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1.1 THE ELECTRICAL/ELECTRONICS INDUSTRY

The growing sensitivity to the technologies on Wall Street is clear evi-
dence that the electrical/electronics industry is one that will have a sweep-
ing impact on future development in a wide range of areas that affect our
life style, general health, and capabilities. Even the arts, initially so deter-
mined not to utilize technological methods, are embracing some of the
new, innovative techniques that permit exploration into areas they never
thought possible. The new Windows approach to computer simulation has
made computer systems much friendlier to the average person, resulting in
an expanding market which further stimulates growth in the field. The
computer in the home will eventually be as common as the telephone or
television. In fact, all three are now being integrated into a single unit.

Every facet of our lives seems touched by developments that appear to
surface at an ever-increasing rate. For the layperson, the most obvious
improvement of recent years has been the reduced size of electrical/ elec-
tronics systems. Televisions are now small enough to be hand-held and
have a battery capability that allows them to be more portable. Computers
with significant memory capacity are now smaller than this textbook. The
size of radios is limited simply by our ability to read the numbers on the
face of the dial. Hearing aids are no longer visible, and pacemakers are
significantly smaller and more reliable. All the reduction in size is due
primarily to a marvelous development of the last few decades—the
integrated circuit (IC). First developed in the late 1950s, the IC has now
reached a point where cutting 0.18-micrometer lines is commonplace. The
integrated circuit shown in Fig. 1.1 is the Intel® Pentium® 4 processor,
which has 42 million transistors in an area measuring only 0.34 square
inches. Intel Corporation recently presented a technical paper describing
0.02-micrometer (20-nanometer) transistors, developed in its silicon
research laboratory. These small, ultra-fast transistors will permit placing
nearly one billion transistors on a sliver of silicon no larger than a finger-
nail. Microprocessors built from these transistors will operate at about
20 GHz. It leaves us only to wonder about the limits of such development.

It is natural to wonder what the limits to growth may be when we
consider the changes over the last few decades. Rather than following a
steady growth curve that would be somewhat predictable, the industry
is subject to surges that revolve around significant developments in the
field. Present indications are that the level of miniaturization will con-
tinue, but at a more moderate pace. Interest has turned toward increas-
ing the quality and yield levels (percentage of good integrated circuits
in the production process).
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History reveals that there have been peaks and valleys in industry
growth but that revenues continue to rise at a steady rate and funds set
aside for research and development continue to command an increasing
share of the budget. The field changes at a rate that requires constant
retraining of employees from the entry to the director level. Many com-
panies have instituted their own training programs and have encouraged
local universities to develop programs to ensure that the latest concepts
and procedures are brought to the attention of their employees. A period
of relaxation could be disastrous to a company dealing in competitive
products.

No matter what the pressures on an individual in this field may be to
keep up with the latest technology, there is one saving grace that
becomes immediately obvious: Once a concept or procedure is clearly
and correctly understood, it will bear fruit throughout the career of the
individual at any level of the industry. For example, once a fundamen-
tal equation such as Ohm’s law (Chapter 4) is understood, it will not be
replaced by another equation as more advanced theory is considered. It
is a relationship of fundamental quantities that can have application in
the most advanced setting. In addition, once a procedure or method of
analysis is understood, it usually can be applied to a wide (if not infi-
nite) variety of problems, making it unnecessary to learn a different
technique for each slight variation in the system. The content of this
text is such that every morsel of information will have application in
more advanced courses. It will not be replaced by a different set of
equations and procedures unless required by the specific area of appli-
cation. Even then, the new procedures will usually be an expanded
application of concepts already presented in the text.

It is paramount therefore that the material presented in this introduc-
tory course be clearly and precisely understood. It is the foundation for
the material to follow and will be applied throughout your working
days in this growing and exciting field.

1.2 A BRIEF HISTORY

In the sciences, once a hypothesis is proven and accepted, it becomes
one of the building blocks of that area of study, permitting additional
investigation and development. Naturally, the more pieces of a puzzle
available, the more obvious the avenue toward a possible solution. In
fact, history demonstrates that a single development may provide the
key that will result in a mushroom effect that brings the science to a
new plateau of understanding and impact.

If the opportunity presents itself, read one of the many publications
reviewing the history of this field. Space requirements are such that
only a brief review can be provided here. There are many more con-
tributors than could be listed, and their efforts have often provided
important keys to the solution of some very important concepts.

As noted earlier, there were periods characterized by what appeared
to be an explosion of interest and development in particular areas. As
you will see from the discussion of the late 1700s and the early 1800s,
inventions, discoveries, and theories came fast and furiously. Each new
concept has broadened the possible areas of application until it becomes
almost impossible to trace developments without picking a particular
area of interest and following it through. In the review, as you read
about the development of the radio, television, and computer, keep in

FIG. 1.1

Computer chip on finger. (Courtesy of 
Intel Corp.)
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mind that similar progressive steps were occurring in the areas of the
telegraph, the telephone, power generation, the phonograph, appliances,
and so on.

There is a tendency when reading about the great scientists, inventors,
and innovators to believe that their contribution was a totally individual
effort. In many instances, this was not the case. In fact, many of the great
contributors were friends or associates who provided support and
encouragement in their efforts to investigate various theories. At the very
least, they were aware of one another’s efforts to the degree possible in
the days when a letter was often the best form of communication. In par-
ticular, note the closeness of the dates during periods of rapid develop-
ment. One contributor seemed to spur on the efforts of the others or pos-
sibly provided the key needed to continue with the area of interest.

In the early stages, the contributors were not electrical, electronic, or
computer engineers as we know them today. In most cases, they were
physicists, chemists, mathematicians, or even philosophers. In addition,
they were not from one or two communities of the Old World. The home
country of many of the major contributors introduced in the paragraphs
to follow is provided to show that almost every established community
had some impact on the development of the fundamental laws of electri-
cal circuits.

As you proceed through the remaining chapters of the text, you will
find that a number of the units of measurement bear the name of major
contributors in those areas—volt after Count Alessandro Volta, ampere
after André Ampère, ohm after Georg Ohm, and so forth—fitting recog-
nition for their important contributions to the birth of a major field of
study.

Time charts indicating a limited number of major developments are
provided in Fig. 1.2, primarily to identify specific periods of rapid
development and to reveal how far we have come in the last few
decades. In essence, the current state of the art is a result of efforts that
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began in earnest some 250 years ago, with progress in the last 100 years
almost exponential.

As you read through the following brief review, try to sense the
growing interest in the field and the enthusiasm and excitement that
must have accompanied each new revelation. Although you may find
some of the terms used in the review new and essentially meaningless,
the remaining chapters will explain them thoroughly.

The Beginning

The phenomenon of static electricity has been toyed with since antiq-
uity. The Greeks called the fossil resin substance so often used to
demonstrate the effects of static electricity elektron, but no extensive
study was made of the subject until William Gilbert researched the
event in 1600. In the years to follow, there was a continuing investiga-
tion of electrostatic charge by many individuals such as Otto von Guer-
icke, who developed the first machine to generate large amounts of
charge, and Stephen Gray, who was able to transmit electrical charge
over long distances on silk threads. Charles DuFay demonstrated that
charges either attract or repel each other, leading him to believe that
there were two types of charge—a theory we subscribe to today with
our defined positive and negative charges.

There are many who believe that the true beginnings of the electrical
era lie with the efforts of Pieter van Musschenbroek and Benjamin
Franklin. In 1745, van Musschenbroek introduced the Leyden jar for
the storage of electrical charge (the first capacitor) and demonstrated
electrical shock (and therefore the power of this new form of energy).
Franklin used the Leyden jar some seven years later to establish that
lightning is simply an electrical discharge, and he expanded on a num-
ber of other important theories including the definition of the two types
of charge as positive and negative. From this point on, new discoveries
and theories seemed to occur at an increasing rate as the number of
individuals performing research in the area grew.

In 1784, Charles Coulomb demonstrated in Paris that the force
between charges is inversely related to the square of the distance
between the charges. In 1791, Luigi Galvani, professor of anatomy at
the University of Bologna, Italy, performed experiments on the effects
of electricity on animal nerves and muscles. The first voltaic cell, with
its ability to produce electricity through the chemical action of a metal
dissolving in an acid, was developed by another Italian, Alessandro
Volta, in 1799.

The fever pitch continued into the early 1800s with Hans Christian
Oersted, a Swedish professor of physics, announcing in 1820 a relation-
ship between magnetism and electricity that serves as the foundation for
the theory of electromagnetism as we know it today. In the same year, a
French physicist, André Ampère, demonstrated that there are magnetic
effects around every current-carrying conductor and that current-carry-
ing conductors can attract and repel each other just like magnets. In the
period 1826 to 1827, a German physicist, Georg Ohm, introduced an
important relationship between potential, current, and resistance which
we now refer to as Ohm’s law. In 1831, an English physicist, Michael
Faraday, demonstrated his theory of electromagnetic induction, whereby
a changing current in one coil can induce a changing current in another
coil, even though the two coils are not directly connected. Professor
Faraday also did extensive work on a storage device he called the con-
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denser, which we refer to today as a capacitor. He introduced the idea of
adding a dielectric between the plates of a capacitor to increase the stor-
age capacity (Chapter 10). James Clerk Maxwell, a Scottish professor of
natural philosophy, performed extensive mathematical analyses to
develop what are currently called Maxwell’s equations, which support
the efforts of Faraday linking electric and magnetic effects. Maxwell also
developed the electromagnetic theory of light in 1862, which, among
other things, revealed that electromagnetic waves travel through air
at the velocity of light (186,000 miles per second or 3 � 108 meters
per second). In 1888, a German physicist, Heinrich Rudolph Hertz,
through experimentation with lower-frequency electromagnetic waves
(microwaves), substantiated Maxwell’s predictions and equations. In the
mid 1800s, Professor Gustav Robert Kirchhoff introduced a series of
laws of voltages and currents that find application at every level and area
of this field (Chapters 5 and 6). In 1895, another German physicist, Wil-
helm Röntgen, discovered electromagnetic waves of high frequency,
commonly called X rays today.

By the end of the 1800s, a significant number of the fundamental
equations, laws, and relationships had been established, and various
fields of study, including electronics, power generation, and calculating
equipment, started to develop in earnest.

The Age of Electronics

Radio The true beginning of the electronics era is open to debate and
is sometimes attributed to efforts by early scientists in applying poten-
tials across evacuated glass envelopes. However, many trace the begin-
ning to Thomas Edison, who added a metallic electrode to the vacuum
of the tube and discovered that a current was established between the
metal electrode and the filament when a positive voltage was applied to
the metal electrode. The phenomenon, demonstrated in 1883, was
referred to as the Edison effect. In the period to follow, the transmis-
sion of radio waves and the development of the radio received wide-
spread attention. In 1887, Heinrich Hertz, in his efforts to verify
Maxwell’s equations, transmitted radio waves for the first time in his
laboratory. In 1896, an Italian scientist, Guglielmo Marconi (often
called the father of the radio), demonstrated that telegraph signals could
be sent through the air over long distances (2.5 kilometers) using a
grounded antenna. In the same year, Aleksandr Popov sent what might
have been the first radio message some 300 yards. The message was the
name “Heinrich Hertz” in respect for Hertz’s earlier contributions. In
1901, Marconi established radio communication across the Atlantic.

In 1904, John Ambrose Fleming expanded on the efforts of Edison
to develop the first diode, commonly called Fleming’s valve—actually
the first of the electronic devices. The device had a profound impact on
the design of detectors in the receiving section of radios. In 1906, Lee
De Forest added a third element to the vacuum structure and created the
first amplifier, the triode. Shortly thereafter, in 1912, Edwin Armstrong
built the first regenerative circuit to improve receiver capabilities and
then used the same contribution to develop the first nonmechanical
oscillator. By 1915 radio signals were being transmitted across the
United States, and in 1918 Armstrong applied for a patent for the super-
heterodyne circuit employed in virtually every television and radio to
permit amplification at one frequency rather than at the full range of
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incoming signals. The major components of the modern-day radio were
now in place, and sales in radios grew from a few million dollars in the
early 1920s to over $1 billion by the 1930s. The 1930s were truly the
golden years of radio, with a wide range of productions for the listen-
ing audience.

Television The 1930s were also the true beginnings of the television
era, although development on the picture tube began in earlier years
with Paul Nipkow and his electrical telescope in 1884 and John Baird
and his long list of successes, including the transmission of television
pictures over telephone lines in 1927 and over radio waves in 1928, and
simultaneous transmission of pictures and sound in 1930. In 1932, NBC
installed the first commercial television antenna on top of the Empire
State Building in New York City, and RCA began regular broadcasting
in 1939. The war slowed development and sales, but in the mid 1940s
the number of sets grew from a few thousand to a few million. Color
television became popular in the early 1960s.

Computers The earliest computer system can be traced back to
Blaise Pascal in 1642 with his mechanical machine for adding and sub-
tracting numbers. In 1673 Gottfried Wilhelm von Leibniz used the
Leibniz wheel to add multiplication and division to the range of opera-
tions, and in 1823 Charles Babbage developed the difference engine to
add the mathematical operations of sine, cosine, logs, and several oth-
ers. In the years to follow, improvements were made, but the system
remained primarily mechanical until the 1930s when electromechanical
systems using components such as relays were introduced. It was not
until the 1940s that totally electronic systems became the new wave. It
is interesting to note that, even though IBM was formed in 1924, it did
not enter the computer industry until 1937. An entirely electronic sys-
tem known as ENIAC was dedicated at the University of Pennsylvania
in 1946. It contained 18,000 tubes and weighed 30 tons but was several
times faster than most electromechanical systems. Although other vac-
uum tube systems were built, it was not until the birth of the solid-state
era that computer systems experienced a major change in size, speed,
and capability.

The Solid-State Era

In 1947, physicists William Shockley, John Bardeen, and Walter H.
Brattain of Bell Telephone Laboratories demonstrated the point-contact
transistor (Fig. 1.3), an amplifier constructed entirely of solid-state
materials with no requirement for a vacuum, glass envelope, or heater
voltage for the filament. Although reluctant at first due to the vast
amount of material available on the design, analysis, and synthesis of
tube networks, the industry eventually accepted this new technology as
the wave of the future. In 1958 the first integrated circuit (IC) was
developed at Texas Instruments, and in 1961 the first commercial inte-
grated circuit was manufactured by the Fairchild Corporation.

It is impossible to review properly the entire history of the electri-
cal/electronics field in a few pages. The effort here, both through the
discussion and the time graphs of Fig. 1.2, was to reveal the amazing
progress of this field in the last 50 years. The growth appears to be truly
exponential since the early 1900s, raising the interesting question,
Where do we go from here? The time chart suggests that the next few

FIG. 1.3

The first transistor. (Courtesy of AT&T, Bell
Laboratories.)
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decades will probably contain many important innovative contributions
that may cause an even faster growth curve than we are now experienc-
ing.

1.3 UNITS OF MEASUREMENT

In any technical field it is naturally important to understand the basic
concepts and the impact they will have on certain parameters. However,
the application of these rules and laws will be successful only if the
mathematical operations involved are applied correctly. In particular, it
is vital that the importance of applying the proper unit of measurement
to a quantity is understood and appreciated. Students often generate a
numerical solution but decide not to apply a unit of measurement to the
result because they are somewhat unsure of which unit should be
applied. Consider, for example, the following very fundamental physics
equation:

v � velocity
d � distance (1.1)
t � time

Assume, for the moment, that the following data are obtained for a
moving object:

d � 4000 ft

t � 1 min

and v is desired in miles per hour. Often, without a second thought or
consideration, the numerical values are simply substituted into the
equation, with the result here that

As indicated above, the solution is totally incorrect. If the result is
desired in miles per hour, the unit of measurement for distance must be
miles, and that for time, hours. In a moment, when the problem is ana-
lyzed properly, the extent of the error will demonstrate the importance
of ensuring that

the numerical value substituted into an equation must have the unit
of measurement specified by the equation.

The next question is normally, How do I convert the distance and
time to the proper unit of measurement? A method will be presented in
a later section of this chapter, but for now it is given that

1 mi � 5280 ft

4000 ft � 0.7576 mi

1 min � h � 0.0167 h

Substituting into Eq. (1.1), we have

v � � � 45.37 mi/h

which is significantly different from the result obtained before.
To complicate the matter further, suppose the distance is given in

kilometers, as is now the case on many road signs. First, we must real-
ize that the prefix kilo stands for a multiplier of 1000 (to be introduced

0.7576 mi
��
0.0167 h

d
�
t

1
�
60

v � 4000 mi/h 
d
t

4000 ft
1 min� �

v � �
d
t
�
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in Section 1.5), and then we must find the conversion factor between
kilometers and miles. If this conversion factor is not readily available,
we must be able to make the conversion between units using the con-
version factors between meters and feet or inches, as described in Sec-
tion 1.6.

Before substituting numerical values into an equation, try to men-
tally establish a reasonable range of solutions for comparison purposes.
For instance, if a car travels 4000 ft in 1 min, does it seem reasonable
that the speed would be 4000 mi/h? Obviously not! This self-checking
procedure is particularly important in this day of the hand-held calcula-
tor, when ridiculous results may be accepted simply because they
appear on the digital display of the instrument.

Finally,

if a unit of measurement is applicable to a result or piece of data,
then it must be applied to the numerical value.

To state that v � 45.37 without including the unit of measurement mi/h
is meaningless.

Equation (1.1) is not a difficult one. A simple algebraic manipulation
will result in the solution for any one of the three variables. However,
in light of the number of questions arising from this equation, the reader
may wonder if the difficulty associated with an equation will increase at
the same rate as the number of terms in the equation. In the broad
sense, this will not be the case. There is, of course, more room for a
mathematical error with a more complex equation, but once the proper
system of units is chosen and each term properly found in that system,
there should be very little added difficulty associated with an equation
requiring an increased number of mathematical calculations.

In review, before substituting numerical values into an equation, be
absolutely sure of the following:

1. Each quantity has the proper unit of measurement as defined by
the equation.

2. The proper magnitude of each quantity as determined by the
defining equation is substituted.

3. Each quantity is in the same system of units (or as defined by the
equation).

4. The magnitude of the result is of a reasonable nature when
compared to the level of the substituted quantities.

5. The proper unit of measurement is applied to the result.

1.4 SYSTEMS OF UNITS

In the past, the systems of units most commonly used were the English
and metric, as outlined in Table 1.1. Note that while the English system
is based on a single standard, the metric is subdivided into two interre-
lated standards: the MKS and the CGS. Fundamental quantities of
these systems are compared in Table 1.1 along with their abbreviations.
The MKS and CGS systems draw their names from the units of mea-
surement used with each system; the MKS system uses Meters, Kilo-
grams, and Seconds, while the CGS system uses Centimeters, Grams,
and Seconds.

Understandably, the use of more than one system of units in a world
that finds itself continually shrinking in size, due to advanced technical
developments in communications and transportation, would introduce
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unnecessary complications to the basic understanding of any technical
data. The need for a standard set of units to be adopted by all nations
has become increasingly obvious. The International Bureau of Weights
and Measures located at Sèvres, France, has been the host for the Gen-
eral Conference of Weights and Measures, attended by representatives
from all nations of the world. In 1960, the General Conference adopted
a system called Le Système International d’Unités (International Sys-
tem of Units), which has the international abbreviation SI. Since then,
it has been adopted by the Institute of Electrical and Electronic Engi-
neers, Inc. (IEEE) in 1965 and by the United States of America Stan-
dards Institute in 1967 as a standard for all scientific and engineering
literature.

For comparison, the SI units of measurement and their abbreviations
appear in Table 1.1. These abbreviations are those usually applied to
each unit of measurement, and they were carefully chosen to be the
most effective. Therefore, it is important that they be used whenever
applicable to ensure universal understanding. Note the similarities of
the SI system to the MKS system. This text will employ, whenever pos-
sible and practical, all of the major units and abbreviations of the SI
system in an effort to support the need for a universal system. Those
readers requiring additional information on the SI system should con-
tact the information office of the American Society for Engineering
Education (ASEE).*

*American Society for Engineering Education (ASEE), 1818 N Street N.W., Suite 600,
Washington, D.C. 20036-2479; (202) 331-3500; http://www.asee.org/.

�� °C � 32�9
�
5

TABLE 1.1

Comparison of the English and metric systems of units.

English Metric

MKS CGS SI

Length: Meter (m) Centimeter (cm) Meter (m)
Yard (yd) (39.37 in.) (2.54 cm � 1 in.)
(0.914 m) (100 cm)

Mass:
Slug Kilogram (kg) Gram (g) Kilogram (kg)
(14.6 kg) (1000 g)

Force:
Pound (lb) Newton (N) Dyne Newton (N)
(4.45 N) (100,000 dynes)

Temperature:
Fahrenheit (°F) Celsius or Centigrade (°C) Kelvin (K)

Centigrade (°C) K � 273.15 � °C

�� (°F � 32)�
Energy:
Foot-pound (ft-lb) Newton-meter (N•m) Dyne-centimeter or erg Joule (J)
(1.356 joules) or joule (J) (1 joule � 107 ergs)

(0.7376 ft-lb)
Time:

Second (s) Second (s) Second (s) Second (s)

5
�
9
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Figure 1.4 should help the reader develop some feeling for the rela-
tive magnitudes of the units of measurement of each system of units.
Note in the figure the relatively small magnitude of the units of mea-
surement for the CGS system.

A standard exists for each unit of measurement of each system. The
standards of some units are quite interesting.

The meter was originally defined in 1790 to be 1/10,000,000 the
distance between the equator and either pole at sea level, a length pre-
served on a platinum-iridium bar at the International Bureau of Weights
and Measures at Sèvres, France.

The meter is now defined with reference to the speed of light in a
vacuum, which is 299,792,458 m/s.

