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Chapter 1

Introduction

Exercise 1.1 (omitted)

Exercise 1.2 (omitted)

Exercise 1.3 (omitted)
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Chapter 2

Fundamentals of Modeling

Exercise 2.1 In the “wet lawn” scenario discussed above, come up with a few more al-
ternative hypotheses that could explain both the wet lawn and the wet driveway without
assuming that it rained. Then think of ways to find out which hypothesis is most likely to
be the real cause.

Solution There is no absolutely right or wrong answer to this kind of question. Be creative
and imaginative (while remaining logical) to produce your own unique hypotheses. Then
share those with others and discuss how those different hypotheses would compare to
each other.

Exercise 2.2 Name a couple of scientific models that are extensively used in today’s
scientific/engineering fields. Then investigate the following:

• How were they developed?

• What made them more useful than earlier models?

• How could they possibly be wrong?

Solution An example would be Newton’s classical mechanics. It was developed primarily
to describe the motion of celestial bodies. It was much more useful than other theories
that existed back then, because it offered the first mathematical explanation of the rela-
tionships between positions, velocities, acceleration, and forces. But nowadays we know
that its applicability is limited only to the “classical” realm of physics, while it won’t apply
directly to other cases at quantum or cosmological scales. In this sense, Newton’s clas-
sical mechanics is a good “model” of how things move, which was well tested only with
things at scales seen in our everyday life.
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Exercise 2.3 Create a few different models for each of the examples shown above. Dis-
cuss how those models differ from each other, and what you should do to determine which
model is more appropriate as an explanation of the observed behavior.

Solution This exercise can generate a number of different mathematical models. For ex-
ample, Eqs. (2.1) and (2.2) are two competing models for the observation seen in Fig. 2.1.
They may look identical mathematically, but their behaviors are different, i.e., Eq. (2.1) re-
quires that the value of x must be always C, while Eq. (2.2) simply says that the curve of
x(t) should be flat, regardless of the actual value of x. To find out which model is more
accurate, you can “poke” the system by adding some perturbation to the value of x at a
certain point in time. If the system immediately comes back to the original state C, then
Eq. (2.1) is more appropriate, or if the perturbation added to the system is preserved,
Eq. (2.2) is more appropriate.

Exercise 2.4 (omitted)

Exercise 2.5 Humanity has created a number of models of the solar system in its history.
Some of them are summarized below:

• Ptolemy’s geocentric model (which assumes that the Sun and other planets are
revolving around the Earth)

• Copernicus’ heliocentric model (which assumes that the Earth and other planets are
revolving around the Sun in concentric circular orbits)

• Kepler’s laws of planetary motion (which assumes that the Earth and other planets
are revolving in elliptic orbits, at one of whose foci is the Sun, and that the area
swept by a line connecting a planet and the Sun during a unit time period is always
the same)

• Newton’s law of gravity (which assumes that a gravitational force between two ob-
jects is proportional to their masses and inversely proportional to their distance
squared)

Investigate these models, and compare them in terms of simplicity, validity and robust-
ness.

Solution Ptolemy’s geocentric model was reasonably accurate but very complex, and it
was not so robust as a model because it required many intricate mechanisms to explain
the movement of celestial bodies. Copernicus’ heliocentric model has drastically simpli-
fied the model, which is now called the Copernican Revolution in the history of science.
Kepler’s laws of planetary motion made the model a little more complex (because the
orbits are no longer circular but elliptic) but with increased validity. It also added more
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robustness to the model as the laws were formulated mathematically and thus could be
generalized to many hypothetical cases. Finally, Newton’s law of gravity has achieved
simplicity, validity and robustness all at once, by discovering the fundamental law that can
beautifully explain the observed behaviors of the solar system in just one mathematical
formula of gravitational force. This not only applies to our solar system but also to many
other systems.

Exercise 2.6 (omitted)
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Chapter 3

Basics of Dynamical Systems

Exercise 3.1 (omitted)

Exercise 3.2 What are some appropriate choices for state variables in the following sys-
tems?

