	attached	to	the	Terminal,	use	the	-d
option.	This	says	to	detach	from	the	Terminal	and	run	in	the	background.

An	alternate	way	to	bring	down	the	system	described	in	the	compose	file
is	with	the	docker-compose	down	command.	

The	up	command	builds,	recreates,	and	starts	the	containers.	The	build	step
can	be	handled	separately	using	the	docker-compose	build	command.
Likewise,	starting	and	stopping	the	containers	can	be	handled	separately
by	using	the	docker-compose	start	and	docker-compose-stop	commands.

In	all	cases,	your	command	shell	should	be	in	the	directory	containing	the
docker-compose.yml	file.	That's	the	default	name	for	this	file.	This	can	be
overridden	with	the	-f	option	to	specify	a	different	filename.

Deploying	to	cloud	hosting
with	Docker	compose
We've	verified	on	our	laptop	that	the	services	described	by	the
compose	file	work	as	intended.	Launching	the	containers	is	now
automated,	fixing	one	of	the	issues	we	named	earlier.	It's	now	time	to	see
how	to	deploy	to	a	cloud-hosting	provider.	This	is	where	we	turn	to
Docker	machine.

Docker	machine	can	be	used	to	provision	Docker	instances	inside	a
VirtualBox	host	on	your	laptop.	What	we'll	be	doing	is	provisioning	a
Docker	system	on	DigitalOcean.	The	docker-machine	command	comes
with	drivers	supporting	a	long	list	of	cloud-hosting	providers.		It's	easy	to
adapt	the	instructions	shown	here	for	other	providers,	simply	by
substituting	a	different	driver.

After	signing	up	for	a	DigitalOcean	account,	click	on	the	API	link	in	the
dashboard.	We	need	an	API	token	to	grant	docker-machine	access	to	the
account.	Go	through	the	process	of	creating	a	token	and	save	away	the
token	string	you're	given.	The	Docker	website	has	a	tutorial	at
https://docs.docker.com/machine/examples/ocean/.

With	the	token	in	hand,	type	the	following:

$	docker-machine	create	--driver	digitalocean	--digitalocean-size	2gb	\

				--digitalocean-access-token	TOKEN-FROM-PROVIDER	\

				sandbox

Running	pre-create	checks...

Creating	machine...

(sandbox)	Creating	SSH	key...

(sandbox)	Creating	Digital	Ocean	droplet...

(sandbox)	Waiting	for	IP	address	to	be	assigned	to	the	Droplet...

Waiting	for	machine	to	be	running,	this	may	take	a	few	minutes...

Detecting	operating	system	of	created	instance...

https://docs.docker.com/machine/examples/ocean/

Waiting	for	SSH	to	be	available...

Detecting	the	provisioner...

Provisioning	with	ubuntu(systemd)...

Installing	Docker...

Copying	certs	to	the	local	machine	directory...

Copying	certs	to	the	remote	machine...

Setting	Docker	configuration	on	the	remote	daemon...

Checking	connection	to	Docker...

Docker	is	up	and	running!

To	see	how	to	connect	your	Docker	Client	to	the	Docker	Engine	running	on	this	

virtual	machine,	run:	docker-machine	env	sandbox

The	digitalocean	driver	is,	as	we	said	earlier,	used	with	Digital	Ocean.	The
Docker	website	has	a	list	of	drivers	at	https://docs.docker.com/machine/drivers/.

A	lot	of	information	is	printed	here	about	things	being	set	up.	The	most
important	is	the	message	at	the	end.	A	series	of	environment	variables	are
used	to	tell	the	docker	command	where	to	connect	to	the	Docker	Engine
instance.	As	the	messages	say,	run:	docker-machine	env	sandbox:

$	docker-machine	env	sandbox

export	DOCKER_TLS_VERIFY="1"

export	DOCKER_HOST="tcp://45.55.37.74:2376"

export	DOCKER_CERT_PATH="homedavid/.docker/machine/machines/sandbox"

export	DOCKER_MACHINE_NAME="sandbox"

#	Run	this	command	to	configure	your	shell:	

#	eval	$(docker-machine	env	sandbox)

That's	the	environment	variables	used	to	access	the	Docker	host	we	just
created.	You	should	also	go	to	your	cloud-hosting	provider	dashboard	and
see	that	the	host	has	been	created.	This	command	also	gives	us	some
instructions	to	follow:

$	eval	$(docker-machine	env	sandbox)	

$	docker-machine	ls	

NAME						ACTIVE			DRIVER									STATE					URL																						SWARM			

DOCKER								ERRORS	

sandbox			*								digitalocean			Running			tcp://45.55.37.74:2376											

v18.01.0-ce				

This	shows	that	we	have	a	Docker	Engine	instance	running	in	a	host	at	our

https://docs.docker.com/machine/drivers/

chosen	cloud-hosting	provider.

One	interesting	test	at	this	point	is	to	run	docker	ps	-a	on	this	Terminal,	and
then	to	run	it	in	another	Terminal	that	does	not	have	these	environment
variables.	That	should	show	the	cloud	host	has	no	containers	at	all,	while
your	local	machine	may	have	some	containers	(depending	on	what	you
currently	have	running):

$	docker	run	hello-world	

Unable	to	find	image	'hello-world:latest'	locally	

latest:	Pulling	from	library/hello-world	

ca4f61b1923c:	Pull	complete		

Digest:	

sha256:66ef312bbac49c39a89aa9bcc3cb4f3c9e7de3788c944158df3ee0176d32b751	

Status:	Downloaded	newer	image	for	hello-world:latest	

	...

$	docker	images	

REPOSITORY										TAG																	IMAGE	ID												CREATED													

SIZE	

hello-world									latest														f2a91732366c								2	months	ago								

1.85kB

Here,	we've	verified	that	we	can	launch	a	container	on	the	remote	host.

The	next	step	is	to	build	our	containers	for	the	new	machine.	Because
we've	switched	the	environment	variables	to	point	to	the	new	server,	these
commands	cause	action	to	happen	there	rather	than	inside	our	laptop:

$	docker-compose	build

db-userauth	uses	an	image,	skipping

db-notes	uses	an	image,	skipping

Building	notes

Step	1/22	:	FROM	node:9.5

9.5:	Pulling	from	library/node

f49cf87b52c1:	Pull	complete

7b491c575b06:	Pull	complete

b313b08bab3b:	Pull	complete

51d6678c3f0e:	Pull	complete

...

Because	we	changed	the	environment	variables,	the	build	occurs	on	the

sandbox	machine	rather	than	on	our	laptop,	as	previously.

This	will	take	a	while	because	the	Docker	image	cache	on	the	remote
machine	is	empty.	Additionally,	building	the	notesapp	and	userauth
containers	copies	the	entire	source	tree	to	the	server	and	runs	all	build
steps	on	the	server.

The	build	may	fail	if	the	default	memory	size	is	500	MB,	the	default	on
DigitalOcean	at	the	time	of	writing.	If	so,	the	first	thing	to	try	is	resizing
the	memory	on	the	host	to	at	least	2	GB.

Once	the	build	is	finished,	launch	the	containers	on	the	remote	machine:

$	docker-compose	up	

Creating	notes	...	done

Recreating	db-userauth	...	done

Recreating	db-notes	...	done

Creating	notes	...	

Attaching	to	db-userauth,	db-notes,	userauth,	notes

Once	the	containers	start,	you	should	test	the	userauth	container	as	we've
done	previously.	Unfortunately,	the	first	time	you	do	this,	that	command
will	fail.	The	problem	is	these	lines	in	the	docker-compose.yml:

-	../authnet/my.cnf:etcmy.cnf

...

	-	../frontnet/my.cnf:etcmy.cnf

In	this	case,	the	build	occurs	on	the	remote	machine,	and	the	docker-machine
command	does	not	copy	the	named	file	to	the	server.	Hence,	when	Docker
attempts	to	start	the	container,	it	is	unable	to	do	so	because	that	volume
mount	cannot	be	satisfied	because	the	file	is	simply	not	there.	This,	then,
means	some	surgery	on	docker-compose.yml,	and	to	add	two	new	Dockerfiles.

First,	make	these	changes	to	docker-compose.yml:

		...

		db-userauth:

	build:	../authnet

	container_name:	db-userauth

	networks:

						-	authnet

	volumes:

						-	db-userauth-data:varlib/mysql

	restart:	always

		...

		db-notes:

				build:	../frontnet

				container_name:	db-notes

				networks:

						-	frontnet

				volumes:

						-	db-notes-data:varlib/mysql

				restart:	always

Instead	of	building	the	database	containers	from	a	Docker	image,	we're
now	building	them	from	a	pair	of	Dockerfiles.	Now	we	must	create	those
two	Dockerfiles.

In	authnet,	create	a	file	named	Dockerfile	containing	the	following:

FROM	mysql/mysql-server:5.7

EXPOSE	3306

COPY	my.cnf	etc

ENV	MYSQL_RANDOM_ROOT_PASSWORD="true"

ENV	MYSQL_USER=userauth

ENV	MYSQL_PASSWORD=userauth

ENV	MYSQL_DATABASE=userauth

CMD	["mysqld",	"--character-set-server=utf8mb4",	\

	"--collation-server=utf8mb4_unicode_ci",	"--bind-address=0.0.0.0"]

This	copies	certain	settings	from	what	had	been	the	db-userauth	description
in	docker-compose.yml.	The	important	thing	is	that	we	now	COPY	the	my.cnf	file
rather	than	use	a	volume	mount.

In	frontnet,	create	a	Dockerfile	containing	the	following:

FROM	mysql/mysql-server:5.7

EXPOSE	3306

COPY	my.cnf	etc

ENV	MYSQL_RANDOM_ROOT_PASSWORD="true"

ENV	MYSQL_USER=notes

ENV	MYSQL_PASSWORD=notes12345

ENV	MYSQL_DATABASE=notes

CMD	["mysqld",	"--character-set-server=utf8mb4",	\

	"--collation-server=utf8mb4_unicode_ci",	"--bind-address=0.0.0.0"]

This	is	the	same,	but	with	a	few	critical	values	changed.

After	making	these	changes,	we	can	now	build	the	containers,	and	launch
them:

$	docker-compose	build

...	much	output

$	docker-compose	up	--force-recreate

...	much	output

Now	that	we	have	a	working	build,	and	can	bring	up	the	containers,	let's
inspect	them	and	verify	everything	works.

Execute	a	shell	in	userauth	to	test	and	set	up	the	user	database:

$	docker	exec	-it	userauth	bash

root@931dd2a267b4:/userauth#	PORT=3333	node	users-list.js	

List	[{	id:	'me',	username:	'me',	provider:	'local',

				familyName:	'Einarrsdottir',	givenName:	'Ashildr',	middleName:	'',

				emails:	'[]',	photos:	'[]'	}]		

As	mentioned	previously,	this	verifies	that	the	userauth	service	works,	that
the	remote	containers	are	set	up,	and	that	we	can	proceed	to	using	the
Notes	application.

The	question	is:	What's	the	URL	to	use?		The	service	is	not	on	localhost,
because	it's	on	the	remote	server.	We	don't	have	a	domain	name	assigned,
but	there	is	an	IP	address	for	the	server.

Run	the	following	command:

$	docker-machine	ip	sandbox

45.55.37.74

Docker	tells	you	the	IP	address,	which	you	should	use	as	the	basis	of	the
URL.	Hence,	in	your	browser,	visit	http://IP-ADDRESS:3000

With	Notes	deployed	to	the	remote	server,	you	should	check	out	all	the
things	we've	looked	at	previously.	The	bridge	networks	should	exist,	as
shown	previously,	with	the	same	limited	access	between	containers.	The
only	public	access	should	be	port	3000	on	the	notes	container.	

Remember	to	set	the	TWITTER_CALLBACK_HOST	environment	variable
appropriately	for	your	server.

Because	our	database	containers	mount	a	volume	to	store	the	data,	let's	see
where	that	volume	landed	on	the	server:

$	docker	volume	ls

DRIVER	VOLUME	NAME

local	compose_db-notes-data

local	compose_db-userauth-data

Those	are	the	expected	volumes,	one	for	each	container:

$	docker	volume	inspect	compose_db-notes-data

[

				{

								"CreatedAt":	"2018-02-07T06:30:06Z",

								"Driver":	"local",

								"Labels":	{

												"com.docker.compose.project":	"compose",

												"com.docker.compose.volume":	"db-notes-data"

								},

								"Mountpoint":	"varlib/docker/volumes/compose_db-notes-

								data/_data",

								"Name":	"compose_db-notes-data",

								"Options":	{},

								"Scope":	"local"

				}

]

Those	are	the	directories,	but	they're	not	located	on	our	laptop.	Instead,

they're	on	the	remote	server.	Accessing	these	directories	means	logging
into	the	remote	server	to	take	a	look:

$	docker-machine	ssh	sandbox

Welcome	to	Ubuntu	16.04.3	LTS	(GNU/Linux	4.4.0-112-generic	x86_64)

	*	Documentation:	https://help.ubuntu.com

	*	Management:	https://landscape.canonical.com

	*	Support:	https://ubuntu.com/advantage

		Get	cloud	support	with	Ubuntu	Advantage	Cloud	Guest:

				http://www.ubuntu.com/business/services/cloud

4	packages	can	be	updated.

0	updates	are	security	updates.

Last	login:	Wed	Feb	7	04:00:29	2018	from	108.213.68.139

root@sandbox:~#

From	this	point,	you	can	inspect	the	directories	corresponding	to	these
volumes	and	see	that	they	indeed	contain	MySQL	configuration	and	data
files:

root@sandbox:~#	ls	varlib/docker/volumes/compose_db-notes-data/_data	

auto.cnf									client-key.pem		ib_logfile1		mysql.sock.lock					

public_key.pem	

ca-key.pem							ib_buffer_pool		ibtmp1							notes															server-

cert.pem	

ca.pem											ibdata1									mysql								performance_schema		server-

key.pem	

client-cert.pem		ib_logfile0					mysql.sock			private_key.pem					sys

You'll	also	find	that	the	Docker	command-line	tools	will	work.	The
process	list	is	especially	interesting:

Look	closely	at	this	and	you	see	a	process	corresponding	to	every
container	in	the	system.	These	processes	are	running	in	the	host	operating
system.	Docker	creates	layers	of	configuration/containment	around	those
processes	to	create	the	appearance	that	the	process	is	running	under	a
different	operating	system,	and	with	various	system/network	configuration
files,	as	specified	in	the	container	screenshot.	

The	claimed	advantage	Docker	has	over	virtualization	approaches,	such	as
VirtualBox,	is	that	Docker	is	very	lightweight.	We	see	right	here	why
Docker	is	lightweight:	there	is	no	virtualization	layer,	there	is	only	a
containerization	process	(docker-containerd-shim).

Once	you're	satisfied	that	Notes	is	working	on	the	remote	server,	you	can
shut	it	down	and	remove	it	as	follows:

$	docker-compose	stop

Stopping	notesapp	...	done

Stopping	userauth	...	done

Stopping	db-notes	...	done

Stopping	db-auth	...	done

This	shuts	down	all	the	containers	at	once:

$	docker-machine	stop	sandbox

Stopping	"sandbox"...

Machine	"sandbox"	was	stopped.

This	shuts	down	the	remote	machine.	The	cloud-hosting	provider
dashboard	will	show	that	the	Droplet	has	stopped.

At	this	point,	you	can	go	ahead	and	delete	the	Docker	machine	instance	as
well,	if	you	like:

$	docker-machine	rm	sandbox

About	to	remove	sandbox

Are	you	sure?	(y/n):	y

Successfully	removed	sandbox		

And,	if	you're	truly	certain	you	want	to	delete	the	machine,	the	preceding
command	does	the	deed.	As	soon	as	you	do	this,	the	machine	will	be
erased	from	your	cloud-hosting	provider	dashboard.

Summary
This	chapter	has	been	quite	a	journey.	We	went	from	an	application	that
existed	solely	on	our	laptop,	to	exploring	two	ways	to	deploy	Node.js
applications	to	a	production	server.

We	started	by	reviewing	the	Notes	application	architecture	and	how	that
will	affect	deployment.	That	enabled	you	to	understand	what	you	had	to
do	for	server	deployment.

Then	you	learned	the	traditional	way	to	deploy	services	on	Linux	using	an
init	script.	PM2	is	a	useful	tool	for	managing	background	processes	in
such	an	environment.	You	also	learned	how	to	provision	a	remote	server
using	a	virtual	machine	hosting	service.

Then	you	took	a	long	trip	into	the	land	of	Docker,	a	new	and	exciting
system	for	deploying	services	on	machines.	You	learned	how	to	write	a
Dockerfile	so	that	Docker	knows	how	to	construct	a	service	image.	You
learned	several	ways	to	deploy	Docker	images	on	a	laptop	or	on	a	remote
server.	And	you	learned	how	to	describe	a	multi-container	application
using	Docker	compose.

You're	almost	ready	to	wrap	up	this	book.	You've	learned	a	lot	along	the
way;	there	are	two	final	things	to	cover.

In	the	next	chapter,	we	will	learn	about	both	unit	testing	and	functional
testing.	While	a	core	principle	of	test-driven	development	is	to	write	the
unit	tests	before	writing	the	application,	we've	done	it	the	other	way
around	and	put	the	chapter	about	unit	testing	at	the	end	of	this	book.	That's
not	to	say	unit	testing	is	unimportant,	because	it	is	extremely	important.	

In	the	final	chapter,	we'll	explore	how	to	harden	our	application,	and
application	infrastructure,	against	attackers.

Unit	Testing	and	Functional
Testing
Unit	testing	has	become	a	primary	part	of	good	software	development
practice.	It	is	a	method	by	which	individual	units	of	source	code	are	tested
to	ensure	proper	functioning.	Each	unit	is	theoretically	the	smallest
testable	part	of	an	application.	In	a	Node.js	application,	you	might
consider	each	module	as	a	unit.

In	unit	testing,	each	unit	is	tested	separately,	isolating	the	unit	under	test	as
much	as	possible	from	other	parts	of	the	application.	If	a	test	fails,	you
would	want	it	to	be	due	to	a	bug	in	your	code	rather	than	a	bug	in	the
package	that	your	code	happens	to	use.	A	common	technique	is	to	use
mock	objects	or	mock	data	to	isolate	individual	parts	of	the	application
from	one	another.

Functional	testing,	on	the	other	hand,	doesn't	try	to	test	individual
components,	but	instead	it	tests	the	whole	system.	Generally	speaking,
unit	testing	is	performed	by	the	development	team,	and	functional	testing
is	performed	by	a	Quality	Assurance	(QA)	or	Quality	Engineering	(QE)
team.	Both	testing	models	are	needed	to	fully	certify	an	application.	An
analogy	might	be	that	unit	testing	is	similar	to	ensuring	that	each	word	in	a
sentence	is	correctly	spelled,	while	functional	testing	ensures	that	the
paragraph	containing	that	sentence	has	a	good	structure.

In	this	chapter,	we'll	cover:

Assertions	as	the	basis	of	software	tests

The	Mocha	unit	testing	framework	and	the	Chai	assertions	library

Using	tests	to	find	bugs	and	fixing	the	bug

Using	Docker	to	manage	test	infrastructure

Testing	a	REST	backend	service

UI	testing	in	a	real	web	browser	using	Puppeteer

Improving	UI	testability	with	element	ID	attributes

Assert	–	the	basis	of	testing
methodologies
Node.js	has	a	useful	built-in	testing	tool,	the	assert	module.	Its
functionality	is	similar	to	assert	libraries	in	other	languages.	Namely,	it's	a
collection	of	functions	for	testing	conditions,	and	if	the	conditions	indicate
an	error,	the	assert	function	throws	an	exception.

At	its	simplest,	a	test	suite	is	a	series	of	assert	calls	to	validate	the	behavior
of	a	thing	being	tested.	For	example,	a	test	suite	could	instantiate	the	user
authentication	service,	then	make	an	API	call,	using	assert	methods	to
validate	the	result,	then	make	another	API	call,	validating	its	results,	and
so	on.