The kilogram is defined as a mass equal to 1000 times the mass of
one cubic centimeter of pure water at 4°C.

This standard is preserved in the form of a platinum-iridium cylinder in
Sèvres.

FIG. 1.4

Comparison of units of the various systems of units.
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The second was originally defined as 1/86,400 of the mean solar
day. However, since Earth’s rotation is slowing down by almost 1 sec-
ond every 10 years,

the second was redefined in 1967 as 9,192,631,770 periods of the
electromagnetic radiation emitted by a particular transition of cesium
atom.

1.5 SIGNIFICANT FIGURES, ACCURACY,
AND ROUNDING OFF

This section will emphasize the importance of being aware of the
source of a piece of data, how a number appears, and how it should be
treated. Too often we write numbers in various forms with little concern
for the format used, the number of digits that should be included, and
the unit of measurement to be applied.

For instance, measurements of 22.1� and 22.10� imply different lev-
els of accuracy. The first suggests that the measurement was made by
an instrument accurate only to the tenths place; the latter was obtained
with instrumentation capable of reading to the hundredths place. The
use of zeros in a number, therefore, must be treated with care and the
implications must be understood.

In general, there are two types of numbers, exact and approximate.
Exact numbers are precise to the exact number of digits presented, just as
we know that there are 12 apples in a dozen and not 12.1. Throughout the
text the numbers that appear in the descriptions, diagrams, and examples
are considered exact, so that a battery of 100 V can be written as 100.0 V,
100.00 V, and so on, since it is 100 V at any level of precision. The addi-
tional zeros were not included for purposes of clarity. However, in the
laboratory environment, where measurements are continually being
taken and the level of accuracy can vary from one instrument to another,
it is important to understand how to work with the results. Any reading
obtained in the laboratory should be considered approximate. The analog
scales with their pointers may be difficult to read, and even though the
digital meter provides only specific digits on its display, it is limited to
the number of digits it can provide, leaving us to wonder about the less
significant digits not appearing on the display.

The precision of a reading can be determined by the number of sig-
nificant figures (digits) present. Significant digits are those integers (0
to 9) that can be assumed to be accurate for the measurement being
made. The result is that all nonzero numbers are considered significant,
with zeros being significant in only some cases. For instance, the zeros
in 1005 are considered significant because they define the size of the
number and are surrounded by nonzero digits. However, for a number
such as 0.064, the two zeros are not considered significant because they
are used only to define the location of the decimal point and not the
accuracy of the reading. For the number 0.4020, the zero to the left of
the decimal point is not significant, but the other two are because they
define the magnitude of the number and the fourth-place accuracy of
the reading.

When adding approximate numbers, it is important to be sure that
the accuracy of the readings is consistent throughout. To add a quantity
accurate only to the tenths place to a number accurate to the thousandths
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place will result in a total having accuracy only to the tenths place. One
cannot expect the reading with the higher level of accuracy to improve
the reading with only tenths-place accuracy.

In the addition or subtraction of approximate numbers, the entry 
with the lowest level of accuracy determines the format of the
solution.

For the multiplication and division of approximate numbers, the
result has the same number of significant figures as the number with
the least number of significant figures.

For approximate numbers (and exact, for that matter) there is often a
need to round off the result; that is, you must decide on the appropriate
level of accuracy and alter the result accordingly. The accepted proce-
dure is simply to note the digit following the last to appear in the
rounded-off form, and add a 1 to the last digit if it is greater than or
equal to 5, and leave it alone if it is less than 5. For example, 3.186 �
3.19 � 3.2, depending on the level of precision desired. The symbol �
appearing means approximately equal to.

EXAMPLE 1.1 Perform the indicated operations with the following
approximate numbers and round off to the appropriate level of accu-
racy.
a. 532.6 � 4.02 � 0.036 � 536.656 � 536.7 (as determined by 532.6)
b. 0.04 � 0.003 � 0.0064 � 0.0494 � 0.05 (as determined by 0.04)
c. 4.632 � 2.4 � 11.1168 � 11 (as determined by the two significant

digits of 2.4)
d. 3.051 � 802 � 2446.902 � 2450 (as determined by the three sig-

nificant digits of 802)
e. 1402/6.4 � 219.0625 � 220 (as determined by the two significant

digits of 6.4)
f. 0.0046/0.05 � 0.0920 � 0.09 (as determined by the one significant

digit of 0.05)

1.6 POWERS OF TEN

It should be apparent from the relative magnitude of the various units of
measurement that very large and very small numbers will frequently be
encountered in the sciences. To ease the difficulty of mathematical
operations with numbers of such varying size, powers of ten are usually
employed. This notation takes full advantage of the mathematical prop-
erties of powers of ten. The notation used to represent numbers that are
integer powers of ten is as follows:

1 � 100 1/10 � 0.1 � 10�1

10 � 101 1/100 � 0.01 � 10�2

100 � 102 1/1000 � 0.001 � 10�3

1000 � 103 1/10,000 � 0.0001 � 10�4

In particular, note that 100 � 1, and, in fact, any quantity to the zero
power is 1 (x0 � 1, 10000 � 1, and so on). Also, note that the numbers
in the list that are greater than 1 are associated with positive powers of
ten, and numbers in the list that are less than 1 are associated with neg-
ative powers of ten.
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A quick method of determining the proper power of ten is to place a
caret mark to the right of the numeral 1 wherever it may occur; then
count from this point to the number of places to the right or left before
arriving at the decimal point. Moving to the right indicates a positive
power of ten, whereas moving to the left indicates a negative power. For
example,

Some important mathematical equations and relationships pertaining
to powers of ten are listed below, along with a few examples. In each
case, n and m can be any positive or negative real number.

(1.2)

Equation (1.2) clearly reveals that shifting a power of ten from the
denominator to the numerator, or the reverse, requires simply changing
the sign of the power.

EXAMPLE 1.2

a. � � 10�3

b. � � 10�5

The product of powers of ten:

(1.3)

EXAMPLE 1.3

a. (1000)(10,000) � (103)(104) � 10(3�4) � 107

b. (0.00001)(100) � (10�5)(102) � 10(�5�2) � 10�3

The division of powers of ten:

(1.4)

EXAMPLE 1.4

a. � � 10(5�2) � 103

b. � � 10(3�(�4)) � 10(3�4) � 107

Note the use of parentheses in part (b) to ensure that the proper sign is
established between operators.

103

�
10�4

1000
�
0.0001

105

�
102

100,000
�

100

�
1
1
0
0

m

n

� � 10(n�m)

(10n)(10m) � 10(n�m)

1
�
10�5

1
�
0.00001

1
�
10�3

1
�
1000

�
1
1
0n� � 10�n �

10
1
�n� � 10n

10,000.0 � 1 0 , 0 0 0 . � 10�4

0.00001 � 0 . 0 0 0 0 1 � 10�5

1 2 3 4

123445
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The power of powers of ten:

(1.5)

EXAMPLE 1.5

a. (100)4 � (102)4 � 10(2)(4) � 108

b. (1000)�2 � (103)�2 � 10(3)(�2) � 10�6

c. (0.01)�3 � (10�2)�3 � 10(�2)(�3) � 106

Basic Arithmetic Operations

Let us now examine the use of powers of ten to perform some basic
arithmetic operations using numbers that are not just powers of ten.
The number 5000 can be written as 5 � 1000 � 5 � 103, and the
number 0.0004 can be written as 4 � 0.0001 � 4 � 10�4. Of course,
105 can also be written as 1 � 105 if it clarifies the operation to be
performed.

Addition and Subtraction To perform addition or subtraction
using powers of ten, the power of ten must be the same for each term;
that is,

(1.6)

Equation (1.6) covers all possibilities, but students often prefer to
remember a verbal description of how to perform the operation.

Equation (1.6) states

when adding or subtracting numbers in a powers-of-ten format, be
sure that the power of ten is the same for each number. Then separate
the multipliers, perform the required operation, and apply the same
power of ten to the result.

EXAMPLE 1.6

a. 6300 � 75,000 � (6.3)(1000) � (75)(1000)
� 6.3 � 103 � 75 � 103

� (6.3 � 75) � 103

� 81.3 � 103

b. 0.00096 � 0.000086 � (96)(0.00001) � (8.6)(0.00001)
� 96 � 10�5 � 8.6 � 10�5

� (96 � 8.6) � 10�5

� 87.4 � 10�5

Multiplication In general,

(1.7)(A � 10n)(B � 10m) � (A)(B) � 10n�m

A � 10n � B � 10n � (A � B) � 10n

(10n)m � 10(nm)
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revealing that the operations with the powers of ten can be separated
from the operation with the multipliers.

Equation (1.7) states

when multiplying numbers in the powers-of-ten format, first find the
product of the multipliers and then determine the power of ten for the
result by adding the power-of-ten exponents.

EXAMPLE 1.7

a. (0.0002)(0.000007) � [(2)(0.0001)][(7)(0.000001)]
� (2 � 10�4)(7 � 10�6)
� (2)(7) � (10�4)(10�6)
� 14 � 10�10

b. (340,000)(0.00061) � (3.4 � 105)(61 � 10�5)
� (3.4)(61) � (105)(10�5)
� 207.4 � 100

� 207.4

Division In general,

(1.8)

revealing again that the operations with the powers of ten can be sepa-
rated from the same operation with the multipliers.

Equation (1.8) states

when dividing numbers in the powers-of-ten format, first find the
result of dividing the multipliers. Then determine the associated
power for the result by subtracting the power of ten of the
denominator from the power of ten of the numerator.

EXAMPLE 1.8

a. � � � � � � �
� 23.5 � 10�2

b. � � � � � � �
� 5.31 � 1012

Powers In general,

(1.9)

which again permits the separation of the operation with the powers of
ten from the multipliers.

Equation (1.9) states

when finding the power of a number in the power-of-ten format, first
separate the multiplier from the power of ten and determine each
separately. Determine the power-of-ten component by multiplying the
power of ten by the power to be determined.

(A � 10n)m � Am � 10nm

104

�
10�8

69
�
13

69 � 104

��
13 � 10�8

690,000
��
0.00000013

10�5

�
10�3

47
�
2

47 � 10�5

��
2 � 10�3

0.00047
�

0.002

�
B
A

�

�

1
1
0
0

m

n

� � �
A
B

� � 10n�m
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EXAMPLE 1.9

a. (0.00003)3 � (3 � 10�5)3 � (3)3 � (10�5)3

� 27 � 10�15

b. (90,800,000)2 � (9.08 � 107)2 � (9.08)2 � (107)2

� 82.4464 � 1014

In particular, remember that the following operations are not the
same. One is the product of two numbers in the powers-of-ten format,
while the other is a number in the powers-of-ten format taken to a
power. As noted below, the results of each are quite different:

(103)(103) � (103)3

(103)(103) � 106 � 1,000,000

(103)3 � (103)(103)(103) � 109 � 1,000,000,000

Fixed-Point, Floating-Point, Scientific,
and Engineering Notation

There are, in general, four ways in which numbers appear when using a
computer or calculator. If powers of ten are not employed, they are
written in the fixed-point or floating-point notation. The fixed-point
format requires that the decimal point appear in the same place each
time. In the floating-point format, the decimal point will appear in a
location defined by the number to be displayed. Most computers and
calculators permit a choice of fixed- or floating-point notation. In the
fixed format, the user can choose the level of precision for the output as
tenths place, hundredths place, thousandths place, and so on. Every out-
put will then fix the decimal point to one location, such as the follow-
ing examples using thousandths place accuracy:

� 0.333 � 0.063 � 1150.000

If left in the floating-point format, the results will appear as follows
for the above operations:

� 0.333333333333 � 0.0625 � 1150

Powers of ten will creep into the fixed- or floating-point notation if the
number is too small or too large to be displayed properly.

Scientific (also called standard) notation and engineering notation
make use of powers of ten with restrictions on the mantissa (multiplier)
or scale factor (power of the power of ten). Scientific notation requires
that the decimal point appear directly after the first digit greater than or
equal to 1 but less than 10. A power of ten will then appear with the
number (usually following the power notation E), even if it has to be to
the zero power. A few examples:

� 3.33333333333E�1 � 6.25E�2 � 1.15E3

Within the scientific notation, the fixed- or floating-point format can
be chosen. In the above examples, floating was employed. If fixed is
chosen and set at the thousandths-point accuracy, the following will
result for the above operations:

2300
�

2
1

�
16

1
�
3

2300
�

2
1

�
16

1
�
3

2300
�

2
1

�
16

1
�
3
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� 3.333E�1 � 6.250E�2 � 1.150E3

The last format to be introduced is engineering notation, which
specifies that all powers of ten must be multiples of 3, and the mantissa
must be greater than or equal to 1 but less than 1000. This restriction on
the powers of ten is due to the fact that specific powers of ten have been
assigned prefixes that will be introduced in the next few paragraphs.
Using engineering notation in the floating-point mode will result in the
following for the above operations:

� 333.333333333E�3 � 62.5E�3 � 1.15E3

Using engineering notation with three-place accuracy will result in
the following:

� 333.333E�3 � 62.500E�3 � 1.150E3

Prefixes

Specific powers of ten in engineering notation have been assigned pre-
fixes and symbols, as appearing in Table 1.2. They permit easy recog-
nition of the power of ten and an improved channel of communication
between technologists.

2300
�

2
1

�
16

1
�
3

2300
�

2
1

�
16

1
�
3

2300
�

2
1

�
16

1
�
3

TABLE 1.2

Multiplication Factors SI Prefix SI Symbol

1 000 000 000 000 � 1012 tera T
1 000 000 000 � 109 giga G

1 000 000 � 106 mega M
1 000 � 103 kilo k
0.001 � 10�3 milli m

0.000 001 � 10�6 micro m

0.000 000 001 � 10�9 nano n
0.000 000 000 001 � 10�12 pico p

EXAMPLE 1.10

a. 1,000,000 ohms � 1 � 106 ohms
� 1 megohm (M	)

b. 100,000 meters � 100 � 103 meters
� 100 kilometers (km)

c. 0.0001 second � 0.1 � 10�3 second
� 0.1 millisecond (ms)

d. 0.000001 farad � 1 � 10�6 farad
� 1 microfarad (mF)

Here are a few examples with numbers that are not strictly powers
of ten.
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EXAMPLE 1.11

a. 41,200 m is equivalent to 41.2 � 103 m � 41.2 kilometers � 41.2 km.
b. 0.00956 J is equivalent to 9.56 � 10�3 J � 9.56 millijoules � 9.56 mJ.
c. 0.000768 s is equivalent to 768 � 10�6 s � 768 microseconds �

768 ms.

d. � � � � � � � m
103

�
10�2

8.4
�
6

8.4 � 103 m
��

6 � 10�2
8400 m
�

0.06
� 1.4 � 105 m � 140 � 103 m � 140 kilometers � 140 km

e. (0.0003)4 s � (3 � 10�4)4 s � 81 � 10�16 s
� 0.0081 � 10�12 s � 0.008 picosecond � 0.0081 ps

1.7 CONVERSION BETWEEN 
LEVELS OF POWERS OF TEN

It is often necessary to convert from one power of ten to another. For
instance, if a meter measures kilohertz (kHz), it may be necessary to find
the corresponding level in megahertz (MHz), or if time is measured in
milliseconds (ms), it may be necessary to find the corresponding time in 
microseconds (ms) for a graphical plot. The process is not a difficult one
if we simply keep in mind that an increase or a decrease in the power of
ten must be associated with the opposite effect on the multiplying factor.
The procedure is best described by a few examples.

EXAMPLE 1.12

a. Convert 20 kHz to megahertz.
b. Convert 0.01 ms to microseconds.
c. Convert 0.002 km to millimeters.

Solutions:

a. In the power-of-ten format:

20 kHz � 20 � 103 Hz

The conversion requires that we find the multiplying factor to appear
in the space below:

Since the power of ten will be increased by a factor of three, the
multiplying factor must be decreased by moving the decimal point
three places to the left, as shown below:

and 20 � 103 Hz � 0.02 � 106 Hz � 0.02 MHz

b. In the power-of-ten format:

0.01 ms � 0.01 � 10�3 s

and 0.01 � 10�3 s � � 10�6 s

Reduce by 3

Increase by 3

020. � 0.02
3

20 � 103 Hz 7 � 106 Hz

Increase by 3

Decrease by 3
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Since the power of ten will be reduced by a factor of three, the
multiplying factor must be increased by moving the decimal point
three places to the right, as follows:

and 0.01 � 10�3 s � 10 � 10�6 s � 10 ms

There is a tendency when comparing �3 to �6 to think that the
power of ten has increased, but keep in mind when making your
judgment about increasing or decreasing the magnitude of the multi-
plier that 10�6 is a great deal smaller than 10�3.

c.

In this example we have to be very careful because the difference
between �3 and �3 is a factor of 6, requiring that the multiplying
factor be modified as follows:

and 0.002 � 103 m � 2000 � 10�3 m � 2000 mm

1.8 CONVERSION WITHIN AND 
BETWEEN SYSTEMS OF UNITS

The conversion within and between systems of units is a process that
cannot be avoided in the study of any technical field. It is an operation,
however, that is performed incorrectly so often that this section was
included to provide one approach that, if applied properly, will lead to
the correct result.

There is more than one method of performing the conversion
process. In fact, some people prefer to determine mentally whether the
conversion factor is multiplied or divided. This approach is acceptable
for some elementary conversions, but it is risky with more complex
operations.

The procedure to be described here is best introduced by examining
a relatively simple problem such as converting inches to meters. Specif-
ically, let us convert 48 in. (4 ft) to meters.

If we multiply the 48 in. by a factor of 1, the magnitude of the quan-
tity remains the same:

48 in. � 48 in.(1) (1.10)

Let us now look at the conversion factor, which is the following for this
example:

1 m � 39.37 in.

Dividing both sides of the conversion factor by 39.37 in. will result in
the following format:

� (1)
1 m

��
39.37 in.

0.002000 � 2000
6

0.002 � 103 m 7 � 10�3 m

Reduce by 6

Increase by 6

0.010 � 10
3
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Note that the end result is that the ratio 1 m/39.37 in. equals 1, as it
should since they are equal quantities. If we now substitute this factor
(1) into Eq. (1.10), we obtain

48 in.(1) � 48 in.� �
which results in the cancellation of inches as a unit of measure and
leaves meters as the unit of measure. In addition, since the 39.37 is in
the denominator, it must be divided into the 48 to complete the opera-
tion:

m � 1.219 m

Let us now review the method, which has the following steps:

1. Set up the conversion factor to form a numerical value of (1) with
the unit of measurement to be removed from the original quantity
in the denominator.

2. Perform the required mathematics to obtain the proper magnitude
for the remaining unit of measurement.

EXAMPLE 1.13

a. Convert 6.8 min to seconds.
b. Convert 0.24 m to centimeters.

Solutions:

a. The conversion factor is

1 min � 60 s

Since the minute is to be removed as the unit of measurement, it
must appear in the denominator of the (1) factor, as follows:

Step 1: � � � (1)

Step 2: 6.8 min(1) � 6.8 min� � � (6.8)(60) s

� 408 s

b. The conversion factor is

1 m � 100 cm

Since the meter is to be removed as the unit of measurement, it must
appear in the denominator of the (1) factor as follows:

Step 1: � � � 1

Step 2: 0.24 m(1) � 0.24 m� � � (0.24)(100) cm

� 24 cm

The products (1)(1) and (1)(1)(1) are still 1. Using this fact, we can
perform a series of conversions in the same operation.

100 cm
�

1 m

100 cm
�

1 m

60 s
�
1 min

60 s
�
1 min

48
�
39.37

1 m
��
39.37 in. 
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EXAMPLE 1.14

a. Determine the number of minutes in half a day.
b. Convert 2.2 yards to meters.

Solutions:

a. Working our way through from days to hours to minutes, always
ensuring that the unit of measurement to be removed is in the
denominator, will result in the following sequence:

0.5 day� �� � � (0.5)(24)(60) min

� 720 min

b. Working our way through from yards to feet to inches to meters will
result in the following:

2.2 yards� �� �� � � m

� 2.012 m

The following examples are variations of the above in practical situ-
ations.

EXAMPLE 1.15

a. In Europe and Canada, and many other locations throughout the
world, the speed limit is posted in kilometers per hour. How fast in
miles per hour is 100 km/h?

b. Determine the speed in miles per hour of a competitor who can run
a 4-min mile. 

Solutions:

a. � �(1)(1)(1)(1)

� � �� �� �� �� �
�

� 62.14 mi/h

Many travelers use 0.6 as a conversion factor to simplify the math
involved; that is,

(100 km/h)(0.6) � 60 mi/h

and (60 km/h)(0.6) � 36 mi/h

b. Inverting the factor 4 min/1 mi to 1 mi/4 min, we can proceed as follows:

� �� � � mi/h � 15 mi/h

1.9 SYMBOLS

Throughout the text, various symbols will be employed that the reader
may not have had occasion to use. Some are defined in Table 1.3, and
others will be defined in the text as the need arises.

60
�

4
60 min
�

h
1 mi
�
4 min

mi
�

h
(100)(1000)(39.37)
���

(12)(5280)

1 mi
�
5280 ft

1 ft
�
12 in.

39.37 in.
��

1 m
1000 m
�

1 km
100 km
�

h

100 km
�

h

(2.2)(3)(12)
��

39.37
1 m

��
39.37 in.