• population growth

• swinging pendulum

• motions of celestial bodies

• behavior of “rational” individuals playing a negotiation game

Solution

• population growth: number of organisms

• swinging pendulum: angular position and angular velocity

• motions of celestial bodies: positions and velocities of celestial bodies

• behavior of “rational” individuals playing a negotiation game: target prices or con-
tracts (for example)

Exercise 3.3 In the example above, when the ball hits the floor in the vertical tube, its
kinetic energy is quickly converted into elastic energy (i.e., deformation of the ball), and
then it is converted back into kinetic energy again (i.e., upward velocity). Think about how
you can illustrate this process in the phase space. Are the two dimensions enough or do
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you need to introduce an additional dimension? Then try to illustrate the trajectory of the
system going through a bouncing event in the phase space.

Solution You will need at least one more dimension to represent the amount of elastic
energy stored in the ball. This dimension can be added to the phase space as a z-
axis. A typical trajectory of the systm going through bouncing events can be conceptually
illustrated as follows:

In the above figure, it is assumed that part of the energy is lost at every bouncing event
so that the trajectory is spiraling toward the origin.

Exercise 3.4 Where are the attractor(s) in the phase space of the bouncing ball example
created in Exercise 3.3? Assume that every time the ball bounces it loses a bit of its
kinetic energy.

Solution The origin of the phase space is the only attractor in this case.

Exercise 3.5 For each attractor obtained in Exercise 3.4 above, identify its basin of at-
traction.

Solution The entire phase space is the basin of attraction. This means that no matter
where the ball starts, it will eventually lose all the kinetic energy and end up resting at the
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bottom of the tube.

Exercise 3.6 For each of the phase spaces shown below, identify the following:

• attractor(s)

• basin of attraction for each attractor

• stability of the system’s state at several locations in the phase space

Solution

Basin of attraction 

Basin of attraction 

Basin of attraction Basin of attraction 

Attractor 
(stable) 

Attractor 
(stable) 

Attractor 
(stable) 

Attractor (stable 
“limit cycle”) 

? ? 

: Unstable point 

Exercise 3.7 Consider a market where two equally good products, A and B, are competing
with each other for market share. There is a customer review website where users of each
product submit their ratings. Since there is no actual difference in the product quality, the
average rating scores are about the same between the two products, but the customers
can also see the total number of submitted ratings for each product, which shows how
popular the product is in the market. Customers tend to adopt a more popular choice.
Answer the following questions:

• What would the phase space of this system look like?
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• Are there any attractors? Are there any basins of attraction?

• How does the system’s fate depend on its initial state?

• If you were in charge of marketing product A, what would you do?

Solution

• There are a few different ways to represent the phase space of this system. If you
use the market share of A as a state variable, say x (0 ≤ x ≤ 1), then the phase
space is a one-dimensional line segment. Or, if you use the numbers of submitted
ratings for the two products as state variables, say m and n (m ≥ 0, n ≥ 0), then the
phase space is a two-dimensional plane.

• The customers adopt a more popular choice, which makes the chosen product even
more popular because some of those customers are likely to submit their ratings.
Therefore, there is a “winner-takes-all” type of dynamics going on in this system.
In the one-dimensional phase space with the market share of A, the winner-takes-
all dynamics are represented by two attractors, i.e., x = 0 and x = 1. Each at-
tractor means one of the two products completely dominated the market. In the
two-dimensional phase space with the numbers of submitted ratings, there are no
attractors, but instead the system’s state diverges indefinitely toward either m→∞
or n→∞.

• The system’s fate is determined by which product is more popular at the beginning.
The dynamics will simply amplify the difference in initial popularity between the two
products.

• You should make a significant marketing campaign for product A at the very begin-
ning of competition, because the system’s fate is determined by the initial difference.



Chapter 4

Discrete-Time Models I: Modeling

Exercise 4.1 Write the state transition functions FA(sA, sB) and FB(sA, sB) for this system,
where sA and sB are the states of A and B, respectively.

Solution To write a state transition function in a mathematical way, you will first need to
define how you represent the system’s states numerically. One possibility is to use 1 for
red and -1 for blue. Then FA and FB can be written as simply as follows:

sA(t) = FA(sA(t− 1), sB(t− 1)) = sB(t− 1)

sB(t) = FB(sA(t− 1), sB(t− 1)) = −sA(t− 1)

If you let x = (sA sB)
T , then the model can be further simplified to the following linear

form:

xt = Axt−1

A =

(
0 1
−1 0

)

Exercise 4.2 Produce a time series of (sA, sB) starting with an initial condition with both
components in blue, using the model you created. What kind of behavior will arise?