Consider	a	code	snippet	like	this,	which	you	could	save	in	a	file
named	deleteFile.js:

const	fs	=	require('fs');	

exports.deleteFile	=	function(fname,	callback)	{	

		fs.stat(fname,	(err,	stats)	=>	{	

				if	(err)	callback(new	Error(`the	file	${fname}	does	not	exist`));	

				else	{	

						fs.unlink(fname,	err2	=>	{	

								if	(err)	callback(new	Error(`could	not	delete	${fname}`));	

								else	callback();	

						});	

				}	

		});	

};	

The	first	thing	to	notice	is	this	contains	several	layers	of	asynchronous
callback	functions.	That	presents	a	couple	of	challenges:		

Capturing	errors	from	deep	inside	a	callback,	to	ensure	the	test
scenario	fails

Detecting	conditions	where	the	callbacks	are	never	called

The	following	is	an	example	of	using	assert	for	testing.	Create	a	file
named	test-deleteFile.js	containing	the	following:

const	fs	=	require('fs');	

const	assert	=	require('assert');	

const	df	=	require('./deleteFile');	

df.deleteFile("no-such-file",	(err)	=>	{	

				assert.throws(

								function()	{	if	(err)	throw	err;	},	

								function(error)	{	

												if	((error	instanceof	Error)	

													&&	does	not	exist.test(error))	{	

															return	true;	

												}	else	return	false;	

								},	

								"unexpected	error"	

);	

});	

This	is	what's	called	a	negative	test	scenario,	in	that	it's	testing	whether
requesting	to	delete	a	nonexistent	file	throws	an	error.

If	you	are	looking	for	a	quick	way	to	test,	the	assert	module	can	be	useful
when	used	this	way.	If	it	runs	and	no	messages	are	printed,	then	the	test
passes.	But,	did	it	catch	the	instance	of	the	deleteFile	callback	never	being
called?

$	node	test-deleteFile.js	

The	assert	module	is	used	by	many	of	the	test	frameworks	as	a	core	tool
for	writing	test	cases.	What	the	test	frameworks	do	is	create	a	familiar	test
suite	and	test	case	structure	to	encapsulate	your	test	code.

There	are	many	styles	of	assertion	libraries	available	in	Node.js.	Later	in
this	chapter,	we'll	use	the	Chai	assertion	library	(http://chaijs.com/)	which
gives	you	a	choice	between	three	different	assertion	styles	(should,	expect,
and	assert).

http://chaijs.com/

Testing	a	Notes	model
Let's	start	our	unit	testing	journey	with	the	data	models	we	wrote	for	the
Notes	application.	Because	this	is	unit	testing,	the	models	should	be	tested
separately	from	the	rest	of	the	Notes	application.

In	the	case	of	most	of	the	Notes	models,	isolating	their	dependencies
implies	creating	a	mock	database.	Are	you	going	to	test	the	data	model	or
the	underlying	database?	Mocking	out	a	database	means	creating	a	fake
database	implementation,	which	does	not	look	like	a	productive	use	of	our
time.	You	can	argue	that	testing	a	data	model	is	really	about	testing	the
interaction	between	your	code	and	the	database,	that	mocking	out	the
database	means	not	testing	that	interaction,	and	therefore	we	should	test
our	code	against	the	database	engine	used	in	production.

With	that	line	of	reasoning	in	mind,	we'll	skip	mocking	out	the	database,
and	instead	run	the	tests	against	a	database	containing	test	data.	To
simplify	launching	the	test	database,	we'll	use	Docker	to	start	and	stop	a
version	of	the	Notes	application	stack	that's	set	up	for	testing.

Mocha	and	Chai	–	the	chosen
test	tools
If	you	haven't	already	done	so,	duplicate	the	source	tree	to	use	in	this
chapter.	For	example,	if	you	had	a	directory	named	chap10,	create	one
named	chap11	containing	everything	from	chap10.

In	the	notes	directory,	create	a	new	directory	named	test.

Mocha	(http://mochajs.org/)	is	one	of	many	test	frameworks	available
for	Node.js.	As	you'll	see	shortly,	it	helps	us	write	test	cases	and	test
suites,	and	it	provides	a	test	results	reporting	mechanism.	It	was	chosen
over	the	alternatives	because	it	supports	Promises.	It	fits	very	well	with
the	Chai	assertion	library	mentioned	earlier.	And,	we'll	need	to	use	ES6
modules	from	test	suites	written	in	CommonJS,	and	therefore	we	must	use
the	esm	module.

You	may	find	references	to	an	earlier	@std/esm	module.	That	module	has
been	deprecated,	with	esm	put	in	its	place.

While	in	the	notes/test	directory,	type	this	to	install	Mocha,	Chai,	and	esm:	$
npm	init
...	answer	the	questions	to	create	package.json
$	npm	install	mocha@5.x	chai@4.1.x	esm	--save

http://mochajs.org/

Notes	model	test	suite
Because	we	have	several	Notes	models,	the	test	suite	should	run	against
any	model.	We	can	write	tests	using	the	Notes	model	API	we	developed,
and	an	environment	variable	should	be	used	to	declare	the	model	to	test.

Because	we've	written	the	Notes	application	using	ES6	modules,	we	have
a	small	challenge	to	overcome.	Mocha	only	supports	running	tests	in
CommonJS	modules,	and	Node.js	(as	of	this	writing)	does	not	support
loading	an	ES6	module	from	a	CommonJS	module.	An	ES6	module	can
use	import	to	load	a	CommonJS	module,	but	a	CommonJS	module	cannot
use	require	to	load	an	ES6	module.	There	are	various	technical	reasons
behind	this,	the	bottom	line	is	that	we're	limited	in	this	way.

Because	Mocha	requires	that	tests	be	CommonJS	modules,	we're	in	the
position	of	having	to	load	an	ES6	module	into	a	CommonJS	module.		A
module,	esm,	exists	which	allows	that	combination	to	work.	If	you'll	refer
back,	we	installed	that	module	in	the	previous	section.	Let's	see	how	to	use
it.

In	the	test	directory,	create	a	file	named	test-model.js	containing	this	as	the
outer	shell	of	the	test	suite:	'use	strict';	
require	=	require("esm")(module,{"esm":"js"});
const	assert	=	require('chai').assert;	
const	model	=	require('../models/notes');	describe("Model	Test",
function()	{	..	});

The	support	to	load	ES6	modules	is	enabled	by	the	require('esm')	statement
shown	here.	It	replaces	the	standard	require	function	with	one	from	the	esm
module.	That	parameter	list	at	the	end	enables	the	feature	to	load	ES6
modules	in	a	CommonJS	module.	Once	you've	done	this,	your	CommonJS
module	can	load	an	ES6	module	as	evidenced	by	require('../models/notes')	a
couple	of	lines	later.

The	Chai	library	supports	three	flavors	of	assertions.	We're	using	the	assert
style	here,	but	it's	easy	to	use	a	different	style	if	you	prefer.	For	the	other
styles	supported	by	Chai,	see	http://chaijs.com/guide/styles/.

Chai's	assertions	include	a	very	long	list	of	useful	assertion	functions,	see	h
ttp://chaijs.com/api/assert/.

The	Notes	model	to	test	must	be	selected	with	the	NOTES_MODEL	environment
variable.	For	the	models	that	also	consult	environment	variables,	we'll
need	to	supply	that	configuration	as	well.

With	Mocha,	a	test	suite	is	contained	within	a	describe	block.	The	first
argument	is	descriptive	text,	which	you	use	to	tailor	the	presentation	of
test	results.

Rather	than	maintaining	a	separate	test	database,	we	can	create	one	on	the
fly	while	executing	tests.	Mocha	has	what	are	called	hooks,	which	are
functions	executed	before	or	after	test	case	execution.	The	hook	functions
let	you,	the	test	suite	author,	set	up	and	tear	down	required	conditions	for
the	test	suite	to	operate	as	desired.	For	example,	to	create	a	test	database
with	known	test	content:	describe("Model	Test",	function()	{	
beforeEach(async	function()	{
try	{
const	keyz	=	await	model.keylist();
for	(let	key	of	keyz)	{
await	model.destroy(key);
}
await	model.create("n1",	"Note	1",	"Note	1");
await	model.create("n2",	"Note	2",	"Note	2");
await	model.create("n3",	"Note	3",	"Note	3");
}	catch	(e)	{
console.error(e);
throw	e;
}
});	..	});

This	defines	a	beforeEach	hook,	which	is	executed	before	every	test	case.

http://chaijs.com/guide/styles/
http://chaijs.com/api/assert/

The	other	hooks	are	before,	after,	beforeEach,	and	afterEach.	The	each	hooks
are	triggered	before	or	after	each	test	case	execution.

This	is	meant	to	be	a	cleanup/preparation	step	before	every	test.	It	uses	our
Notes	API	to	first	delete	all	notes	from	the	database	(if	any)	and	then
create	a	set	of	new	notes	with	known	characteristics.	This	technique
simplifies	tests	by	ensuring	that	we	have	known	conditions	to	test	against.

We	also	have	a	side	effect	of	testing	the	model.keylist	and	model.create
methods.

In	Mocha,	a	series	of	test	cases	are	encapsulated	with	a	describe	block,	and
written	using	an	it	block.	The	describe	block	is	meant	to	describe	that
group	of	tests,	and	the	it	block	is	for	checking	assertions	on	a	specific
aspect	of	the	thing	being	tested.	You	can	nest	the	describe	blocks	as	deeply
as	you	like:	describe("check	keylist",	function()	{
it("should	have	three	entries",	async	function()	{
const	keyz	=	await	model.keylist();
assert.exists(keyz);
assert.isArray(keyz);
assert.lengthOf(keyz,	3);
});
it("should	have	keys	n1	n2	n3",	async	function()	{
const	keyz	=	await	model.keylist();
assert.exists(keyz);
assert.isArray(keyz);
assert.lengthOf(keyz,	3);
for	(let	key	of	keyz)	{
assert.match(key,	n[123],	"correct	key");
}
});
it("should	have	titles	Node	#",	async	function()	{
const	keyz	=	await	model.keylist();
assert.exists(keyz);
assert.isArray(keyz);
assert.lengthOf(keyz,	3);
var	keyPromises	=	keyz.map(key	=>	model.read(key));

const	notez	=	await	Promise.all(keyPromises);
for	(let	note	of	notez)	{
assert.match(note.title,	Note	[123],	"correct	title");
}
});
});

The	idea	is	to	call	Notes	API	functions,	then	to	test	the	results	to	check
whether	they	matched	the	expected	results.

This	describe	block	is	within	the	outer	describe	block.	The	descriptions
given	in	the	describe	and	it	blocks	are	used	to	make	the	test	report	more
readable.	The	it	block	forms	a	pseudo-sentence	along	the	lines	of	it	(the
thing	being	tested)	should	do	this	or	that.

It	is	important	with	Mocha	to	not	use	arrow	functions	in	the	describe	and	it	blocks.	By
now,	you	will	have	grown	fond	of	arrow	functions	because	of	how	much	easier	they
are	to	write.	But,	Mocha	calls	these	functions	with	a	this	object	containing	useful
functions	for	Mocha.	Because	arrow	functions	avoid	setting	up	a	this	object,	Mocha
would	break.

Even	though	Mocha	requires	regular	functions	for	the	describe	and	it	blocks,	we	can
use	arrow	functions	within	those	functions.

How	does	Mocha	know	whether	the	test	code	passes?	How	does	it	know
when	the	test	finishes?	This	segment	of	code	shows	one	of	the	three
methods.

Generally,	Mocha	is	looking	to	see	if	the	function	throws	an	exception,	or
whether	the	test	case	takes	too	long	to	execute	(a	timeout	situation).	In
either	case,	Mocha	will	indicate	a	test	failure.	That's	of	course	simple	to
determine	for	non-asynchronous	code.	But,	Node.js	is	all	about
asynchronous	code,	and	Mocha	has	two	models	for	testing	asynchronous
code.	In	the	first	(not	seen	here),	Mocha	passes	in	a	callback	function,	and
the	test	code	is	to	call	the	callback	function.	In	the	second,	as	seen	here,	it
looks	for	a	Promise	being	returned	by	the	test	function,	and	determines
pass/fail	on	whether	the	Promise	is	in	the	resolve	or	reject	state.

In	this	case,	we're	using	async	functions,	because	they	automatically	return
a	Promise.	Within	the	functions,	we're	calling	asynchronous	functions

using	await,	ensuring	any	thrown	exception	is	indicated	as	a	rejected
Promise.	

Another	item	to	note	is	the	question	asked	earlier:	what	if	the	callback
function	we're	testing	is	never	called?		Or,	what	if	a	Promise	is	never
resolved?		Mocha	starts	a	timer	and	if	the	test	case	does	not	finish	before
the	timer	expires,	Mocha	fails	the	test	case.

Configuring	and	running	tests
We	have	more	tests	to	write,	but	let's	first	get	set	up	to	run	the	tests.	The
simplest	model	to	test	is	the	in-memory	model.	Let's	add	this	to	the	scripts
section	of	notes/test/package.json:

"test-notes-memory":	"NOTES_MODEL=memory	mocha	test-model",

To	install	dependencies,	we	must	run	npm	install	in	both	the	notes/test	and
notes	directories.	That	way	both	the	dependencies	for	the	test	code,	and	the
dependencies	for	Notes,	are	installed	in	their	correct	place.

Then,	we	can	run	it	as	follows:

$	npm	run	test-notes-memory

>	notes-test@1.0.0	test-notes-memory	Usersdavid/chap11/notes/test

>	NOTES_MODEL=memory	mocha	test-model

		Model	Test

				check	keylist

						√	should	have	three	entries

						√	should	have	keys	n1	n2	n3

						√	should	have	titles	Node	#

		3	passing	(18ms)

The	mocha	command	is	used	to	run	the	test	suite.	

The	structure	of	the	output	follows	the	structure	of	the	describe	and	it
blocks.	You	should	set	up	the	descriptive	text	strings	so	it	reads	nicely.

More	tests	for	the	Notes	model
That	wasn't	enough	to	test	much,	so	let's	go	ahead	and	add	some	more
tests:

describe("read	note",	function()	{

				it("should	have	proper	note",	async	function()	{

								const	note	=	await	model.read("n1");

								assert.exists(note);

								assert.deepEqual({	key:	note.key,	title:	note.title,	body:	

								note.body	},	{

										key:	"n1",	title:	"Note	1	FAIL",	body:	"Note	1"

								});

				});

				

				it("Unknown	note	should	fail",	async	function()	{

								try	{

										const	note	=	await	model.read("badkey12");

										assert.notExists(note);

										throw	new	Error("should	not	get	here");

								}	catch(err)	{

										//	this	is	expected,	so	do	not	indicate	error

										assert.notEqual(err.message,	"should	not	get	here");

								}

				});

});

describe("change	note",	function()	{

				it("after	a	successful	model.update",	async	function()	{

								const	newnote	=	await	model.update("n1",	"Note	1	title	

								changed",	"Note	1	body	changed");

								const	note	=	await	model.read("n1");

								assert.exists(note);

								assert.deepEqual({	key:	note.key,	title:	note.title,	body:	

								note.body	},	{

										key:	"n1",	title:	"Note	1	title	changed",	body:	"Note	1	body	

								changed"

								});

				});

});

describe("destroy	note",	function()	{

				it("should	remove	note",	async	function()	{

								await	model.destroy("n1");

								const	keyz	=	await	model.keylist();

								assert.exists(keyz);

								assert.isArray(keyz);

								assert.lengthOf(keyz,	2);

								for	(let	key	of	keyz)	{

										assert.match(key,	n[23],	"correct	key");

								}

				});

				it("should	fail	to	remove	unknown	note",	async	function()	{

								try	{

										await	model.destroy("badkey12");

										throw	new	Error("should	not	get	here");

								}	catch(err)	{

												//	this	is	expected,	so	do	not	indicate	error

												assert.notEqual(err.message,	"should	not	get	here");

								}

				});

		});

		after(function()	{		model.close();	});

});	

Notice	that	for	the	negative	tests	–	where	the	test	passes	if	an	error	is
thrown	–	we	run	it	in	a	try/catch	block.	The	throw	new	Error	line	in	each	case
should	not	execute	because	the	preceding	code	should	throw	an	error.
Therefore,	we	can	check	if	the	message	in	that	thrown	error	is	the	message
which	arrives,	and	fail	the	test	if	that's	the	case.

Now,	the	test	report:

$	npm	run	test-notes-memory

>	notes-test@1.0.0	test-notes-memory	Usersdavid/chap11/notes/test

>	NOTES_MODEL=memory	mocha	test-model

		Model	Test

				check	keylist

						√	should	have	three	entries

						√	should	have	keys	n1	n2	n3

						√	should	have	titles	Node	#

				read	note

						√	should	have	proper	note

						√	Unknown	note	should	fail

				change	note

						√	after	a	successful	model.update

				destroy	note

						√	should	remove	note

						√	should	fail	to	remove	unknown	note

		8	passing	(17ms)	

In	these	additional	tests,	we	have	a	couple	of	negative	tests.	In	each	test
that	we	expect	to	fail,	we	supply	a	notekey	that	we	know	is	not	in	the
database,	and	we	then	ensure	that	the	model	gives	us	an	error.

The	Chai	Assertions	API	includes	some	very	expressive	assertions.	In	this
case,	we've	used	the	deepEqual	method	which	does	a	deep	comparison	of
two	objects.	In	our	case,	it	looks	like	this:

assert.deepEqual({	key:	note.key,	title:	note.title,	body:	note.body	},	{

			key:	"n1",	title:	"Note	1",	body:	"Note	1"

	});

This	reads	nicely	in	the	test	code,	but	more	importantly	a	reported	test
failure	looks	very	nice.	Since	these	are	currently	passing,	try	introducing
an	error	by	changing	one	of	the	expected	value	strings.	Upon	rerunning
the	test,	you'll	see:

	Model	Test	

				check	keylist	

						√	should	have	three	entries	

						√	should	have	keys	n1	n2	n3	

						√	should	have	titles	Node	#	

				read	note	

						1)	should	have	proper	note	

						√	Unknown	note	should	fail	

				change	note	

						√	after	a	successful	model.update	

				destroy	note	

						√	should	remove	note	

						√	should	fail	to	remove	unknown	note	

	

		7	passing	(42ms)	

		1	failing	

	

		1)	Model	Test	

							read	note	

									should	have	proper	note:	

						AssertionError:	expected	{	Object	(key,	title,	...)	}	to	deeply	

						equal	{	Object	(key,	title,	...)	}	

						+	expected	-	actual	

	

							{	

									"body":	"Note	1"	

									"key":	"n1"	

						-		"title":	"Note	1"	

						+		"title":	"Note	1	FAIL"	

							}	

							

						at	Context.<anonymous>	(test-model.js:53:16)																																															

						at	<anonymous>																			

At	the	top	is	the	status	report	of	each	test	case.	For	one	test,	instead	of	a
check	mark	is	a	number,	and	the	number	corresponds	to	the	reported
details	at	the	bottom.	Mocha	presents	test	failures	this	way	when	the	spec
reporter	is	used.	Mocha	supports	other	test	report	formats,	some	of	which
produce	data	that	can	be	sent	into	test	status	reporting	systems.	For	more
information,	see	https://mochajs.org/#reporters.

In	this	case,	the	failure	was	detected	by	a	deepEqual	method,	which	presents
the	detected	object	inequality	in	this	way.

https://mochajs.org/#reporters

Testing	database	models
That	was	good,	but	we	obviously	won't	run	Notes	in	production	with	the
in-memory	Notes	model.	This	means	that	we	need	to	test	all	the	other
models.	

Testing	the	LevelUP	and	filesystem	models	is	easy,	just	add	this	to	the
scripts	section	of	package.json:	"test-notes-levelup":
"NOTES_MODEL=levelup	mocha",	"test-notes-fs":
"NOTES_MODEL=fs	mocha",

Then	run	the	following	command:	$	npm	run	test-notes-fs	$	npm	run
test-notes-levelup

This	will	produce	a	successful	test	result.

The	simplest	database	to	test	is	SQLite3,	since	it	requires	zero	setup.	We
have	two	SQLite3	models	to	test,	let's	start	with	notes-sqlite3.js.	Add	the
following	to	the	scripts	section	of	package.json:	"test-notes-sqlite3":	"rm	-f
chap11.sqlite3	&&	sqlite3	chap11.sqlite3	--init	../models/chap07.sql
<devnull	&&	NOTES_MODEL=sqlite3	SQLITE_FILE=chap11.sqlite3
mocha	test-model",

This	command	sequence	puts	the	test	database	in	the	chap11.sqlite3	file.	It
first	initializes	that	database	using	the	sqlite3	command-line	tool.	Note	that
we've	connected	its	input	to	devnull	because	the	sqlite3	command	will
prompt	for	input	otherwise.	Then,	it	runs	the	test	suite	passing	in
environment	variables	required	to	run	against	the	SQLite3	model.