12 in.
�

1 ft
3 ft

�
1 yard

60 min
�

1 h
24 h
�
1 day

TABLE 1.3

Symbol Meaning

� Not equal to 
6.12 � 6.13

> Greater than 
4.78 > 4.20

k Much greater than 
840 k 16

< Less than 
430 < 540

K Much less than 
0.002 K 46

≥ Greater than or equal to
x ≥ y is satisfied for y � 3 
and x > 3 or x � 3

≤ Less than or equal to
x ≤ y is satisfied for y � 3 
and x < 3 or x � 3

� Approximately equal to
3.14159 � 3.14

Σ Sum of 
Σ (4 � 6 � 8)� 18

| | Absolute magnitude of 
|a| � 4, where a � �4 or �4

∴ Therefore
x � �4� ∴ x � �2

� By definition
Establishes a relationship be-
tween two or more quantities
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1.10 CONVERSION TABLES

Conversion tables such as those appearing in Appendix B can be very
useful when time does not permit the application of methods described
in this chapter. However, even though such tables appear easy to use,
frequent errors occur because the operations appearing at the head of
the table are not performed properly. In any case, when using such
tables, try to establish mentally some order of magnitude for the quan-
tity to be determined compared to the magnitude of the quantity in its
original set of units. This simple operation should prevent several
impossible results that may occur if the conversion operation is improp-
erly applied.

For example, consider the following from such a conversion table:

A conversion of 2.5 mi to meters would require that we multiply 2.5 by
the conversion factor; that is,

2.5 mi(1.609 � 103) � 4.0225 � 103 m

A conversion from 4000 m to miles would require a division process:

� 2486.02 � 10�3 � 2.48602 mi

In each of the above, there should have been little difficulty realizing
that 2.5 mi would convert to a few thousand meters and 4000 m would
be only a few miles. As indicated above, this kind of anticipatory think-
ing will eliminate the possibility of ridiculous conversion results.

1.11 CALCULATORS

In some texts, the calculator is not discussed in detail. Instead, stu-
dents are left with the general exercise of choosing an appropriate cal-
culator and learning to use it properly on their own. However, some
discussion about the use of the calculator must be included to elimi-
nate some of the impossible results obtained (and often strongly
defended by the user—because the calculator says so) through a cor-
rect understanding of the process by which a calculator performs the
various tasks. Time and space do not permit a detailed explanation of
all the possible operations, but it is assumed that the following discus-
sion will enlighten the user to the fact that it is important to under-
stand the manner in which a calculator proceeds with a calculation and
not to expect the unit to accept data in any form and always generate
the correct answer.

When choosing a calculator (scientific for our use), be absolutely
sure that it has the ability to operate on complex numbers (polar and
rectangular) which will be described in detail in Chapter 13. For now
simply look up the terms in the index of the operator’s manual, and be
sure that the terms appear and that the basic operations with them are
discussed. Next, be aware that some calculators perform the operations
with a minimum number of steps while others can require a downright
lengthy or complex series of steps. Speak to your instructor if unsure
about your purchase. For this text, the TI-86 of Fig. 1.5 was chosen
because of its treatment of complex numbers.

4000 m
��
1.609 � 103

Multiply by
��
1.609 � 103

To
�
Meters

To convert from
��

Miles

FIG. 1.5

Texas Instruments TI-86 calculator. (Courtesy
of Texas Instruments, Inc.)
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Initial Settings

Format and accuracy are the first two settings that must be made on any
scientific calculator. For most calculators the choices of formats are
Normal, Scientific, and Engineering. For the TI-86 calculator, pressing
the 2nd function (yellow) key followed by the key will pro-
vide a list of options for the initial settings of the calculator. For calcu-
lators without a choice, consult the operator’s manual for the
manner in which the format and accuracy level are set.

Examples of each are shown below:

Normal: 1/3 � 0.33
Scientific: 1/3 � 3.33E�1
Engineering: 1/3 � 333.33E�3

Note that the Normal format simply places the decimal point in the
most logical location. The Scientific ensures that the number preceding
the decimal point is a single digit followed by the required power of
ten. The Engineering format will always ensure that the power of ten is
a multiple of 3 (whether it be positive, negative, or zero).

In the above examples the accuracy was hundredths place. To set this
accuracy for the TI-86 calculator, return to the selection and
choose 2 to represent two-place accuracy or hundredths place.

Initially you will probably be most comfortable with the Normal
mode with hundredths-place accuracy. However, as you begin to analyze
networks, you may find the Engineering mode more appropriate since
you will be working with component levels and results that have powers
of ten that have been assigned abbreviations and names. Then again, the
Scientific mode may the best choice for a particular analysis. In any
event, take the time now to become familiar with the differences between
the various modes, and learn how to set them on your calculator.

Order of Operations

Although being able to set the format and accuracy is important, these
features are not the source of the impossible results that often arise
because of improper use of the calculator. Improper results occur pri-
marily because users fail to realize that no matter how simple or com-
plex an equation, the calculator will perform the required operations in
a specific order.

For instance, the operation

�
3 �

8
1

�

is often entered as

� �
8
3

� � 1 � 2.67 � 1 � 3.67

which is totally incorrect (2 is the answer).
The user must be aware that the calculator will not perform the addi-

tion first and then the division. In fact, addition and subtraction are the
last operations to be performed in any equation. It is therefore very
important that the reader carefully study and thoroughly understand the
next few paragraphs in order to use the calculator properly.

1. The first operations to be performed by a calculator can be set
using parentheses ( ). It does not matter which operations are within

8 3
 � 1

MODE

MODE

MODE



the parentheses. The parentheses simply dictate that this part of the
equation is to be determined first. There is no limit to the number of
parentheses in each equation—all operations within parentheses will be
performed first. For instance, for the example above, if parentheses are
added as shown below, the addition will be performed first and the cor-
rect answer obtained:

�
(3 �

8
1)

� � � �
8
4

� � 2

2. Next, powers and roots are performed, such as x2, �x�, and so on.
3. Negation (applying a negative sign to a quantity) and single-key

operations such as sin, tan�1, and so on, are performed.
4. Multiplication and division are then performed.
5. Addition and subtraction are performed last.

It may take a few moments and some repetition to remember the
order, but at least you are now aware that there is an order to the oper-
ations and are aware that ignoring them can result in meaningless
results.

EXAMPLE 1.16

a. Determine

��
9
3

��
b. Find

�
3 �

4
9

�

c. Determine

�
1
4

� � �
1
6

� � �
2
3

�

Solutions:

a. The following calculator operations will result in an incorrect
answer of 1 because the square-root operation will be performed
before the division.

� �
�

3

9�
� � �

3
3

� � 1

However, recognizing that we must first divide 9 by 3, we can use
parentheses as follows to define this operation as the first to be per-
formed, and the correct answer will be obtained:

� ����9
3

���� � �3� � 1.67

b. If the problem is entered as it appears, the incorrect answer of 5.25
will result.

� 3 � �
9
4

� � 5.25

Using brackets to ensure that the addition takes place before the divi-
sion will result in the correct answer as shown below:

� �
(3 �

4
9)

� � �
1
4
2
� � 343 
�( )9

493 
�

9 3
√ ( )

9 
√ 3

3
 �( )18

�
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c. Since the division will occur first, the correct result will be obtained
by simply performing the operations as indicated. That is,

� �
1
4

� � �
1
6

� � �
2
3

� � 1.08

1.12 COMPUTER ANALYSIS

The use of computers in the educational process has grown expo-
nentially in the past decade. Very few texts at this introductory level 
fail to include some discussion of current popular computer techniques.
In fact, the very accreditation of a technology program may be a func-
tion of the depth to which computer methods are incorporated in the
program.

There is no question that a basic knowledge of computer methods is
something that the graduating student should carry away from a two-
year or four-year program. Industry is now expecting students to have a
basic knowledge of computer jargon and some hands-on experience.

For some students, the thought of having to become proficient in the
use of a computer may result in an insecure, uncomfortable feeling. Be
assured, however, that through the proper learning experience and expo-
sure, the computer can become a very “friendly,” useful, and supportive
tool in the development and application of your technical skills in a pro-
fessional environment.

For the new student of computers, two general directions can be
taken to develop the necessary computer skills: the study of computer
languages or the use of software packages.

Languages

There are several languages that provide a direct line of communication
with the computer and the operations it can perform. A language is a
set of symbols, letters, words, or statements that the user can enter into
the computer. The computer system will “understand” these entries and
will perform them in the order established by a series of commands
called a program. The program tells the computer what to do on a
sequential, line-by-line basis in the same order a student would perform
the calculations in longhand. The computer can respond only to the
commands entered by the user. This requires that the programmer
understand fully the sequence of operations and calculations required to
obtain a particular solution. In other words, the computer can only
respond to the user’s input—it does not have some mysterious way of
providing solutions unless told how to obtain those solutions. A lengthy
analysis can result in a program having hundreds or thousands of lines.
Once written, the program has to be checked carefully to be sure the
results have meaning and are valid for an expected range of input vari-
ables. Writing a program can, therefore, be a long, tedious process, but
keep in mind that once the program has been tested and proven true, it
can be stored in memory for future use. The user can be assured that
any future results obtained have a high degree of accuracy but require a
minimum expenditure of energy and time. Some of the popular lan-
guages applied in the electrical/electronics field today include C��,
QBASIC, Pascal, and FORTRAN. Each has its own set of commands
and statements to communicate with the computer, but each can be used
to perform the same type of analysis.

�4
 �6
1 3
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This text includes C�� in its development because of its growing
popularity in the educational community. The C language was first
developed at Bell Laboratories to establish an efficient communication
link between the user and the machine language of the central process-
ing unit (CPU) of a computer. The language has grown in popularity
throughout industry and education because it has the characteristics of
a high-level language (easily understood by the user) with an efficient
link to the computer’s operating system. The C�� language was intro-
duced as an extension of the C language to assist in the writing of com-
plex programs using an enhanced, modular, top-down approach. 

In any event, it is not assumed that the coverage of C�� in this text
is sufficient to permit the writing of additional programs. The inclusion
is meant as an introduction only: to reveal the appearance and charac-
teristics of the language, and to follow the development of some simple
programs. A proper exposure to C�� would require a course in itself,
or at least a comprehensive supplemental program to fill in the many
gaps of this text’s presentation.

Software Packages

The second approach to computer analysis—software packages—
avoids the need to know a particular language; in fact, the user may not
be aware of which language was used to write the programs within the
package. All that is required is a knowledge of how to input the network
parameters, define the operations to be performed, and extract the
results; the package will do the rest. The individual steps toward a solu-
tion are beyond the needs of the user—all the user needs is an idea of
how to get the network parameters into the computer and how to extract
the results. Herein lie two of the concerns of the author with packaged
programs—obtaining a solution without the faintest idea of either how
the solution was obtained or whether the results are valid or way off
base. It is imperative that the student realize that the computer should
be used as a tool to assist the user—it must not be allowed to control
the scope and potential of the user! Therefore, as we progress through
the chapters of the text, be sure that concepts are clearly understood
before turning to the computer for support and efficiency.

Each software package has a menu, which defines the range of
application of the package. Once the software is entered into the com-
puter, the system will perform all the functions appearing in the menu,
as it was preprogrammed to do. Be aware, however, that if a particular
type of analysis is requested that is not on the menu, the software pack-
age cannot provide the desired results. The package is limited solely to
those maneuvers developed by the team of programmers who devel-
oped the software package. In such situations the user must turn to
another software package or write a program using one of the languages
listed above.

In broad terms, if a software package is available to perform a
particular analysis, then it should be used rather than developing rou-
tines. Most popular software packages are the result of many hours
of effort by teams of programmers with years of experience. How-
ever, if the results are not in the desired format, or if the software
package does not provide all the desired results, then the user’s inno-
vative talents should be put to use to develop a software package. As
noted above, any program the user writes that passes the tests of
range and accuracy can be considered a software package of his or
her authorship for future use.
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Three software packages will be used throughout this text:
Cadence’s OrCAD PSpice 9.2, Electronics Workbench’s Multisim, and
MathSoft’s Mathcad 2000, all of which appear in Fig. 1.6. Although
PSpice and Electronics Workbench are both designed to analyze elec-
tric circuits, there are sufficient differences between the two to warrant
covering each approach separately. The growing use of some form of
mathematical support in the educational and industrial environment jus-
tifies the introduction and use of Mathcad throughout the text. There is
no requirement that the student obtain all three to proceed with the con-
tent of this text. The primary reason for their inclusion was simply to
introduce each and demonstrate how they can support the learning
process. In most cases, sufficient detail has been provided to actually
use the software package to perform the examples provided, although it
would certainly be helpful to have someone to turn to if questions arise.
In addition, the literature supporting all three packages has improved
dramatically in recent years and should be available through your book-
store or a major publisher.

Appendix A lists all the system requirements, including how to get
in touch with each company.
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FIG. 1.6

Software packages: (a) Cadence’s OrCAD
(PSpice) release 9.2; (b) Electronics

Workbench’s Multisim; (c) MathSoft’s
Mathcad 2000.

PROBLEMS

Note: More difficult problems are denoted by an asterisk (*)
throughout the text.

SECTION 1.2 A Brief History

1. Visit your local library (at school or home) and describe
the extent to which it provides literature and computer
support for the technologies—in particular, electricity,
electronics, electromagnetics, and computers.

2. Choose an area of particular interest in this field and
write a very brief report on the history of the subject.

3. Choose an individual of particular importance in this
field and write a very brief review of his or her life and
important contributions.

SECTION 1.3 Units of Measurement

4. Determine the distance in feet traveled by a car moving
at 50 mi/h for 1 min.

5. How many hours would it take a person to walk 12 mi if
the average pace is 15 min/mile?

SECTION 1.4 Systems of Units

6. Are there any relative advantages associated with the
metric system compared to the English system with

(a)

(b)

(c)



18. Perform the following operations and express your
answer as a power of ten:

a. b.

c. d.

19. Perform the following operations and express your
answer as a power of ten:
a. (100)3 b. (0.0001)1/2

c. (10,000)8 d. (0.00000010)9

20. Perform the following operations and express your
answer as a power of ten:
a. (2.2 � 103)3

b. (0.0006 � 102)4

c. (0.004)(6 � 102)2

d. ((2 � 10�3)(0.8 � 104)(0.003 � 105))3

21. Perform the following operations and express your
answer in scientific notation:

a. (�0.001)2 b.

c. d.

e. *f.

*22. Perform the following operations and express your
answer in engineering notation:

a. b. [(40,000)2][(20)�3]

c. d.

e.

f. [(0.000016)1/2][(100,000)5][0.02]

g. (a challenge)

SECTION 1.7 Conversion between Levels 

of Powers of Ten

23. Fill in the blanks of the following conversions:
a. 6 � 103 � ___ � 106

b. 4 � 10�4 � ___ � 10�6

c. 50 � 105 � ___ � 103 � ___ � 106

� ___ � 109

d. 30 � 10�8 � ___ � 10�3 � ___ � 10�6

� ___ � 10�9

24. Perform the following conversions:
a. 2000 ms to milliseconds
b. 0.04 ms to microseconds
c. 0.06 mF to nanofarads
d. 8400 ps to microseconds
e. 0.006 km to millimeters
f. 260 � 103 mm to kilometers

[(0.003)3][(0.00007)2][(800)2]
����

[(100)(0.0009)]1/2

[(4000)2][300]
��

0.02

(0.000027)1/3

��
210,000

(60,000)2

��
(0.02)2

(300)2(100)
��

104

[(100)(0.01)]�3

��
[(100)2][0.001]

(0.0001)3(100)
��

1,000,000

(102)(10,000)
��

0.001
(0.001)2(100)
��

10,000

(100)(10�4)
��

10

78 � 109

��
4 � 10�6

0.000215
��

0.00005

0.00408
�

60,000
2000
�
0.00008
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respect to length, mass, force, and temperature? If so,
explain.

7. Which of the four systems of units appearing in Table 1.1
has the smallest units for length, mass, and force? When
would this system be used most effectively?

*8. Which system of Table 1.1 is closest in definition to the
SI system? How are the two systems different? Why do
you think the units of measurement for the SI system
were chosen as listed in Table 1.1? Give the best reasons
you can without referencing additional literature.

9. What is room temperature (68°F) in the MKS, CGS, and
SI systems?

10. How many foot-pounds of energy are associated with
1000 J?

11. How many centimeters are there in 1⁄2 yd?

SECTION 1.6 Powers of Ten

12. Express the following numbers as powers of ten:
a. 10,000 b. 0.0001
c. 1000 d. 1,000,000
e. 0.0000001 f. 0.00001

13. Using only those powers of ten listed in Table 1.2,
express the following numbers in what seems to you the
most logical form for future calculations:
a. 15,000 b. 0.03000
c. 7,400,000 d. 0.0000068
e. 0.00040200 f. 0.0000000002

14. Perform the following operations and express your
answer as a power of ten:

a. 4200 � 6,800,000
b. 9 � 104 � 3.6 � 103

c. 0.5 � 10�3 � 6 � 10�5

d. 1.2 � 103 � 50,000 � 10�3 � 0.006 � 105

15. Perform the following operations and express your
answer as a power of ten:
a. (100)(100) b. (0.01)(1000)
c. (103)(106) d. (1000)(0.00001)
e. (10�6)(10,000,000) f. (10,000)(10�8)(1035)

16. Perform the following operations and express your
answer as a power of ten:
a. (50,000)(0.0003)
b. 2200 � 0.08
c. (0.000082)(0.00007)
d. (30 � 10�4)(0.0002)(7 � 108)

17. Perform the following operations and express your
answer as a power of ten:

a. b.

c. d.

e. f.
(100)1/2

�
0.01

1038

��
0.000100

0.0000001
��

100
10,000
�
0.00001

0.01
�
100

100
�
1000
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SECTION 1.8 Conversion within and between

Systems of Units

For Problems 25 to 27, convert the following:

25. a. 1.5 min to seconds
b. 0.04 h to seconds
c. 0.05 s to microseconds
d. 0.16 m to millimeters
e. 0.00000012 s to nanoseconds
f. 3,620,000 s to days
g. 1020 mm to meters

26. a. 0.1 mF (microfarad) to picofarads
b. 0.467 km to meters
c. 63.9 mm to centimeters
d. 69 cm to kilometers
e. 3.2 h to milliseconds
f. 0.016 mm to micrometers
g. 60 sq cm (cm2) to square meters (m2)

*27. a. 100 in. to meters
b. 4 ft to meters
c. 6 lb to newtons
d. 60,000 dyn to pounds
e. 150,000 cm to feet
f. 0.002 mi to meters (5280 ft � 1 mi)
g. 7800 m to yards

28. What is a mile in feet, yards, meters, and kilometers?

29. Calculate the speed of light in miles per hour using the
defined speed of Section 1.4.

30. Find the velocity in miles per hour of a mass that travels
50 ft in 20 s.

31. How long in seconds will it take a car traveling at 100
mi/h to travel the length of a football field (100 yd)?

32. Convert 6 mi/h to meters per second.

33. If an athlete can row at a rate of 50 m/min, how many days
would it take to cross the Atlantic (�3000 mi)?

34. How long would it take a runner to complete a 10-km race
if a pace of 6.5 min/mi were maintained?

35. Quarters are about 1 in. in diameter. How many would be
required to stretch from one end of a football field to the
other (100 yd)?

36. Compare the total time in hours to cross the United States
(�3000 mi) at an average speed of 55 mi/h versus an
average speed of 65 mi/h. What is your reaction to the total
time required versus the safety factor?

*37. Find the distance in meters that a mass traveling at 600
cm/s will cover in 0.016 h.

*38. Each spring there is a race up 86 floors of the 102-story
Empire State Building in New York City. If you were
able to climb 2 steps/second, how long would it take you
to reach the 86th floor if each floor is 14 ft. high and each
step is about 9 in.?

*39. The record for the race in Problem 38 is 10 minutes, 47
seconds. What was the racer’s speed in min/mi for the
race?

*40. If the race of Problem 38 were a horizontal distance, how
long would it take a runner who can run 5-minute miles
to cover the distance? Compare this with the record speed
of Problem 39. Gravity is certainly a factor to be reck-
oned with!

SECTION 1.10 Conversion Tables

41. Using Appendix B, determine the number of
a. Btu in 5 J of energy.
b. cubic meters in 24 oz of a liquid.
c. seconds in 1.4 days.
d. pints in 1 m3 of a liquid.

SECTION 1.11 Calculators

Perform the following operations using a calculator:

42. 6(4 � 8)

43. �3�2��� 4�2�

44. tan�1 �
4
3

�

45. ��
6�2

4��

0�0
1�0

��

SECTION 1.12 Computer Analysis

46. Investigate the availability of computer courses and
computer time in your curriculum. Which languages are
commonly used, and which software packages are pop-
ular?

47. Develop a list of five popular computer languages with a
few characteristics of each. Why do you think some lan-
guages are better for the analysis of electric circuits than
others?

GLOSSARY

C�� A computer language having an efficient communica-
tion link between the user and the machine language of the
central processing unit (CPU) of a computer.

CGS system The system of units employing the Centimeter,
Gram, and Second as its fundamental units of measure.

Difference engine One of the first mechanical calculators.
Edison effect Establishing a flow of charge between two ele-

ments in an evacuated tube.

Electromagnetism The relationship between magnetic and
electrical effects.

Engineering notation A method of notation that specifies
that all powers of ten used to define a number be multiples
of 3 with a mantissa greater than or equal to 1 but less than
1000.

ENIAC The first totally electronic computer.
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MKS system The system of units employing the Meter, Kilo-
gram, and Second as its fundamental units of measure.

Newton (N) A unit of measurement for force in the SI and
MKS systems. Equal to 100,000 dynes in the CGS system.

Pound (lb) A unit of measurement for force in the English
system. Equal to 4.45 newtons in the SI or MKS system.

Program A sequential list of commands, instructions, etc., to
perform a specified task using a computer.

PSpice A software package designed to analyze various dc,
ac, and transient electrical and electronic systems.

Scientific notation A method for describing very large and
very small numbers through the use of powers of ten, which
requires that the multiplier be a number between 1 and 10.