Solution The result will look like the following cycle:

(−1,−1), (−1, 1), (1, 1), (1,−1), (−1,−1), . . .

Exercise 4.3 Decide whether each of the following examples is (1) linear or nonlinear, (2)
first-order or higher-order, and (3) autonomous or non-autonomous.

1. xt = axt−1 + b
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2. xt = axt−1 + bxt−2 + cxt−3

3. xt = axt−1(1− xt−1)

4. xt = axt−1 + bxt− 22 + c
√
xt−1xt−3

5. xt = axt−1xt−2 + bxt−3 + sin t

6. xt = axt−1 + byt−1, yt = cxt−1 + dyt−1

Solution

1. Linear, first-order, autonomous

2. Linear, higher-order, autonomous

3. Nonlinear, first-order, autonomous

4. Nonlinear, higher-order, autonomous

5. Nonlinear, higher-order, non-autonomous

6. Linear, first-order, autonomous

Exercise 4.4 Convert the following difference equations into an autonomous, first-order
form.

1. xt = xt−1(1− xt−1) sin t

2. xt = xt−1 + xt−2 − xt−3

Solution

1. xt = xt−1(1− xt−1) sin zt−1, zt = zt−1 + 1 (z0 = 1)

2. xt = xt−1 + yt−1 − zt−1, yt = xt−1, zt = yt−1

Exercise 4.5 Conduct simulations of this model for various values of parameter a to see
what kind of behaviors are possible in this model and how the value of a determines the
resulting behavior.

Solution The system shows exponential divergence when |a| > 1. If |a| < 1 it shows
exponential convergence to the origin. In addition, if a < 0, the system’s state flips its sign
in every time step (oscillation with period 2).
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Exercise 4.6 Implement a simulation code of the following difference equation:

xt = axt−1 + b, x0 = 1

This equation is still linear, but now it has a constant term in addition to axt−1. Some
real-world examples that can be modeled in this equation include fish population growth
with constant removals due to fishing, and growth of credit card balances with constant
monthly payments (both with negative b). Change the values of a and b, and see if the
system’s behaviors are the same as those of the simple exponential growth/decay model.

Solution The essential behavior is the same, but the convergence/divergence in this
model can occur relative to a non-zero value, in contrast to the original exponential
growth/decay model that always showed exponential behavior with respect to the origin.

Exercise 4.7 Simulate the above two-variable system using several different coefficients
in the equations and see what kind of behaviors can arise.

Solution You can see various behaviors coming out from this two-variable system as
you change the coefficients. Those behaviors can be classified based on whether the
trajectories are converging to or diverging from the origin, and whether the trajectories
rotate around the origin. Fig. 5.15 provides useful illustrations of those behaviors.

Exercise 4.8 Simulate the behavior of the following Fibonacci sequence. You first need
to convert it into a two-variable first-order difference equation, and then implement a sim-
ulation code for it.

xt = xt−1 + xt−2, x0 = 1, x1 = 1

Solution Introducing a new memory variable yt = xt−1 makes the following equation:

xt = xt−1 + yt−1

yt = xt−1

x1 = 1

y1 = 1

You can simulate the behavior of this system by modifying the coefficients in the sample
code given in the main text. It should show exponential growth.

Exercise 4.9 Simulate the behavior of the new population growth model for several dif-
ferent values of parameter a and initial condition x0 to see what kind of behaviors are
possible.

xt =

(
−a− 1

K
xt−1 + a

)
xt−1
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Solution You can revise Code 4.9 to simulate the behavior of this model. The initial
condition x0 should be between 0 and K. For a < 1, the population decays exponentially.
For a > 1, the population grows, and converges to K if a is not too large. But if you let a
be sufficiently large, the system may show some weird behavior. This will be discussed
further in later chapters.

Exercise 4.10 Create a mathematical model of population growth in which the growth ratio
is highest at a certain optimal population size, but it goes down as the population deviates
from the optimal size. Then simulate its behavior and see how its behavior differs from
that of the logistic growth model.

Solution This model revision can be achieved by using a different mathematical function
for f(x) in Eq. (4.21). For example, you can use an upper convex parabola that has its
peak at the optimal population size xop. Note that f(xop) needs to be greater than 1 in
order to let the population grow.