Running	the	test	suite	does	find	two	errors:	$	npm	run	test-notes-sqlite3	

>	notestest@1.0.0	test-notes-sqlite3	Usersdavid/chap11/notes/test	
>	rm	-f	chap11.sqlite3	&&	sqlite3	chap11.sqlite3	--init

../models/chap07.sql	<devnull	&&	NOTES_MODEL=sqlite3
SQLITE_FILE=chap11.sqlite3	mocha	test-model	

Model	Test	
check	keylist	
√	should	have	three	entries	
√	should	have	keys	n1	n2	n3	
√	should	have	titles	Node	#	
read	note	
√	should	have	proper	note	
1)	Unknown	note	should	fail	
change	note	
√	after	a	successful	model.update	(114ms)	
destroy	note	
√	should	remove	note	(103ms)	
2)	should	fail	to	remove	unknown	note	

6	passing	(6s)	
2	failing	

1)	Model	Test	
read	note	
Unknown	note	should	fail:	
Uncaught	TypeError:	Cannot	read	property	'notekey'	of	undefined	
at	Statement.db.get	(/home/david/nodewebdev/nodeweb-development-
code-4th-edition/chap11/notes/models/notes-sqlite3.mjs:64:39)	

2)	Model	Test	
destroy	note	
should	fail	to	remove	unknown	note:	

AssertionError:	expected	'should	not	get	here'	to	not	equal	
'should	not	get	here'	
+	expected	-	actual	

The	failing	test	calls	model.read("badkey12"),	a	key	which	we	know	does	not

exist.	Writing	negative	tests	paid	off.	The	failing	line	of	code	at
models/notes-sqlite3.mjs	(line	64)	reads	as	follows:	const	note	=	new
Note(row.notekey,	row.title,	row.body);

It's	easy	enough	to	insert	console.log(util.inspect(row));	just	before	this	and
learn	that,	for	the	failing	call,	SQLite3	gave	us	undefined	for	row,	explaining
the	error	message.

The	test	suite	calls	the	read	function	multiple	times	with	a	notekey	value	that
does	exist.	Obviously,	when	given	an	invalid	notekey	value,	the	query	gives
an	empty	results	set	and	SQLite3	invokes	the	callback	with	both	the
undefined	error	and	the	undefined	row	values.	This	is	common	behavior	for
database	modules.	An	empty	result	set	isn't	an	error,	and	therefore	we
received	no	error	and	an	undefined	row.

In	fact,	we	saw	this	behavior	earlier	with	models/notes-sequelize.mjs.	The
equivalent	code	in	models/notes-sequelize.mjs	does	the	right	thing,	and	it	has	a
check,	which	we	can	adapt.	Let's	rewrite	the	read	function	in	models/notes-
sqlite.mjs	to	this:	export	async	function	read(key)	{
var	db	=	await	connectDB();
var	note	=	await	new	Promise((resolve,	reject)	=>	{
db.get("SELECT	*	FROM	notes	WHERE	notekey	=	?",	[key],	(err,	row)	
=>	{
if	(err)	return	reject(err);
if	(!row)	{	reject(new	Error(`No	note	found	for	${key}`));	}	
else	{
const	note	=	new	Note(row.notekey,	row.title,	row.body);
resolve(note);
}
});
});
return	note;
}

This	is	simple,	we	just	check	whether	row	is	undefined	and,	if	so,	throw	an
error.	While	the	database	doesn't	see	an	empty	results	set	as	an	error,	Notes
does.	Furthermore,	Notes	already	knows	how	to	deal	with	a	thrown	error

If	we	inspect	the	other	models,	they're	throwing	errors	for	a
nonexistent	key.	In	SQL,	it	obviously	is	not	an	error	if	this	SQL	(from
models/notes-sqlite3.mjs)	does	not	delete	anything:
db.run("DELETE	FROM	notes	WHERE	notekey	=	?;",	...);

Unfortunately,	there	isn't	a	SQL	option	to	make	this	SQL	statement
fail	if	it	does	not	delete	any	records.	Therefore,	we	must	add	a	check
to	see	if	a	record	exists.	Namely:	export	async	function	destroy(key)	{
const	db	=	await	connectDB();
const	note	=	await	read(key);
return	await	new	Promise((resolve,	reject)	=>	{
db.run("DELETE	FROM	notes	WHERE	notekey	=	?;",	[key],	err	=>
{
if	(err)	return	reject(err);
resolve();
});
});
}
Therefore,	we	read	the	note	and	as	a	byproduct	we	verify	the	note
exists.	If	the	note	doesn't	exist,	read	will	throw	an	error,	and	the
DELETE	operation	will	not	even	run.
These	are	the	bugs	we	referred	to	in	Chapter	7,	Data	Storage	and
Retrieval.	We	simply	forgot	to	check	for	these	conditions	in	this

in	this	case.	Make	this	change	and	that	particular	test	case	passes.	

There	is	a	second	similar	error	in	the	destroy	logic.	The	test	to	destroy	a
nonexistent	note	fails	to	produce	an	error	at	this	line:

await	model.destroy("badkey12");

particular	model.	Thankfully,	our	diligent	testing	caught	the	problem.
At	least,	that's	the	story	to	tell	the	managers	rather	than	telling	them
that	we	forgot	to	check	for	something	we	already	knew	could	happen.
Now	that	we've	fixed	models/notes-sqlite3.mjs,	let's	also	test
models/notes-sequelize.mjs	using	the	SQLite3	database.	To	do	this,
we	need	a	connection	object	to	specify	in	the	SEQUELIZE_CONNECT
variable.	While	we	can	reuse	the	existing	one,	let's	create	a	new	one.
Create	a	file	named	test/sequelize-sqlite.yaml	containing	this:
dbname:	notestest	username:	password:	params:	dialect:	sqlite
storage:	notestest-sequelize.sqlite3	logging:	false
This	way,	we	don't	overwrite	the	production	database	instance	with
our	test	suite.	Since	the	test	suite	destroys	the	database	it	tests,	it	must
be	run	against	a	database	we	are	comfortable	destroying.	The	logging
parameter	turns	off	the	voluminous	output	Sequelize	produces	so	that
we	can	read	the	test	results	report.
Add	the	following	to	the	scripts	section	of	package.json:	"test-notes-
sequelize-sqlite":	"NOTES_MODEL=sequelize
SEQUELIZE_CONNECT=sequelize-sqlite.yaml	mocha	test-model"
Then	run	the	test	suite:
$	npm	run	test-notes-sequelize-sqlite	

..	

	8	passing	(2s)	

We	pass	with	flying	colors!		We've	been	able	to	leverage	the	same	test
suite	against	multiple	Notes	models.	We	even	found	two	bugs	in	one
model.	But,	we	have	two	test	configurations	remaining	to	test.
Our	test	results	matrix	reads	as	follows:
models-fs:	PASS
models-memory:	PASS
models-levelup:	PASS
models-sqlite3:	2	failures,	now	fixed
models-sequelize:	with	SQLite3:	PASS

models-sequelize:	with	MySQL:	untested
models-mongodb:	untested
The	two	untested	models	both	require	the	setup	of	a	database	server.
We	avoided	testing	these	combinations,	but	our	manager	won't	accept
that	excuse	because	the	CEO	needs	to	know	we've	completed	the	test
cycles.	Notes	must	be	tested	in	a	similar	configuration	to	the
production	environment.
In	production,	we'll	be	using	a	regular	database	server,	of	course,	with
MySQL	or	MongoDB	being	the	primary	choices.	Therefore,	we	need
a	way	that	incurs	a	low	overhead	to	run	tests	against	those	databases.
Testing	against	the	production	configuration	must	be	so	easy	that	we
should	feel	no	resistance	in	doing	so,	to	ensure	that	tests	are	run	often
enough	to	make	the	desired	impact.
Fortunately,	we've	already	had	experience	of	a	technology	that
supports	easily	creating	and	destroying	the	deployment	infrastructure.
Hello,	Docker!

Using	Docker	to	manage	test
infrastructure
One	advantage	Docker	gives	is	the	ability	to	install	the	production
environment	on	our	laptop.	It's	then	very	easy	to	push	the	same	Docker
setup	to	the	cloud-hosting	environment	for	staging	or	production
deployment.	

What	we'll	do	in	this	section	is	demonstrate	reusing	the	Docker	Compose
configuration	defined	previously	for	test	infrastructure,	and	to	automate
executing	the	Notes	test	suite	inside	the	containers	using	a	shell
script.	Generally	speaking,	it's	important	to	replicate	the	production
environment	when	running	tests.	Docker	can	make	this	an	easy	thing	to
do.

Using	Docker,	we'll	be	able	to	easily	test	against	a	database,	and	have	a
simple	method	for	starting	and	stopping	a	test	version	of	our	production
environment.	Let's	get	started.

Docker	Compose	to
orchestrate	test	infrastructure
We	had	a	great	experience	using	Docker	Compose	to	orchestrate	Notes
application	deployment.	The	whole	system,	with	four	independent
services,	is	easily	described	in	compose/docker-compose.yml.	What	we'll	do	is
duplicate	the	Compose	file,	then	make	a	couple	of	small	changes	required
to	support	test	execution.

Let's	start	by	making	a	new	directory,	test-compose,	as	a	sibling	to	the	notes,
users,	and	compose	directories.	Copy	compose/docker-compose.yml	to	the	newly
created	test-compose	directory.	We'll	be	making	several	changes	to	this	file
and	a	couple	of	small	changes	to	the	existing	Dockerfiles.

We	want	to	change	the	container	and	network	names	so	our	test
infrastructure	doesn't	clobber	the	production	infrastructure.	We'll
constantly	delete	and	recreate	the	test	containers,	so	as	to	keep	the
developers	happy,	we'll	leave	development	infrastructure	alone	and
perform	testing	on	separate	infrastructure.	By	maintaining	separate	test
containers	and	networks,	our	test	scripts	can	do	anything	they	like	without
disturbing	the	development	or	production	containers.

Consider	this	change	to	the	db-auth	and	db-notes	containers:

db-userauth-test:

		build:	../authnet

		container_name:	db-userauth-test

		networks:

				-	authnet-test

		environment:

				MYSQL_RANDOM_ROOT_PASSWORD:	"true"

				MYSQL_USER:	userauth-test

				MYSQL_PASSWORD:	userauth-test

				MYSQL_DATABASE:	userauth-test

		volumes:

				-	db-userauth-test-data:/var/lib/mysql

		restart:	always

..	

db-notes-test:

		build:	../frontnet

		container_name:	db-notes-test

		networks:

				-	frontnet-test

		environment:

				MYSQL_RANDOM_ROOT_PASSWORD:	"true"

				MYSQL_USER:	notes-test

				MYSQL_PASSWORD:	notes12345

				MYSQL_DATABASE:	notes-test

		volumes:

				-	db-notes-test-data:/var/lib/mysql

		restart:	always

This	is	the	same	as	earlier,	but	with	-test	appended	to	container
and	network	names.

That's	the	first	change	we	must	make,	append	-test	to	every	container	and
network	name	in	test-compose/docker-compose.yml.	Everything	we'll	do	with
tests	will	run	on	completely	separate	containers,	hostnames,	and	networks
from	those	of	the	development	instance.

This	change	will	affect	the	notes-test	and	userauth-test	services	because	the
database	server	hostnames	are	now	db-auth-test	and	db-notest-test.	There	are
several	environment	variables	or	configuration	files	to	update.

Another	consideration	is	the	environment	variables	required	to	configure
the	services.		Previously,	we	defined	all	environment	variables	in
the	Dockerfiles.		It's	extremely	useful	to	reuse	those	Dockerfiles	so	we
know	we're	testing	the	same	deployment	as	is	used	in	production.		But	we
need	to	tweak	the	configuration	settings	to	match	the	test	infrastructure.

The	database	configuration	shown	here	is	an	example.	The	same
Dockerfiles	are	used,	but	we	also	define	environment	variables	in	test-
compose/docker-compose.yml.	As	you	might	expect,	this	overrides	the
Dockerfile	environment	variables	with	the	values	set	here:

userauth-test:

		build:	../users

		container_name:	userauth-test

		depends_on:

				-	db-userauth-test

		networks:

				-	authnet-test

				-	frontnet-test

		environment:

				DEBUG:	""

				NODE_ENV:	"test"

				SEQUELIZE_CONNECT:	"sequelize-docker-test-mysql.yaml"

				HOST_USERS_TEST:	"localhost"

		restart:	always

		volumes:

				-	./reports-userauth:/reports

..	

notes-test:

		build:	../notes

		container_name:	notes-test

		depends_on:

				-	db-notes-test

		networks:

				-	frontnet-test

		ports:

				-	"3000:3000"

		restart:	always

		environment:

				NODE_ENV:	"test"

				SEQUELIZE_CONNECT:	"test/sequelize-mysql.yaml"

				USER_SERVICE_URL:	"http://userauth-test:3333"

		volumes:

				-	./reports-notes:/reports

...

networks:

		frontnet-test:

				driver:	bridge

		authnet-test:

				driver:	bridge

volumes:	

		db-userauth-test-data:	

		db-notes-test-data:	

Again,	we	changed	the	container	and	network	names	to	append	-test.	We
moved	some	of	the	environment	variables	from	Dockerfile	to	test-
compose/docker-compose.yml.	Finally,	we	added	some	data	volumes	to	mount

host	directories	inside	the	container.

Another	thing	to	do	is	to	set	up	directories	to	store	test	code.	A	common
practice	in	Node.js	projects	is	to	put	test	code	in	the	same	directory	as	the
application	code.	Earlier	in	this	chapter,	we	did	so,	implementing	a	small
test	suite	in	the	notes/test	directory.	As	it	stands,	notes/Dockerfile	does	not
copy	that	directory	into	the	container.	The	test	code	must	exist	in	the
container	to	execute	the	tests.	Another	issue	is	it's	helpful	to	not	deploy
test	code	in	production.

What	we	can	do	is	to	ensure	that	test-compose/docker-compose.yml	mounts
notes/test	into	the	container:

notes-test:

		...

		volumes:

				-	./reports-notes:/reports

				-	../notes/test:/notesapp/test

This	gives	us	the	best	of	both	worlds.

The	test	code	is	in	notes/test	where	it	belongs

The	test	code	is	not	copied	into	the	production	container

In	test	mode,	the	test	directory	appears	where	it	belongs

We	have	a	couple	of	configuration	files	remaining	for	the	Sequelize
database	connection	to	set	up.

For	the	userauth-test	container,	the	SEQUELIZE_CONNECT	variable	now	refers	to	a
configuration	file	that	does	not	exist,	thanks	to	overriding	the	variable	in
user/Dockerfile.	Let's	create	that	file	as	test-compose/userauth/sequelize-docker-
mysql.yaml,	containing	the	following:

dbname:	userauth-test

username:	userauth-test

password:	userauth-test

params:

				host:	db-userauth-test

				port:	3306

				dialect:	mysql

The	values	match	the	variables	passed	to	the	db-userauth-test	container.
Then	we	must	ensure	this	configuration	file	is	mounted	into	the	userauth-
test	container:

userauth-test:

		...

		volumes:

				-	./reports-userauth:/reports

				-	./userauth/sequelize-docker-test-mysql.yaml:/userauth/sequelize-

		docker-test-mysql.yaml

For	notes-test	we	have	a	configuration	file,	test/sequelize-mysql.yaml,	to	put
in	the	notes/test	directory:

dbname:	notes-test	

username:	notes-test

password:	notes12345

params:	

				host:	db-notes-test

				port:	3306	

				dialect:	mysql	

				logging:	false	

Again,	this	matches	the	configuration	variables	in	db-notes-test.	In	test-
compose/docker-compose.yml,	we	mount	that	file	into	the	container.

Executing	tests	under	Docker
Compose
Now	we're	ready	to	execute	some	of	the	tests	inside	a	container.	We've
used	a	Docker	Compose	file	to	describe	the	test	environment	for	the	Notes
application,	using	the	same	architecture	as	in	the	production	environment.
The	test	scripts	and	configuration	has	been	injected	into	the	containers.
The	question	is,	how	do	we	automate	test	execution?

The	technique	we'll	use	is	to	run	a	shell	script,	and	use	docker	exec	-it	to
execute	commands	to	run	the	test	scripts.	This	is	somewhat	automated,
and	with	some	more	work	it	can	be	fully	automated.

In	test-compose,	let's	make	a	shell	script	called	run.sh	(on	Windows,	run.ps1):

docker-compose	stop

docker-compose	build

docker-compose	up	--force-recreate	-d

docker	ps

docker	network	ls

sleep	20

docker	exec	-it	--workdir	notesapptest	-e	DEBUG=	notes-test	npm	install

docker	exec	-it	--workdir	notesapptest	-e	DEBUG=	notes-test	npm	run	test-

notes-memory

docker	exec	-it	--workdir	notesapptest	-e	DEBUG=	notes-test	npm	run	test-

notes-fs

docker	exec	-it	--workdir	notesapptest	-e	DEBUG=	notes-test	npm	run	test-

notes-levelup

docker	exec	-it	--workdir	notesapptest	-e	DEBUG=	notes-test	npm	run	test-

notes-sqlite3

docker	exec	-it	--workdir	notesapptest	-e	DEBUG=	notes-test	npm	run	test-

notes-sequelize-sqlite

docker	exec	-it	--workdir	notesapptest	-e	DEBUG=	notes-test	npm	run	test-

notes-sequelize-mysql

docker-compose	stop	

It's	common	practice	to	run	tests	out	of	a	continuous	integration	system	such	as
Jenkins.	Continuous	integration	systems	automatically	run	builds	or	tests	against
software	products.	The	build	and	test	results	data	is	used	to	automatically	generate
status	pages.		Visit	https://jenkins.io/index.html,	which	is	a	good	starting	point	for	a
Jenkins	job.

That	makes	the	first	real	step	to	building	the	containers,	followed	by
bringing	them	up.	The	script	sleeps	for	a	few	seconds	to	give	the
containers	time	to	fully	instantiate	themselves.

The	subsequent	commands	all	follow	a	particular	pattern	that	is	important
to	understand.	The	commands	are	executed	in	the	notesapptest	directory
thanks	to	the	--workdir	option.	Remember	that	directory	is	injected	into	the
container	by	the	Docker	Compose	file.

Using	-e	DEBUG=	we've	disabled	the	DEBUG	options.	If	those	options	are	set,
we'd	have	excess	unwanted	output	in	the	test	results,	so	using	this	option
ensures	that	debugging	output	doesn't	occur.	

Now	that	you	understand	the	options,	you	can	see	that	the	subsequent
commands	are	all	executed	in	the	test	directory	using	the	package.json	in
that	directory.	It	starts	by	running	npm	install,	and	then	running	each	of	the
scenarios	in	the	test	matrix.

To	run	the	tests,	simply	type:

$	sh	-x	run.sh	

That's	good,	we've	got	most	of	our	test	matrix	automated	and	pretty	well
squared	away.	There	is	a	glaring	hole	in	the	test	matrix	and	plugging	that
hole	will	let	us	see	how	to	set	up	MongoDB	under	Docker.

https://jenkins.io/index.html

MongoDB	setup	under	Docker
and	testing	Notes	against
MongoDB
In	Chapter	7,	Data	Storage	and	Retrieval,	we	developed	MongoDB	support
for	Notes,	and	since	then	we've	focused	on	Sequelize.	To	make	up	for	that
slight,	let's	make	sure	we	at	least	test	our	MongoDB	support.	Testing	on
MongoDB	would	simply	require	defining	a	container	for	the	MongoDB
database	and	a	little	bit	of	configuration.

Visit	https://hub.docker.com/_/mongo/	for	the	official	MongoDB	container.
You'll	be	able	to	retrofit	this	to	allow	deploying	the	Notes	application
running	on	MongoDB.

Add	this	to	test-compose/docker-compose.yml:

db-notes-mongo-test:

		image:	mongo:3.6-jessie

		container_name:	db-notes-mongo-test

		networks:

				-	frontnet-test

		volumes:

				-	./db-notes-mongo:/data/db

That's	all	that's	required	to	add	a	MongoDB	container	to	a	Docker
Compose	file.	We've	connected	it	to	frontnet	so	that	the	notes	(notes-test)
container	can	access	the	service.

Then	in	notes/test/package.json	we	add	a	line	to	facilitate	running	tests	on
MongoDB:

"test-notes-mongodb":	"MONGO_URL=mongodb://db-notes-mongo-test/	

https://hub.docker.com/_/mongo/

MONGO_DBNAME=chap11-test	NOTES_MODEL=mongodb	mocha	--no-timeouts	test-model"

Simply	by	adding	the	MongoDB	container	to	frontnet-test,	the	database	is
available	at	the	URL	shown	here.	Hence,	it's	simple	to	now	run	the	test
suite	using	the	Notes	MongoDB	model.	

The	--no-timeouts	option	was	necessary	to	avoid	a	spurious	error	while
testing	the	suite	against	MongoDB.	This	option	instructs	Mocha	to	not
check	whether	a	test	case	execution	takes	too	long.

The	final	requirement	is	to	add	this	line	in	run.sh	(or	run.ps1	for	Windows):

docker	exec	-it	--workdir	notesapptest	-e	DEBUG=	notes-test	npm	run	test-

notes-mongodb

That,	then,	ensures	MongoDB	is	tested	during	every	test	run.	