Second (s) A unit of measurement for time in the SI, MKS,
English, and CGS systems.

SI system The system of units adopted by the IEEE in 1965
and the USASI in 1967 as the International System of Units
(Système International d’Unités).

Slug A unit of measure for mass in the English system.
Equal to 14.6 kilograms in the SI or MKS system.

Software package A computer program designed to perform
specific analysis and design operations or generate results
in a particular format.

Static electricity Stationary charge in a state of equilibrium.
Transistor The first semiconductor amplifier.
Voltaic cell A storage device that converts chemical to elec-

trical energy.
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Fixed-point notation Notation using a decimal point in a
particular location to define the magnitude of a number.

Fleming’s valve The first of the electronic devices, the
diode.

Floating-point notation Notation that allows the magnitude
of a number to define where the decimal point should be
placed.

Integrated circuit (IC) A subminiature structure containing
a vast number of electronic devices designed to perform a
particular set of functions.

Joule (J) A unit of measurement for energy in the SI or MKS
system. Equal to 0.7378 foot-pound in the English system
and 107 ergs in the CGS system.

Kelvin (K) A unit of measurement for temperature in the SI
system. Equal to 273.15 � °C in the MKS and CGS sys-
tems.

Kilogram (kg) A unit of measure for mass in the SI and
MKS systems. Equal to 1000 grams in the CGS system.

Language A communication link between user and com-
puter to define the operations to be performed and the
results to be displayed or printed.

Leyden jar One of the first charge-storage devices.
Menu A computer-generated list of choices for the user to

determine the next operation to be performed.
Meter (m) A unit of measure for length in the SI and MKS

systems. Equal to 1.094 yards in the English system and
100 centimeters in the CGS system.
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Current and Voltage

2.1 ATOMS AND THEIR STRUCTURE

A basic understanding of the fundamental concepts of current and volt-
age requires a degree of familiarity with the atom and its structure. The
simplest of all atoms is the hydrogen atom, made up of two basic parti-
cles, the proton and the electron, in the relative positions shown in Fig.
2.1(a). The nucleus of the hydrogen atom is the proton, a positively
charged particle. The orbiting electron carries a negative charge that is
equal in magnitude to the positive charge of the proton. In all other ele-
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Electrons
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(b) Helium atom

(a) Hydrogen atom

FIG. 2.1

The hydrogen and helium atoms.
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FIG. 2.2

Shells and subshells of the atomic structure.
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ments, the nucleus also contains neutrons, which are slightly heavier
than protons and have no electrical charge. The helium atom, for exam-
ple, has two neutrons in addition to two electrons and two protons, as
shown in Fig. 2.1(b). In all neutral atoms the number of electrons is
equal to the number of protons. The mass of the electron is 9.11 �
10�28 g, and that of the proton and neutron is 1.672 � 10�24 g. The
mass of the proton (or neutron) is therefore approximately 1836 times
that of the electron. The radii of the proton, neutron, and electron are all
of the order of magnitude of 2 � 10�15 m.

For the hydrogen atom, the radius of the smallest orbit followed by
the electron is about 5 � 10�11 m. The radius of this orbit is approxi-
mately 25,000 times that of the radius of the electron, proton, or neu-
tron. This is approximately equivalent to a sphere the size of a dime
revolving about another sphere of the same size more than a quarter of
a mile away.

Different atoms will have various numbers of electrons in the con-
centric shells about the nucleus. The first shell, which is closest to the
nucleus, can contain only two electrons. If an atom should have three
electrons, the third must go to the next shell. The second shell can con-
tain a maximum of eight electrons; the third, 18; and the fourth, 32; as
determined by the equation 2n2, where n is the shell number. These
shells are usually denoted by a number (n � 1, 2, 3, . . .) or letter 
(n � k, l, m, . . .).

Each shell is then broken down into subshells, where the first sub-
shell can contain a maximum of two electrons; the second subshell, six
electrons; the third, 10 electrons; and the fourth, 14; as shown in Fig.
2.2. The subshells are usually denoted by the letters s, p, d, and f, in that
order, outward from the nucleus.
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It has been determined by experimentation that unlike charges
attract, and like charges repel. The force of attraction or repulsion
between two charged bodies Q1 and Q2 can be determined by
Coulomb’s law:

(newtons, N) (2.1)

where F is in newtons, k � a constant � 9.0 � 109 N⋅m2/C2, Q1 and Q2

are the charges in coulombs (to be introduced in Section 2.2), and r is

F (attraction or repulsion) � �
kQ

r
1
2

Q2
�



French (Angoulème, 
Paris)

(1736–1806)

Scientist and 

Inventor

Military Engineer, 
West Indies

Courtesy of the 
Smithsonian Institution

Photo No. 52,597

Attended the engineering school at Mezieres, the
first such school of its kind. Formulated Coulomb’s
law, which defines the force between two electrical
charges and is, in fact, one of the principal forces in
atomic reactions. Performed extensive research on
the friction encountered in machinery and windmills
and the elasticity of metal and silk fibers.
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FIG. 2.4

The copper atom.

2.2 CURRENT

Consider a short length of copper wire cut with an imaginary perpen-
dicular plane, producing the circular cross section shown in Fig. 2.5.
At room temperature with no external forces applied, there exists
within the copper wire the random motion of free electrons created by

the distance in meters between the two charges. In particular, note the
squared r term in the denominator, resulting in rapidly decreasing lev-
els of F for increasing values of r. (See Fig. 2.3.)

In the atom, therefore, electrons will repel each other, and protons
and electrons will attract each other. Since the nucleus consists of many
positive charges (protons), a strong attractive force exists for the elec-
trons in orbits close to the nucleus [note the effects of a large charge Q
and a small distance r in Eq. (2.1)]. As the distance between the nucleus
and the orbital electrons increases, the binding force diminishes until it
reaches its lowest level at the outermost subshell (largest r). Due to the
weaker binding forces, less energy must be expended to remove an
electron from an outer subshell than from an inner subshell. Also, it is
generally true that electrons are more readily removed from atoms hav-
ing outer subshells that are incomplete and, in addition, possess few
electrons. These properties of the atom that permit the removal of elec-
trons under certain conditions are essential if motion of charge is to be
created. Without this motion, this text could venture no further—our
basic quantities rely on it.

Copper is the most commonly used metal in the electrical/electron-
ics industry. An examination of its atomic structure will help identify
why it has such widespread applications. The copper atom (Fig. 2.4)
has one more electron than needed to complete the first three shells.
This incomplete outermost subshell, possessing only one electron, and
the distance between this electron and the nucleus reveal that the
twenty-ninth electron is loosely bound to the copper atom. If this
twenty-ninth electron gains sufficient energy from the surrounding
medium to leave its parent atom, it is called a free electron. In one
cubic inch of copper at room temperature, there are approximately
1.4 � 10�24 free electrons. Other metals that exhibit the same proper-
ties as copper, but to a different degree, are silver, gold, aluminum, and
tungsten. Additional discussion of conductors and their characteristics
can be found in Section 3.2.

FIG. 2.3

Charles Augustin de Coulomb.
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the thermal energy that the electrons gain from the surrounding
medium. When atoms lose their free electrons, they acquire a net pos-
itive charge and are referred to as positive ions. The free electrons are
able to move within these positive ions and leave the general area of
the parent atom, while the positive ions only oscillate in a mean fixed
position. For this reason,

the free electron is the charge carrier in a copper wire or any other
solid conductor of electricity.

An array of positive ions and free electrons is depicted in Fig. 2.6.
Within this array, the free electrons find themselves continually gaining
or losing energy by virtue of their changing direction and velocity.
Some of the factors responsible for this random motion include (1) the
collisions with positive ions and other electrons, (2) the attractive forces
for the positive ions, and (3) the force of repulsion that exists between
electrons. This random motion of free electrons is such that over a
period of time, the number of electrons moving to the right across the
circular cross section of Fig. 2.5 is exactly equal to the number passing
over to the left.

With no external forces applied, the net flow of charge in a conductor
in any one direction is zero.

Let us now connect copper wire between two battery terminals and
a light bulb, as shown in Fig. 2.7, to create the simplest of electric cir-
cuits. The battery, at the expense of chemical energy, places a net posi-
tive charge at one terminal and a net negative charge on the other. The
instant the final connection is made, the free electrons (of negative
charge) will drift toward the positive terminal, while the positive ions
left behind in the copper wire will simply oscillate in a mean fixed posi-
tion. The negative terminal is a “supply” of electrons to be drawn from
when the electrons of the copper wire drift toward the positive terminal.
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FIG. 2.6

Random motion of free electrons in an atomic
structure.
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Basic electric circuit.
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FIG. 2.5

Random motion of electrons in a copper wire
with no external “pressure” (voltage) applied.
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On September 18, 1820, introduced a new field of
study, electrodynamics, devoted to the effect of elec-
tricity in motion, including the interaction between
currents in adjoining conductors and the interplay of
the surrounding magnetic fields. Constructed the first
solenoid and demonstrated how it could behave like
a magnet (the first electromagnet). Suggested the
name galvanometer for an instrument designed to
measure current levels.
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The chemical activity of the battery will absorb the electrons at the pos-
itive terminal and will maintain a steady supply of electrons at the neg-
ative terminal. The flow of charge (electrons) through the bulb will heat
up the filament of the bulb through friction to the point that it will glow
red hot and emit the desired light.

If 6.242 � 1018 electrons drift at uniform velocity through the imag-
inary circular cross section of Fig. 2.7 in 1 second, the flow of charge,
or current, is said to be 1 ampere (A) in honor of André Marie Ampère
(Fig. 2.8). The discussion of Chapter 1 clearly reveals that this is an
enormous number of electrons passing through the surface in 1 second.
The current associated with only a few electrons per second would be
inconsequential and of little practical value. To establish numerical val-
ues that permit immediate comparisons between levels, a coulomb (C)
of charge was defined as the total charge associated with 6.242 � 1018

electrons. The charge associated with one electron can then be deter-
mined from

Charge/electron � Qe � � 1.6 � 10�19 C

The current in amperes can now be calculated using the following
equation:

I � amperes (A)
Q � coulombs (C) (2.2)
t � seconds (s)

The capital letter I was chosen from the French word for current: inten-
sité. The SI abbreviation for each quantity in Eq. (2.2) is provided to the
right of the equation. The equation clearly reveals that for equal time
intervals, the more charge that flows through the wire, the heavier the
current.

Through algebraic manipulations, the other two quantities can be
determined as follows:

(coulombs, C) (2.3)

and (seconds, s) (2.4)

EXAMPLE 2.1 The charge flowing through the imaginary surface of
Fig. 2.7 is 0.16 C every 64 ms. Determine the current in amperes.

Solution: Eq. (2.2):

I � � � � 2.50 A

EXAMPLE 2.2 Determine the time required for 4 � 1016 electrons to
pass through the imaginary surface of Fig. 2.7 if the current is 5 mA.

Solution: Determine Q:

4 � 1016 electrons � � � 0.641 � 10�2 C

� 0.00641 C � 6.41 mC

1 C
���
6.242 � 1018 electrons

160 � 10�3 C
��

64 � 10�3 s
0.16 C

��
64 � 10�3 s

Q
�
t

t � �
Q
I
�

Q � It

I � �
Q
t
�

1 C
��
6.242 � 1018
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André Marie Ampère.



Calculate t [Eq. (2.4)]:

t � � � 1.282 s

A second glance at Fig. 2.7 will reveal that two directions of charge
flow have been indicated. One is called conventional flow, and the other
is called electron flow. This text will deal only with conventional flow
for a variety of reasons, including the fact that it is the most widely
used at educational institutions and in industry, it is employed in the
design of all electronic device symbols, and it is the popular choice for
all major computer software packages. The flow controversy is a result
of an assumption made at the time electricity was discovered that the
positive charge was the moving particle in metallic conductors. Be
assured that the choice of conventional flow will not create great diffi-
culty and confusion in the chapters to follow. Once the direction of I is
established, the issue is dropped and the analysis can continue without
confusion.

Safety Considerations

It is important to realize that even small levels of current through the
human body can cause serious, dangerous side effects. Experimental
results reveal that the human body begins to react to currents of only a
few milliamperes. Although most individuals can withstand currents up
to perhaps 10 mA for very short periods of time without serious side
effects, any current over 10 mA should be considered dangerous. In
fact, currents of 50 mA can cause severe shock, and currents of over
100 mA can be fatal. In most cases the skin resistance of the body when
dry is sufficiently high to limit the current through the body to relatively
safe levels for voltage levels typically found in the home. However, be
aware that when the skin is wet due to perspiration, bathing, etc., or
when the skin barrier is broken due to an injury, the skin resistance
drops dramatically, and current levels could rise to dangerous levels for
the same voltage shock. In general, therefore, simply remember that
water and electricity don’t mix. Granted, there are safety devices in the
home today [such as the ground fault current interrupt (GFCI) breaker
to be introduced in Chapter 4] that are designed specifically for use in
wet areas such as the bathroom and kitchen, but accidents happen. Treat
electricity with respect—not fear.

2.3 VOLTAGE

The flow of charge described in the previous section is established by
an external “pressure” derived from the energy that a mass has by virtue
of its position: potential energy.

Energy, by definition, is the capacity to do work. If a mass (m) is
raised to some height (h) above a reference plane, it has a measure of
potential energy expressed in joules (J) that is determined by

(joules, J) (2.5)

where g is the gravitational acceleration (9.754 m/s2). This mass now
has the “potential” to do work such as crush an object placed on the ref-

W (potential energy) � mgh

6.41 � 10�3 C
��

5 � 10�3 A
Q

�
I

36  CURRENT AND VOLTAGE
e

I

V



e
I

V

erence plane. If the weight is raised further, it has an increased measure
of potential energy and can do additional work. There is an obvious dif-
ference in potential between the two heights above the reference plane.

In the battery of Fig. 2.7, the internal chemical action will establish
(through an expenditure of energy) an accumulation of negative charges
(electrons) on one terminal (the negative terminal) and positive charges
(positive ions) on the other (the positive terminal). A “positioning” of
the charges has been established that will result in a potential differ-
ence between the terminals. If a conductor is connected between the
terminals of the battery, the electrons at the negative terminal have suf-
ficient potential energy to overcome collisions with other particles in
the conductor and the repulsion from similar charges to reach the posi-
tive terminal to which they are attracted.

Charge can be raised to a higher potential level through the expendi-
ture of energy from an external source, or it can lose potential energy as
it travels through an electrical system. In any case, by definition:

A potential difference of 1 volt (V) exists between two points if 1 joule
(J) of energy is exchanged in moving 1 coulomb (C) of charge
between the two points.

The unit of measurement volt was chosen to honor Alessandro Volta
(Fig. 2.9).

Pictorially, if one joule of energy (1 J) is required to move the one
coulomb (1 C) of charge of Fig. 2.10 from position x to position y, the
potential difference or voltage between the two points is one volt (1 V).
If the energy required to move the 1 C of charge increases to 12 J due
to additional opposing forces, then the potential difference will increase
to 12 V. Voltage is therefore an indication of how much energy is
involved in moving a charge between two points in an electrical system.
Conversely, the higher the voltage rating of an energy source such as a
battery, the more energy will be available to move charge through the
system. Note in the above discussion that two points are always
involved when talking about voltage or potential difference. In the
future, therefore, it is very important to keep in mind that

a potential difference or voltage is always measured between two
points in the system. Changing either point may change the potential
difference between the two points under investigation.

In general, the potential difference between two points is deter-
mined by

(volts) (2.6)

Through algebraic manipulations, we have

(joules) (2.7)

and (coulombs) (2.8)Q � �
W
V
�

W � QV

V � �
W
Q
�
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Vxy = 1 volt

1 C

W = 1 J

x y

FIG. 2.10

Defining the unit of measurement for voltage.

FIG. 2.9

Count Alessandro Volta.

Italian (Como, Pavia)
(1745–1827)

Physicist

Professor of Physics,

Pavia, Italy

Courtesy of the 
Smithsonian Institution

Photo No. 55,393

Began electrical experiments at the age of 18 work-
ing with other European investigators. Major contri-
bution was the development of an electrical energy
source from chemical action in 1800. For the first
time, electrical energy was available on a continu-
ous basis and could be used for practical purposes.
Developed the first condenser known today as the
capacitor. Was invited to Paris to demonstrate the
voltaic cell to Napoleon. The International Electri-
cal Congress meeting in Paris in 1881 honored his
efforts by choosing the volt as the unit of measure
for electromotive force.



EXAMPLE 2.3 Find the potential difference between two points in an
electrical system if 60 J of energy are expended by a charge of 20 C
between these two points.

Solution: Eq. (2.6):

V � � � 3 V

EXAMPLE 2.4 Determine the energy expended moving a charge of
50 mC through a potential difference of 6 V.

Solution: Eq. (2.7):

W � QV � (50 � 10�6 C)(6 V) � 300 � 10�6 J � 300 mJ

Notation plays a very important role in the analysis of electrical and
electronic systems. To distinguish between sources of voltage (batteries
and the like) and losses in potential across dissipative elements, the fol-
lowing notation will be used:

E for voltage sources (volts)
V for voltage drops (volts)

An occasional source of confusion is the terminology applied to this
subject matter. Terms commonly encountered include potential, poten-
tial difference, voltage, voltage difference (drop or rise), and electro-
motive force. As noted in the description above, some are used inter-
changeably. The following definitions are provided as an aid in
understanding the meaning of each term:

Potential: The voltage at a point with respect to another point in the
electrical system. Typically the reference point is ground, which is at
zero potential.

Potential difference: The algebraic difference in potential (or voltage)
between two points of a network.

Voltage: When isolated, like potential, the voltage at a point with
respect to some reference such as ground (0 V).

Voltage difference: The algebraic difference in voltage (or potential)
between two points of the system. A voltage drop or rise is as the
terminology would suggest.

Electromotive force (emf): The force that establishes the flow of
charge (or current) in a system due to the application of a difference
in potential. This term is not applied that often in today’s literature
but is associated primarily with sources of energy.

In summary, the applied potential difference (in volts) of a voltage
source in an electric circuit is the “pressure” to set the system in motion
and “cause” the flow of charge or current through the electrical system.
A mechanical analogy of the applied voltage is the pressure applied to
the water in a main. The resulting flow of water through the system is
likened to the flow of charge through an electric circuit. Without the
applied pressure from the spigot, the water will simply sit in the hose,
just as the electrons of a copper wire do not have a general direction
without an applied voltage.

60 J
�
20 C

W
�
Q
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2.4 FIXED (dc) SUPPLIES

The terminology dc employed in the heading of this section is an abbre-
viation for direct current, which encompasses the various electrical sys-
tems in which there is a unidirectional (“one direction”) flow of charge.
A great deal more will be said about this terminology in the chapters to
follow. For now, we will consider only those supplies that provide a
fixed voltage or current.

dc Voltage Sources

Since the dc voltage source is the more familiar of the two types of sup-
plies, it will be examined first. The symbol used for all dc voltage sup-
plies in this text appears in Fig. 2.11. The relative lengths of the bars
indicate the terminals they represent.

Dc voltage sources can be divided into three broad categories: 
(1) batteries (chemical action), (2) generators (electromechanical), and
(3) power supplies (rectification).

Batteries

General Information For the layperson, the battery is the most com-
mon of the dc sources. By definition, a battery (derived from the
expression “battery of cells”) consists of a combination of two or more
similar cells, a cell being the fundamental source of electrical energy
developed through the conversion of chemical or solar energy. All cells
can be divided into the primary or secondary types. The secondary is
rechargeable, whereas the primary is not. That is, the chemical reaction
of the secondary cell can be reversed to restore its capacity. The two
most common rechargeable batteries are the lead-acid unit (used pri-
marily in automobiles) and the nickel-cadmium battery (used in calcu-
lators, tools, photoflash units, shavers, and so on). The obvious advan-
tage of the rechargeable unit is the reduced costs associated with not
having to continually replace discharged primary cells.

All the cells appearing in this chapter except the solar cell, which
absorbs energy from incident light in the form of photons, establish a
potential difference at the expense of chemical energy. In addition, each
has a positive and a negative electrode and an electrolyte to complete
the circuit between electrodes within the battery. The electrolyte is the
contact element and the source of ions for conduction between the ter-
minals.

Alkaline and Lithium-Iodine Primary Cells The popular alkaline
primary battery employs a powdered zinc anode (�); a potassium
(alkali metal) hydroxide electrolyte; and a manganese dioxide, carbon
cathode (�) as shown in Fig. 2.12(a). In particular, note in Fig. 2.12(b)
that the larger the cylindrical unit, the higher the current capacity. The
lantern is designed primarily for long-term use. Figure 2.13 shows two
lithium-iodine primary units with an area of application and a rating to
be introduced later in this section.

Lead-Acid Secondary Cell For the secondary lead-acid unit appear-
ing in Fig. 2.14, the electrolyte is sulfuric acid, and the electrodes are
spongy lead (Pb) and lead peroxide (PbO2). When a load is applied to
the battery terminals, there is a transfer of electrons from the spongy
lead electrode to the lead peroxide electrode through the load. This
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Symbol for a dc voltage source.



transfer of electrons will continue until the battery is completely dis-
charged. The discharge time is determined by how diluted the acid has
become and how heavy the coating of lead sulfate is on each plate. The
state of discharge of a lead storage cell can be determined by measur-
ing the specific gravity of the electrolyte with a hydrometer. The spe-
cific gravity of a substance is defined to be the ratio of the weight of a
given volume of the substance to the weight of an equal volume of
water at 4°C. For fully charged batteries, the specific gravity should be
somewhere between 1.28 and 1.30. When the specific gravity drops to
about 1.1, the battery should be recharged.