Exercise 4.11 Test the equations above by assuming extreme values for x and y, and
make sure the model behaves as we intended.

Solution

• If x = 0: x remains 0 while y shows exponential decay. (OK)

• If y = 0: y remains 0 while x shows typical logistic growth. (OK)

• If x = K: x has no growth but may decrease because of the predation by y. (OK)

• If y is very large: Most of x’s current population disappears immediately due to the
predation by y. (OK)

Exercise 4.12 Implement a simulation code for the equations above, and observe the
model behavior for various parameter settings.

Solution You can revise Code 4.13 to simulate the behavior of this model.

Exercise 4.13 Try several different parameter settings for r, b, d, and c, and see how the
system’s behavior changes. In some cases you may find an unrealistic, invalid behavior
(e.g., indefinite growth of predators). If so, revise the model to fix the problem.

Solution By changing values of those parameters, you will see several different behav-
iors, including extinction of predators, extinction of both species, damping oscillation and
convergence to stationary population levels, and (as mentioned in the exercise text) di-
vergence of the predator population to infinity. There are various ways to prevent such
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divergence. For example, you can include a logistic growth-type restriction to the second
equation, e.g.:

yt = yt−1 − dyt−1 + cxt−1yt−1

(
1− yt−1

K ′

)
Exercise 4.14 Develop a discrete-time mathematical model of two species competing for
the same resource, and simulate its behavior.

Solution This can be modeled in various ways, but here is a simple example. The model
assumptions are:

• A finite amount of resource is made available at every time step, and all of them will
be fully consumed by the two species for their growth.

• The amount of resource each species can consume is proposal to their relative
population size, because the more organisms there are, the faster the resource
consumption is.

• The population increase of each species is proportional to the amount of resource it
consumes.

Let R be the total amount of resource provided at each time step, and x and y the popula-
tion sizes of the two competing species. Then, the amount of the resource each species
can consume is R x

x+y
for x, or R y

x+y
for y. The resulting model equations are

xt = xt−1 + rxR
x

x+ y
,

yt = yt−1 + ryR
y

x+ y
,

where rx and ry are the growth rates, i.e., the numbers of the newborn offspring per unit
resource consumption, for species x and y, respectively. You can revise Code 4.13 to
simulate the behavior of this model. If the growth rates are different between the two
species, the one with the greater growth rate will eventually win. If the rates are exactly
the same, the initial population ratio will be maintained.

Exercise 4.15 Consider the dynamics of public opinions about political ideologies. For
simplicity, let’s assume that there are only three options: conservative, liberal, and neu-
tral. Conservative and liberal are equally attractive (or annoying, maybe) to people, with
no fundamental asymmetry between them. The popularities of conservative and liberal
ideologies can be represented by two variables, pc and pl, respectively (0 ≤ pc ≤ 1;
0 ≤ pl ≤ 1; 0 ≤ pc + pl ≤ 1). This implies that 1− pc − pl = pn represents the popularity of
neutral.
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Assume that at each election poll, people will change their ideological states among
the three options according to their relative popularities in the previous poll. For example,
the rate of switching from option X to option Y can be considered proportional to (pY −pX)
if pY > pX , or 0 otherwise. You should consider six different cases of such switching
behaviors (conservative to liberal, conservative to neutral, liberal to conservative, liberal
to neutral, neutral to conservative, and neutral to liberal) and represent them in dynamical
equations.

Complete a discrete-time mathematical model that describes this system, and sim-
ulate its behavior. See what the possible final outcomes are after a sufficiently long time
period.

Solution This is a rather complicated mathematical model, but you can write down these
assumptions as follows:

pc, t = pc, t−1 + rmax(pc, t−1 − pl, t−1, 0)pl, t−1 + rmax(pc, t−1 − pn, t−1, 0)pn, t−1
− rmax(pl, t−1 − pc, t−1, 0)pc, t−1 − rmax(pn, t−1 − pc, t−1, 0)pc, t−1

pl, t = pl, t−1 + rmax(pl, t−1 − pc, t−1, 0)pc, t−1 + rmax(pl, t−1 − pn, t−1, 0)pn, t−1
− rmax(pc, t−1 − pl, t−1, 0)pl, t−1 − rmax(pn, t−1 − pl, t−1, 0)pl, t−1

Here, pn, t−1 = 1− pc, t−1− pl, t−1, and r is a constant that determines the rate of switching.
You can revise Code 4.13 to simulate the behavior of this model. You will see that the
system will eventually converge to an all-conservative (pc = 1, pl = pn = 0), all-liberal
(pl = 1, pc = pn = 0), or all-neutral (pn = 1, pc = pl = 0) state, depending on the initial
condition.