We	can	now	report	to	the	manager	the	final	test	results	matrix:

models-fs:	PASS

models-memory:	PASS

models-levelup:	PASS

models-sqlite3:	Two	failures,	now	fixed,	PASS

models-sequelize	with	SQLite3:	PASS

models-sequelize	with	MySQL:	PASS

models-mongodb:	PASS

The	manager	will	tell	you	"good	job"	and	then	remember	that	the	Models
are	only	a	portion	of	the	Notes	application.	We've	left	two	areas
completely	untested:

The	REST	API	for	the	user	authentication	service

Functional	testing	of	the	user	interface

Let's	get	on	with	those	testing	areas.	

Testing	REST	backend
services
It's	now	time	to	turn	our	attention	to	the	user	authentication	service.	We've
mentioned	tests	of	this	service,	saying	that	we'll	get	to	them	later.	We	had
developed	some	scripts	for	ad	hoc	testing,	which	have	been	useful	all
along.	But	later	is	now,	and	it's	time	to	get	cracking	on	some	real	tests.

There's	a	question	of	which	tool	to	use	for	testing	the	authentication
service.	Mocha	does	a	good	job	of	organizing	a	series	of	test	cases,	and	we
should	reuse	it	here.	But	the	thing	we	have	to	test	is	a	REST	service.	The
customer	of	this	service,	the	Notes	application,	uses	it	through	the	REST
API,	giving	us	a	perfect	rationalization	to	test	at	the	REST	interface.	Our
ad	hoc	scripts	used	the	SuperAgent	library	to	simplify	making	REST	API
calls.	There	happens	to	be	a	companion	library,	SuperTest,	that	is	meant
for	REST	API	testing.	Read	its	documentation	here:	https://www.npmjs.com/pa
ckage/supertest.

We've	already	made	the	test-compose/userauth	directory.	In	that	directory,
create	a	file	named	test.js:

'use	strict';

const	assert	=	require('chai').assert;

const	request	=	require('supertest')(process.env.URL_USERS_TEST);

const	util	=	require('util');

const	url	=	require('url');

const	URL	=	url.URL;

const	authUser	=	'them';

const	authKey	=	'D4ED43C0-8BD6-4FE2-B358-7C0E230D11EF';

describe("Users	Test",	function()	{

				...	Test	code	follows

});

https://www.npmjs.com/package/supertest

This	sets	up	Mocha	and	the	SuperTest	client.	The
URL_USERS_TEST	environment	variable	specifies	the	base	URL	of	the	server	to
run	the	test	against.	You'll	almost	certainly	be	using	http://localhost:3333
given	the	configuration	we've	used	earlier	in	the	book.	SuperTest
initializes	itself	a	little	differently	to	SuperAgent.	The	SuperTest	module
exposes	a	function	that	we	call	with	the		URL_USERS_TEST	environment
variable,	then	we	use	THAT	request	object	throughout	the	rest	of	the	script
to	make	REST	API	requests.

This	variable	was	already	set	in	test-compose/docker-compose.yml	with	the
required	value.	The	other	thing	of	importance	is	a	pair	of	variables	to	store
the	authentication	user	ID	and	key:

beforeEach(async	function()	{

		await	request.post('/create-user')

							.send({	

										username:	"me",	password:	"w0rd",	provider:	"local",

										familyName:	"Einarrsdottir",	givenName:	"Ashildr",	

										middleName:	"",

										emails:	[],	photos:	[]

								})

								.set('Content-Type',	'application/json')

								.set('Acccept',	'application/json')

								.auth(authUser,	authKey);

});

				

afterEach(async	function()	{

		await	request.delete('destroyme')

								.set('Content-Type',	'application/json')

								.set('Acccept',	'application/json')

								.auth(authUser,	authKey);

});	

If	you	remember,	the	beforeEach	function	is	run	immediately	before	every
test	case,	and	afterEach	is	run	afterward.	These	functions	use	the	REST	API
to	create	our	test	user	before	running	the	test,	and	then	afterward	to
destroy	the	test	user.	That	way	our	tests	can	assume	this	user	will	exist:

describe("List	user",	function()	{

			it("list	created	users",	async	function()	{

					const	res	=	await	request.get('/list')

										.set('Content-Type',	'application/json')

										.set('Acccept',	'application/json')

										.auth(authUser,	authKey);

				assert.exists(res.body);

				assert.isArray(res.body);

				assert.lengthOf(res.body,	1);

				assert.deepEqual(res.body[0],	{	

										username:	"me",	id:	"me",	provider:	"local",

										familyName:	"Einarrsdottir",	givenName:	"Ashildr",	

										middleName:	"",

										emails:	[],	photos:	[]

				});

		});

});

Now,	we	can	turn	to	testing	some	API	methods,	such	as	the	/list
operation.

We	have	already	guaranteed	that	there	is	an	account,	in	the	beforeEach
method,	so	/list	should	give	us	an	array	with	one	entry.

This	follows	the	general	pattern	for	using	Mocha	to	test	a	REST	API
method.	First,	we	use	SuperTest's	request	object	to	call	the	API	method,
and	await	its	result.	Once	we	have	the	result,	we	use	assert	methods	to
validate	it	is	what	is	expected:

describe("find	user",	function()	{

		it("find	created	users",	async	function()	{

				const	res	=	await	request.get('findme')

												.set('Content-Type',	'application/json')

												.set('Acccept',	'application/json')

												.auth(authUser,	authKey);

				assert.exists(res.body);

				assert.isObject(res.body);

				assert.deepEqual(res.body,	{	

												username:	"me",	id:	"me",	provider:	"local",

												familyName:	"Einarrsdottir",	givenName:	"Ashildr",	

												middleName:	"",

												emails:	[],	photos:	[]

				});

});

it("fail	to	find	nonexistent	users",	async	function()	{

				var	res;

				try	{

						res	=	await	request.get('findnonExistentUser')

												.set('Content-Type',	'application/json')

												.set('Acccept',	'application/json')

												.auth(authUser,	authKey);

				}	catch(e)	{

						return;	//	Test	is	okay	in	this	case

				}

				assert.exists(res.body);

				assert.isObject(res.body);

				assert.deepEqual(res.body,	{});

		});

});				

We	are	checking	the	/find	operation	in	two	ways:

Looking	for	the	account	we	know	exists	–	failure	is	indicated	if
the	user	account	is	not	found

Looking	for	the	one	we	know	does	not	exist	–	failure	is	indicated
if	we	receive	something	other	than	an	error	or	an	empty	object

Add	this	test	case:

describe("delete	user",	function()	{

		it("delete	nonexistent	users",	async	function()	{

				var	res;

				try	{

						res	=	await	request.delete('destroynonExistentUser')

														.set('Content-Type',	'application/json')

														.set('Acccept',	'application/json')

														.auth(authUser,	authKey);

				}	catch(e)	{

						return;	//	Test	is	okay	in	this	case

				}

				assert.exists(res);

				assert.exists(res.error);

				assert.notEqual(res.status,	200);

		});

});	

Finally,	we	should	check	the	/destroy	operation.	We	already	check	this

operation	in	the	afterEach	method,	where	we	destroy	a	known	user	account.
We	need	to	also	perform	the	negative	test	and	verify	its	behavior	against
an	account	we	know	does	not	exist.

The	desired	behavior	is	that	either	an	error	is	thrown,	or	the	result	shows
an	HTTP	status	indicating	an	error.	In	fact,	the	current	authentication
server	code	gives	a	500	status	code	along	with	some	other	information.

In	test-compose/docker-compose.yml,	we	need	to	inject	this	script,	test.js,	into
the	userauth-test	container.	We'll	add	that	here:

userauth-test:

		...

		volumes:

				-	./reports-userauth:/reports

				-	./userauth/sequelize-docker-test-mysql.yaml:/userauth/sequelize-docker-

test-mysql.yaml

				-	./userauth/test.js:/userauth/test.js

We	have	a	test	script,	and	have	injected	that	script	into	the	desired
container	(userauth-test).	The	next	step	is	to	automate	running	this	test.	One
way	is	to	add	this	to	run.sh	(aka	run.ps1	on	Windows):

docker	exec	-it	-e	DEBUG=	userauth-test	npm	install	supertest	mocha	chai

docker	exec	-it	-e	DEBUG=	userauth-test	./node_modules/.bin/mocha	test.js

Now,	if	you	run	the	run.sh	test	script	you'll	see	the	required	packages	get
installed,	and	then	this	test	suite	execution.

Automating	test	results
reporting
It's	cool	we	have	automated	test	execution,	and	Mocha	makes	the	test
results	look	nice	with	all	those	check	marks.	What	if	the	management
wants	a	graph	of	test	failure	trends	over	time?		Or	there	could	be	any
number	of	reasons	to	report	test	results	as	data	rather	than	a	user-friendly
printout	on	the	console.

Mocha	uses	what's	called	a	Reporter	to	report	test	results.	A	Mocha
Reporter	is	a	module	that	prints	data	in	whatever	format	it	supports.
Information	is	on	the	Mocha	website:		https://mochajs.org/#reporters.

You	will	find	the	current	list	of	available	reporters	like	so:

#	mocha	--reporters

				dot	-	dot	matrix

				doc	-	html	documentation

				spec	-	hierarchical	spec	list

				json	-	single	json	object

				progress	-	progress	bar

				list	-	spec-style	listing

				tap	-	test-anything-protocol

...

Then	you	use	a	specific	reporter	like	so:

#	mocha	--reporter	tap	test

1..4

ok	1	Users	Test	List	user	list	created	users

ok	2	Users	Test	find	user	find	created	users

ok	3	Users	Test	find	user	fail	to	find	nonexistent	users

ok	4	Users	Test	delete	user	delete	nonexistent	users

#	tests	4

https://mochajs.org/#reporters

#	pass	4

#	fail	0

Test	Anything	Protocol	(TAP)	is	a	widely	used	test	results	format,
increasing	the	possibility	of	finding	higher	level	reporting	tools.
Obviously,	the	next	step	would	be	to	save	the	results	into	a	file
somewhere,	after	mounting	a	host	directory	into	the	container.

Frontend	headless	browser
testing	with	Puppeteer
A	big	cost	area	in	testing	is	manual	user	interface	testing.	Therefore,	a
wide	range	of	tools	have	been	developed	to	automate	running	tests	at	the
HTTP	level.	Selenium	is	a	popular	tool	implemented	in	Java,	for	example.
In	the	Node.js	world,	we	have	a	few	interesting	choices.	The	chai-http
plugin	to	Chai	would	let	us	interact	at	the	HTTP	level	with	the	Notes
application,	while	staying	within	the	now-familiar	Chai	environment.	

However,	for	this	section,	we'll	use	Puppeteer	(https://github.com/GoogleChrom
e/puppeteer).	This	tool	is	a	high-level	Node.js	module	to	control	a	headless
Chrome	or	Chromium	browser,	using	the	DevTools	protocol.	That
protocol	allows	tools	to	instrument,	inspect,	debug,	and	profile	Chromium
or	Chrome.	

Puppeteer	is	meant	to	be	a	general	purpose	test	automation	tool,	and	has	a
strong	feature	set	for	that	purpose.	Because	it's	easy	to	make	web	page
screenshots	with	Puppeteer,	it	can	also	be	used	in	a	screenshot	service.

Because	Puppeteer	is	controlling	a	real	web	browser,	your	user	interface
tests	will	be	very	close	to	live	browser	testing	without	having	to	hire	a
human	to	do	the	work.	Because	it	uses	a	headless	version	of	Chrome,	no
visible	browser	window	will	show	on	your	screen,	and	tests	can	be	run	in
the	background,	instead.	A	downside	to	this	attractive	story	is	that
Puppeteer	only	works	against	Chrome.	Meaning	that	an	automated	test
against	Chrome	does	not	test	your	application	against	other	browsers,	such
as	Opera	or	Firefox.	

https://github.com/GoogleChrome/puppeteer

Setting	up	Puppeteer
Let's	first	set	up	the	directory	and	install	the	packages:

$	mkdir	test-compose/notesui

$	cd	test-compose/notesui

$	npm	init

...	answer	the	questions

$	npm	install	puppeteer@1.1.x	mocha@5.x	chai@4.1.x	--save

During	installation,	you'll	see	that	Puppeteer	causes	the	download	of
Chromium	like	so:

Downloading	Chromium	r497674	-	92.5	Mb	[====================]	100%	0.0s	

The	puppeteer	module	will	launch	that	Chromium	instance	as	needed,
managing	it	as	a	background	process,	and	communicating	with	it	using	the
DevTools	protocol.

In	the	script	we're	about	to	write,	we	need	a	user	account	that	we	can	use
to	log	in	and	perform	some	actions.	Fortunately,	we	already	have	a	script
to	set	up	a	test	account.	In	users/package.json,	add	this	line	to	the	scripts
section:	"setupuser":	"PORT=3333	node	users-add",

We're	about	to	write	this	test	script,	but	let's	finish	the	setup,	the	final	bit
of	which	is	adding	these	lines	to	run.sh:

docker	exec	-it	userauth-test	npm	run	setupuser	

docker	exec	-it	notesapp-test	npm	run	test-docker-ui	

When	executed,	these	two	lines	ensure	that	the	test	user	is	set	up,	and	it
then	runs	the	user	interface	tests.

Improving	testability	in	the
Notes	UI
While	the	Notes	application	displays	well	in	the	browser,	how	do	we	write
test	software	to	distinguish	one	page	from	another?		The	key	requirement
is	for	test	scripts	to	inspect	the	page,	determine	which	page	is	being
displayed,	and	read	the	data	on	the	page.	That	means	each	HTML	element
must	be	easily	addressable	using	a	CSS	selector.	

While	developing	the	Notes	application,	we	forgot	to	do	that,	and	the
Software	Quality	Engineering	(SQE)	manager	has	requested	our
assistance.	At	stake	is	the	testing	budget,	which	will	be	stretched	further
the	more	the	SQE	team	can	automate	their	tests.

All	that's	necessary	is	to	add	a	few	id	or	class	attributes	to	HTML	elements
to	improve	testability.	With	a	few	identifiers,	and	a	commitment	to
maintain	those	identifiers,	the	SQE	team	can	write	repeatable	test	scripts
to	validate	the	application.

In	notes/partials/header.hbs,	change	these	lines:

...

...

{{#if	user}}

...

<a	class="nav-item	nav-link	btn	btn-dark	col-auto"	id="btnLogout"	

href="userslogout">...

<a	class="nav-item	nav-link	btn	btn-dark	col-auto"	id="btnAddNote"	

href='notesadd'>...

{{else}}

...

<a	class="nav-item	nav-link	btn	btn-dark	col-auto"	id="btnloginlocal"	

href="userslogin">..

<a	class="nav-item	nav-link	btn	btn-dark	col-auto"	

																								id="btnLoginTwitter"	href="usersauth/twitter">...

...

{{/if}}

...

In	notes/views/index.hbs,	make	these	changes:

<div	id="notesHomePage"	class="container-fluid">

		<div	class="row">

				<div	id="notetitles"	class="col-12	btn-group-vertical"	role="group">

						{{#each	notelist}}

						<a	id="{{key}}"	class="btn	btn-lg	btn-block	btn-outline-dark"	

										href="notesview?key={{	key	}}">...

						{{/each}}

				</div>

		</div>

</div>

In	notes/views/login.hbs,	make	these	changes:

<div	id="notesLoginPage"	class="container-fluid">

...

<form	id="notesLoginForm"	method='POST'	action='userslogin'>	

...

<button	type="submit"	id="formLoginBtn"	class="btn	btn-

default">Submit</button>	

</form>

...

</div>

In	notes/views/notedestroy.hbs,	make	these	changes:

<form	id="formDestroyNote"	method='POST'	action='notesdestroy/confirm'>

...

<button	id="btnConfirmDeleteNote"	type="submit"	value='DELETE'	

																class="btn	btn-outline-dark">DELETE</button>

...

</form>

In	notes/views/noteedit.hbs,	make	these	changes:

<form	id="formAddEditNote"	method='POST'	action='notessave'>

...

<button	id='btnSave'	type="submit"	class="btn	btn-default">Submit</button>

...

</form>

In	notes/views/noteview.hbs,	make	these	changes:

<div	id="noteView"	class="container-fluid">

...

<p	id="showKey">Key:	{{	notekey	}}</p>

...

<a	id="btnDestroyNote"	class="btn	btn-outline-dark"	

					href="notesdestroy?key={{notekey}}"	role="button">	...		

<a	id="btnEditNote"	class="btn	btn-outline-dark"	

					href="notesedit?key={{notekey}}"	role="button">	...	

<button	id="btnComment"	type="button"	class="btn	btn-outline-dark"	

					data-toggle="modal"	data-target="#notes-comment-modal">	...	</button>	

...

</div>

What	we've	done	is	add	id=	attributes	to	selected	elements	in	the	templates.
We	can	now	easily	write	CSS	selectors	to	address	any	element.	The
engineering	team	can	also	start	using	these	selectors	in	UI	code.

Puppeteer	test	script	for	Notes
In	test-compose/notesui,	create	a	file	named	uitest.js	containing	the
following:

const	puppeteer	=	require('puppeteer');

const	assert	=	require('chai').assert;

const	util	=	require('util');

const	{	URL	}	=	require('url');

describe('Notes',	function()	{

				this.timeout(10000);

				let	browser;

				let	page;

				before(async	function()	{

								browser	=	await	puppeteer.launch({	slomo:	500	});

								page	=	await	browser.newPage();

								await	page.goto(process.env.NOTES_HOME_URL);

				});

				after(async	function()	{

								await	page.close();

								await	browser.close();

				});

});

This	is	the	start	of	a	Mocha	test	suite.	In	the	before	function,	we	set	up
Puppeteer	by	launching	a	Puppeteer	instance,	starting	a	new	Page	object,
and	telling	that	Page	to	go	to	the	Notes	application	home	page.	That	URL
is	passed	in	using	the	named	environment	variable.

It's	useful	to	first	think	about	scenarios	we	might	want	to	verify	with	the
Notes	applications:

Log	into	the	Notes	application

Add	a	note	to	the	application

View	an	added	note

Delete	an	added	note

Log	out

And	so	on

Here's	code	for	an	implementation	of	the	Login	scenario:

describe('Login',	function()	{

				before(async	function()	{	...	});

				it('should	click	on	login	button',	async	function()	{

								const	btnLogin	=	await	page.waitForSelector('#btnloginlocal');

								await	btnLogin.click();

				});

				it('should	fill	in	login	form',	async	function()	{

								const	loginForm	=	await	page.waitForSelector('#notesLoginPage	

								#notesLoginForm');

								await	page.type('#notesLoginForm	#username',	"me");

								await	page.type('#notesLoginForm	#password',	"w0rd");

								await	page.click('#formLoginBtn');

				});

				it('should	return	to	home	page',	async	function()	{

								const	home	=	await	page.waitForSelector('#notesHomePage');

								const	btnLogout	=	await	page.waitForSelector('#btnLogout');

								const	btnAddNote	=	await	page.$('#btnAddNote');

								assert.exists(btnAddNote);

				});

				after(async	function()	{	...	});

});

This	test	sequence	handles	the	Login	Scenario.	It	shows	you	a	few	of	the
Puppeteer	API	methods.	Documentation	of	the	full	API	is	at	https://github.
com/GoogleChrome/puppeteer/blob/master/docs/api.md.	The	Page	object
encapsulates	the	equivalent	of	a	browser	tab	in	Chrome/Chromium.

The	waitForSelector	function	does	what	it	says	–	it	waits	until	an	HTML
element	matching	the	CSS	selector	appears,	and	it	will	wait	over	one	or

https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md

more	page	refreshes.	There	are	several	variants	of	this	function	to	allow
waiting	for	several	kinds	of	things.	This	function	returns	a	Promise,
making	it	worth	our	time	to	use	async	functions	in	our	test	code.	The
Promise	will	resolve	to	an	ElementHandle,	which	is	a	wrapper	around	an
HTML	element,	or	else	throw	an	exception,	which	would	conveniently
make	the	test	fail.

The	named	element,	#btnloginlocal,	is	in	partials/header.hbs,	and	will	show
up	only	when	a	user	is	not	logged	in.	Hence,	we	will	have	determined	that
the	browser	is	currently	displaying	a	Notes	page,	and	that	it	is	not	logged
in.

The	click	method	does	what	it	suggests,	and	causes	a	mouse	button	click
on	the	referenced	HTML	element.	If	you	want	to	emulate	a	tap,	such	as	for
a	mobile	device,	there	is	a	tap	method	for	that	purpose.

The	next	stage	of	the	test	sequence	picks	up	from	that	click.	The	browser
should	have	gone	to	the	Login	page,	and	therefore	this	CSS	selector
should	become	valid:			#notesLoginPage	#notesLoginForm.	What	we	do	next	is
type	text	for	our	test	user	ID	and	password	into	the	corresponding	form
elements,	and	then	click	on	the	Log	In	button.