Since the lead storage cell is a secondary cell, it can be recharged at
any point during the discharge phase simply by applying an external dc
current source across the cell that will pass current through the cell in
a direction opposite to that in which the cell supplied current to the
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1.5 V
“C” cell

1.5 V
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1.5 V
“AAA”
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1.5 V
“AA”
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9 V
transistor

6 V
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[7.2 Ah]

(0–1 A)

[16.0 Ah]

(0–1 A)

Capacity

Continuous
Current

[1.1 Ah]

(0–300 mA)

[2.5 Ah]

(0–500 mA)

[520 mAh]

(0–250 mA)

[22.0 Ah]

(0–1.5 A)

Capacity

Continuous
Current

(a)

Metal spur Rivet — brass

Negative
cover —
plated steel

Can — steel

Metallized
plastic film
label

Anode —
powdered
zinc

Current
collector —
brass

Seal — nylon

Inner cell
cover —
steel

Positive
cover —
plated steel

Electrolyte —
potassium
hydroxide

Cathode —
manganese
dioxide,
carbon

Separator —
non-woven
fabric

Metal
washer

FIG. 2.12

(a) Cutaway of cylindrical Energizer® alkaline cell; (b) Eveready® Energizer 
primary cells. (Courtesy of Eveready Battery Company, Inc.)

FIG. 2.13

Lithium-iodine primary cells. (Courtesy of Catalyst Research Corp.)
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load. This will remove the lead sulfate from the plates and restore the
concentration of sulfuric acid.

The output of a lead storage cell over most of the discharge phase is
about 2.1 V. In the commercial lead storage batteries used in the auto-
mobile, 12.6 V can be produced by six cells in series, as shown in Fig.
2.14. In general, lead-acid storage batteries are used in situations where
a high current is required for relatively short periods of time. At one
time all lead-acid batteries were vented. Gases created during the dis-
charge cycle could escape, and the vent plugs provided access to
replace the water or electrolyte and to check the acid level with a
hydrometer. The use of a grid made from a wrought lead–calcium alloy
strip rather than the lead-antimony cast grid commonly used has
resulted in maintenance-free batteries such as that appearing in Fig.
2.14. The lead-antimony structure was susceptible to corrosion, over-
charge, gasing, water usage, and self-discharge. Improved design with
the lead-calcium grid has either eliminated or substantially reduced
most of these problems.

It would seem that with all the years of technology surrounding bat-
teries, smaller, more powerful units would now be available. However,
when it comes to the electric car, which is slowly gaining interest and
popularity throughout the world, the lead-acid battery is still the pri-
mary source of power. A “station car,” manufactured in Norway and
used on a test basis in San Francisco for typical commuter runs, has a
total weight of 1650 pounds, with 550 pounds (a third of its weight) for
the lead-acid rechargeable batteries. Although the station car will travel
at speeds of 55 mph, its range is limited to 65 miles on a charge. It
would appear that long-distance travel with significantly reduced
weight factors for the batteries will depend on a new, innovative
approach to battery design.

Nickel-Cadmium Secondary-Cell The nickel-cadmium battery is a
rechargeable battery that has been receiving enormous interest and
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FIG. 2.14

Maintenance-free 12-V (actually 12.6-V) lead-acid battery. (Courtesy of Delco-
Remy, a division of General Motors Corp.)



development in recent years. For applications such as flashlights,
shavers, portable televisions, power drills, and so on, the nickel-
cadmium (Ni-Cad) battery of Fig. 2.15 is the secondary battery of
choice because the current levels are lower and the period of continu-
ous drain is usually longer. A typical nickel-cadmium battery can sur-
vive over 1000 charge/discharge cycles over a period of time that can
last for years.

It is important to recognize that when an appliance or a system calls
for a Ni-Cad battery, a primary cell should not be used. The appliance
or system may have an internal charging network that would be dys-
functional with a primary cell. In addition, be aware that all Ni-Cad bat-
teries are about 1.2 V per cell, while the most common primary cells are
typically 1.5 V per cell. There is some ambiguity about how often a
secondary cell should be recharged. For the vast majority of situations,
the battery can be used until there is some indication that the energy
level is low, such as a dimming light from a flashlight, less power from
a drill, or a blinking light if one is provided with the equipment. Keep
in mind that secondary cells do have some “memory.” If they are
recharged continuously after being used for a short period of time, they
may begin to believe they are short-term units and actually fail to hold
the charge for the rated period of time. In any event, always try to avoid
a “hard” discharge, which results when every bit of energy is drained
from a cell. Too many hard discharge cycles will reduce the cycle life
of the battery. Finally, be aware that the charging mechanism for
nickel-cadmium cells is quite different from that for lead-acid batter-
ies. The nickel-cadmium battery is charged by a constant current
source, with the terminal voltage staying pretty steady through the
entire charging cycle. The lead-acid battery is charged by a constant
voltage source, permitting the current to vary as determined by the state
of the battery. The capacity of the Ni-Cad battery increases almost lin-
early throughout most of the charging cycle. One may find that Ni-Cad
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1.2 V
1.2 

7.2 V
100 mAh

1.2 V
500 mAh

1.2 V
180 mAh

Eveready  BH 500 cell
1.2 V, 500 mAh
App: Where vertical height is severe
limitation

(a)

(b)

FIG. 2.15

Rechargeable nickel-cadmium batteries. (Courtesy of Eveready Batteries.)
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batteries are relatively warm when charging. The lower the capacity
level of the battery when charging, the higher the temperature of the
cell. As the battery approaches rated capacity, the temperature of the
cell approaches room temperature.

Nickel-Hydrogen and Nickel–Metal Hydride Secondary Cells
Two other types of secondary cell include the nickel-hydrogen and
nickel–metal hydride cells. The nickel-hydrogen cell is currently lim-
ited primarily to space vehicle applications where high-energy-density
batteries are required that are rugged and reliable and can withstand a
high number of charge/discharge cycles over a relatively long period of
time. The nickel–metal hydride cell is actually a hybrid of the nickel-
cadmium and nickel-hydrogen cells, combining the positive character-
istics of each to create a product with a high power level in a small
package that has a long cycle life. Although relatively expensive, this
hybrid is a valid option for applications such as portable computers, as
shown in Fig. 2.16.

Solar Cell A high-density, 40-W solar cell appears in Fig. 2.17 with
some of its associated data and areas of application. Since the maxi-
mum available wattage in an average bright sunlit day is 100 mW/cm2,
and since conversion efficiencies are currently between 10% and 14%,
the maximum available power per square centimeter from most com-
mercial units is between 10 mW and 14 mW. For a square meter, how-
ever, the return would be 100 W to 140 W. A more detailed description
of the solar cell will appear in your electronics courses. For now it is
important to realize that a fixed illumination of the solar cell will pro-
vide a fairly steady dc voltage for driving various loads, from watches
to automobiles.

Ampere-Hour Rating Batteries have a capacity rating given in
ampere-hours (Ah) or milliampere-hours (mAh). Some of these ratings
are included in the above figures. A battery with an ampere-hour rat-
ing of 100 will theoretically provide a steady current of 1 A for 100 h,
2 A for 50 h, 10 A for 10 h, and so on, as determined by the following
equation:

Life (hours) � (2.9)

Two factors that affect this rating, however, are the temperature and
the rate of discharge. The disc-type Eveready® BH 500 cell appearing
in Fig. 2.15 has the terminal characteristics appearing in Fig. 2.18. Fig-
ure 2.18 reveals that

the capacity of a dc battery decreases with an increase in the current
demand

and

the capacity of a dc battery decreases at relatively (compared to room
temperature) low and high temperatures.

For the 1-V unit of Fig. 2.18(a), the rating is just above 500 mAh at a
discharge current of 100 mA, but it drops to about 300 mAh at about 1 A.
For a unit that is less than 11⁄2 in. in diameter and less than 1⁄2 in. in
thickness, however, these are excellent terminal characteristics. Figure

ampere-hour rating (Ah)
���

amperes drawn (A)
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10.8 V, 2.9 Ah,
600 mA (monochrome display),

900 mA (color display)
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CAUTION   DO NOT OPEN, THROW IN FIRE OR SHORT CIRCUIT

ATTENTION   NE PAS OUVRIR, JETER AU FEU NI METTRE EN

               
               

               
COURT CIRCUIT

LET OP!  DEZE BATTERIJ NIET OPENEN, VERHITTEN OF KORTSLUITTEN

ACHTUNG  NIGHT OFFNEN, VERBRENNEN ODER KURZSCHLIESSEN

ATTENZIONE!   NON APRIRE, CORTOCIRCUITARE O BRUCIARE

PAS PA!   MA IKKE ABNES, BRAENDES ELLER KORSLUTTES

ADVARSEL  MA IKKE APNES, BRENNES ELLER KORTSLUTTES

PRECAUCION  NO ABRIR, INCINERAR NI CORTOCIRCUITAR

CUIDADO  NAO ABRA, NAO QUEIME, NEM FACA CURTO-CIRUITO

VARNING   RISK FOR PERSONSKAD FAR INTE OPPNAS, BRANNAS

               
               

        ELLER KORTS

VAROITUS  ALA AVAA, ALA POLTA ALAKA OIKOSULJE

��      �
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P/N  49G1116

FIG. 2.16

Nickel–metal hydride (Ni-MH) battery for the
IBM lap-top computer.

FIG. 2.17

Solar module. (Courtesy of Motorola
Semiconductor Products.)

40-W, high-density solar module
100-mm � 100-mm (4� � 4�) square cells are 
used to provide maximum power in a minimum of
space. The 33 series cell module provides a strong
12-V battery charging current for a wide range of
temperatures (�40°C to 60°C)



2.18(b) reveals that the maximum mAh rating (at a current drain of 50
mA) occurs at about 75°F (�24°C), or just above average room tem-
perature. Note that the curve drops to the right and left of this maxi-
mum value. We are all aware of the reduced “strength” of a battery at
low temperatures. Note that it has dropped to almost 300 mAh at
about �8°F.

Another curve of interest appears in Fig. 2.19. It provides the
expected cell voltage at a particular drain over a period of hours of use.
It is noteworthy that the loss in hours between 50 mA and 100 mA is
much greater than between 100 mA and 150 mA, even though the
increase in current is the same between levels. In general,

the terminal voltage of a dc battery decreases with the length of the
discharge time at a particular drain current.
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Eveready® BH 500 cell characteristics: (a) capacity versus discharge 
current; (b) capacity versus temperature. (Courtesy of Eveready Batteries.)
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Eveready® BH 500 cell discharge curves. (Courtesy of Eveready Batteries.)



e
I

V

EXAMPLE 2.5

a. Determine the capacity in milliampere-hours and life in minutes for
the 0.9-V BH 500 cell of Fig. 2.18(a) if the discharge current is 
600 mA.

b. At what temperature will the mAh rating of the cell of Fig. 2.18(b)
be 90% of its maximum value if the discharge current is 50 mA?

Solutions:

a. From Fig. 2.18(a), the capacity at 600 mA is about 450 mAh. Thus,
from Eq. (2.9),

Life � � 0.75 h � 45 min

b. From Fig. 2.18(b), the maximum is approximately 520 mAh. The
90% level is therefore 468 mAh, which occurs just above freezing,
or 1°C, and at the higher temperature of 45°C.

Generators The dc generator is quite different, both in construc-
tion (Fig. 2.20) and in mode of operation, from the battery. When the
shaft of the generator is rotating at the nameplate speed due to the
applied torque of some external source of mechanical power, a voltage
of rated value will appear across the external terminals. The terminal
voltage and power-handling capabilities of the dc generator are typi-
cally higher than those of most batteries, and its lifetime is determined
only by its construction. Commercially used dc generators are typically
of the 120-V or 240-V variety. As pointed out earlier in this section, for
the purposes of this text, no distinction will be made between the sym-
bols for a battery and a generator.

Power Supplies The dc supply encountered most frequently in the
laboratory employs the rectification and filtering processes as its means
toward obtaining a steady dc voltage. Both processes will be covered in
detail in your basic electronics courses. In total, a time-varying voltage
(such as ac voltage available from a home outlet) is converted to one of a
fixed magnitude. A dc laboratory supply of this type appears in Fig. 2.21.

Most dc laboratory supplies have a regulated, adjustable voltage out-
put with three available terminals, as indicated in Figs. 2.21 and 2.22(a).
The symbol for ground or zero potential (the reference) is also shown in
Fig. 2.22(a). If 10 V above ground potential are required, then the con-
nections are made as shown in Fig. 2.22(b). If 15 V below ground
potential are required, then the connections are made as shown in Fig.
2.22(c). If connections are as shown in Fig. 2.22(d), we say we have a
“floating” voltage of 5 V since the reference level is not included. Sel-
dom is the configuration of Fig. 2.22(d) employed since it fails to pro-
tect the operator by providing a direct low-resistance path to ground and
to establish a common ground for the system. In any case, the positive
and negative terminals must be part of any circuit configuration.

dc Current Sources

The wide variety of types of, and applications for, the dc voltage source
has resulted in its becoming a rather familiar device, the characteristics
of which are understood, at least basically, by the layperson. For exam-
ple, it is common knowledge that a 12-V car battery has a terminal volt-

450 mAh
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600 mA
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FIG. 2.20

dc generator.

FIG. 2.21

dc laboratory supply. (Courtesy of Leader
Instruments Corporation.)



age (at least approximately) of 12 V, even though the current drain by
the automobile may vary under different operating conditions. In other
words, a dc voltage source will provide ideally a fixed terminal voltage,
even though the current demand from the electrical/electronic system
may vary, as depicted in Fig. 2.23(a). A dc current source is the dual
of the voltage source; that is,

the current source will supply, ideally, a fixed current to an
electrical/electronic system, even though there may be variations in
the terminal voltage as determined by the system,

as depicted in Fig. 2.23(b). Do not become alarmed if the concept of a
current source is strange and somewhat confusing at this point. It will
be covered in great detail in later chapters. Also, additional exposure
will be provided in basic electronics courses.

2.5 CONDUCTORS AND INSULATORS

Different wires placed across the same two battery terminals will allow
different amounts of charge to flow between the terminals. Many fac-
tors, such as the density, mobility, and stability characteristics of a mate-
rial, account for these variations in charge flow. In general, however,

conductors are those materials that permit a generous flow of
electrons with very little external force (voltage) applied.

In addition,

good conductors typically have only one electron in the valence (most
distant from the nucleus) ring.

Since copper is used most frequently, it serves as the standard of
comparison for the relative conductivity in Table 2.1. Note that alu-
minum, which has seen some commercial use, has only 61% of the con-
ductivity level of copper, but keep in mind that this must be weighed
against the cost and weight factors.

Insulators are those materials that have very few free electrons and
require a large applied potential (voltage) to establish a measurable
current level.
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Terminal characteristics: (a) ideal voltage
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A common use of insulating material is for covering current-carrying
wire, which, if uninsulated, could cause dangerous side effects. Power-
line repair people wear rubber gloves and stand on rubber mats as safety
measures when working on high-voltage transmission lines. A number
of different types of insulators and their applications appear in Fig. 2.24.
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TABLE 2.1

Relative conductivity of various materials.

Metal Relative Conductivity (%)

Silver 105
Copper 100
Gold 70.5
Aluminum 61
Tungsten 31.2
Nickel 22.1
Iron 14
Constantan 3.52
Nichrome 1.73
Calorite 1.44

It must be pointed out, however, that even the best insulator will
break down (permit charge to flow through it) if a sufficiently large
potential is applied across it. The breakdown strengths of some com-
mon insulators are listed in Table 2.2. According to this table, for insu-

(a) (b) (c)

FIG. 2.24

Insulators: (a) insulated thru-panel bushings; (b) antenna strain insulators; 
(c) porcelain stand-off insulators. (Courtesy of Herman H. Smith, Inc.)

TABLE 2.2

Breakdown strength of some common insulators.

Average
Breakdown

Material Strength (kV/cm)

Air 30
Porcelain 70
Oils 140
Bakelite 150
Rubber 270
Paper (paraffin-coated) 500
Teflon 600
Glass 900
Mica 2000



lators with the same geometric shape, it would require 270/30 � 9
times as much potential to pass current through rubber compared to air
and approximately 67 times as much voltage to pass current through
mica as through air.

2.6 SEMICONDUCTORS

Semiconductors are a specific group of elements that exhibit
characteristics between those of insulators and conductors.

The prefix semi, included in the terminology, has the dictionary defi-
nition of half, partial, or between, as defined by its use. The entire elec-
tronics industry is dependent on this class of materials since electronic
devices and integrated circuits (ICs) are constructed of semiconductor
materials. Although silicon (Si) is the most extensively employed mate-
rial, germanium (Ge) and gallium arsenide (GaAs) are also used in many
important devices.

Semiconductor materials typically have four electrons in the
outermost valence ring.

Semiconductors are further characterized as being photoconductive
and having a negative temperature coefficient. Photoconductivity is a
phenomenon where the photons (small packages of energy) from inci-
dent light can increase the carrier density in the material and thereby
the charge flow level. A negative temperature coefficient reveals that the
resistance (a characteristic to be described in detail in the next chapter)
will decrease with an increase in temperature (opposite to that of most
conductors). A great deal more will be said about semiconductors in the
chapters to follow and in your basic electronics courses.

2.7 AMMETERS AND VOLTMETERS

It is important to be able to measure the current and voltage levels of an
operating electrical system to check its operation, isolate malfunctions,
and investigate effects impossible to predict on paper. As the names
imply, ammeters are used to measure current levels, and voltmeters,
the potential difference between two points. If the current levels are
usually of the order of milliamperes, the instrument will typically be
referred to as a milliammeter, and if the current levels are in the
microampere range, as a microammeter. Similar statements can be made
for voltage levels. Throughout the industry, voltage levels are measured
more frequently than current levels, primarily because measurement of
the former does not require that the network connections be disturbed.

The potential difference between two points can be measured by
simply connecting the leads of the meter across the two points, as indi-
cated in Fig. 2.25. An up-scale reading is obtained by placing the posi-
tive lead of the meter to the point of higher potential of the network and
the common or negative lead to the point of lower potential. The
reverse connection will result in a negative reading or a below-zero
indication.

Ammeters are connected as shown in Fig. 2.26. Since ammeters mea-
sure the rate of flow of charge, the meter must be placed in the network
such that the charge will flow through the meter. The only way this can
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be accomplished is to open the path in which the current is to be mea-
sured and place the meter between the two resulting terminals. For the
configuration of Fig. 2.26, the voltage source lead (�) must be discon-
nected from the system and the ammeter inserted as shown. An up-scale
reading will be obtained if the polarities on the terminals of the amme-
ter are such that the current of the system enters the positive terminal.

The introduction of any meter into an electrical/electronic system
raises a concern about whether the meter will affect the behavior of the
system. This question and others will be examined in Chapters 5 and 6
after additional terms and concepts have been introduced. For the
moment, let it be said that since voltmeters and ammeters do not have
internal sources, they will affect the network when introduced for mea-
surement purposes. The design of each, however, is such that the impact
is minimized.

There are instruments designed to measure just current or just volt-
age levels. However, the most common laboratory meters include the
volt-ohm-milliammeter (VOM) and the digital multimeter (DMM) of
Figs. 2.27 and 2.28, respectively. Both instruments will measure voltage
and current and a third quantity, resistance, to be introduced in the next
chapter. The VOM uses an analog scale, which requires interpreting the
position of a pointer on a continuous scale, while the DMM provides a
display of numbers with decimal point accuracy determined by the cho-
sen scale. Comments on the characteristics and use of various meters
will be made throughout the text. However, the major study of meters
will be left for the laboratory sessions.
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FIG. 2.27

Volt-ohm-milliammeter (VOM) analog meter.
(Courtesy of Simpson Electric Co.)

FIG. 2.28

Digital multimeter (DMM). (Courtesy of John 
Fluke Mfg. Co. Inc.)



2.8 APPLICATIONS

Throughout the text, Applications sections such as this one have been
included to permit a further investigation of terms, quantities, or sys-
tems introduced in the chapter. The primary purpose of these Applica-
tions is to establish a link between the theoretical concepts of the text
and the real, practical world. Although the majority of components that
appear in a system may not have been introduced (and, in fact, some
components will not be examined until more advanced studies), the top-
ics were chosen very carefully and should be quite interesting to a new
student of the subject matter. Sufficient comment is included to provide
a surface understanding of the role of each part of the system, with the
understanding that the details will come at a later date. Since exercises
on the subject matter of the Applications do not appear at the end of the
chapter, the content is designed not to challenge the student but rather
to stimulate his or her interest and answer some basic questions such as
how the system looks inside, what role specific elements play in the
system, and, of course, how the system works. In essence, therefore,
each Applications section provides an opportunity to begin to establish
a practical background beyond simply the content of the chapter. Do
not be concerned if you do not understand every detail of each applica-
tion. Understanding will come with time and experience. For now, take
what you can from the examples and then proceed with the material.

Flashlight

Although the flashlight employs one of the simplest of electrical cir-
cuits, a few fundamentals about its operation do carry over to more
sophisticated systems. First, and quite obviously, it is a dc system with
a lifetime totally dependent on the state of the batteries and bulb. Unless
it is the rechargeable type, each time you use it, you take some of the
life out of it. For many hours the brightness will not diminish notice-
ably. Then, however, as it reaches the end of its ampere-hour capacity,
the light will become dimmer at an increasingly rapid rate (almost
exponentially). For the standard two-battery flashlight appearing in Fig.
2.29(a) with its electrical schematic in Fig. 2.29(b), each 1.5-V battery
has an ampere-hour rating of about 16 as supported by Fig. 2.12. The
single-contact miniature flange-base bulb is rated at 2.5 V and 300 mA
with good brightness and a lifetime of about 30 hours. Thirty hours may
not seem like a long lifetime, but you have to consider how long you
usually use a flashlight on each occasion. If we assume a 300-mA drain
from the battery for the bulb when in use, the lifetime of the battery, by
Eq. (2.9), is about 53 hours. Comparing the 53-hour lifetime of the bat-
tery to the 30-hour life expectancy of the bulb suggests that we nor-
mally have to replace bulbs more frequently than batteries.