Exercise 4.16 Revise the model of public opinion dynamics developed in the previous
exercise so that the political parties of the two ideologies (conservative and liberal) run a
political campaign to promote voters’ switching to their ideologies from their competitions,
at a rate inversely proportional to their current popularity (i.e., the less popular they are,
the more intense their campaign will be). Simulate the behavior of this revised model and
see how such political campaigning changes the dynamics of the system.

Solution This new assumption can be implemented in several different ways. For exam-
ple, you can replace the max(. . .) terms in the above equations with reciprocals of pc and
pl, which represent the intensities of their campaigns that are inversely proportional to the
parties’ popularity levels, as follows:

pc, t = pc, t−1 + r
1

pc, t−1
pl, t−1 + r

1

pc, t−1
pn, t−1 − r

1

pl, t−1
pc, t−1

pl, t = pl, t−1 + r
1

pl, t−1
pc, t−1 + r

1

pl, t−1
pn, t−1 − r

1

pc, t−1
pl, t−1
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Note that there is no term for decrease proportional to 1/pn, because there would be no
campaign for the neutral. Also note that r should be set to a very small value for the
system to show reasonable behavior, because 1/pc or 1/pl could be very large.

If you simulate this revised model, you will see that the system always converge to a
tense situation in which the two parties go neck and neck with each other, regardless of
the initial condition.
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Chapter 5

Discrete-Time Models II: Analysis

Exercise 5.1 Obtain the equilibrium point(s) of the following difference equation:

xt = 2xt−1 − x2t−1

Solution

xeq = 2xeq − x2eq
0 = xeq − x2eq
= xeq(1− xeq)

xeq = 0, 1

Exercise 5.2 Obtain the equilibrium point(s) of the following two-dimensional difference
equation model:

xt = xt−1yt−1

yt = yt−1(xt−1 − 1)

Solution

xeq = xeqyeq

yeq = yeq(xeq − 1)

The first equation gives xeq = 0 or yeq = 1. For the former, the second equation gives
yeq = 0. For the latter, it gives xeq = 2. Therefore, the equilibrium points are

(xeq, yeq) = (0, 0), (2, 1).

21
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Exercise 5.3 Obtain the equilibrium point(s) of the following difference equation:

xt = xt−1 − x2t−2 + 1

Note that this is a second-order difference equation, so you will need to first convert it into
a first-order form and then find the equilibrium point(s).

Solution By letting yt = xt−1, we get

xt = xt−1 − y2t−1 + 1

yt = xt−1

The equilibrium points must satisfy

xeq = xeq − y2eq + 1

yeq = xeq

The solutions are

(xeq, yeq) = (1, 1), (−1,−1).

Exercise 5.4 Draw a phase space of the following two-dimensional difference equation
model in Python:

xt = xt−1 + 0.1(xt−1 − xt−1yt−1)
yt = yt−1 + 0.1(yt−1 − xt−1yt−1)
(x > 0, y > 0)

Solution Code:

Code 5.1:
from pylab import *

def initialize(x0, y0):

global x, y, xresult, yresult

x = x0

y = y0

xresult = [x]

yresult = [y]
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def observe():

global x, y, xresult, yresult

xresult.append(x)

yresult.append(y)

def update():

global x, y, xresult, yresult

nextx = x + 0.1 * (x - x * y)

nexty = y + 0.1 * (y - x * y)

x, y = nextx, nexty

for x0 in arange(0, 2, .1):

for y0 in arange(0, 2, .1):

initialize(x0, y0)

for t in xrange(30):

update()

observe()

plot(xresult, yresult, ’b’)

axis([0, 2, 0, 2]) ### added to zoom in the area within which

### initial states were varied

show()

Output:

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0
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Exercise 5.5 Draw a cobweb plot for each of the following models:

• xt = xt−1 + 0.1, x0 = 0.1

• xt = 1.1xt−1, x0 = 0.1

Solution

0.0 0.2 0.4 0.6 0.8 1.0
xt−1

0.0

0.2

0.4

0.6

0.8

1.0

x
t

0.0 0.2 0.4 0.6 0.8 1.0
xt−1

0.0

0.2

0.4

0.6

0.8

1.0

x
t

xt = xt−1 + 0.1, x0 = 0.1 xt = 1.1xt−1, x0 = 0.1

Exercise 5.6 Draw a cobweb plot of the following logistic growth model with r = 1, K = 1,
N0 = 0.1:

Nt = Nt−1 + rNt−1(1−Nt−1/K)

Solution

0.0 0.2 0.4 0.6 0.8 1.0
Nt−1

0.0

0.2

0.4

0.6

0.8

1.0

N
t
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Exercise 5.7 Using Python, draw a cobweb plot of the logistic growth model with r = 2.5,
K = 1, N0 = 0.1.

Solution Code:

Code 5.2:
from pylab import *

r = 2.5

K = 1.

def initialize():

global N, result

N = 0.1

result = [N]

def observe():

global N, result

result.append(N)

def f(N):

return N + r * N * (1. - N / K)

def update():

global N, result

N = f(N)

initialize()

for t in xrange(30):

update()

observe()

Nmin, Nmax = 0, 1.4

plot([Nmin, Nmax], [Nmin, Nmax], ’k’)

rng = arange(Nmin, Nmax, (Nmax - Nmin) / 100.)

plot(rng, map(f, rng), ’k’)

horizontal = [result[0]]

vertical = [result[0]]
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for N in result[1:]:

horizontal.append(vertical[-1])

vertical.append(N)

horizontal.append(N)

vertical.append(N)

plot(horizontal, vertical, ’b’)

show()

Output:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Exercise 5.8 Draw a phase space of the following difference equation within the range
0 ≤ x < 100 by modifying Code 5.5:

xt = x
xt−1

t−1 mod 100

Solution Code:

Code 5.3:
from pylab import *

import networkx as nx

g = nx.DiGraph()
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for x in range(100):

g.add_edge(x, x ** x % 100)

ccs = [cc for cc in nx.connected_components(g.to_undirected())]

n = len(ccs)

w = ceil(sqrt(n))

h = ceil(n / w)

for i in xrange(n):

subplot(h, w, i + 1)

nx.draw(nx.subgraph(g, ccs[i]), with_labels = True)

show()

Output:

0

1 70 4010

8050

20 90
60

30

24
638

12
48 54

56

27

3

25

65

45

85

5

43

7
64

66

8

42 1416

72

78

9

89

11

33

53

73

13

95

35
75

55

15

17

97

37

77

32

68
74

76
82

18
24

26

19

79

21
34

36

22

28 84
86

58
92

67

23

29

69
31

59

39

41 96

98 44

46

52

62

88
94 63

47

49 51

57 61 71 81
83

87 91

93 99
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Exercise 5.9 Simplify the following difference equation by variable rescaling:

xt =
a

xt−1 + b

Solution By letting x→ αx′, we obtain:

αx′t =
a

αx′t−1 + b

x′t =
a

α2x′t−1 + αb

=
1

(α2/a)x′t−1 + (αb/a)

From here, for example, if we let α = a/b and c = α2/a = a/b2, the equation becomes
simplified as follows:

x′t =
1

cx′t−1 + 1

Exercise 5.10 Simplify the following two-dimensional predator-prey difference equation
model by variable rescaling:

xt = xt−1 + rxt−1

(
1− xt−1

K

)
−
(
1− 1

byt−1 + 1

)
xt−1

yt = yt−1 − dyt−1 + cxt−1yt−1

Solution By letting x→ αx′ and y → αy′, we obtain:

αx′t = αx′t−1 + αrx′t−1

(
1−

αx′t−1
K

)
−
(
1− 1

βby′t−1 + 1

)
αx′t−1

x′t = x′t−1 + rx′t−1

(
1−

αx′t−1
K

)
−
(
1− 1

βby′t−1 + 1

)
x′t−1

= rx′t−1

(
1−

αx′t−1
K

)
+

x′t−1
βby′t−1 + 1

βy′t = βy′t−1 − βdy′t−1 + αβcx′t−1y
′
t−1

y′t = y′t−1 − dy′t−1 + αcx′t−1y
′
t−1

From here, for example, if we let α = K, β = 1/b, p = 1 − d and q = αc = Kc, the
equations become simplified as follows:

x′t = rx′t−1(1− x′t−1) +
x′t−1

y′t−1 + 1

y′t = py′t−1 + qx′t−1y
′
t−1
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Exercise 5.11 Visualize the phase space of Eq. (5.48).