The	next	test	stage	picks	up	from	there,	and	the	browser	should	be	on	the
home	page	as	determined	by	this	CSS	selector:	#notesHomePage.	If	we	were
logged	in	successfully,	the	page	should	have	Log	Out	(#btnLogout)	and	ADD
Note	buttons	(#btnAddNote).	

In	this	case,	we've	used	a	different	function,	$,	to	check	if	the	ADD	Note
button	exists.	Unlike	the	wait	functions,	$	simply	queries	the	current	page
without	waiting.	If	the	named	CSS	Selector	is	not	in	the	current	page,	it
simply	returns	null	rather	than	throwing	an	exception.	Therefore,	to
determine	that	the	element	exists,	we	use	assert.exists	rather	than	relying
on	the	thrown	exception.

Running	the	login	scenario
Now	that	we	have	one	test	scenario	entered,	let's	give	it	a	whirl.	In	one
window,	start	the	Notes	test	infrastructure:

$	cd	test-compose

$	docker-compose	up	--force-rebuild

Then	in	another	window:

$	docker	exec	-it	userauth	bash

userauth#	PORT=3333	node	./users-add.js

userauth#	exit

$	cd	test-compare/notesui

$	NOTES_HOME_URL=http://localhost:3000	mocha	--no-timeouts	uitest.js	

		Notes

				Login

						√	should	click	on	login	button

						√	should	fill	in	login	form	(72ms)

						√	should	return	to	home	page	(1493ms)

		3	passing	(3s)

The	NOTES_HOME_URL	variable	is	what	the	script	looks	for	to	direct	the
Chromium	browser	to	use	the	Notes	application.	To	run	the	tests,	we
should	use	Docker	Compose	to	launch	the	test	infrastructure,	and	then
ensure	the	test	user	is	installed	in	the	user	database.

The	Add	Note	scenario
Add	this	to	uitest.js:

describe('Add	Note',	function()	{

				//	before(async	function()	{	...	});

				it('should	see	Add	Note	button',	async	function()	{

								const	btnAddNote	=	await	page.waitForSelector('#btnAddNote');

								await	btnAddNote.click();

				});

				it('should	fill	in	Add	Note	form',	async	function()	{

								const	formAddEditNote	=	await	

								page.waitForSelector('#formAddEditNote');

								await	page.type('#notekey',	'key42');

								await	page.type('#title',	'Hello,	world!');

								await	page.type('#body',	'Lorem	ipsum	dolor');

								await	page.click('#btnSave');

				});

				it('should	view	note',	async	function()	{

								await	page.waitForSelector('#noteView');

								const	shownKey	=	await	page.$eval('#showKey',	el	=>	

								el.innerText);

								assert.exists(shownKey);

								assert.isString(shownKey);

								assert.include(shownKey,	'key42');

								const	shownTitle	=	await	page.$eval('#notetitle',	el	=>	

								el.innerText);

								assert.exists(shownTitle);

								assert.isString(shownTitle);

								assert.include(shownTitle,	'Hello,	world!');

								const	shownBody	=	await	page.$eval('#notebody',	el	=>	

								el.innerText);

								assert.exists(shownBody);

								assert.isString(shownBody);

								assert.include(shownBody,	'Lorem	ipsum	dolor');

				});

				it('should	go	to	home	page',	async	function()	{

								await	page.waitForSelector('#btnGoHome');

								await	page.goto(process.env.NOTES_HOME_URL);

								//	await	page.click('#btnGoHome');

								await	page.waitForSelector('#notesHomePage');

								const	titles	=	await	page.$('#notetitles');

								assert.exists(titles);

								const	key42	=	await	page.$('#key42');

								assert.exists(key42);

								const	btnLogout	=	await	page.$('#btnLogout');

								assert.exists(btnLogout);

								const	btnAddNote	=	await	page.$('#btnAddNote');

								assert.exists(btnAddNote);

				});

				//	after(async	function()	{	...	});

});

This	is	a	more	involved	scenario,	in	which	we:

Click	on	the	ADD	Note	button

Wait	for	the	note	edit	screen	to	show	up

Fill	in	the	text	for	the	note	and	click	the	Save	button

Validate	the	note	view	page	to	ensure	that's	correct

Validate	the	home	page	to	ensure	that's	correct.

Most	of	this	is	using	the	same	Puppeteer	functions	as	before,	but	with	a
couple	of	additions.

The	$eval	function	looks	for	the	element	matching	the	CSS	selector,	and
invokes	the	callback	function	on	that	element.	If	no	element	is	found	an
error	is	thrown	instead.	As	used	here,	we	are	retrieving	the	text	from
certain	elements	on	the	screen,	and	validating	that	it	matches	what	the	test
entered	as	the	note.	That's	an	end-to-end	test	of	adding	and	retrieving
notes.

The	next	difference	is	using	goto	instead	of	clicking	on	#btnGoHome.

As	you	add	test	scenarios	to	the	test	script,	you'll	find	it	easy	for	Puppeteer
to	have	a	spurious	timeout,	or	for	the	login	process	to	mysteriously	not
work,	or	other	spurious	errors.	

Rather	than	go	over	the	remaining	scenarios,	we'll	spend	the	next	section
discussing	how	to	mitigate	such	issues.	But	first	we	need	to	prove	the
scenario	does	work	even	if	we	have	to	run	the	test	10	times	to	get	this
result:

$	NOTES_HOME_URL=http://localhost:3000	./node_modules/.bin/mocha	--no-

timeouts	uitest3.js	

		Notes

				Login

						√	should	click	on	login	button	(50ms)

						√	should	fill	in	login	form	(160ms)

						√	should	return	to	home	page	(281ms)

				Add	Note

						√	should	see	Add	Note	button

						√	should	fill	in	Add	Note	form	(1843ms)

						√	should	view	note

						√	should	go	to	home	page	(871ms)

		7	passing	(5s)

	

Mitigating/preventing	spurious
test	errors	in	Puppeteer	scripts
The	goal	is	to	fully	automate	the	test	run,	in	order	to	avoid	having	to	hire	a
human	to	babysit	the	test	execution	and	spend	time	rerunning	tests
because	of	spurious	errors.	To	do	so,	the	tests	need	to	be	repeatable
without	any	spurious	errors.	Puppeteer	is	a	complex	system	–	there	is	a
Node.js	module	communicating	with	a	Chromium	instance	running
Headless	in	the	background	–	and	it	seems	easy	for	timing	issues	to	cause
a	spurious	error.

	

Configuring	timeouts
Both	Mocha	and	Puppeteer	allow	you	to	set	timeout	values,	and	a	long
timeout	value	can	avoid	triggering	an	error,	if	some	action	simply	requires
a	long	time	to	run.	At	the	top	of	the	test	suite,	we	used	this	Mocha
function:

this.timeout(10000);

That	gives	10	seconds	for	every	test	case.	If	you	want	to	use	a	longer
timeout,	increase	that	number.

The	puppeteer.launch	function	can	take	a	timeout	value	in	its	options	object.
By	default,	Puppeteer	uses	a	30-second	timeout	on	most	operations,	and
they	all	take	an	options	object	with	a	setting	to	change	that	timeout	period.
In	this	case,	we've	added	the	slowMo	option	to	slow	down	operations	on	the
browser.

Tracing	events	on	the	Page	and
the	Puppeteer	instance
Another	useful	tactic	is	to	generate	a	trace	of	what	happened	so	you	can
puzzle	away.	Inserting	console.log	statements	is	tedious	and	makes	your
code	look	a	little	ugly.	Puppeteer	offers	a	couple	of	methods	to	trace	the
actions	and	to	dynamically	turn	off	tracing.

In	uitest.js,	add	this	code:	
function	frameEvent(evtname,	frame)	{
console.log(`${evtname}	${frame.url()}	${frame.title()}`);
}

function	ignoreURL(url)	{
if	(url.match(/\/assets\//)	===	null	
&&	url.match(/\/socket.io\//)	===	null
&&	url.match(/fonts.gstatic.com/)	===	null
&&	url.match(/fonts.googleapis.com/)	===	null)	{
return	false;
}	else	{
return	true;
}
}
...
before(async	function()	{
browser	=	await	puppeteer.launch({	slomo:	500	});
page	=	await	browser.newPage();
page.on('console',	msg	=>	{
console.log(`${msg.type()}	${msg.text()}	${msg.args().join('	')}`);
});
page.on('error',	err	=>	{
console.error(`page	ERROR	${err.stack}`);

});
page.on('pageerror',	err	=>	{
console.error(`page	PAGEERROR	${err.stack}`);
});
page.on('request',	req	=>	{
if	(ignoreURL(req.url()))	return;
console.log(`page	request	${req.method()}	${req.url()}`);
});
page.on('response',	async	(res)	=>	{
if	(ignoreURL(res.url()))	return;
console.log(`page	response	${res.status()}	${res.url()}`);
});
page.on('frameattached',	async	(frame)	=>	frameEvent('frameattached',
await	frame));
page.on('framedetached',	async	(frame)	=>	frameEvent('framedetached',
await	frame));
page.on('framenavigated',	async	(frame)	=>	frameEvent('framenavigated',
await	frame));
await	page.goto(process.env.NOTES_HOME_URL);
});
...

That	is,	the	Page	object	offers	several	event	listeners	in	which	we	can
output	details	about	various	events,	including	HTTP	requests	and
responses.	We	can	even	print	out	the	HTML	text	of	the	response.	The
ignoreURL	function	lets	us	suppress	a	few	select	URLs	so	we're	not
inundated	with	unimportant	requests	and	responses.

You	can	trace	Puppeteer	itself	using	its	DEBUG	environment	variable.	See
the	README	for	more	information:	https://github.com/GoogleChrome/puppeteer.

https://github.com/GoogleChrome/puppeteer

Inserting	pauses
It	can	be	useful	to	insert	a	long	pause	at	certain	points	to	give	the	browser
time	to	do	something.	Try	this	function:	function	waitFor(timeToWait)	{
return	new	Promise(resolve	=>	{
setTimeout(()	=>	{	resolve(true);	},	timeToWait);
});
};

This	is	how	we	implement	the	equivalent	of	a	sleep	function	using
Promises.	Using	setTimeOut	this	way,	along	with	a	timeout	value,	simply
causes	a	delay	for	the	given	number	of	milliseconds.	

To	use	this	function,	simply	insert	this	into	the	test	scenarios:

await	waitFor(3000);

A	variant	on	this	is	to	wait	for	things	to	fully	render	in	the	browser.	For
example,	you	might	have	seen	a	pause	before	the	Home	icon	in	the	upper-
left	corner	fully	renders.	That	pause	can	cause	spurious	errors,	and	this
function	can	wait	until	that	button	fully	renders	itself:	async	function
waitForBtnGoHome()	{
return	page.waitForSelector('#btnGoHome');
}

To	use	it:

await	waitForBtnGoHome();

If	you	don't	want	to	maintain	this	extra	function,	it's	easy	enough	to	add
the	waitForSelector	call	into	your	test	cases	instead.

Avoiding	WebSockets	conflicts
An	error,	Cannot	find	context	with	specified	id	undefined,	can	be	thrown	by
Puppeteer.	According	to	an	issue	in	the	Puppeteer	issue	queue,	this	can
arise	from	unplanned	interactions	between	Puppeteer	and	WebSockets:		htt
ps://github.com/GoogleChrome/puppeteer/issues/1325		This	issue	in	turn	affects	the
Socket.IO	support	in	the	Notes	application,	and	therefore	it	may	be	useful
to	disable	Socket.IO	support	during	test	runs.

It's	fairly	simple	to	allow	disabling	of	Socket.IO.	In	app.mjs,	add	this
exported	function:

export	function	enableSocketio()	{

		var	ret	=	true;

		const	env	=	process.env.NOTES_DISABLE_SOCKETIO;

		if	(!env	||	env	!==	'true')	{

				ret	=	true;

		}

		return	ret;

}

This	looks	for	an	environment	variable	to	cause	the	function	to	return	true
or	false.

In	routes/index.mjs	and	routes/notes.mjs,	add	this	line:

import	{	enableSocketio,	sessionCookieName	}	from	'../app';

We	do	this	to	import	the	preceding	function.	It	also	demonstrates	some	of
the	flexibility	we	get	from	ES6	Modules,	because	we	can	import	just	the
required	functions.

In	routes/index.mjs	and	routes/notes.mjs,	for	every	router	function	that	calls
res.render	to	send	results,	use	the	enableSocketio	function	as	so:

https://github.com/GoogleChrome/puppeteer/issues/1325

res.render('view-name',	{	

		...

		enableSocketio:	enableSocketio()

});

Hence,	we've	imported	the	function	and	for	every	view	we	pass
enableSocketio	as	data	to	the	view	template.

In	views/index.hbs	and	views/noteview.hbs,	we	have	a	section	of	JavaScript
code	to	implement	SocketIO-based	semi-real-time	features.	Surround	each
such	section	like	so:

{{#if	enableSocketio}}

...		JavaScript	code	for	SocketIO	support

{{/if}}

By	eliminating	the	client-side	SocketIO	code,	we	ensure	the	user	interface
does	not	open	a	connection	to	the	SocketIO	service.	The	point	of	this
exercise	was	to	avoid	using	WebSockets	to	avoid	issues	with	Puppeteer.

Similarly,	in	views/noteview.hbs	support	disabling	the	Comment	button	like
so:

{{#if	enableSocketio}}

				<button	id="btnComment"	type="button"	class="btn	btn-outline-dark"	

								data-toggle="modal"	data-target="#notes-comment-

modal">Comment</button>

{{/if}}

The	final	step	would	be	to	set	the	environment	variable,
NOTES_DISABLE_SOCKETIO,	in	the	Docker	Compose	file.

Taking	screenshots
One	of	Puppeteer's	core	features	is	to	take	screenshots,	either	as	PNG	or
PDF	files.	In	our	test	scripts,	we	can	take	screenshots	to	track	what	was	on
the	screen	at	any	given	time	during	the	test.	For	example,	if	the	Login
scenario	spuriously	fails	to	log	in,	we	can	see	that	in	the	screenshots:	await
page.screenshot({
type:	'png',
path:	`./screen/login-01-start.png`
});

Simply	add	code	snippets	like	this	throughout	your	test	script.	The
filename	shown	here	follows	a	convention	where	the	first	segment	names
the	test	scenario,	the	number	is	a	sequence	number	within	the	test
scenario,	and	the	last	describes	the	step	within	the	test	scenario.

Taking	screenshots	also	provides	another	stage	of	validation.	You	may
want	to	do	visual	validation	of	your	application	as	well.	The	pixelmatch
module	can	compare	two	PNG	files,	and	therefore	a	set	of	so-called
Golden	Images	can	be	maintained	for	comparison	during	test	runs.	

For	an	example	of	using	Puppeteer	this	way,	see:	https://meowni.ca/posts/2017
-puppeteer-tests/.

https://meowni.ca/posts/2017-puppeteer-tests/

Summary
We've	covered	a	lot	of	territory	in	this	chapter,	looking	at	three	distinct
areas	of	testing:	unit	testing,	REST	API	testing,	and	UI	functional	tests.
Ensuring	that	an	application	is	well	tested	is	an	important	step	on	the	road
to	software	success.	A	team	that	does	not	follow	good	testing	practices	is
often	bogged	down	with	fixing	regression	after	regression.

We've	talked	about	the	potential	simplicity	of	simply	using	the	assert
module	for	testing.	While	the	test	frameworks,	such	as	Mocha,	provide
great	features,	we	can	go	a	long	way	with	a	simple	script.

There	is	a	place	for	test	frameworks,	such	as	Mocha,	if	only	to	regularize
our	test	cases,	and	to	produce	test	results	reports.	We	used	Mocha	and
Chai	for	this,	and	these	tools	were	quite	successful.	We	even	found	a
couple	of	bugs	with	a	small	test	suite.

When	starting	down	the	unit	testing	road,	one	design	consideration	is
mocking	out	dependencies.	But	it's	not	always	a	good	use	of	our	time	to
replace	every	dependency	with	a	mock	version.

To	ease	the	administrative	burden	of	running	tests,	we	used	Docker	to
automate	setting	up	and	tearing	down	the	test	infrastructure.	Just	as
Docker	was	useful	in	automating	deployment	of	the	Notes	application,	it's
also	useful	in	automating	test	infrastructure	deployment.

Finally,	we	were	able	to	test	the	Notes	web	user	interface	in	a	real	web
browser.	We	can't	trust	that	unit	testing	will	find	every	bug;	some	bugs
will	only	show	up	in	the	web	browser.	Even	so,	we've	only	touched	the
beginning	of	what	could	be	tested	in	Notes.

In	this	book,	we've	covered	the	gamut	of	Node.js	development,	giving	you
a	strong	foundation	from	which	to	start	developing	Node.js	applications.

In	the	next	chapter,	we'll	explore	another	critical	area	–	security.	We'll	start
by	using	HTTPS	to	encrypt	and	authenticate	user	access	to	Notes.	And,
we'll	use	several	Node.js	packages	to	limit	the	chance	of	security
intrusions.	

Security
We're	coming	to	the	end	of	this	journey	of	learning	Node.js.	But	there	is
one	important	topic	left	to	discuss:	security.	

Cybersecurity	officials	around	the	world	have	been	clamoring	for	greater
security	on	the	internet.	In	some	cases,	vast	botnets	have	been	built,	thanks
to	weak	security	implementation,	which	are	weaponized	to	bludgeon
websites	or	commit	other	mayhem.	In	other	cases,	rampant	identity	theft
from	security	intrusions	are	a	financial	threat	to	us	all.	Almost	every	day,
the	news	includes	more	revelations	of	cybersecurity	problems.

In	2016,	the	US-CERT	issued	several	warnings	of	vulnerabilities	in
Internet	of	Things	(IoT)	devices,	such	as	security	cameras	or	Wi-Fi
routers.	By	exploiting	vulnerabilities	in	the	devices,	attackers	were	able	to
inject	attack	software	into	these	devices.	The	result	was	a	slaved	botnet	of
hundreds	of	thousands	of	IoT	devices,	which	were	deployed	to	send
massive	Distributed	Denial	of	Service	(DDOS)	attacks	against	specific
websites.

Companies	large	and	small	have	suffered	security	breaches.	The	attackers
generally	make	off	with	user	identity	information,	which	is	why,	in	Chapter	
10,	Deploying	Node.js	Applications,	we	were	careful	to	segment	the	user
database	into	an	isolated	container.	The	more	layers	of	security	you	put
around	critical	systems,	the	less	likely	attackers	can	get	in.

Generally	speaking,	the	internet	has	transitioned	from	being	the
experimental	playground	of	computer	researchers	in	the	1980s	to
becoming	a	central	facet	of	global	society.	All	kinds	of	critical	activities
are	being	conducted	over	the	internet.

For	example,	the	electrical	utilities	and	electric	grid	operators	are
researching	the	transition	of	electricity	grid	control	from	private	networks

to	the	internet.	An	influencing	cause	is	the	increase	in	Internet	of	Things-
based	devices	for	distributed	energy	resources,	such	as	smart	thermostats,
smart	lighting,	solar	arrays,	and	energy	storage	devices.	The	industry	is
revisiting	the	communications	protocols	used	for	controlling	these
systems,	and	moving	towards	internet	technologies.	This	includes	the
IEEE	2030.5	standard	using	HTTPS	with	NSA-grade	encryption,	secured
with	specifically	constructed	digital	certificates	identifying	devices	and
services,	along	with	REST-based	communication	protocols.	

Because	of	the	critical	role	the	internet	now	plays	in	all	our	lives,	it	is
important	for	all	software	developers	to	address	security	issues	in	their
products.	

Security	shouldn't	be	an	afterthought,	just	as	testing	should	not	be	an
afterthought.	Both	are	incredibly	important,	if	only	to	keep	your	company
from	getting	in	the	news	for	the	wrong	reasons.

Even	though	the	Notes	application	is	a	simple	toy	application,	we've	been
using	it	to	explore	production	deployment	issues.	Let's	now	turn	to	using
Notes	to	explore	the	implementation	of	good	security	practices.	We	will
cover	the	following	topics:

Implementing	HTTPS/SSL	in	an	Express	application

Automation	of	SSL	certificate	renewal	with	Let's	Encrypt

Using	the	Helmet	library	to	implement	headers	for	Content
Security	Policy,	DNS	Prefetch	Control,	Frame	Options,	Strict
Transport	Security,	and	mitigating	XSS	attacks

Preventing	cross-site	request	forgery	attacks	against	forms

SQL	Injection	attacks

Pre-deployment	scanning	for	packages	with	known	vulnerabilities

If	you	haven't	yet	done	so,	duplicate	the	Chapter	11,	Unit	Testing	and
Functional	Testing	source	tree,	which	you	may	have	called	chap11,	to	make
a	Chapter	12,	Security	source	tree,	which	you	can	call	chap12.	