However, most of us have experienced the opposite effect: We can
change batteries two or three times before we need to replace the bulb.
This is simply one example of the fact that one cannot be guided solely
by the specifications of each component of an electrical design. The
operating conditions, terminal characteristics, and details about the
actual response of the system for short and long periods of time must be
taken into account. As mentioned earlier, the battery loses some of its
power each time it is used. Although the terminal voltage may not
change much at first, its ability to provide the same level of current will
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drop with each usage. Further, batteries will slowly discharge due to
“leakage currents” even if the switch is not on. The air surrounding the
battery is “not clean” in the sense that moisture and other elements in
the air can provide a conduction path for leakage currents through the
air, through the surface of the battery itself, or through other nearby sur-
faces, and the battery will eventually discharge. How often have we left
a flashlight with new batteries in a car for a long period of time only to
find the light very dim or the batteries dead when we need the flashlight
the most? An additional problem is acid leaks that appear as brown
stains or corrosion on the casing of the battery. These leaks will also
affect the life of the battery. Further, when the flashlight is turned on,
there is an initial surge in current that will drain the battery more than
continuous use for a period of time. In other words, continually turning
the flashlight on and off will have a very detrimental effect on its life.
We must also realize that the 30-hour rating of the bulb is for continu-
ous use, that is, 300 mA flowing through the bulb for a continuous 30
hours. Certainly, the filament in the bulb and the bulb itself will get hot-
ter with time, and this heat has a detrimental effect on the filament wire.
When the flashlight is turned on and off, it gives the bulb a chance to
cool down and regain its normal characteristics, thereby avoiding any
real damage. Therefore, with normal use we can expect the bulb to last
longer than the 30 hours specified for continuous use.

Even though the bulb is rated for 2.5-V operation, it would appear
that the two batteries would result in an applied voltage of 3 V which
suggests poor operating conditions. However, a bulb rated at 2.5 V can
easily handle 2.5 V to 3 V. In addition, as was pointed out in this chap-
ter, the terminal voltage will drop with the current demand and usage.
Under normal operating conditions, a 1.5-V battery is considered to be
in good condition if the loaded terminal voltage is 1.3 V to 1.5 V. When
it drops to 1 V to 1.1 V, it is weak, and when it drops to 0.8 V to 0.9 V,
it has lost its effectiveness. The levels can be related directly to the test
band now appearing on Duracell® batteries, such as on the one shown
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FIG. 2.29

(a) Eveready® D cell flashlight; (b) electrical schematic of flashlight of part
(a); (c) Duracell® Powercheck™ D cell battery.
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in Fig. 2.29(c). In the test band on this battery, the upper voltage area
(green on the actual battery) is near 1.5 V (labeled 100%); the lighter
area to the right, from about 1.3 V down to 1 V; and the replace area
(red) on the far right, below 1 V.

Be aware that the total supplied voltage of 3 V will be obtained
only if the batteries are connected as shown in Fig. 2.29(b). Acciden-
tally placing the two positive terminals together will result in a total
voltage of 0 V, and the bulb will not light at all. For the vast majority
of systems with more than one battery, the positive terminal of one
battery will always be connected to the negative terminal of another.
For all low-voltage batteries, the end with the nipple is the positive
terminal, and the end with the flat end is the negative terminal. In
addition, the flat or negative end of a battery is always connected to
the battery casing with the helical coil to keep the batteries in place.
The positive end of the battery is always connected to a flat spring
connection or the element to be operated. If you look carefully at the
bulb, you will find that the nipple connected to the positive end of the
battery is insulated from the jacket around the base of the bulb. The
jacket is the second terminal of the battery used to complete the cir-
cuit through the on/off switch.

If a flashlight fails to operate properly, the first thing to check is the
state of the batteries. It is best to replace both batteries at once. A sys-
tem with one good battery and one nearing the end of its life will result
in pressure on the good battery to supply the current demand, and, in
fact, the bad battery will actually be a drain on the good battery. Next
check the condition of the bulb by checking the filament to see whether
it has opened at some point because a long-term, continuous current
level occurred or because the flashlight was dropped. If the battery and
bulb seem to be in good shape, the next area of concern is the contacts
between the positive terminal and the bulb and the switch. Cleaning
both with emery cloth will often eliminate this problem.

12-V Car Battery Charger

Battery chargers are a common household piece of equpiment used to
charge everything from small flashlight batteries to heavy-duty, marine,
lead-acid batteries. Since all are plugged into a 120-V ac outlet such as
found in the home, the basic construction of each is quite similar. In
every charging system a transformer (Chapter 21) must be included to
cut the ac voltage to a level appropriate for the dc level to be estab-
lished. A diode (also called rectifier) arrangement must be included to
convert the ac voltage which varies with time to a fixed dc level such as
described in this chapter. Diodes and/or rectifiers will be discussed in
detail in your first electronics course. Some dc chargers will also
include a regulator to provide an improved dc level (one that varies less
with time or load). Since the car battery charger is one of the most com-
mon, it will be described in the next few paragraphs.

The outside appearance and the internal construction of a Sears 6/2
AMP Manual Battery Charger are provided in Fig. 2.30. Note in Fig.
2.30(b) that the transformer (as in most chargers) takes up most of the
internal space. The additional air space and the holes in the casing are
there to ensure an outlet for the heat that will develop due to the result-
ing current levels.

52  CURRENT AND VOLTAGE
e

I

V



e
I

V

The schematic of Fig. 2.31 includes all the basic components of the
charger. Note first that the 120 V from the outlet are applied directly
across the primary of the transformer. The charging rate of 6 A or 2 A
is determined by the switch, which simply controls how many windings
of the primary will be in the circuit for the chosen charging rate. If the
battery is charging at the 2-A level, the full primary will be in the cir-
cuit, and the ratio of the turns in the primary to the turns in the sec-
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FIG. 2.30

Battery charger: (a) external appearance; (b) internal construction.
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ondary will be a maximum. If it is charging at the 6-A level, fewer turns
of the primary are in the circuit, and the ratio drops. When you study
transformers, you will find that the voltage at the primary and sec-
ondary is directly related to the turns ratio. If the ratio from primary to
secondary drops, then the voltage drops also. The reverse effect occurs
if the turns on the secondary exceed those on the primary.

The general appearance of the waveforms appears in Fig. 2.31 for
the 6-A charging level. Note that so far, the ac voltage has the same
wave shape across the primary and secondary. The only difference is in
the peak value of the waveforms. Now the diodes take over and convert
the ac waveform which has zero average value (the waveform above
equals the waveform below) to one that has an average value (all above
the axis) as shown in the same figure. For the moment simply recognize
that diodes are semiconductor electronic devices that permit only con-
ventional current to flow through them in the direction indicated by the
arrow in the symbol. Even though the waveform resulting from the
diode action has a pulsing appearance with a peak value of about 18 V,
it will charge the 12-V battery whenever its voltage is greater than that
of the battery, as shown by the shaded area. Below the 12-V level the
battery cannot discharge back into the charging network because the
diodes permit current flow in only one direction.

In particular, note in Fig. 2.30(b) the large plate that carries the cur-
rent from the rectifier (diode) configuration to the positive terminal of
the battery. Its primary purpose is to provide a heat sink (a place for the
heat to be distributed to the surrounding air) for the diode configuration.
Otherwise the diodes would eventually melt down and self-destruct due
to the resulting current levels. Each component of Fig 2.31 has been
carefully labeled in Fig. 2.30(b) for reference.

When current is first applied to a battery at the 6-A charge rate, the
current demand as indicated by the meter on the face of the instrument
may rise to 7 A or almost 8 A. However, the level of current will
decrease as the battery charges until it drops to a level of 2 A or 3 A.
For units such as this that do not have an automatic shutoff, it is impor-
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FIG. 2.31

Electrical schematic for the battery charger of Fig. 2.30.
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tant to disconnect the charger when the current drops to the fully
charged level; otherwise, the battery will become overcharged and may
be damaged. A battery that is at its 50% level can take as long as 10
hours to charge, so don’t expect it to be a 10-minute operation. In addi-
tion, if a battery is in very bad shape with a lower than normal voltage,
the initial charging current may be too high for the design. To protect
against such situations, the circuit breaker will open and stop the charg-
ing process. Because of the high current levels, it is important that the
directions provided with the charger be carefully read and applied.

Answering Machines/Phones dc Supply

A wide variety of systems in the home and office receive their dc
operating voltage from an ac/dc conversion system plugged right into a
120-V ac outlet. Lap-top computers, answering machines/phones,
radios, clocks, cellular phones, CD players, and so on, all receive their
dc power from a packaged system such as appearing in Fig. 2.32. The
conversion from ac to dc occurs within the unit which is plugged
directly into the outlet. The dc voltage is available at the end of the long
wire which is designed to be plugged into the operating unt. As small
as the unit may be, it contains basically the same components as appear-
ing in the battery charger of Fig. 2.30.

APPLICATIONS  55
e

I

V

FIG. 2.33

Internal construction of the 9-V dc supply of
Fig. 2.32.

FIG. 2.32

Answering machine/phone 9-V dc supply.
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In Fig. 2.33 you can see the transformer used to cut the voltage down
to appropriate levels (again the largest component of the system). Note
that two diodes establish a dc level, and a capacitive filter (Chapter 10) is
added to smooth out the dc as shown. The system can be relatively small
because the operating current levels are quite small, permitting the use of
thin wires to construct the transformer and limit its size. The lower cur-
rents also reduce the concerns about heating effects, permitting a small
housing structure. The unit of Fig. 2.33, rated at 9 V at 200 mA, is com-
monly used to provide power to answering machines/phones. Further
smoothing of the dc voltage will be accomplished by a regulator built
into the receiving unit. The regulator is normally a small IC chip placed
in the receiving unit to separate the heat that it generates from the heat
generated by the transformer, thereby reducing the net heat at the outlet
close to the wall. In addition, its placement in the receiving unit will
reduce the possibility of picking up noise and oscillations along the long
wire from the conversion unit to the operating unit, and it will ensure that
the full rated voltage is available at the unit itself, not a lesser value due
to losses along the line.
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9. If 465 C of charge pass through a wire in 2.5 min, find
the current in amperes.

10. If a current of 40 A exists for 1 min, how many coulombs
of charge have passed through the wire?

11. How many coulombs of charge pass through a lamp in 
2 min if the current is constant at 750 mA?

12. If the current in a conductor is constant at 2 mA, how
much time is required for 4600 � 10�6 C to pass through
the conductor?

13. If 21.847 � 10�18 electrons pass through a wire in 7 s,
find the current.

14. How many electrons pass through a conductor in 1 min if
the current is 1 A?

15. Will a fuse rated at 1 A “blow” if 86 C pass through it in
1.2 min?

*16. If 0.784 � 10�18 electrons pass through a wire in 643
ms, find the current.

*17. Which would you prefer?
a. A penny for every electron that passes through a wire

in 0.01 ms at a current of 2mA, or
b. A dollar for every electron that passes through a wire

in 1.5 ns if the current is 100 mA.

SECTION 2.3 Voltage

18. What is the voltage between two points if 96 mJ of
energy are required to move 50 � 1018 electrons between
the two points?

19. If the potential difference between two points is 42 V,
how much work is required to bring 6 C from one point
to the other?

20. Find the charge Q that requires 96 J of energy to be
moved through a potential difference of 16 V.

21. How much charge passes through a battery of 22.5 V if
the energy expended is 90 J?

22. If a conductor with a current of 200 mA passing through
it converts 40 J of electrical energy into heat in 30 s, what
is the potential drop across the conductor?

*23. Charge is flowing through a conductor at the rate of
420 C/min. If 742 J of electrical energy are converted to
heat in 30 s, what is the potential drop across the con-
ductor?

*24. The potential difference between two points in an electric
circuit is 24 V. If 0.4 J of energy were dissipated in a
period of 5 ms, what would the current be between the
two points?

SECTION 2.4 Fixed (dc) Supplies

25. What current will a battery with an Ah rating of 200 the-
oretically provide for 40 h?

26. What is the Ah rating of a battery that can provide 0.8 A
for 76 h?

27. For how many hours will a battery with an Ah rating of
32 theoretically provide a current of 1.28 A?

PROBLEMS

SECTION 2.1 Atoms and Their Structure

1. The numbers of orbiting electrons in aluminum and silver
are 13 and 47, respectively. Draw the electronic configu-
ration, including all the shells and subshells, and discuss
briefly why each is a good conductor.

2. Find the force of attraction between a proton and an elec-
tron separated by a distance equal to the radius of the
smallest orbit followed by an electron (5 � 10�11 m) in a
hydrogen atom.

3. Find the force of attraction in newtons between the
charges Q1 and Q2 in Fig. 2.34 when
a. r � 1 m b. r � 3 m
c. r � 10 m
(Note how quickly the force drops with an increase in r.)

FIG. 2.34

Problem 3.

*4. Find the force of repulsion in newtons between Q1 and
Q2 in Fig. 2.35 when
a. r � 1 mi b. r � 0.01 m
c. r � 1/16 in.

FIG. 2.35

Problem 4.

*5. Plot the force of attraction (in newtons) versus separation
(in meters) for two charges of 2 mC and �4 mC. Set r to
0.5 m and 1 m, followed by 1-m intervals to 10 m. Com-
ment on the shape of the curve. Is it linear or nonlinear?
What does it tell you about the force of attraction
between charges as they are separated? What does it tell
you about any function plotted against a squared term in
the denominator?

6. Determine the distance between two charges of 20 mC if
the force between the two charges is 3.6 � 104 N.

*7. Two charged bodies, Q1 and Q2, when separated by a 
distance of 2 m, experience a force of repulsion equal to
1.8 N.
a. What will the force of repulsion be when they are 

10 m apart?
b. If the ratio Q1/Q2 � 1/2, find Q1 and Q2 (r � 10 m).

SECTION 2.2 Current

8. Find the current in amperes if 650 C of charge pass
through a wire in 50 s.

Q1 r Q2

8   C� 40   C�
++

Q1 r Q2

–
1   C� 2   C�

+
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28. Find the mAh rating of the Eveready® BH 500 battery at
100°F and 0°C at a discharge current of 50 mA using Fig.
2.18(b).

29. Find the mAh rating of the 1.0-V Eveready® BH 500 
battery if the current drain is 550 mA using Fig. 2.18(a).
How long will it supply this current?

30. For how long can 50 mA be drawn from the battery of
Fig. 2.19 before its terminal voltage drops below 1 V?
Determine the number of hours at a drain current of
150 mA, and compare the ratio of drain current to the
resulting ratio of hours of availability.

31. A standard 12-V car battery has an ampere-hour rating 
of 40 Ah, whereas a heavy-duty battery has a rating of 
60 Ah. How would you compare the energy levels of
each and the available current for starting purposes?

*32. Using the relevant equations of the past few sections,
determine the available energy (in joules) from the
Eveready battery of Fig. 2.15(b).

*33. A portable television using a 12-V, 3-Ah rechargeable
battery can operate for a period of about 5.5 h. What is
the average current drawn during this period? What is the
energy expended by the battery in joules?

34. Discuss briefly the difference among the three types of dc
voltage supplies (batteries, rectification, and generators).

35. Compare the characteristics of a dc current source with
those of a dc voltage source. How are they similar and
how are they different?

SECTION 2.5 Conductors and Insulators

36. Discuss two properties of the atomic structure of copper
that make it a good conductor.

37. Name two materials not listed in Table 2.1 that are good
conductors of electricity.

38. Explain the terms insulator and breakdown strength.

39. List three uses of insulators not mentioned in Section 2.5.

SECTION 2.6 Semiconductors

40. What is a semiconductor? How does it compare with a
conductor and an insulator?

41. Consult a semiconductor electronics text and note the
extensive use of germanium and silicon semiconductor
materials. Review the characteristics of each material.

SECTION 2.7 Ammeters and Voltmeters

42. What are the significant differences in the way ammeters
and voltmeters are connected?

43. If an ammeter reads 2.5 A for a period of 4 min, deter-
mine the charge that has passed through the meter.

44. Between two points in an electric circuit, a voltmeter
reads 12.5 V for a period of 20 s. If the current measured
by an ammeter is 10 mA, determine the energy expended
and the charge that flowed between the two points.

GLOSSARY

Ammeter An instrument designed to read the current
through elements in series with the meter.

Ampere (A) The SI unit of measurement applied to the flow
of charge through a conductor.

Ampere-hour rating (Ah) The rating applied to a source of
energy that will reveal how long a particular level of current
can be drawn from that source.

Cell A fundamental source of electrical energy developed
through the conversion of chemical or solar energy.

Conductors Materials that permit a generous flow of elec-
trons with very little voltage applied.

Copper A material possessing physical properties that make
it particularly useful as a conductor of electricity.

Coulomb (C) The fundamental SI unit of measure for
charge. It is equal to the charge carried by 6.242 � 1018

electrons.
Coulomb’s law An equation defining the force of attraction

or repulsion between two charges.
dc current source A source that will provide a fixed current

level even though the load to which it is applied may cause
its terminal voltage to change.

dc generator A source of dc voltage available through the
turning of the shaft of the device by some external means.

Direct current Current having a single direction (unidirec-
tional) and a fixed magnitude over time.

Electrolytes The contact element and the source of ions
between the electrodes of the battery.

Electron The particle with negative polarity that orbits the
nucleus of an atom.

Free electron An electron unassociated with any particular
atom, relatively free to move through a crystal lattice struc-
ture under the influence of external forces.

Insulators Materials in which a very high voltage must be
applied to produce any measurable current flow.

Neutron The particle having no electrical charge, found in
the nucleus of the atom.

Nucleus The structural center of an atom that contains both
protons and neutrons.

Positive ion An atom having a net positive charge due to the
loss of one of its negatively charged electrons.

Potential difference The algebraic difference in potential (or
voltage) between two points in an electrical system.

Potential energy The energy that a mass possesses by virtue
of its position.

Primary cell Sources of voltage that cannot be recharged.
Proton The particle of positive polarity found in the nucleus

of an atom.
Rectification The process by which an ac signal is converted

to one that has an average dc level.
Secondary cell Sources of voltage that can be recharged.
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Semiconductor A material having a conductance value
between that of an insulator and that of a conductor. Of sig-
nificant importance in the manufacture of semiconductor
electronic devices.

Solar cell Sources of voltage available through the conver-
sion of light energy (photons) into electrical energy.

Specific gravity The ratio of the weight of a given volume of
a substance to the weight of an equal volume of water at
4°C.

Volt (V) The unit of measurement applied to the difference
in potential between two points. If one joule of energy is
required to move one coulomb of charge between two
points, the difference in potential is said to be one volt.

Voltmeter An instrument designed to read the voltage across
an element or between any two points in a network.



3.1 INTRODUCTION

The flow of charge through any material encounters an opposing force
similar in many respects to mechanical friction. This opposition, due to
the collisions between electrons and between electrons and other atoms
in the material, which converts electrical energy into another form of
energy such as heat, is called the resistance of the material. The unit of
measurement of resistance is the ohm, for which the symbol is �, the
capital Greek letter omega. The circuit symbol for resistance appears in
Fig. 3.1 with the graphic abbreviation for resistance (R).

3
Resistance

R

G

FIG. 3.1

Resistance symbol and notation.

R

The resistance of any material with a uniform cross-sectional area is
determined by the following four factors:

1. Material
2. Length
3. Cross-sectional area
4. Temperature

The chosen material, with its unique molecular structure, will react dif-
ferentially to pressures to establish current through its core. Conductors
that permit a generous flow of charge with little external pressure will
have low resistance levels, while insulators will have high resistance
characteristics.

As one might expect, the longer the path the charge must pass
through, the higher the resistance level, whereas the larger the area (and
therefore available room), the lower the resistance. Resistance is thus
directly proportional to length and inversely proportional to area.
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As the temperature of most conductors increases, the increased
motion of the particles within the molecular structure makes it increas-
ingly difficult for the “free” carriers to pass through, and the resistance
level increases.

At a fixed temperature of 20°C (room temperature), the resistance is
related to the other three factors by

(ohms, �) (3.1)

where r (Greek letter rho) is a characteristic of the material called the
resistivity, l is the length of the sample, and A is the cross-sectional
area of the sample.

The units of measurement substituted into Eq. (3.1) are related to the
application. For circular wires, units of measurement are usually defined
as in Section 3.2. For most other applications involving important areas
such as integrated circuits, the units are as defined in Section 3.4.

3.2 RESISTANCE: CIRCULAR WIRES

For a circular wire, the quantities appearing in Eq. (3.1) are defined by
Fig. 3.2. For two wires of the same physical size at the same tempera-
ture, as shown in Fig. 3.3(a),

the higher the resistivity, the more the resistance.

As indicated in Fig. 3.3(b),

the longer the length of a conductor, the more the resistance.

Figure 3.3(c) reveals for remaining similar determining variables that

the smaller the area of a conductor, the more the resistance.

Finally, Figure 3.3(d) states that for metallic wires of identical con-
struction and material,

the higher the temperature of a conductor, the more the resistance.

For circular wires, the quantities of Eq. (3.1) have the following
units:

r: CM-ohms/ft at T � 20°C
l: feet
A: circular mils (CM)

R � r�
A
l
�

60  RESISTANCE

l

T  (°C)
A

FIG. 3.2

Factors affecting the resistance of a
conductor.