Solution You can simply replace the content of the update function of Code 5.1 with the
following:

Code 5.4:
nextx = x + y

nexty = x

Exercise 5.12 Study the asymptotic behavior of the following three-dimensional difference
equation model by calculating its eigenvalues and eigenvectors:

xt = xt−1 − yt−1
yt = −xt−1 − 3yt−1 + zt−1

zt = yt−1 + zt−1

Solution This model can be rewritten by letting (xt, yt, zt)⇒ xt as follows:

xt =

 1 −1 0
−1 −3 1
0 1 1

xt−1

The eigenvalues and eigenvectors of the above matrix can be calculated using Python:

Code 5.5:
from pylab import *

eig([[1, -1, 0], [-1, -3, 1], [0, 1, 1]])

The result is shown below:

Code 5.6:
(array([-3.44948974, 1. , 1.44948974]),

array([[ 2.14186495e-01, -7.07106781e-01, -6.73887339e-01],

[ 9.53020614e-01, 2.42373658e-16, 3.02905447e-01],

[ -2.14186495e-01, -7.07106781e-01, 6.73887339e-01]]))

The first and third eigenvalues have their absolute values greater than 1, so they represent
growing components (while the second eigenvalue is 1, which means that the second
component is conserved). The first eigenvalue has the largest absolute value, so it is
the dominant one. The system’s state will asymptotically align the dominant eigenvector
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(the first column vector of the second array in the above result), with alternating signs
because the dominant eigenvalue is negative.

Exercise 5.13 Consider the dynamics of opinion diffusion among five people sitting in a
ring-shaped structure. Each individual is connected to her two nearest neighbors (i.e., left
and right). Initially they have random opinions (represented as random real numbers), but
at every time step, each individual changes her opinion to the local average in her social
neighborhood (i.e, her own opinion plus those of her two neighbors, divided by 3). Write
down these dynamics as a linear difference equation with five variables, then study its
asymptotic behavior by calculating its eigenvalues and eigenvectors.

Solution This model can be written using a five-dimensional state vector xt as follows:

xt =


1/3 1/3 0 0 1/3
1/3 1/3 1/3 0 0
0 1/3 1/3 1/3 0
0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3

xt−1

The eigenvalues and eigenvectors of the above matrix can be calculated using Python:

Code 5.7:
from pylab import *

a = 1./3.

eig([[a, a, 0, 0, a], [a, a, a, 0, 0], [0, a, a, a, 0], [0, 0, a, a, a],

[a, 0, 0, a, a]])

The result is shown below:

Code 5.8:
(array([-0.20601133, 0.53934466, 1. , 0.53934466, -0.20601133]),

array([[ 0.63245553, -0.63245553, -0.4472136 , 0.1374608 , -0.05004529],

[-0.51166727, -0.19543951, -0.4472136 , 0.62959976, -0.33009489],

[ 0.19543951, 0.51166727, -0.4472136 , 0.25165325, 0.58415005],

[ 0.19543951, 0.51166727, -0.4472136 , -0.4740695 , -0.61507975],

[-0.51166727, -0.19543951, -0.4472136 , -0.54464431, 0.41106988]]))

The third eigenvalue is dominant, which is 1, indicating that the component represented
by its corresponding eigenvector is conserved. In the meantime, the absolute values of
all the other eigenvalues are less than 1, meaning that those components will shrink and
disappear. The dominant eigenvector (the third column vector of the second array in
the above result) shows a homogeneous state, which means that the opinions of the five
people will eventually become identical due to diffusion.
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Exercise 5.14 What if a linear system has more than one dominant, real-valued eigen-
value? What does it imply for the relationship between the initial condition and the asymp-
totic behavior of the system?