Express	has	an	excellent	security	resource	page	at	https://expressjs.com/en/ad
vanced/best-practice-security.html.

https://expressjs.com/en/advanced/best-practice-security.html

HTTPS/TLS/SSL	using	Let's
Encrypt
Securing	your	website	using	HTTPS	is	becoming	increasingly	important.
The	browser	makers	have	started	issuing	warnings	for	HTTP-only
websites,	for	example,	and	the	search	engines	are	downgrading	such	sites
in	search	rankings.	Privacy	concerns	dictate	the	encryption	of	all	traffic
sent	over	the	internet.	Phishing	attacks	luring	victims	to	fake	websites
filled	with	malware	dictate	we	have	a	mechanism	to	robustly	identify
website	ownership.

HTTPS	is	simply	HTTP	run	through	TLS/SSL,	which	is	an	internet
protocol	for	encrypted	connections.	The	encryption	keys	are	stored	in	a
trusted	Public	Key	Infrastructure	(PKI)	with	encrypted	certificates	for
validating	websites.	With	a	correctly	issued	certificate,	HTTPS	validates
the	domain	so	that	our	users	have	some	assurance	they've	visited	a	valid
website,	and	that	their	data	transfers	are	encrypted	to	prevent	(casual)
eavesdropping.	That	green	button	in	the	browser	location	bar	is	meant	to
reassure	our	visitors	that	they're	safe.

For	years,	acquiring	the	required	SSL	certificates	was	a	manual	process
requiring	significant	fee	payments	to	a	Certificate	Authority	company.
Certificate	Authorities	(CA)	are	part	of	the	whole	Public	Key
Infrastructure	(PKI)	behind	the	SSL	certificates	used	by	the	HTTPS
protocol.	The	Internet	PKI	uses	a	hierarchy	of	CAs,	with	higher	level	CAs
certifying	the	end-user	CAs.	However	desirable	it	is	for	every	website	to
be	protected	with	HTTPS,	the	manual	process,	and	the	cost	of	acquiring
SSL	certificates,	meant	folks	were	discouraged	from	deploying	HTTPS
websites.	The	internet	was	therefore	much	less	secure	than	it	could	have
been.	

That	changed	with	the	advent	of	Let's	Encrypt,	a	non-profit	organization

offering	free	SSL	certificates.	Most	importantly,	the	process	is	completely
automated	and	easy	to	set	up	and	use.	There	is	now	no	reason	to	not	have
HTTPS	support	out-of-the-box.	

What	we're	about	to	do	is	to	implement	HTTPS	using	the	Let's	Encrypt
tools	in	the	Docker	infrastructure	for	the	Notes	application.	This	requires	a
few	steps,	none	of	which	are	difficult:

Deploying	Notes	to	a	cloud	server	as	we	did	in	Chapter
10,	Deploying	Node.js	Applications,	with	the	addition	of
associating	a	real	domain	name	with	the	deployment

Adding	a	new	container	containing	certbot,	the	command-line	tool
for	Let's	Encrypt,	and	use	it	to	manage	registering	and	renewing
SSL	certificates

Configuring	the	Docker	infrastructure	to	cross-mount	directories
from	the	certbot	container	to	the	notes	container,	so	that	Notes	has
the	SSL	certificates

Implement	the	HTTP	Server	object	in	Notes

Let's	get	started.

Associating	a	domain	name
with	Docker-based	cloud
hosting
Let's	start	by	deploying	our	Notes	application	to	cloud	hosting	as	we	did
in	Chapter	10,	Deploying	Node.js	Applications,	but	with	a	few	changes.	

One	change	is	to	use	a	real	domain	name	this	time.	This	requires	going	to
a	domain	name	registrar	such	as	pairdomains.com	to	register	a	domain.	Some
web-hosting	providers	also	offer	domain	name	registration,	however	it's
generally	better	if	your	domain	name	is	registered	separately	from	the
hosting	provider.	Go	ahead	and	register	a	domain.	fooblebartz.com	seems	to
be	available,	for	example.

The	next	step	is	to	associate	the	domain	name	with	a	virtual	server	to
which	we	can	deploy	Docker	containers.	Again,	we'll	turn	to	DigitalOcean
as	an	example	service	for	hosting	the	application,	and	show	how	to
configure	a	domain	name.

The	exact	method	to	associate	a	domain	name	will	vary	depending	on	the
hosting	provider.	Typically,	the	hosting	provider	will	ask	you	to	assign	the
NS	records	for	the	domain	to	list	the	DNS	servers	operated	by	the	hosting
provider.	Such	hosting	providers	will	give	you	a	list	of	NS	server	host
names.	Once	the	NS	records	are	assigned	to	the	hosting	provider,	you	can
use	the	hosting	provider's	dashboard	to	configure	your	domain.

In	the	DigitalOcean	dashboard,	click	on	Networking	and	then	Domains.	In
that	panel,	you	can	enter	the	domain	name	you've	registered:

Click	on	the	Add	Domain	button	and	the	dashboard	will	transition	you	to	a
new	screen	instructing	you	to	configure	the	domain	name	with	three	NS
records.	You	must	then	copy	those	NS	records	to	the	domain	registrar
website,	where	you'll	enter	them	like	so:

Now,	we	must	create	a	Docker	host	on	DigitalOcean	(or	your	chosen
cloud-hosting	provider)	like	so:

$	docker-machine	create	--driver	digitalocean	\

			--digitalocean-size	2gb	\

			--digitalocean-access-token	DIGITALOCEAN-API-TOKEN	\

			notes-https

...

$	eval	$(docker-machine	env	notes-https)

This	gives	us	a	virtual	server,	which	we	can	inspect	in	the	DigitalOcean

dashboard.	If	you	then	navigate	to	the	Networking/Domains	panel,	the
domain	can	be	associated	with	the	server:

Shortly,	your	domain	name	will	be	properly	associated	with	the	server:

$	ping	evsoul.com

PING	evsoul.com	(159.65.179.28)	56(84)	bytes	of	data.

64	bytes	from	159.65.179.28	(159.65.179.28):	icmp_seq=1	ttl=49	time=83.0	ms

64	bytes	from	159.65.179.28	(159.65.179.28):	icmp_seq=2	ttl=49	time=85.1	ms

^C

---	evsoul.com	ping	statistics	---

2	packets	transmitted,	2	received,	0%	packet	loss,	time	3001ms

rtt	min/avg/max/mdev	=	83.050/83.655/85.184/0.930	ms

$	dig	-t	any	evsoul.com

;	<<>>	DiG	9.10.3-P4-Ubuntu	<<>>	-t	any	evsoul.com

...

;;	ANSWER	SECTION:

evsoul.com.	1800	IN	SOA	ns1.digitalocean.com.	hostmaster.evsoul.com.	

1519092120	10800	3600	604800	1800

evsoul.com.	3502	IN	A	159.65.179.28

evsoul.com.	1800	IN	NS	ns1.digitalocean.com.

evsoul.com.	1800	IN	NS	ns2.digitalocean.com.

evsoul.com.	1800	IN	NS	ns3.digitalocean.com.

...

But	because	nothing	on	the	server	will	answer	to	any	HTTP	port,	it	cannot
be	visited	by	a	web	browser.		With	the	command	shell	on	our	laptop	still
associated	with	the	virtual	server,	let's	deploy	Notes	to	the	server	so	we
can	have	visitors:

$	docker-compose	build

...

$	docker-compose	up	--force-recreate	-d

Once	that's	done,	you	can	visit	the	Notes	application	via	your	domain
name.	

There	are	three	things	to	do	to	enable	logging	in	to	the	Notes	service.	One
is	to	run	the	users-add	script	in	the	userauth	container,	as	you	will	have	done
so	many	times	already.	The	other	is	to	make	this	change	in	notes/Dockerfile:

ENV	TWITTER_CALLBACK_HOST=http://evsoul.com

Substitute	your	chosen	domain	name	here.	This	change	enables	using
Twitter	to	log	in	to	the	Notes	application.

The	last	change	is	in	compose/docker-compose.yml:

notes:

		build:	../notes

		container_name:	notes

		depends_on:

				-	db-notes

		networks:

				-	frontnet

		ports:

				-	"80:3000"

		restart:	always

		environment:

				-	NODE_ENV="production"	

In	other	words,	it's	time	for	Notes	to	be	on	port	80	like	any	HTTP	service.

At	this	point,	you	will	be	able	to	view	the	Notes	application	using

http://DOMAIN,	and	to	log	in	using	either	the	local	username,	or	using	Twitter.
Other	than	adding	the	domain	name,	this	is	exactly	what	we	had	in	Chapter	
10,	Deploying	Node.js	Applications.

What's	next	is	to:

Use	Let's	Encrypt	to	set	up	SSL	certificates

Modify	Notes	to	use	those	certificates

Redirect	HTTP	traffic	to	the	Notes	HTTPS	port

Ensure	we	can	deploy	to	HTTP	or	HTTPS	as	needed,	since	we
don't	need	HTTP	on	the	developers'	laptops

A	Docker	container	to	manage
Let's	Encrypt	SSL	certificates
You	acquire	an	SSL	certificate	from	Let's	Encrypt	using	an	ACME	client.
ACME	is	a	protocol	invented	concurrently	with	the	Let's	Encrypt	service
for	fetching	SSL	certificates	from	a	provider.	The	primary	ACME	client	is
Certbot,	a	command-line	tool	that	helps	you	register	a	domain	with	Let's
Encrypt,	and	which	automates	renewal	of	Let's	Encrypt	SSL	certificates.
For	Certbot	documentation,	see	https://certbot.eff.org/.

The	container	we're	about	to	implement	is	set	up	to	make	it	easy	to	register
a	domain	with	Let's	Encrypt,	and	then	to	automate	certificate	renewal.	It's
a	very	simple	container,	consisting	of	a	cron	daemon,	a	crontab	entry,	and
the	certbot	tool.	The	only	CPU	consumption	occurs	about	once	a	day	when
the	cron	job	runs	to	attempt	certificate	renewal.	

Create	a	directory,	certbot,	and	within	that	directory	a	Dockerfile:

FROM	debian:jessie

#	Install	cron,	certbot,	bash,	plus	any	other	dependencies

RUN	apt-get	update	&&	apt-get	install	-y	cron	bash	wget

RUN	mkdir	-p	webrootsevsoul.com/.well-known	&&	mkdir	-p	/scripts

WORKDIR	/scripts

RUN	wget	https://dl.eff.org/certbot-auto

RUN	chmod	a+x	./certbot-auto

#	Run	certbot-auto	so	that	it	installs	itself

RUN	scriptscertbot-auto	-n	certificates

#	webrootsDOMAIN.TLD/.well-known/...	files	go	here

VOLUME	/webroots

VOLUME	etcletsencrypt

#	This	installs	a	Crontab	entry	which	

#	runs	"certbot	renew"	on	the	2nd	and	7th	day	of	each	week	at	03:22	AM

https://certbot.eff.org/

#

#	cron(8)	says	the	Debian	cron	daemon	reads	the	files	in	etccron.d,	

#	merging	into	the	data	from	etccrontab,	to	use	as	the	system-wide	cron	jobs

#

#	RUN	echo	"22	03			2,7	root	scriptscertbot-auto	renew"	>etccron.d/certbot

CMD	["cron",	"-f"]

This	sets	up	two	directory	structures,	/webroots	and	etcletsencrypt,	which	are
exposed	from	the	container	using	the	VOLUME	command.	These	directories
contain	administrative	files	used	by	certbot	in	the	process	of	registering	or
renewing	SSL	certificates	with	the	Let's	Encrypt	service.

The	Dockerfile	also	installs	certbot-auto,	which	is	really	certbot	but	with	a
different	name.	Running	certbot-auto	-n	certificates	is	required	so	that
certbot-auto	can	install	its	dependencies	in	the	container.	The	certificates
command	lists	the	certificates	existing	on	the	local	machine,	but	there	are
none,	and	instead	it's	executed	for	the	side	effect	of	installing	those
dependencies.

Another	feature	of	this	Dockerfile	is	to	automate	renewal	of	SSL
certificates.	The	certbot-auto	renew	command	checks	all	certificates	stored
on	this	machine	to	determine	if	any	require	renewal.	If	any	do,	a	request	is
automatically	made	with	Let's	Encrypt	to	renew	the	certificates.

As	configured,	this	renewal	attempt	will	run	at	03:22	AM	on	the	2nd	and
7th	day	of	the	week.

The	last	task	we	have	to	handle	is	registering	with	Let's	Encrypt	for	SSL
certificates.	In	the	certbot	directory	create	a	shell	script,	register,	or	for
Windows	call	it	register.ps1,	containing:

#!/bin/sh

scriptscertbot-auto	certonly	--webroot	-w	webroots$1	-d	$1

This	is	how	we	register	a	domain	with	Let's	Encrypt.	The	script	takes	one
argument,	the	domain	name	to	be	registered.

The	--webroot	option	says	we	want	to	use	the	webroot	authentication
algorithm.	What	this	means	is	Let's	Encrypt	verifies	that	you	own	the
domain	in	question	by	requesting	a	specific	URL	on	the	domain.	For
documentation,	see	https://certbot.eff.org/docs/using.html#webroot.

An	example	validation	request	by	the	Let's	Encrypt	service	might	be		http:
//example.com/.well-known/acme-challenge/HGr8U1IeTW4kY_Z6UIyaakzOkyQgPr_7ArlLgtZE8S

X.

In	the	certbot	container,	we've	said	this	.well-known	directory	will	exist	in
the	webrootsDOMAIN-NAME/.well-known	directory.	The	purpose	of	the	-w	option	is
so	certbot-auto	knows	this	directory	location,	and	the	-d	option	tells	it	the
domain	name	to	register.

When	we	run	the	certbot-auto	certonly	command,	Let's	Encrypt	hands	back
a	challenge	file	which	is	installed	in	the	directory	tree	specified	in	the	-w
argument.	It	means	that	when	Let's	Encrypt	retrieves	the	URL	shown
previously,	it	will	fetch	the	challenge	file,	and	therefore	validate	that	you
do	indeed	control	the	given	domain	name.

As	it	stands,	that	directory	is	not	visible	to	anything	that	would	satisfy	the
validation	request.

For	this	to	work	as	intended,	the	webrootsDOMAIN-NAME/.well-known	directory	has
to	be	visible	to	the	Notes	application,	such	that	Notes	can	satisfy	the	URL
request	Let's	Encrypt	will	make.	Let's	see	how	to	do	this.

https://certbot.eff.org/docs/using.html#webroot
http://example.com/.well-known/acme-challenge/HGr8U1IeTW4kY_Z6UIyaakzOkyQgPr_7ArlLgtZE8SX

Cross-container	mounting	of
Let's	Encrypt	directories	to	the
notes	container
The	purpose	of	the	certbot	container	is	to	manage	Let's	Encrypt	SSL
certificates.	Those	certificates	are	to	be	used	by	the	Notes	application	to
configure	an	HTTPS	server.	It's	required	that	the	certificates,	and	the
challenge	files,	be	visible	inside	the	notes	container.

Instead	of	creating	a	separate	container,	we	could	have	instead	integrated
certbot-auto	into	the	notes	container.	But	that	would	have	prevented	scaling
the	number	of	notes	containers.	We	can't	have	each	notes	instance	running	a
certbot-auto	script	to	generate	certificates.	Instead,	the	certificate
management	processes	must	instead	be	centralized.	Hence,	we	developed
the	certbot	container.

What's	required	is	for	the	webrootsDOMAIN-NAME/.well-known	directory	in	the
certbot	container	to	be	visible	somewhere	in	the	notes	container.

To	set	this	up,	we	have	two	changes	required	in	compose/docker-compose.yml.
First,	we	add	this	stanza	for	the	certbot	container:

certbot:

				build:	../certbot

				container_name:	certbot

				networks:

						-	frontnet

				restart:	always

				volumes:

						-	certbot-webroot-evsoul:webrootsevsoul.com/.well-known

						-	certbot-letsencrypt:etcletsencrypt

This	builds	a	container	image	from	the	Dockerfile	described	in	the

previous	section.	As	far	as	it	goes,	this	is	pretty	straightforward	except	for
the	entries	in	the	volumes	section.	Those	entries	associate	the	directories
shown	here	with	named	volumes	we	need	to	define	elsewhere	in	docker-
compose.yml.

What	we're	doing	is	attaching	the	same	two	volumes	to	both	the	certbot
and	notes	containers.	In	this	example,	we're	mounting	those	volumes	to
specific	directories	in	certbot.

The	two	named	volumes	are	declared	like	so:

volumes:	

		...

		certbot-webroot-evsoul:

		certbot-letsencrypt:

Then	we	must	make	a	similar	change	to	the	notes	container:

notes:

				build:	../notes

				container_name:	notes

				depends_on:

						-	db-notes

				networks:

						-	frontnet

				ports:

						-	"80:3000"

						-	"443:3443"

				restart:	always

				volumes:

						-	certbot-webroot-evsoul:notesapppublic/.well-known

						-	certbot-letsencrypt:etcletsencrypt

We've	made	two	changes,	the	first	of	which	is	to	add	a	TCP	port	export	for
the	HTTPS	port	(port	443).	And	the	second	is	to	mount	the	two	named
volumes	to	appropriate	locations	in	the	notes	container.	These	are	the	same
named	volumes	declared	earlier.	We're	simply	mounting	the	volumes	in
places	that	make	sense	for	the	notes	container.

The	SSL	certificates	could	exist	at	any	location	in	the	notes	container,	but

etcletsencrypt	is	as	good	a	location	as	any.	What's	necessary	is	that	the
Notes	code	be	able	to	read	the	certificates.

Putting	the	.well-known	directory	under	notesapppublic	means	that	Notes	will
automatically	serve	any	file	in	that	directory	to	any	service	making	a
request.	That's	because	of	the	static	middleware	already	configured	in
app.mjs.

What	this	sets	up	is	a	pair	of	directories	that	are	visible	in	two	containers.
Either	container	can	write	a	file	in	either	directory,	and	the	file	will
automatically	show	up	in	the	other	container.

When	we	run	the	register	script	in	the	certbot	container,	it	will	write	the
challenge	file	provided	by	Let's	Encrypt	into	the	webrootsevsoul.com/.well-
known	directory	tree.	That	same	directory	is	visible	in	the	notes	container	as
notesapppublic/.well-known,	and	therefore	Notes	will	automatically	serve	the
challenge	file	just	as	it	serves	the	CSS,	JavaScript,	and	image	files	in	that
directory	tree.

The	process	looks	like	this:

$	docker	exec	-it	certbot	bash

root@05b095690414:/scripts#	sh	./register	evsoul.com

Saving	debug	log	to	varlog/letsencrypt/letsencrypt.log

Plugins	selected:	Authenticator	webroot,	Installer	None

Enter	email	address	(used	for	urgent	renewal	and	security	notices)	(Enter	'c'	

to

cancel):		ENTER	YOUR	EMAIL	ADDRESS	HERE

Please	read	the	Terms	of	Service	at

https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf.	You	must

agree	in	order	to	register	with	the	ACME	server	at

https://acme-v01.api.letsencrypt.org/directory

(A)gree/(C)ancel:	a

Would	you	be	willing	to	share	your	email	address	with	the	Electronic	Frontier

Foundation,	a	founding	partner	of	the	Let's	Encrypt	project	and	the	non-

profit

organization	that	develops	Certbot?	We'd	like	to	send	you	email	about	EFF	and

our	work	to	encrypt	the	web,	protect	its	users	and	defend	digital	rights.

--

(Y)es/(N)o:	n

Obtaining	a	new	certificate

Performing	the	following	challenges:

http-01	challenge	for	evsoul.com

Using	the	webroot	path	webrootsevsoul.com	for	all	unmatched	domains.

Waiting	for	verification...

Cleaning	up	challenges

IMPORTANT	NOTES:

	-	Congratulations!	Your	certificate	and	chain	have	been	saved	at:

			etcletsencrypt/live/evsoul.com/fullchain.pem

			Your	key	file	has	been	saved	at:

			etcletsencrypt/live/evsoul.com/privkey.pem

			Your	cert	will	expire	on	2018-05-22.	To	obtain	a	new	or	tweaked

			version	of	this	certificate	in	the	future,	simply	run	certbot-auto

			again.	To	non-interactively	renew	all	of	your	certificates,	run

			"certbot-auto	renew"

	-	Your	account	credentials	have	been	saved	in	your	Certbot

			configuration	directory	at	etcletsencrypt.	You	should	make	a

			secure	backup	of	this	folder	now.	This	configuration	directory	will

			also	contain	certificates	and	private	keys	obtained	by	Certbot	so

			making	regular	backups	of	this	folder	is	ideal.