R 1 Copper

R 2 Iron

R 1 Copper

R 2 Copper

R 1 Copper

R 2 Copper

R 1 Copper

R 2 Copper

l2  >  l1
(b)

A2  <  A1

(c)

T2  >  T1

(d)

 2  >    1
(a)

FIG. 3.3

Cases in which R2 > R1. For each case, all remaining parameters that control
the resistance level are the same.
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Note that the area of the conductor is measured in circular mils (CM)
and not in square meters, inches, and so on, as determined by the equation

r � radius
d � diameter

(3.2)

The mil is a unit of measurement for length and is related to the inch by

1 mil � in.

or 1000 mils � 1 in.

By definition,

a wire with a diameter of 1 mil has an area of 1 circular mil (CM), as
shown in Fig. 3.4.

One square mil was superimposed on the 1-CM area of Fig. 3.4 to
clearly show that the square mil has a larger surface area than the cir-
cular mil.

Applying the above definition to a wire having a diameter of 1 mil,
and applying Eq. (3.2), we have

Therefore,

1 CM � sq mils (3.3a)

or 1 sq mil � CM (3.3b)

Dividing Eq. (3.3b) through will result in

1 sq mil � CM � 1.273 CM

which certainly agrees with the pictorial representation of Fig. 3.4. For
a wire with a diameter of N mils (where N can be any positive number),

A � � sq mils

Substituting the fact that 4/p CM � 1 sq mil, we have

A � (sq mils) � � �� CM� � N2 CM

Since d � N, the area in circular mils is simply equal to the diame-
ter in mils square; that is,

(3.4)

Verification that an area can simply be the diameter squared is provided
in part by Fig. 3.5 for diameters of 2 and 3 mils. Although some areas
are not circular, they have the same area as 1 circular mil.

ACM � (dmils)
2

4
�p

pN2

�
4

pN2

�
4

pN2

�
4

pd2

�
4

4
�p

4
�p

p
�
4

A � pd2

4
p

4
� �

p

4
(1 mil)2 sq mils � 1 CM

by definition

1
�
1000

Area (circle) � pr2 � �
p

4
d2

�
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FIG. 3.4

Defining the circular mil (CM).

1 mil

1 circular mil (CM)1 square mil

A = (2 mils)2 = 4 CM

1 2
3

4
3

A = (3 mils)2 = 9 CM

21

4

5

7 8

6 9

d = 2 mils d = 3 mils

FIG. 3.5

Verification of Eq. (3.4): ACM � (dmils)
2.
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In the future, therefore, to find the area in circular mils, the diameter
must first be converted to mils. Since 1 mil � 0.001 in., if the diameter
is given in inches, simply move the decimal point three places to the
right. For example,

If the diameter is in fractional form, first convert it to decimal form and
then proceed as above. For example,

in. � 0.125 in. � 125 mils

The constant r (resistivity) is different for every material. Its value
is the resistance of a length of wire 1 ft by 1 mil in diameter, measured
at 20°C (Fig. 3.6). The unit of measurement for r can be determined
from Eq. (3.1) by first solving for r and then substituting the units of
the other quantities. That is,

r �

and Units of r � �
CM

ft
• �
�

The resistivity r is also measured in ohms per mil-foot, as deter-
mined by Fig. 3.6, or ohm-meters in the SI system of units. Some typi-
cal values of r are provided in Table 3.1.

EXAMPLE 3.1 What is the resistance of a 100-ft length of copper
wire with a diameter of 0.020 in. at 20°C?

Solution:

r � 10.37 0.020 in. � 20 mils

ACM � (dmils)
2 � (20 mils)2 � 400 CM

R � r �

R � 2.59 �

EXAMPLE 3.2 An undetermined number of feet of wire have been
used from the carton of Fig. 3.7. Find the length of the remaining cop-
per wire if it has a diameter of 1/16 in. and a resistance of 0.5 �.

Solution:

r � 10.37 CM ⋅� /ft in. � 0.0625 in. � 62.5 mils

ACM � (dmils)
2 � (62.5 mils)2 � 3906.25 CM

R � r ⇒ l � � �

l � 188.34 ft

1953.125
�

10.37
(0.5 �)(3906.25 CM)
���

10.37 �
CM

ft
⋅�
�

RA
�
r

l
�
A

1
�
16

(10.37 CM ⋅� /ft)(100 ft)
���

400 CM
l

�
A

CM ⋅�
�

ft

AR
�

l

1
�
8

0.02 in. � 0.020 mils � 20 mils
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TABLE 3.1

Resistivity (r) of various materials.

Material r @ 20°C

Silver 9.9
Copper 10.37
Gold 14.7
Aluminum 17.0
Tungsten 33.0
Nickel 47.0
Iron 74.0
Constantan 295.0
Nichrome 600.0
Calorite 720.0
Carbon 21,000.0

1 mil

1 ft

FIG. 3.6

Defining the constant r (resistivity).

Aklae dry;ketlk sga thrjdrhert dftght
tew tij mwet trju  ryrt wtyuhw
rotjuiks reyt jkur  weryty sdfgsg
wer ijerw ryrt wtyuhw dfjghfgklil
reyhery etyikerwyh y dfjghfgjhkil
rotjuiks reyt jkur  weryty rstulpio
wer ijerw ryrt wtyuhw tdhyhgkrdr

Aklae dry;ke
tew tij mwet t
rotjuiks reyt jk

wer ijerw ryrt wty
reyhery etyikerw
rotjuiks reyt jk
wer ijerw ry

Aklae dry;k

tew tij mwet tr

rotjuiks reyt jkur

wer ijerw ryrt

reyhery etyiker

rotjuiks re

FIG. 3.7

Example 3.2.
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EXAMPLE 3.3 What is the resistance of a copper bus-bar, as used in
the power distribution panel of a high-rise office building, with the
dimensions indicated in Fig. 3.8?

Solution:

5.0 in. � 5000 mils

in. � 500 mils

ACM A � (5000 mils)(500 mils) � 2.5 � 106 sq mils

� 2.5 � 106 sq mils� �
A � 3.185 � 106 CM

R � r � �

R � 9.768 � 10�6 �
(quite small, 0.000009768 �)

We will find in the chapters to follow that the less the resistance of a
conductor, the lower the losses in conduction from the source to the
load. Similarly, since resistivity is a major factor in determining the
resistance of a conductor, the lower the resistivity, the lower the resis-
tance for the same size conductor. Table 3.1 would suggest therefore
that silver, copper, gold, and aluminum would be the best conductors
and the most common. In general, there are other factors, however, such
as malleability (ability of a material to be shaped), ductility (ability of
a material to be drawn into long, thin wires), temperature sensitivity,
resistance to abuse, and, of course, cost, that must all be weighed when
choosing a conductor for a particular application.

In general, copper is the most widely used material because it is
quite malleable, ductile, and available; has good thermal characteristics;
and is less expensive than silver or gold. It is certainly not cheap, how-
ever. Wiring is removed quickly from buildings to be torn down, for
example, to extract the copper. At one time aluminum was introduced
for general wiring because it is cheaper than copper, but its thermal
characteristics created some difficulties. It was found that the heating
due to current flow and the cooling that occurred when the circuit was
turned off resulted in expansion and contraction of the aluminum wire
to the point where connections could eventually work themselves loose
and dangerous side effects could result. Aluminum is still used today,
however, in areas such as integrated circuit manufacturing and in situa-
tions where the connections can be made secure. Silver and gold are, of
course, much more expensive than copper or aluminum, but there are
places where the cost is justified. Silver has excellent plating character-
istics for surface preparations, and gold is used quite extensively in
integrated circuits. Tungsten has a resistivity three times that of copper,
but there are occasions when its physical characteristics (durability,
hardness) are the overriding considerations.

3.3 WIRE TABLES

The wire table was designed primarily to standardize the size of wire
produced by manufacturers throughout the United States. As a result,

31.110
��
3.185 � 106

(10.37 CM ⋅� /ft)(3 ft)
���

3.185 � 106 CM
l

�
A

4/p CM
�
1 sq mil

1
�
2

WIRE TABLES  63

3 ft

5 in.

1 2 in./

FIG. 3.8

Example 3.3.
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TABLE 3.2

American Wire Gage (AWG) sizes.

Maximum
Allowable
Current

�/1000 ft for RHW
AWG # Area (CM) at 20°C Insulation (A)*

(4/0) 0000 211,600 0.0490 230
(3/0) 000 167,810 0.0618 200
(2/0) 00 133,080 0.0780 175
(1/0) 0 105,530 0.0983 150

1 83,694 0.1240 130
2 66,373 0.1563 115
3 52,634 0.1970 100
4 41,742 0.2485 85
5 33,102 0.3133 —
6 26,250 0.3951 65
7 20,816 0.4982 —
8 16,509 0.6282 50
9 13,094 0.7921 —

10 10,381 0.9989 30
11 8,234.0 1.260 —
12 6,529.0 1.588 20
13 5,178.4 2.003 —
14 4,106.8 2.525 15
15 3,256.7 3.184
16 2,582.9 4.016
17 2,048.2 5.064
18 1,624.3 6.385
19 1,288.1 8.051
20 1,021.5 10.15
21 810.10 12.80
22 642.40 16.14
23 509.45 20.36
24 404.01 25.67
25 320.40 32.37
26 254.10 40.81
27 201.50 51.47
28 159.79 64.90
29 126.72 81.83
30 100.50 103.2
31 79.70 130.1
32 63.21 164.1
33 50.13 206.9
34 39.75 260.9
35 31.52 329.0
36 25.00 414.8
37 19.83 523.1
38 15.72 659.6
39 12.47 831.8
40 9.89 1049.0

*Not more than three conductors in raceway, cable, or direct burial.

Source: Reprinted by permission from NFPA No. SPP-6C, National Electrical Code®, copyright ©
1996, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the
complete and official position of the NFPA on the referenced subject which is represented only by
the standard in its entirety. National Electrical Code is a registered trademark of the National Fire
Protection Association, Inc., Quincy, MA for a triennial electrical publication. The term National
Electrical Code, as used herein, means the triennial publication constituting the National Electrical
Code and is used with permission of the National Fire Protection Association.

ff
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the manufacturer has a larger market and the consumer knows that stan-
dard wire sizes will always be available. The table was designed to
assist the user in every way possible; it usually includes data such as the
cross-sectional area in circular mils, diameter in mils, ohms per 1000
feet at 20°C, and weight per 1000 feet.

The American Wire Gage (AWG) sizes are given in Table 3.2 for
solid round copper wire. A column indicating the maximum allowable
current in amperes, as determined by the National Fire Protection Asso-
ciation, has also been included.

The chosen sizes have an interesting relationship: For every drop in
3 gage numbers, the area is doubled; and for every drop in 10 gage
numbers, the area increases by a factor of 10.

Examining Eq. (3.1), we note also that doubling the area cuts the
resistance in half, and increasing the area by a factor of 10 decreases
the resistance of 1/10 the original, everything else kept constant.

The actual sizes of the gage wires listed in Table 3.2 are shown in
Fig. 3.9 with a few of their areas of application. A few examples using
Table 3.2 follow.

EXAMPLE 3.4 Find the resistance of 650 ft of #8 copper wire (T �
20°C).

Solution: For #8 copper wire (solid), �/1000 ft at 20°C �
0.6282 �, and

650 ft� � � 0.408 �

EXAMPLE 3.5 What is the diameter, in inches, of a #12 copper wire?

Solution: For #12 copper wire (solid), A � 6529.9 CM, and

dmils � �A�CM� � �6�5�2�9�.9� C�M� � 80.81 mils

d � 0.0808 in. (or close to 1/12 in.)

EXAMPLE 3.6 For the system of Fig. 3.10, the total resistance of
each power line cannot exceed 0.025 �, and the maximum current to be
drawn by the load is 95 A. What gage wire should be used?

Solution:

R � r ⇒ A � r � � 41,480 CM

Using the wire table, we choose the wire with the next largest area,
which is #4, to satisfy the resistance requirement. We note, however,
that 95 A must flow through the line. This specification requires that 
#3 wire be used since the #4 wire can carry a maximum current of only
85 A.

3.4 RESISTANCE: METRIC UNITS

The design of resistive elements for various areas of application,
including thin-film resistors and integrated circuits, uses metric units
for the quantities of Eq. (3.1). In SI units, the resistivity would be mea-
sured in ohm-meters, the area in square meters, and the length in

(10.37 CM ⋅� /ft)(100 ft)
���

0.025 �
l

�
R

l
�
A

0.6282 �
��

1000 ft

D  =  0.365 in.  ≅   1/3 in.

00

Power distribution

Stranded
for increased
flexibility

D  =  0.081 in.  ≅   1/12 in. D  =  0.064 in.  ≅   1/16 in.

12 14

Lighting, outlets,
general home use

D  =  0.032 in.  ≅   1/32 in. D  =  0.025 in.  =  1/40 in.

20 22

Radio, television

D  =  0.013 in.  ≅   1/75 in.

28

Telephone, instruments

FIG. 3.9

Popular wire sizes and some of their areas of
application.

FIG. 3.10

Example 3.6.

Solid round copper wire

Input

100 ft

Load
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meters. However, the meter is generally too large a unit of measure for
most applications, and so the centimeter is usually employed. The
resulting dimensions for Eq. (3.1) are therefore

The units for r can be derived from

r � � � � ⋅cm

The resistivity of a material is actually the resistance of a sample
such as that appearing in Fig. 3.11. Table 3.3 provides a list of values of
r in ohm-centimeters. Note that the area now is expressed in square
centimeters, which can be determined using the basic equation A �
pd 2/4, eliminating the need to work with circular mils, the special unit
of measure associated with circular wires.

EXAMPLE 3.7 Determine the resistance of 100 ft of #28 copper tele-
phone wire if the diameter is 0.0126 in.

Solution: Unit conversions:

l � 100 ft� �� � � 3048 cm
2.54 cm
�

1 in.
12 in.
�

1 ft

� ⋅cm2

�
cm

RA
�

l

r: ohm-centimeters
l: centimeters
A: square centimeters
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TABLE 3.3

Resistivity (r) of various materials in 
ohm-centimeters.

Silver 1.645 � 10�6

Copper 1.723 � 10�6

Gold 2.443 � 10�6

Aluminum 2.825 � 10�6

Tungsten 5.485 � 10�6

Nickel 7.811 � 10�6

Iron 12.299 � 10�6

Tantalum 15.54 � 10�6

Nichrome 99.72 � 10�6

Tin oxide 250 � 10�6

Carbon 3500 � 10�6

A  =  1 cm2

l  =  1 cm

FIG. 3.11

Defining r in ohm-centimeters.

0.6 cm

dρ
0.3 cm

FIG. 3.12

Thin-film resistor (note Fig. 3.22).

d � 0.0126 in.� � � 0.032 cm

Therefore,

A � � � 8.04 � 10�4 cm2

R � r � � 6.5 �

Using the units for circular wires and Table 3.2 for the area of a #28
wire, we find

R � r � � 6.5 �

EXAMPLE 3.8 Determine the resistance of the thin-film resistor of
Fig. 3.12 if the sheet resistance Rs (defined by Rs � r/d ) is 100 �.

Solution: For deposited materials of the same thickness, the sheet
resistance factor is usually employed in the design of thin-film resistors.

Equation (3.1) can be written

R � r � r � � �� � � Rs

where l is the length of the sample and w is the width. Substituting into
the above equation yields

R � Rs � � 200 �

as one might expect since l � 2w.

(100 �)(0.6 cm)
��

0.3 cm
l

�
w

l
�
w

l
�
w

r
�
d

l
�
dw

l
�
A

(10.37 CM ⋅� /ft)(100 ft)
���

159.79 CM
l

�
A

(1.723 � 10�6 � ⋅cm)(3048 cm)
����

8.04 � 10�4 cm2
l

�
A

(3.1416)(0.032 cm)2

���
4

pd2

�
4

2.54 cm
�

1 in.
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The conversion factor between resistivity in circular mil-ohms per
foot and ohm-centimeters is the following:

For example, for copper, r � 10.37 CM ⋅� /ft:

r (� ⋅cm) � 1.662 � 10�7(10.37 CM ⋅� /ft)
� 1.723 � 10�6 � ⋅cm

as indicated in Table 3.3.
The resistivity in IC design is typically in ohm-centimeter units,

although tables often provide r in ohm-meters or microhm-centimeters.
Using the conversion technique of Chapter 1, we find that the conver-
sion factor between ohm-centimeters and ohm-meters is the following:

1.723 � 10�6 � ⋅cm� � � [1.723 � 10�6] � ⋅m

or the value in ohm-meters is 1/100 the value in ohm-centimeters, and

Similarly:

For comparison purposes, typical values of r in ohm-centimeters for
conductors, semiconductors, and insulators are provided in Table 3.4.

r (m� ⋅cm) � (106) � (value in � ⋅cm)

r (� ⋅m) � ��
1
1
00
�� � (value in � ⋅cm)

1
�
100

1 m
�
100 cm

r (� ⋅cm) � (1.662 � 10�7) � (value in CM ⋅� /ft)
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TABLE 3.4

Comparing levels of r in � ⋅cm.

Conductor Semiconductor Insulator

Copper 1.723 � 10�6 Ge 50 In general: 1015

Si 200 � 103

GaAs 70 � 106

In particular, note the power-of-ten difference between conductors
and insulators (1021)—a difference of huge proportions. There is a sig-
nificant difference in levels of r for the list of semiconductors, but the
power-of-ten difference between the conductor and insulator levels is at
least 106 for each of the semiconductors listed.

3.5 TEMPERATURE EFFECTS

Temperature has a significant effect on the resistance of conductors,
semiconductors, and insulators.

Conductors

Conductors have a generous number of free electrons, and any intro-
duction of thermal energy will have little impact on the total number of



R

G

free carriers. In fact, the thermal energy will only increase the intensity
of the random motion of the particles within the material and make it
increasingly difficult for a general drift of electrons in any one direction
to be established. The result is that

for good conductors, an increase in temperature will result in an
increase in the resistance level. Consequently, conductors have a
positive temperature coefficient.

The plot of Fig. 3.13(a) has a positive temperature coefficient.
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Semiconductors

In semiconductors an increase in temperature will impart a measure of
thermal energy to the system that will result in an increase in the num-
ber of free carriers in the material for conduction. The result is that

for semiconductor materials, an increase in temperature will result in
a decrease in the resistance level. Consequently, semiconductors have
negative temperature coefficients.

The thermistor and photoconductive cell of Sections 3.10 and 3.11
of this chapter are excellent examples of semiconductor devices with
negative temperature coefficients. The plot of Fig. 3.13(b) has a nega-
tive temperature coefficient.

Insulators

As with semiconductors, an increase in temperature will result in a
decrease in the resistance of an insulator. The result is a negative
temperature coefficient.

Inferred Absolute Temperature

Figure 3.14 reveals that for copper (and most other metallic conduc-
tors), the resistance increases almost linearly (in a straight-line relation-
ship) with an increase in temperature. Since temperature can have such
a pronounced effect on the resistance of a conductor, it is important that
we have some method of determining the resistance at any temperature
within operating limits. An equation for this purpose can be obtained by
approximating the curve of Fig. 3.14 by the straight dashed line that
intersects the temperature scale at �234.5°C. Although the actual curve
extends to absolute zero (�273.15°C, or 0 K), the straight-line approx-
imation is quite accurate for the normal operating temperature range. At
two different temperatures, T1 and T2, the resistance of copper is R1 and
R2, as indicated on the curve. Using a property of similar triangles, we
may develop a mathematical relationship between these values of resis-

FIG. 3.13

(a) Positive temperature coefficient—conductors; (b) negative temperature
coefficient—semiconductors.

(a)

Temperature

R

0

+ Temperature
coefficient

(b)

Temperature

R

0

– Temperature
coefficient
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tances at different temperatures. Let x equal the distance from
�234.5°C to T1 and y the distance from �234.5°C to T2, as shown in
Fig. 3.14. From similar triangles,

�

or (3.5)

The temperature of �234.5°C is called the inferred absolute temper-
ature of copper. For different conducting materials, the intersection of
the straight-line approximation will occur at different temperatures. A
few typical values are listed in Table 3.5.

The minus sign does not appear with the inferred absolute tempera-
ture on either side of Eq. (3.5) because x and y are the distances from
�234.5°C to T1 and T2, respectively, and therefore are simply magni-
tudes. For T1 and T2 less than zero, x and y are less than �234.5°C, and
the distances are the differences between the inferred absolute temper-
ature and the temperature of interest.

Equation (3.5) can easily be adapted to any material by inserting
the proper inferred absolute temperature. It may therefore be written
as follows:

(3.6)

where |T1| indicates that the inferred absolute temperature of the mate-
rial involved is inserted as a positive value in the equation. In general,
therefore, associate the sign only with T1 and T2.

EXAMPLE 3.9 If the resistance of a copper wire is 50 � at 20°C,
what is its resistance at 100°C (boiling point of water)?

Solution: Eq. (3.5):

�

R2 � � 65.72 �
(50 �)(334.5°C)
��

254.5°C

234.5°C � 100°C
��

R2

234.5°C � 20°C
��

50 �

�
|T1|

R
�

1

T1� � �
|T1|

R
�

2

T2�

�
234.5

R1

� T1� � �
234.

R
5

2

� T2�

y
�
R2

x
�
R1
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R1

T1 T2 °C0°C–234.5°C–273.15°C

Absolute zero x

Inferred absolute zero

R2
R

y

FIG. 3.14

Effect of temperature on the resistance of copper.

TABLE 3.5

Inferred absolute temperatures (Ti).

Material °C

Silver �243
Copper �234.5
Gold �274
Aluminum �236
Tungsten �204
Nickel �147
Iron �162
Nichrome �2,250
Constantan �125,000
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EXAMPLE 3.10 If the resistance of a copper wire at freezing (0°C) is
30 �, what is its resistance at �40°C?