Solution Having more than one dominant, real-valued eigenvalue means that the com-
ponents of the system’s state that correspond to those eigenvalues will grow (or shrink)
at the same rate. Therefore, their ratios are maintained over time, which means that the
asymptotic direction of the system’s state will depend on the initial condition.

Exercise 5.15 Consider the following iterative map (a > 0, b > 0):

xt = xt−1 + a sin(bxt−1)

Conduct linear stability analysis to determine whether this model is stable or not at its
equilibrium point xeq = 0.

Solution Let F (x) represent the right hand side of the above equation. Then,

F ′(x) = 1 + ab cos(bx)

F ′(0) = 1 + ab > 1 (because a > 0, b > 0)

Therefore, the equilibrium point xeq = 0 is unstable.

Exercise 5.16 Consider the following two-dimensional difference equation model:

xt = xt−1 + 2xt−1(1− xt−1)− xt−1yt−1
yt = yt−1 + 2yt−1(1− yt−1)− xt−1yt−1

1. Find all of its equilibrium points.

2. Calculate the Jacobian matrix at the equilibrium point where x > 0 and y > 0.

3. Calculate the eigenvalues of the matrix obtained above.

4. Based on the result, classify the equilibrium point into one of the following: sta-
ble point, unstable point, saddle point, stable spiral focus, unstable spiral focus, or
neutral center.

Solution

1. By letting x → xeq and y → yeq, the first equation gives xeq = 0 or yeq = 2(1 −
xeq). Applying xeq = 0 to the second equation gives yeq = 0 or 1. Applying yeq =
2(1 − xeq) to the second equation gives xeq = 1 or 2/3 (which makes yeq = 0 or
2/3, respectively). By combining these results together, the equilibrium points are
(xeq, yeq) = (0, 0), (0, 1), (1, 0), (2/3, 2/3).
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2. The Jacobian matrix of this model is given by(
3− 4x− y −x
−y 3− 4y − x

)
.

There is only one equilibrium point where x > 0 and y > 0, which is (xeq, yeq) =
(2/3, 2/3). With these values, the above Jacobian matrix becomes(

−1/3 −2/3
−2/3 −1/3

)
.

3. The eigenvalues of the above matrix are calculated as follows:∣∣∣∣ −1/3− λ −2/3
−2/3 −1/3− λ

∣∣∣∣ = 0

(−1/3− λ)2 − (−2/3)2 = 0

λ2 +
2

3
λ− 1

3
= 0

(λ+ 1) (λ− 1/3) = 0

λ = −1, 1/3

4. It turns out that this is a subtle case, because the dominant eigenvalue (λ = −1) has
1 as its absolute value. This does not show linear expotential growth, so it can be
considered a (Lyapunov) stable point1. The eigenvalues don’t have imaginary parts,
so it doesn’t involve any spiral behaviors.

Exercise 5.17 Consider the following two-dimensional difference equation model:

xt = xt−1yt−1

yt = yt−1(xt−1 − 1)

1. Find all equilibrium points (which you may have done already in Exercise 5.2).

2. Calculate the Jacobian matrix at each of the equilibrium points.

3. Calculate the eigenvalues of each of the matrices obtained above.

4. Based on the results, discuss the stability of each equilibrium point.

1In this case it is indeed Lyapunov stable, but it would generally require a nonlinear analysis to show that
an equilibrium point is truly Lyapunov stable.
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Solution

1. (xeq, yeq) = (0, 0), (2, 1)

2. The Jacobian matrix of this model is given by(
y x
y x− 1

)
.

At (xeq, yeq) = (0, 0), the above Jacobian matrix becomes(
0 0
0 −1

)
.

At (xeq, yeq) = (2, 1), the above Jacobian matrix becomes(
1 2
1 1

)
.

3. The first Jacobian matrix has eigenvalues λ = 0, −1. The second Jacobian matrix
has eigenvalues λ = 1±

√
2.

4. Based on these results, (xeq, yeq) = (0, 0) appears to be a (Lyapunov) stable point2,
while (xeq, yeq) = (2, 1) is unstable because one of its eigenvalues has its absolute
value greater than 1.

2But again, it would generally require a nonlinear analysis to show that an equilibrium point is truly
Lyapunov stable.
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