	-	If	you	like	Certbot,	please	consider	supporting	our	work	by:

			Donating	to	ISRG		Let's	Encrypt:	https:/letsencrypt.org/donate

			Donating	to	EFF:	https://eff.org/donate-le

root@05b095690414:/scripts#	

After	running	the	command,	it's	a	good	idea	to	inspect	the	etcletsencrypt
directory	structure	to	see	what's	there.	The	contents	of	these	directories
must	be	treated	with	care,	since	it	includes	the	private	keys	certifying	your
domain.	The	whole	point	of	a	private	key	encryption	system	is	that	the
private	key	is	strictly	controlled,	while	the	public	key	is	given	to	anyone.

The	files	ending	with	the	.pem	extension	are	PEM-encoded	certificates.
Privacy	Enhanced	Mail	(PEM),	which	was	an	early	attempt	to	develop	a
secure	encrypted	email	system	for	the	internet.	While	that	project	failed,
the	PEM	container	format	lives	on	and	is	widely	used	for	SSL	certificates.

Adding	HTTPS	support	to
Notes
Now	that	we	have	a	process	to	register	with	Let's	Encrypt,	and	renew	the
SSL	certificates	we	receive,	let's	look	at	adding	HTTPS	support	to	the
Notes	application.	The	task	is	fairly	simple	since	the	Node.js	platform
provides	an	HTTPS	server	alongside	the	HTTP	server	object	we've	used
all	along.

We'll	require	these	changes	to	notes/app.mjs:

import	http	from	'http';

import	https	from	'https';

...

const	USEHTTPS	=	process.env.NOTES_USE_HTTPS

										&&	(typeof	process.env.NOTES_USE_HTTPS	===	'string')

										&&	(process.env.NOTES_USE_HTTPS	===	'true');

const	CERTSDIR	=	process.env.NOTES_CERTS_DIR;

const	options	=	USEHTTPS	?	{

		key:	fs.readFileSync(`${CERTSDIR}/privkey1.pem`),

		cert:	fs.readFileSync(`${CERTSDIR}/fullchain1.pem`),

		ca:	fs.readFileSync(`${CERTSDIR}/chain1.pem`)

}	:	{};

const	server	=	http.createServer(app);

const	serverSSL	=	USEHTTPS	?	https.createServer(options,	app)	:	undefined;

import	socketio	from	'socket.io';

const	io	=	socketio(USEHTTPS	?	serverSSL	:	server,	options);	

...

var	port	=	normalizePort(process.env.PORT	||	'3000');

app.set('port',	port);

...

server.listen(port);

server.on('error',	onError);

server.on('listening',	onListening);

if	(USEHTTPS)	{

		serverSSL.listen(3443);

		serverSSL.on('error',	onError);

		serverSSL.on('listening',	onListening);

}

In	other	words,	we've	imported	the	https	module	alongside	the	http	module,
then	we	read	in	the	SSL	certificates	required	to	initialize	HTTPS	support,
then	created	an	HTTPS	server	object	using	those	certificates,	and	finally
configured	it	to	listen	on	port	3443.	The	HTTPS	support	depends	on	the
value	of	the	NOTES_USE_HTTPS	environment	variable.	If	that	variable	exists	and
is	equal	to	true,	then	the	USEHTTPS	variable	is	set	to	true,	and	the	HTTPS
support	is	turned	on.

This	leads	us	to	again	modify	compose/docker-compose.yml	to	match:

notes:

				build:	../notes

				container_name:	notes

				depends_on:

						-	db-notes

				networks:

						-	frontnet

				ports:

						-	"80:3000"

						-	"443:3443"

				restart:	always

				environment:

						-	NOTES_USE_HTTPS=true

						-	NOTES_CERTS_DIR=/etc/letsencrypt/archive/evsoul.com

				volumes:

						-	certbot-webroot-evsoul:/notesapp/public/.well-known

						-	certbot-letsencrypt:/etc/letsencrypt

Both	the	HTTP	and	HTTPS	ports	are	exposed	from	the	container,	and	we
have	some	environment	variables	for	the	configuration	settings.

The	TWITTER_CALLBACK_URL	environment	variable	needs	to	be	updated	to
https://DOMAIN.	The	site	is	now	hosted	on	HTTPS,	and	therefore	Twitter
should	redirect	our	users	to	the	HTTPS	site.

With	all	this	set	up,	you	should	now	be	able	to	visit	the	Notes	application,
either	as	http://DOMAIN	or	https://DOMAIN.	If	you	tell	your	customers	to	simply
use	the	HTTPS	version	of	your	website,	does	that	mean	you're	done?

No.	The	search	engines	routinely	downgrade	sites	for	hosting	duplicate
content,	and	having	both	an	HTTP	and	HTTPS	version	of	your	website	is
duplicate	content.	Furthermore,	the	browser	makers	are	moving	quickly
towards	warning	browser	users	that	HTTP	websites	are	insecure,	while
HTTPS	websites	are	safe.	In	other	words,	it's	very	important	to	redirect
any	HTTP	connections	to	the	HTTPS	version	of	your	website.

One	method	to	do	this	is	with	the	express-force-ssl	package	for	Express
(https://www.npmjs.com/package/express-force-ssl).	As	the	package	name
implies,	it	integrates	with	an	Express	application	(such	as	Notes)	and
forces	the	browser	to	redirect	to	the	HTTPS	version	of	the	website.	

But,	we	have	other	security	fish	to	fry.	Using	HTTPS	solves	only	part	of
the	security	problem.	In	the	next	section,	we'll	look	at	Helmet,	a	tool	for
Express	applications	to	set	many	security	options	in	the	HTTP	headers.
Helmet	includes	a	tool	to	require	browsers	to	use	the	HTTPS	version	of
the	website,	and	we'll	also	show	how	to	use	express-force-ssl	at	the	same
time.

Before	we	go,	head	to	the	Qualys	SSL	Labs	test	page	for	SSL
implementations.	This	service	will	examine	your	website,	especially	the
SSL	certificates,	and	give	you	a	score.	Using	the	steps	in	this	section	will
give	you	an	A	score.	To	examine	your	score,	see	https://www.ssllabs.com/sslt
est/.

https://www.ssllabs.com/ssltest/

Put	on	your	Helmet	for	across-
the-board	security
Helmet	(https://www.npmjs.com/package/helmet)	is	not	a	security	silver	bullet	(do
Helmet's	authors	think	we're	trying	to	protect	against	vampires?).	Instead
it	is	a	toolkit	for	setting	various	security	headers	and	taking	other
protective	measures.

In	the	notes	directory,	install	the	package	like	so:

$	npm	install	helmet	--save

Then	add	this	to	notes/app.mjs:

import	helmet	from	'helmet';

...

const	app	=	express();

export	default	app;

app.use(helmet());

That's	enough	for	most	applications.	Using	Helmet	out-of-the-box
provides	a	reasonable	set	of	default	security	options.	We	could	be	done
with	this	section	right	now,	except	that	it's	useful	to	examine	closely	what
Helmet	does,	and	its	options.

Helmet	is	actually	a	cluster	of	12	modules	for	applying	several	security
techniques.	Each	of	the	techniques	can	be	individually	enabled	or
disabled,	and	many	have	configuration	settings	to	make.

https://www.npmjs.com/package/helmet

Using	Helmet	to	set	the
Content-Security-Policy	header
The	Content-Security-Policy	(CSP)	header	can	help	to	protect	against
injected	malicious	JavaScript	and	other	file	types.

We	would	be	remiss	to	not	point	out	a	glaring	problem	with	services	such
as	the	Notes	application.	Our	users	could	enter	any	code	they	like,	and	an
improperly-behaving	application	will	simply	display	that	code.	Such
applications	can	be	a	vector	for	JavaScript	injection	attacks	among	other
things.

To	try	this	out,	edit	a	note	and	enter	something	like:

<script	src="http://example.com/malicious.js"></script>

Click	the	Save	button,	and	you'll	see	this	code	displayed	as	text.	A
dangerous	version	of	Notes	would	instead	insert	the	<script>	tag	in	the
notes	view	page	such	that	the	malicious	JavaScript	would	be	loaded	and
cause	a	problem	for	our	visitors.	Instead,	the	<script>	tag	is	encoded	as	safe
HTML	so	it	simply	shows	up	as	text	on	the	screen.	We	didn't	do	anything
special	for	that	behavior,	Handlebars	did	that	for	us.

Actually,	it's	a	little	more	interesting	if	we	look	at	the	Handlebars
documentation	http://handlebarsjs.com/expressions.html,	we	learn	about	this
distinction:

{{encodedAsHtml}}

{{{notEncodedAsHtml}}}

In	Handlebars,	a	value	appearing	in	a	template	using	two	curly	braces

http://handlebarsjs.com/expressions.html

({{encoded}})	is	encoded	using	HTML	coding.	For	the	previous	example,	the
angle	bracket	is	encoded	as	<	and	so	on	for	display,	rendering	that
JavaScript	code	as	neutral	text	rather	than	as	HTML	elements.	If	instead
you	use	three	curly	braces	({{{notEncoded}}}),	the	value	is	not	encoded	and	is
instead	presented	as	is.	The	malicious	JavaScript	would	be	executed	in
your	visitor's	browser,	causing	problems	for	your	users.

In	Notes,	if	we	wanted	our	users	to	enter	HTML	and	have	it	displayed	as
the	HTML,	then	views/noteview.hbs	would	require	this	code:

{{#if	note}}<div	id="notebody">{{{	note.body	}}}</div>{{/if}}

Most	(or	all)	template	engines	include	this	pattern	for	displaying	values.
The	template	developers	have	a	choice	between	encoding	any	given	value
with	HTML	codes	or	displaying	it	as	is.

Returning	to	Helmet's	support	for	the	header,	it's	useful	to	have	strict
control	over	the	locations	from	which	the	browser	can	download	files.	The
issue	named,	our	users	entering	malicious	JavaScript	code	is	only	one	risk.
Suppose	a	malicious	actor	broke	in	and	modified	the	templates	to	include
malicious	JavaScript	code?

With	the	header,	we	can	tell	the	browser	that	JavaScript	can	come	only
from	our	own	server	and	Google's	CDN,	and	everything	else	is	to	be
rejected.	That	malicious	JavaScript	that's	loaded	from	piratesden.net	won't
run.	We	could	even	let	our	users	enter	HTML	with	some	comfort	that	any
malicious	JavaScript	referenced	from	a	third-party	website	won't	run.	

To	see	the	documentation	for	this	Helmet	module,	see	https://helmetjs.githu
b.io/docs/csp/.

There	are	a	long	list	of	options.	For	instance,	you	can	cause	the	browser	to
report	any	violations	back	to	your	server,	in	which	case	you'll	need	to
implement	a	route	handler	for	/report-violation.	This	snippet	is	sufficient
for	Notes:

https://helmetjs.github.io/docs/csp/

app.use(helmet.contentSecurityPolicy({

		directives:	{

				defaultSrc:	["'self'"],

				scriptSrc:	["'self'",	"'unsafe-inline'"],

				styleSrc:	["'self'",	'fonts.googleapis.com'],

				fontSrc:	["'self'",	'fonts.gstatic.com'],

				connectSrc:	["'self'",	'wss://evsoul.com']

		}

}));

For	better	or	for	worse,	the	Notes	application	implements	one	security	best
practice—all	CSS	and	JavaScript	files	are	loaded	from	the	same	server	as
the	application.	Therefore,	for	the	most	part,	we	can	use	the	'self'	policy.
There	are	several	exceptions:

scriptSrc:	Defines	where	we	are	allowed	to	load	JavaScript.	We	do
use	inline	JavaScript	in	noteview.hbs	and	index.hbs,	which	must	be
allowed.

styleSrc,	fontSrc:	We're	loading	CSS	files	from	both	the	local	server,
and	from	Google	Fonts.

connectSrc:	The	WebSockets	channel	used	by	Socket.IO	is	declared
here.

app.use(helmet.dnsPrefetchControl({	allow:	false	}));	//	or	true

app.use(helmet.frameguard({	action:	'deny'	}));

This	setting	denies	all	such	<iframe>	content.

Using	Helmet	to	remove	the	X-
Powered-By	header
The	X-Powered-By	header	can	give	malicious	actors	a	clue	about	the	software
stack	in	use,	informing	them	of	attack	algorithms	that	are	likely	to
succeed.	The	Hide	PoweredBy	submodule	for	Helmet	simply	removes	that
header.

Express	can	disable	this	feature	on	its	own:

app.disable('x-powered-by')

Or	you	can	use	Helmet	to	do	so:

app.use(helmet.hidePoweredBy())

Improving	HTTPS	with	Strict
Transport	Security
Having	implemented	HTTPS	support,	we	aren't	completely	done.	As	we
said	earlier,	it's	necessary	for	our	users	to	use	the	HTTPS	version	of	Notes,
but	as	it	stands	they	can	still	use	the	HTTP	version.	The	Strict	Transport
Security	header	notifies	the	browser	that	it	should	use	the	HTTPS	version
of	the	site.	Since	that's	simply	a	notification,	it's	also	necessary	to
implement	a	redirect	from	the	HTTP	to	HTTPS	version	of	Notes.

We	set	the	Strict-Transport-Security	like	so:	const	sixtyDaysInSeconds	=
5184000
app.use(helmet.hsts({
maxAge:	sixtyDaysInSeconds
}));

This	tells	the	browser	to	stick	with	the	HTTPS	version	of	the	site	for	the
next	60	days,	and	never	visit	the	HTTP	version.

And,	as	long	as	we're	on	this	issue,	let's	go	ahead	and	use	express-force-ssl
to	implement	the	redirect.	After	adding	a	dependency	to	that	package	in
package.json,	add	this	in	app.mjs:	import	forceSSL	from	'express-force-ssl';
...
app.use(forceSSL);
app.use(bodyParser.json());

Mitigating	XSS	attacks	with
Helmet
XSS	attacks	attempt	to	inject	JavaScript	code	into	website	output.	With
malicious	code	injected	into	another	website,	the	attacker	can	access
information	they	otherwise	could	not	retrieve.	The	X-XSS-Protection
header	prevents	certain	XSS	attacks,	but	not	all	of	them.

app.use(helmet.xssFilter());

Addressing	Cross-Site	Request
Forgery	(CSRF)	attacks
CSRF	attacks	are	similar	to	XSS	attacks	in	that	both	occur	across	multiple
sites.	In	a	CSRF	attack,	malicious	software	forges	a	bogus	request	on
another	site.	To	prevent	such	an	attack,	CSRF	tokens	are	generated	for
each	page	view,	are	included	as	hidden	values	in	HTML	FORMs,	and	then
checked	when	the	FORM	is	submitted.	A	mismatch	on	the	tokens	causes
the	request	to	be	denied.

The	csurf	package	is	designed	to	be	used	with	Express	https://www.npmjs.com/
package/csurf		In	the	notes	directory,	run	this:

$	npm	install	csurf	--save

Then	install	the	middleware	like	so:

import	csrf	from	'csurf';

...

app.use(cookieParser());

app.use(csrf({	cookie:	true	}));

The	csurf	middleware	must	be	installed	following	the	cookieParser
middleware.

Next,	for	every	page	that	includes	a	FORM,	we	must	generate	and	send	a
token	with	the	page.	That	requires	two	things,	in	the	res.render	call	we
generate	the	token,	and	then	in	the	view	template	we	include	the	token	as	a
hidden	INPUT	on	any	form	in	the	page.	We're	going	to	be	touching	on
several	files	here,	so	let's	get	started.

In	routes/notes.mjs,	add	the	following	as	a	parameter	to	the	res.render	call	for

https://www.npmjs.com/package/csurf

the	/add,	/edit,	/view,	and	/destroy	routes:

csrfToken:	req.csrfToken()

Likewise,	do	the	same	for	the	/login	route	in	routes/users.mjs.	This	adds	the
generated	CSRF	token	to	the	parameters	sent	to	the	template.

Then	in	views/noteedit.hbs	and	views/notedestroy.hbs,	add	the	following:

{{#if	user}}

				<input	type="hidden"	name="_csrf"	value="{{csrfToken}}">

				...

{{/if}}

In	views/login.hbs,	make	the	same	addition	but	without	the	{{#if	user}}
instruction.

In	views/noteview.hbs,	there's	a	form	for	submitting	comments.	Make	this
change:

<form	id="submit-comment"	class="well"	data-async	data-target="#rating-modal"	

						action="notesmake-comment"	method="POST">	

				<input	type="hidden"	name="_csrf"	value="{{csrfToken}}">

				...

</form>

This	<input>	tag	renders	the	CSRF	token	into	the	FORM.	When	the	FORM
is	submitted,	the	csurf	middleware	checks	it	for	correctness	and	rejects	any
that	do	not	match.

Denying	SQL	injection	attacks
SQL	injection	is	another	large	class	of	security	exploits,	where	the	attacker
puts	SQL	commands	into	input	data.	See	https://www.xkcd.com/327/	for	an
example.

The	sqlinjection	package	scans	query	strings,	request	body	parameters,	and
route	parameters	for	SQL	code.	

Install	with:	$	npm	install	sqlinjection	--save

Then	install	it	in	app.mjs:	import	sqlinjection	from	'sqlinjection';
...
app.use(sqlinjection);

https://www.xkcd.com/327/

Sequelize	deprecation	warning
regarding	operator	injection
attack
You	may	have	seen	this	deprecation	warning	printed	by	Notes:

sequelize	deprecated	String	based	operators	are	now	deprecated.	Please	use	

Symbol	based	operators	for	better	security,	read	more	at	

http://docs.sequelizejs.com/manual/tutorial/querying.html#operators

Nowhere	in	Notes	are	we	using	Sequelize	string-based	operators,	and
therefore	this	would	seem	to	be	a	spurious	error	message.	In	actuality,	it	is
a	real	issue	with	potential	similar	to	an	SQL	injection	attack.

This	issue	queue	entry	has	an	in-depth	discussion	of	the	security
problem:		https://github.com/sequelize/sequelize/issues/8417	with	more	details
in	the	documentation	at	http://docs.sequelizejs.com/manual/tutorial/querying.htm
l#operators-security.

Namely,	a	query	such	as	this:

db.Token.findOne({

						where:	{	token:	req.query.token	}

});

Is	susceptible	to	an	injection-style	attack	that	would	subvert	the	query.	We
do	have	code	like	this	in	notes/models/notes-sequelize.mjs	,	therefore	this	issue
should	be	addressed.

Fortunately,	the	solution	is	simply	a	matter	of	disabling	the	string	aliases
for	the	Operators.	In	the	Sequelize	configuration	files	we	defined,	we

https://github.com/sequelize/sequelize/issues/8417
http://docs.sequelizejs.com/manual/tutorial/querying.html#operators-security

disable	the	aliases	like	so:

dbname:	users

username:

password:

params:

				dialect:	sqlite

				storage:	users-sequelize.sqlite3

				operatorAliases:	false

This	change	should	be	made	in	every	Sequelize	configuration	file.

Scanning	for	known
vulnerabilities
The	nsp	package	(https://www.npmjs.com/package/nsp)	scans	a	package.json	or	npm-
shrinkwrap.json,	looking	for	known	vulnerabilities.	The	company	behind	that
package	keeps	a	list	of	such	packages,	which	are	queried	by	the	nsp
package.	

Starting	with	npm	version	6,	the	nsp	package	functionality	has	been	folded
into	npm	itself	as	the	npm	audit	command.			It	is	a	command-line	tool	you
run	like	so:

$	npm	install	nsp

$./node_modules/.bin/nsp	check	

(+)	3	vulnerabilities	found

┌────────────┬───

─────┐

│												│	Regular	Expression	Denial	of	Service																															

│

├────────────┼───

─────┤

│							Name	│	mime																																																															

│

├────────────┼───

─────┤

│							CVSS	│	7.5	(High)																																																									

│

├────────────┼───

─────┤

│		Installed	│	1.3.4																																																														

│

├────────────┼───

─────┤

│	Vulnerable	│	<	1.4.1	||	>	2.0.0	<	2.0.3																																									

│

├────────────┼───

─────┤

│				Patched	│	>=	1.4.1	<	2.0.0	||	>=	2.0.3																																							

https://www.npmjs.com/package/nsp

│

├────────────┼───

─────┤

│							Path	│	notes@0.0.0	>	express@4.15.5	>	send@0.15.6	>	mime@1.3.4												

│

├────────────┼───

─────┤

│		More	Info	│	https://nodesecurity.io/advisories/535																													

│

└────────────┴───

─────┘

...	more	output

This	report	says	the	mime	package	currently	installed	is	vulnerable.
The	Vulnerable	line	says	which	versions	have	the	known	problem,	and
the	Patched	line	says	which	releases	are	safe.	The	More	Info	line	tells	you
where	to	get	more	information.

According	to	the	npm	team,	npm	version	6	will	include	this	feature	as	a
baked-in	capability.		See	https://blog.npmjs.org/post/173260195980/announcing-npm
6

If,	as	is	true	in	this	case,	you're	unsure	where	the	package	is	being	used,
try	this:

$	npm	ls	mime

notes@0.0.0	Usersdavid/chap12/notes

├─┬	express@4.15.5

│	└─┬	send@0.15.6

│			└──	mime@1.3.4	

└─┬	superagent@3.8.2

		└──	mime@1.6.0	

There	are	two	versions	of	the	mime	module	being	used,	one	of	which	is
vulnerable	going	by	the	version	numbers	shown	previously.	This	is	good
information,	but	how	do	you	use	it?		In	theory,	you	should	simply	change
the	dependencies	to	use	a	safe	version	of	the	package.

In	this	case,	we	have	a	problem	in	that	our	package.json	did	not	cause	the
mime	package	to	be	installed.	Instead,	it's	the	send	package,	which	in	turn
was	requested	by	Express,	which	is	responsible.	We're	at	the	mercy	of	that

https://blog.npmjs.org/post/173260195980/announcing-npm6

package	maintainer	to	update	their	dependencies.

Fortunately,	there's	a	newer	version	of	Express	available	which	does
indeed	update	the	dependency	on	the	send	package,	which	in	turn	updates
its	dependency	on	the	mime	package:

$	npm	ls	mime

notes@0.0.0	Usersdavid/chap12/notes

├─┬	express@4.16.2

│	└─┬	send@0.16.1

│			└──	mime@1.4.1	

└─┬	superagent@3.8.2

		└──	mime@1.6.0	

Simply	updating	the	dependencies	fixed	the	problem.	But	we	now	have	an
administrative	task	that,	according	to	the	Twelve	Factor	Application
model,	we	must	automate.

One	way	to	automate	this	is	by	first	adding	nsp	to	the	package.json
dependencies	to	install	it	inside	Notes.	The	nsp	package	says	it	is	best
installed	globally,	but	that	would	be	an	implicit	dependency.	The	Twelve
Factor	Application	model	suggests	it's	better	to	have	explicit
dependencies,	and	therefore	it's	best	to	list	nsp	in	the	package.json.	Once
you've	installed	nsp,	add	this	step	to	the	Dockerfile:

WORKDIR	/notesapp

RUN	npm	install	--unsafe-perm

RUN	./node_modules/.bin/nsp	check

Building	the	Docker	container	will	now	give	this	result:

Step	21/25	:	RUN	./node_modules/.bin/nsp	check

	--->	Running	in	9dedf22ec1f9

(+)	2	vulnerabilities	found

...

ERROR:	Service	'notes'	failed	to	build:	The	command	'binsh	-c	

./node_modules/.bin/nsp	check'	returned	a	non-zero	code:	1

In	other	words,	we	have	a	simple	mechanism	to	not	use	a	service	whose

dependencies	have	known	vulnerabilities.

Using	good	cookie	practices
Some	nutritionists	say	eating	too	many	sweets,	such	as	cookies,	is	bad	for
your	health.	Web	cookies,	however,	are	widely	used	for	many	purposes
including	recording	whether	a	browser	is	logged	in	or	not.	

In	the	Notes	application,	we're	already	using	some	good	practices:

We're	using	an	Express	session	cookie	name	different	from	the
default	shown	in	the	documentation

The	Express	session	cookie	secret	is	not	the	default	shown	in	the
documentation	

Taken	together,	an	attacker	can't	exploit	any	known	vulnerability
stemming	from	using	default	values.	All	kinds	of	software	products	show
default	passwords	or	other	defaults.	Those	defaults	could	be	security
vulnerabilities,	and	therefore	it's	best	to	not	use	the	defaults.	For	example,
the	default	Raspberry	Pi	login/password	is	pi	and	raspberry.	While	that's
cute,	any	Raspbian-based	IoT	device	that's	left	with	the	default
login/password	is	susceptible.

But	there's	a	bit	more	we	can	do	to	make	the	single	cookie	we're	using,	the
Express	session	cookie,	more	secure.

The	package	has	a	few	options	available,	see	https://www.npmjs.com/package/ex
press-session:

app.use(session({

		store:	sessionStore,	

		secret:	sessionSecret,

		resave:	true,	

https://www.npmjs.com/package/express-session

		saveUninitialized:	true,

		name:	sessionCookieName,

		secure:	true,

		maxAge:	2		60		60	*	1000	//	2	hours

}));	

These	are	additional	attributes	that	look	useful.	The	secure	attribute
requires	that	cookies	be	sent	ONLY	over	HTTPS	connections.	This
ensures	the	cookie	data	is	encrypted	by	HTTPS	encryption.	The	maxAge
attribute	sets	an	amount	of	time	that	cookies	are	valid,	expressed	as
milliseconds.	

Summary
In	this	chapter,	we've	covered	an	extremely	important	topic,	application
security.	Thanks	to	the	hard	work	of	the	Node.js	and	Express
communities,	we've	been	able	to	tighten	the	security	simply	by	adding	a
few	bits	of	code	here	and	there	to	configure	security	modules.	We've	even
worked	out	how	to	prevent	the	system	from	being	built,	if	it's	using
packages	with	known	vulnerabilities.

Enabling	HTTPS	means	our	users	have	better	assurance	of	security.	The
SSL	certificate	is	a	measure	of	authenticity	that	protects	against	man-in-
the-middle	security	attacks,	and	the	data	is	encrypted	for	transmission
across	the	internet.	With	a	little	bit	of	work,	we	were	able	to	set	up	a
system	to	acquire,	and	continuously	renew,	free	SSL	certificates	from	the
Let's	Encrypt	service.

The	helmet	package	provides	a	suite	of	tools	to	set	security	headers	that
instruct	web	browsers	on	how	to	treat	our	content.	These	settings	prevent
or	mitigate	whole	classes	of	security	bugs.	With	the	csurf	package,	we're
able	to	prevent	cross-site	request	forgery	attacks.

These	few	steps	are	a	good	start	for	securing	the	Notes	application.	But,
do	not	stop	at	these	measures,	because	there	is	a	never-ending	set	of
security	holes.

All	Yahoo	employees	are	trained	in	security	practices,	Yahoo's	internal
network	has	well	defined	routing	and	other	protections	surrounding	the
all-important	user	database,	and	Yahoo's	engineering	staff	is	salted	with
people	carrying	the	job	title	Paranoid,	tasked	with	constantly	scrutinizing
systems	for	potential	security	vulnerabilities.	Yet	with	all	that	work,	Yahoo
still	suffered	the	largest	breach	of	user	identity	data	in	the	history	of	the
internet.	The	lesson	is	that	none	of	us	can	neglect	the	security	of	the
applications	we	deploy.

Over	the	course	of	this	book,	we've	come	a	long	way.	Overall,	the	journey
has	been	to	examine	the	major	life	cycle	steps	required	to	develop	and
deploy	a	Node.js	web	application.	

We	started	by	learning	the	basics	of	Node.js,	and	how	to	use	the	platform
to	develop	simple	services.	Throughout	the	book,	we've	learned	how
advanced	JavaScript	features	such	as	async	functions	and	ES6	modules	are
used	in	Node.js	applications.	To	store	our	data,	we	learned	how	to	use
several	database	engines,	and	a	methodology	to	make	it	easy	to	switch
between	engines.

Mobile-first	development	is	extremely	important	in	today's	environment,
and	to	fulfill	that	goal,	we	learned	how	to	use	the	Bootstrap	framework.

Real-time	communication	is	expected	on	a	wide	variety	of	websites,
because	advanced	JavaScript	capabilities	means	we	can	now	offer	more
interactive	services	in	our	web	applications.	To	fulfill	that	goal,	we	learned
how	to	use	the	Socket.IO	real-time	communications	framework.

Deploying	application	services	to	cloud	hosting	is	widely	used,	both	for
simplifying	system	setup,	and	to	scale	services	to	meet	the	demands	of	our
user	base.	To	fulfill	that	goal,	we	learned	to	use	Docker.	We	not	only	used
Docker	for	production	deployment,	but	for	deploying	a	test	infrastructure,
within	which	we	can	run	unit	tests	and	functional	tests.	And	we	learned
how	to	implement	HTTPS	support	by	developing	a	custom	Docker
container	containing	Let's	Encrypt	tools	to	register	and	renew	SSL
certificates.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by
Packt:

Node.js	Design	Patterns	-	Second	Edition
Mario	Casciaro,	Luciano	Mammino

ISBN:	978-1-78328-732-1

Design	and	implement	a	series	of	server-side	JavaScript	patterns
so	you	understand	why	and	when	to	apply	them	in	different	use
case	scenarios

Become	comfortable	with	writing	asynchronous	code	by
leveraging	constructs	such	as	callbacks,	promises,	generators	and
the	async-await	syntax

Identify	the	most	important	concerns	and	apply	unique	tricks	to
achieve	higher	scalability	and	modularity	in	your	Node.js

application

Untangle	your	modules	by	organizing	and	connecting	them
coherently

Reuse	well-known	techniques	to	solve	common	design	and	coding
issues

Explore	the	latest	trends	in	Universal	JavaScript,	learn	how	to
write	code	that	runs	on	both	Node.js	and	the	browser	and	leverage
React	and	its	ecosystem	to	implement	universal	applications

Node	Cookbook	-	Third	Edition
David	Mark	Clements,	Matthias	Buus,	Matteo	Collina,	Peter	Elger

ISBN:	978-1-78588-124-4

Debug	Node.js	programs

Write	and	publish	your	own	Node.js	modules

Detailed	coverage	of	Node.js	core	API's

Use	web	frameworks	such	as	Express,	Hapi	and	Koa	for

accelerated	web	application	development

Apply	Node.js	streams	for	low-footprint	data	processing

Fast-track	performance	knowledge	and	optimization	abilities

Persistence	strategies,	including	database	integrations	with
MongoDB,	MySQL/MariaDB,	Postgres,	Redis,	and	LevelDB

Apply	critical,	essential	security	concepts

Use	Node	with	best-of-breed	deployment	technologies:	Docker,
Kubernetes	and	AWS

	

Leave	a	review	-	let	other
readers	know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on
the	site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,
please	leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital
so	that	other	potential	readers	can	see	and	use	your	unbiased	opinion	to
make	purchasing	decisions,	we	can	understand	what	our	customers	think
about	our	products,	and	our	authors	can	see	your	feedback	on	the	title	that
they	have	worked	with	Packt	to	create.	It	will	only	take	a	few	minutes	of
your	time,	but	is	valuable	to	other	potential	customers,	our	authors,	and
Packt.	Thank	you!

	

	Title Page
	Copyright and Credits
	Node.js Web Development Fourth Edition

	Dedication
	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	About Node.js
	The capabilities of Node.js
	Server-side JavaScript

	Why should you use Node.js?
	Popularity
	JavaScript at all levels of the stack
	Leveraging Google's investment in V8
	Leaner, asynchronous, event-driven model
	Microservice architecture
	Node.js is stronger for having survived a major schism and hostile fork

	Threaded versus event-driven architecture
	Performance and utilization
	Is Node.js a cancerous scalability disaster?

	Server utilization, the business bottom line, and green web hosting

	Embracing advances in the JavaScript language
	Deploying ES2015/2016/2017/2018 JavaScript code

	Node.js, the microservice architecture, and easily testable systems
	Node.js and the Twelve-Factor app model
	Summary

	Setting up Node.js
	System requirements
	Installing Node.js using package managers
	Installing on macOS with MacPorts
	Installing on macOS with Homebrew
	Installing on Linux, *BSD, or Windows from package management systems
	Installing Node.js in the Windows Subsystem for Linux (WSL)
	Opening an administrator-privileged PowerShell on Windows

	Installing the Node.js distribution from nodejs.org

	Installing from source on POSIX-like systems
	Installing prerequisites
	Installing developer tools on macOS
	Installing from source for all POSIX-like systems
	Installing from source on Windows

	Installing multiple Node.js instances with nvm
	Installing nvm on Windows

	Native code modules and node-gyp
	Node.js versions policy and what to use
	Editors and debuggers
	Running and testing commands
	Node.js's command-line tools
	Running a simple script with Node.js
	Conversion to async functions and the Promise paradigm
	Launching a server with Node.js

	NPM – the Node.js package manager
	Node.js, ECMAScript 2015/2016/2017, and beyond
	Using Babel to use experimental JavaScript features

	Summary

	Node.js Modules
	Defining a module
	CommonJS and ES2015 module formats
	CommonJS/Node.js module format
	ES6 module format
	JSON modules
	Supporting ES6 modules on older Node.js versions

	Demonstrating module-level encapsulation

	Finding and loading CommonJS and JSON modules using require
	File modules
	Modules baked into Node.js binary
	Directories as modules
	Module identifiers and pathnames
	An example of application directory structure

	Finding and loading ES6 modules using import
	Hybrid CommonJS/Node.js/ES6 module scenarios
	Dynamic imports with import()
	The import.meta feature

	npm - the Node.js package management system
	The npm package format
	Finding npm packages
	Other npm commands
	Installing an npm package
	Installing a package by version number
	Global package installs
	Avoiding global module installation

	Maintaining package dependencies with npm
	Automatically updating package.json dependencies
	Fixing bugs by updating package dependencies

	Packages that install commands
	Configuring the PATH variable to handle commands installed by modules
	Configuring the PATH variable on Windows
	Avoiding modifications to the PATH variable

	Updating outdated packages you've installed
	Installing packages from outside the npm repository
	Initializing a new npm package
	Declaring Node.js version compatibility
	Publishing an npm package
	Explicitly specifying package dependency version numbers

	The Yarn package management system
	Summary

	HTTP Servers and Clients
	Sending and receiving events with EventEmitters
	JavaScript classes and class inheritance
	The EventEmitter Class
	The EventEmitter theory

	HTTP server applications
	ES2015 multiline and template strings
	HTTP Sniffer – listening to the HTTP conversation
	Web application frameworks
	Getting started with Express
	Setting environment variables in Windows cmd.exe command line
	Walking through the default Express application
	The Express middleware
	Middleware and request paths
	Error handling

	Calculating the Fibonacci sequence with an Express application
	Computationally intensive code and the Node.js event loop
	Algorithmic refactoring

	Making HTTP Client requests
	Calling a REST backend service from an Express application
	Implementing a simple REST server with Express
	Refactoring the Fibonacci application for REST
	Some RESTful modules and frameworks

	Summary

	Your First Express Application
	Promises, async functions, and Express router functions
	Promises and error handling
	Flattening our asynchronous code
	Promises and generators birthed async functions

	Express and the MVC paradigm
	Creating the Notes application
	Your first Notes model
	Understanding ES-2015 class definitions
	Filling out the in-memory Notes model

	The Notes home page
	Adding a new note – create
	Viewing notes – read
	Editing an existing note – update
	Deleting notes – destroy

	Theming your Express application
	Scaling up – running multiple Notes instances
	Summary

	Implementing the Mobile-First Paradigm
	Problem – the Notes app isn't mobile friendly
	Mobile-first paradigm
	Using Twitter Bootstrap on the Notes application
	Setting it up
	Adding Bootstrap to application templates
	Alternative layout frameworks

	Flexbox and CSS Grids
	Mobile-first design for the Notes application
	Laying the Bootstrap grid foundation
	Responsive page structure for the Notes application
	Using icon libraries and improving visual appeal
	Responsive page header navigation bar
	Improving the Notes list on the front page
	Cleaning up the Note viewing experience
	Cleaning up the add/edit note form
	Cleaning up the delete-note window

	Building a customized Bootstrap
	Pre-built custom Bootstrap themes

	Summary

	Data Storage and Retrieval
	Data storage and asynchronous code
	Logging
	Request logging with Morgan
	Debugging messages
	Capturing stdout and stderr
	Uncaught exceptions
	Unhandled Promise rejections

	Using the ES6 module format
	Rewriting app.js as an ES6 module
	Rewriting bin/www as an ES6 module
	Rewriting models code as ES6 modules
	Rewriting router modules as ES6 modules

	Storing notes in the filesystem
	Dynamic import of ES6 modules
	Running the Notes application with filesystem storage

	Storing notes with the LevelUP data store
	Storing notes in SQL with SQLite3
	SQLite3 database schema
	SQLite3 model code
	Running Notes with SQLite3

	Storing notes the ORM way with Sequelize
	Sequelize model for the Notes application
	Configuring a Sequelize database connection
	Running the Notes application with Sequelize

	Storing notes in MongoDB
	MongoDB model for the Notes application
	Running the Notes application with MongoDB

	Summary

	Multiuser Authentication the Microservice Way
	Creating a user information microservice
	User information model
	A REST server for user information
	Scripts to test and administer the user authentication server
	Login support for the Notes application
	Accessing the user authentication REST API
	Login and logout routing functions
	Login/logout changes to app.js
	Login/logout changes in routes/index.mjs
	Login/logout changes required in routes/notes.mjs
	View template changes supporting login/logout
	Running the Notes application with user authentication

	Twitter login support for the Notes application
	Registering an application with Twitter
	Implementing TwitterStrategy

	Securely keeping secrets and passwords
	The Notes application stack
	Summary

	Dynamic Client/Server Interaction with Socket.IO
	Introducing Socket.IO
	Initializing Socket.IO with Express
	Real-time updates on the Notes homepage
	The Notes model as an EventEmitter class
	Real-time changes in the Notes home page
	Changing the homepage and layout templates
	Running Notes with real-time homepage updates

	Real-time action while viewing notes
	Changing the note view template for real-time action
	Running Notes with real-time updates while viewing a note

	Inter-user chat and commenting for Notes
	Data model for storing messages
	Adding messages to the Notes router
	Changing the note view template for messages
	Using a Modal window to compose messages
	Sending, displaying, and deleting messages
	Running Notes and passing messages
	Other applications of Modal windows

	Summary

	Deploying Node.js Applications
	Notes application architecture and deployment considerations
	Traditional Linux Node.js service deployment
	Prerequisite – provisioning the databases
	Installing Node.js on Ubuntu
	Setting up Notes and user authentication on the server
	Adjusting Twitter authentication to work on the server

	Setting up PM2 to manage Node.js processes

	Node.js microservice deployment with Docker
	Installing Docker on your laptop
	Starting Docker with Docker for Windows/macOS
	Kicking the tires of Docker

	Creating the AuthNet for the user authentication service
	MySQL container for Docker
	Initializing AuthNet
	Script execution on Windows
	Linking Docker containers
	The db-userauth container
	Dockerfile for the authentication service
	Configuring the authentication service for Docker
	Building and running the authentication service Docker container
	Exploring Authnet

	Creating FrontNet for the Notes application
	MySQL container for the Notes application
	Dockerizing the Notes application
	Controlling the location of MySQL data volumes
	Docker deployment of background services

	Deploying to the cloud with Docker compose
	Docker compose files
	Running the Notes application with Docker compose

	Deploying to cloud hosting with Docker compose

	Summary

	Unit Testing and Functional Testing
	Assert – the basis of testing methodologies
	Testing a Notes model
	Mocha and Chai­ – the chosen test tools
	Notes model test suite
	Configuring and running tests
	More tests for the Notes model
	Testing database models

	Using Docker to manage test infrastructure
	Docker Compose to orchestrate test infrastructure
	Executing tests under Docker Compose
	MongoDB setup under Docker and testing Notes against MongoDB

	Testing REST backend services
	Automating test results reporting
	Frontend headless browser testing with Puppeteer
	Setting up Puppeteer
	Improving testability in the Notes UI
	Puppeteer test script for Notes
	Running the login scenario
	The Add Note scenario

	Mitigating/preventing spurious test errors in Puppeteer scripts
	Configuring timeouts
	Tracing events on the Page and the Puppeteer instance
	Inserting pauses
	Avoiding WebSockets conflicts
	Taking screenshots

	Summary

	Security
	HTTPS/TLS/SSL using Let's Encrypt
	Associating a domain name with Docker-based cloud hosting
	A Docker container to manage Let's Encrypt SSL certificates
	Cross-container mounting of Let's Encrypt directories to the notes container
	Adding HTTPS support to Notes

	Put on your Helmet for across-the-board security
	Using Helmet to set the Content-Security-Policy header
	Using Helmet to set the X-DNS-Prefetch-Control header
	Using Helmet to set the X-Frame-Options header
	Using Helmet to remove the X-Powered-By header
	Improving HTTPS with Strict Transport Security
	Mitigating XSS attacks with Helmet

	Addressing Cross-Site Request Forgery (CSRF) attacks
	Denying SQL injection attacks
	Sequelize deprecation warning regarding operator injection attack

	Scanning for known vulnerabilities
	Using good cookie practices
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