Solution: Eq. (3.5):

�

R2 � � 24.88 �

EXAMPLE 3.11 If the resistance of an aluminum wire at room tem-
perature (20°C) is 100 m� (measured by a milliohmmeter), at what
temperature will its resistance increase to 120 m�?

Solution: Eq. (3.5):

�

and T2 � 120 m�� � � 236°C

T2 � 71.2°C

Temperature Coefficient of Resistance

There is a second popular equation for calculating the resistance of a
conductor at different temperatures. Defining

(�/°C/�) (3.7)

as the temperature coefficient of resistance at a temperature of 20°C,
and R20 as the resistance of the sample at 20°C, the resistance R1 at a
temperature T1 is determined by

(3.8)

The values of a20 for different materials have been evaluated, and a few
are listed in Table 3.6.

Equation (3.8) can be written in the following form:

a20 � �

from which the units of �/°C/� for a20 are defined.
Since DR/DT is the slope of the curve of Fig. 3.14, we can conclude

that

the higher the temperature coefficient of resistance for a material, the
more sensitive the resistance level to changes in temperature.

Referring to Table 3.5, we find that copper is more sensitive to tem-
perature variations than is silver, gold, or aluminum, although the dif-
ferences are quite small. The slope defined by a20 for constantan is so
small that the curve is almost horizontal.

—
D

D

R

T
—

—
R20

��T
R

1

1

�

�

2
R
0°

20

C
��

—––
R20

R1 � R20[1 � a20(T1 � 20°C)]

a20 � �|T1| �
1

20°C
�

256°C
�
100 m�

236°C � T2��
120 m�

236°C � 20°C
��

100 m�

(30 �)(194.5°C)
��

234.5°C

234.5°C � 40°C
��

R2

234.5°C � 0
��

30 �
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TABLE 3.6

Temperature coefficient of resistance for 
various conductors at 20°C.

Temperature
Material Coefficient (a20)

Silver 0.0038
Copper 0.00393
Gold 0.0034
Aluminum 0.00391
Tungsten 0.005
Nickel 0.006
Iron 0.0055
Constantan 0.000008
Nichrome 0.00044
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Since R20 of Eq. (3.8) is the resistance of the conductor at 20°C and
T1 � 20°C is the change in temperature from 20°C, Equation (3.8) can
be written in the following form:

(3.9)

providing an equation for resistance in terms of all the controlling pa-
rameters.

PPM/°C

For resistors, as for conductors, resistance changes with a change in
temperature. The specification is normally provided in parts per million
per degree Celsius (PPM/°C), providing an immediate indication of the
sensitivity level of the resistor to temperature. For resistors, a 5000-PPM
level is considered high, whereas 20 PPM is quite low. A 1000-PPM/°C
characteristic reveals that a 1° change in temperature will result in a
change in resistance equal to 1000 PPM, or 1000/1,000,000 � 1/1000 of
its nameplate value—not a significant change for most applications.
However, a 10° change would result in a change equal to 1/100 (1%) of
its nameplate value, which is becoming significant. The concern, there-
fore, lies not only with the PPM level but with the range of expected
temperature variation.

In equation form, the change in resistance is given by

(3.10)

where Rnominal is the nameplate value of the resistor at room tempera-
ture and DT is the change in temperature from the reference level of
20°C.

EXAMPLE 3.12 For a 1-k� carbon composition resistor with a PPM
of 2500, determine the resistance at 60°C.

Solution:

DR � (2500)(60°C � 20°C)

� 100 �

and R � Rnominal � DR � 1000 � � 100 �

� 1100 �

3.6 SUPERCONDUCTORS

There is no question that the field of electricity/electronics is one of the
most exciting of the 20th century. Even though new developments appear
almost weekly from extensive research and development activities, every
once in a while there is some very special step forward that has the whole
field at the edge of its seat waiting to see what might develop in the near
future. Such a level of excitement and interest surrounds the research

1000 �
�

106

DR � �
Rn

1
o

0
m

6
inal

�(PPM)(DT )

R � r�
A
l
�[1 � a20 DT ]
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drive to develop a room-temperature superconductor—an advance that
will rival the introduction of semiconductor devices such as the transis-
tor (to replace tubes), wireless communication, or the electric light. The
implications of such a development are so far-reaching that it is difficult
to forecast the vast impact it will have on the entire field.

The intensity of the research effort throughout the world today to
develop a room-temperature superconductor is described by some
researchers as “unbelievable, contagious, exciting, and demanding” but
an adventure in which they treasure the opportunity to be involved.
Progress in the field since 1986 suggests that the use of superconductiv-
ity in commercial applications will grow quite rapidly in the next few
decades. It is indeed an exciting era full of growing anticipation! Why
this interest in superconductors? What are they all about? In a nutshell,

superconductors are conductors of electric charge that, for all
practical purposes, have zero resistance.

In a conventional conductor, electrons travel at average speeds in the
neighborhood of 1000 mi/s (they can cross the United States in about 
3 seconds), even though Einstein’s theory of relativity suggests that the
maximum speed of information transmission is the speed of light, or
186,000 mi/s. The relatively slow speed of conventional conduction is
due to collisions with other atoms in the material, repulsive forces
between electrons (like charges repel), thermal agitation that results in
indirect paths due to the increased motion of the neighboring atoms,
impurities in the conductor, and so on. In the superconductive state,
there is a pairing of electrons, denoted by the Cooper effect, in which
electrons travel in pairs and help each other maintain a significantly
higher velocity through the medium. In some ways this is like “draft-
ing” by competitive cyclists or runners. There is an oscillation of energy
between partners or even “new” partners (as the need arises) to ensure
passage through the conductor at the highest possible velocity with the
least total expenditure of energy.

Even though the concept of superconductivity first surfaced in 1911,
it was not until 1986 that the possibility of superconductivity at room
temperature became a renewed goal of the research community. For
some 74 years superconductivity could be established only at temper-
atures colder than 23 K. (Kelvin temperature is universally accepted as
the unit of measurement for temperature for superconductive effects.
Recall that K � 273.15° � °C, so a temperature of 23 K is �250°C,
or �418°F.) In 1986, however, physicists Alex Muller and George
Bednorz of the IBM Zurich Research Center found a ceramic mate-
rial, lanthanum barium copper oxide, that exhibited superconductivity
at 30 K. Although it would not appear to be a significant step for-
ward, it introduced a new direction to the research effort and spurred
others to improve on the new standard. In October 1987 both scientists
received the Nobel prize for their contribution to an important area of
development.

In just a few short months, Professors Paul Chu of the University of
Houston and Man Kven Wu of the University of Alabama raised the
temperature to 95 K using a superconductor of yttrium barium copper
oxide. The result was a level of excitement in the scientific community
that brought research in the area to a new level of effort and investment.
The major impact of such a discovery was that liquid nitrogen (boiling
point of 77 K) could now be used to bring the material down to the
required temperature rather than liquid helium, which boils at 4 K. The
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result is a tremendous saving in the cooling expense since liquid helium
is at least ten times more expensive than liquid nitrogen. Pursuing the
same direction, some success has been achieved at 125 K and 162 K
using a thallium compound (unfortunately, however, thallium is a very
poisonous substance). 

Figure 3.15 clearly reveals that there was little change in the temper-
ature for superconductors until the discovery of 1986. The curve then
takes a sharp curve upward, suggesting that room-temperature supercon-
ductors may become available in a few short years. However, unless
there is a significant breakthrough in the near future, this goal no longer
seems feasible. The effort continues and is receiving an increasing level
of financing and worldwide attention. Now, increasing numbers of cor-
porations are trying to capitalize on the success already attained, as will
be discussed later in this section.
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The fact that ceramics have provided the recent breakthrough in
superconductivity is probably a surprise when you consider that they
are also an important class of insulators. However, the ceramics that
exhibit the characteristics of superconductivity are compounds that
include copper, oxygen, and rare earth elements such as yttrium, lan-
thanum, and thallium. There are also indicators that the current com-
pounds may be limited to a maximum temperature of 200 K (about 
100 K short of room temperature), leaving the door wide open to inno-
vative approaches to compound selection. The temperature at which a
superconductor reverts back to the characteristics of a conventional
conductor is called the critical temperature, denoted by Tc. Note in Fig.
3.16 that the resistivity level changes abruptly at Tc. The sharpness of
the transition region is a function of the purity of the sample. Long list-
ings of critical temperatures for a variety of tested compounds can be
found in reference materials providing tables of a wide variety to sup-
port research in physics, chemistry, geology, and related fields. Two
such publications include the CRC (The Chemical Rubber Co.) Hand-
book of Tables for Applied Engineering Science and the CRC Hand-
book of Chemistry and Physics.

FIG. 3.15

Rising temperatures of superconductors.

162 K

125 K
95 K
77 K
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T
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Superconductor
T (K)Tc

Resistivityρ

Conventional conductor

0

Even though ceramic compounds have established higher transition
temperatures, there is concern about their brittleness and current density
limitations. In the area of integrated circuit manufacturing, current den-
sity levels must equal or exceed 1 MA/cm2, or 1 million amperes
through a cross-sectional area about one-half the size of a dime.
Recently IBM attained a level of 4 MA/cm2 at 77 K, permitting the use
of superconductors in the design of some new-generation, high-speed
computers.

Although room-temperature success has not been attained, there are
numerous applications for some of the superconductors developed thus
far. It is simply a matter of balancing the additional cost against the
results obtained or deciding whether any results at all can be obtained
without the use of this zero-resistance state. Some research efforts
require high-energy accelerators or strong magnets attainable only with
superconductive materials. Superconductivity is currently applied in the
design of 300-mi/h Meglev trains (trains that ride on a cushion of air
established by opposite magnetic poles), in powerful motors and gener-
ators, in nuclear magnetic resonance imaging systems to obtain cross-
sectional images of the brain (and other parts of the body), in the design
of computers with operating speeds four times that of conventional sys-
tems, and in improved power distribution systems.

The range of future uses for superconductors is a function of how
much success physicists have in raising the operating temperature and
how well they can utilize the successes obtained thus far. However, it
would appear that it is only a matter of time (the eternal optimist)
before magnetically levitated trains increase in number, improved med-
ical diagnostic equipment is available, computers operate at much
higher speeds, high-efficiency power and storage systems are available,
and transmission systems operate at very high efficiency levels due to
this area of developing interest. Only time will reveal the impact that
this new direction will have on the quality of life.

3.7 TYPES OF RESISTORS

Fixed Resistors

Resistors are made in many forms, but all belong in either of two
groups: fixed or variable. The most common of the low-wattage, fixed-

FIG. 3.16

Defining the critical temperature Tc.
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type resistors is the molded carbon composition resistor. The basic con-
struction is shown in Fig. 3.17.

The relative sizes of all fixed and variable resistors change with the
wattage (power) rating, increasing in size for increased wattage ratings
in order to withstand the higher currents and dissipation losses. The rel-
ative sizes of the molded composition resistors for different wattage rat-
ings are shown in Fig. 3.18. Resistors of this type are readily available
in values ranging from 2.7 � to 22 M�.

The temperature-versus-resistance curves for a 10,000-� and 0.5-
M� composition-type resistor are shown in Fig. 3.19. Note the small
percent resistance change in the normal temperature operating range.
Several other types of fixed resistors using high-resistance wire or metal
films are shown in Fig. 3.20.

The miniaturization of parts—used quite extensively in computers—
requires that resistances of different values be placed in very small
packages. Some examples appear in Fig. 3.21.

For use with printed circuit boards, fixed resistor networks in a vari-
ety of configurations are available in miniature packages, such as those
shown in Fig. 3.22. The figure includes a photograph of three different
casings and the internal resistor configuration for the single in-line
structure to the right.

Variable Resistors

Variable resistors, as the name implies, have a terminal resistance that
can be varied by turning a dial, knob, screw, or whatever seems appro-
priate for the application. They can have two or three terminals, but
most have three terminals. If the two- or three-terminal device is used
as a variable resistor, it is usually referred to as a rheostat. If the three-
terminal device is used for controlling potential levels, it is then com-
monly called a potentiometer. Even though a three-terminal device can
be used as a rheostat or potentiometer (depending on how it is con-
nected), it is typically called a potentiometer when listed in trade mag-
azines or requested for a particular application.

Leads

Color bands
Insulation
material

Resistance material
(Carbon composition)

ACTUAL SIZE

2 W

1 W

1 2 W/

1 4 W/

1 8 W/

FIG. 3.17

Fixed composition resistor.

FIG. 3.18

Fixed composition resistors of different
wattage ratings.

FIG. 3.19

Curves showing percentage temporary resistance changes from �20°C values.
(Courtesy of Allen-Bradley Co.)
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The symbol for a three-terminal potentiometer appears in Fig.
3.23(a). When used as a variable resistor (or rheostat), it can be hooked
up in one of two ways, as shown in Fig. 3.23(b) and (c). In Fig.
3.23(b), points a and b are hooked up to the circuit, and the remaining
terminal is left hanging. The resistance introduced is determined by
that portion of the resistive element between points a and b. In Fig.
3.23(c), the resistance is again between points a and b, but now the
remaining resistance is “shorted-out” (effect removed) by the connec-
tion from b to c. The universally accepted symbol for a rheostat appears
in Fig. 3.23(d).

Most potentiometers have three terminals in the relative positions
shown in Fig. 3.24. The knob, dial, or screw in the center of the hous-
ing controls the motion of a contact that can move along the resistive
element connected between the outer two terminals. The contact is con-
nected to the center terminal, establishing a resistance from movable
contact to each outer terminal.
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FIG. 3.20

Fixed resistors. [Parts (a) and (c) courtesy of Ohmite Manufacturing Co. Part
(b) courtesy of Philips Components Inc.]

FIG. 3.21

Miniature fixed resistors. [Part (a) courtesy of Ohmite Manufacturing Co. Parts
(b) and (c) courtesy of Dale Electronics, Inc.]

FIG. 3.22

Thick-film resistor networks. (Courtesy of
Dale Electronics, Inc.)



FIG. 3.24

Molded composition–type potentiometer.
(Courtesy of Allen-Bradley Co.)
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The resistance between the outside terminals a and c of Fig. 3.25(a)
(and Fig. 3.24) is always fixed at the full rated value of the
potentiometer, regardless of the position of the wiper arm b.

In other words, the resistance between terminals a and c of Fig. 3.25(a)
for a 1-M� potentiometer will always be 1 M�, no matter how we turn
the control element and move the contact. In Fig. 3.25(a) the center
contact is not part of the network configuration.

The resistance between the wiper arm and either outside terminal can
be varied from a minimum of 0 � to a maximum value equal to the
full rated value of the potentiometer.

In Fig. 3.25(b) the wiper arm has been placed 1/4 of the way down
from point a to point c. The resulting resistance between points a and
b will therefore be 1/4 of the total, or 250 k� (for a 1-M� poten-
tiometer), and the resistance between b and c will be 3/4 of the total, or
750 k�.

The sum of the resistances between the wiper arm and each outside
terminal will equal the full rated resistance of the potentiometer.

This was demonstrated by Fig. 3.25(b), where 250 k� � 750 k� �
1 M�. Specifically:

(3.11)Rac � Rab � Rbc

FIG. 3.23

Potentiometer: (a) symbol; (b) and (c) rheostat connections; (d) rheostat
symbol.

(a)

a

c

R b

(b)

R
a c

b
Rab

(d)

R

(c)

R
a

b, c

Rab

FIG. 3.25

Terminal resistance of a potentiometer: (a) between outside terminals; 
(b) among all three terminals.

(a)

1 M� b

a

c
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�

(b)
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�
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c
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Therefore, as the resistance from the wiper arm to one outside con-
tact increases, the resistance between the wiper arm and the other out-
side terminal must decrease accordingly. For example, if Rab of a 1-k�
potentiometer is 200 �, then the resistance Rbc must be 800 �. If Rab is
further decreased to 50 �, then Rbc must increase to 950 �, and so on.

The molded carbon composition potentiometer is typically applied
in networks with smaller power demands, and it ranges in size from
20 � to 22 M� (maximum values). Other commercially available
potentiometers appear in Fig. 3.26.

a

R

+

–

–
+

Vab
b

c

Vbc

FIG. 3.27

Potentiometer control of voltage levels.

When the device is used as a potentiometer, the connections are as
shown in Fig. 3.27. It can be used to control the level of Vab, Vbc, or
both, depending on the application. Additional discussion of the
potentiometer in a loaded situation can be found in the chapters that
follow.

3.8 COLOR CODING AND 
STANDARD RESISTOR VALUES

A wide variety of resistors, fixed or variable, are large enough to have
their resistance in ohms printed on the casing. Some, however, are too
small to have numbers printed on them, so a system of color coding is
used. For the fixed molded composition resistor, four or five color
bands are printed on one end of the outer casing, as shown in Fig. 3.28.
Each color has the numerical value indicated in Table 3.7. The color
bands are always read from the end that has the band closest to it, as
shown in Fig. 3.28. The first and second bands represent the first and
second digits, respectively. The third band determines the power-of-ten
multiplier for the first two digits (actually the number of zeros that fol-
low the second digit) or a multiplying factor if gold or silver. The fourth
band is the manufacturer’s tolerance, which is an indication of the pre-
cision by which the resistor was made. If the fourth band is omitted, the
tolerance is assumed to be �20%. The fifth band is a reliability factor,
which gives the percentage of failure per 1000 hours of use. For instance,

FIG. 3.26

Potentiometers: (a) 4-mm (	5/32�) trimmer (courtesy of Bourns, Inc.); 
(b) conductive plastic and cermet element (courtesy of Clarostat Mfg. Co.).

(a) (b)

1 2 3 4 5

FIG. 3.28

Color coding of fixed molded composition
resistor.
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a 1% failure rate would reveal that one out of every 100 (or 10 out of
every 1000) will fail to fall within the tolerance range after 1000 hours
of use.

EXAMPLE 3.13 Find the range in which a resistor having the follow-
ing color bands must exist to satisfy the manufacturer’s tolerance:

a. 1st band 2nd band 3rd band 4th band 5th band

Gray Red Black Gold Brown
8 2 0 �5% 1%

b. 1st band 2nd band 3rd band 4th band 5th band

Orange White Gold Silver No color
3 9 0.1 �10%

Solutions:

a. 82 � � 5% (1% reliability)

Since 5% of 82 � 4.10, the resistor should be within the range 82 �
� 4.10 �, or between 77.90 and 86.10 �.

b. 3.9 � � 10% � 3.9 � 0.39 �

The resistor should lie somewhere between 3.51 and 4.29 �.

One might expect that resistors would be available for a full range of
values such as 10 �, 20 �, 30 �, 40 �, 50 �, and so on. However, this
is not the case with some typical commercial values, such as 27 �,
56 �, and 68 �. This may seem somewhat strange and out of place.
There is a reason for the chosen values, which is best demonstrated by
examining the list of standard values of commercially available resis-
tors in Table 3.8. The values in boldface blue are available with 5%,
10%, and 20% tolerances, making them the most common of the com-
mercial variety. The values in boldface black are typically available
with 5% and 10% tolerances, and those in normal print are available
only in the 5% variety. If we separate the values available into tolerance
levels, we have Table 3.9, which clearly reveals how few are available
up to 100 � with 20% tolerances.

An examination of the impact of the tolerance level will now help
explain the choice of numbers for the commercial values. Take the
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TABLE 3.7

Resistor color coding.

Bands 1–3* Band 3 Band 4 Band 5

0 Black 0.1 Gold multiplying 5% Gold 1% Brown
1 Brown 0.01 Silver
 factors 10% Silver 0.1% Red
2 Red 20% No band 0.01% Orange
3 Orange 0.001% Yellow
4 Yellow
5 Green
6 Blue
7 Violet
8 Gray
9 White

*With the exception that black is not a valid color for the first band.
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TABLE 3.8

Standard values of commercially available resistors.

Ohms Kilohms Megohms
(�) (k�) (M�)

0.10 1.0 10 100 1000 10 100 1.0 10.0
0.11 1.1 11 110 1100 11 110 1.1 11.0
0.12 1.2 12 120 1200 12 120 1.2 12.0
0.13 1.3 13 130 1300 13 130 1.3 13.0
0.15 1.5 15 150 1500 15 150 1.5 15.0
0.16 1.6 16 160 1600 16 160 1.6 16.0
0.18 1.8 18 180 1800 18 180 1.8 18.0
0.20 2.0 20 200 2000 20 200 2.0 20.0
0.22 2.2 22 220 2200 22 220 2.2 22.0
0.24 2.4 24 240 2400 24 240 2.4
0.27 2.7 27 270 2700 27 270 2.7
0.30 3.0 30 300 3000 30 300 3.0
0.33 3.3 33 330 3300 33 330 3.3
0.36 3.6 36 360 3600 36 360 3.6
0.39 3.9 39 390 3900 39 390 3.9
0.43 4.3 43 430 4300 43 430 4.3
0.47 4.7 47 470 4700 47 470 4.7
0.51 5.1 51 510 5100 51 510 5.1
0.56 5.6 56 560 5600 56 560 5.6
0.62 6.2 62 620 6200 62 620 6.2
0.68 6.8 68 680 6800 68 680 6.8
0.75 7.5 75 750 7500 75 750 7.5
0.82 8.2 82 820 8200 82 820 8.2
0.91 9.1 91 910 9100 91 910 9.1

TABLE 3.9

Standard values and their tolerances.

�5% �10% �20%

10 10 10
11
12 12
13
15 15 15
16
18 18
20
22 22 22
24
27 27
30
33 33 33
36
39 39
43
47 47 47
51
56 56
62
68 68 68
75
82 82
91

sequence 47 �–68 �–100 �, which are all available with 20% toler-
ances. In Fig. 3.29(a), the tolerance band for each has been determined
and plotted on a single axis. Take note that, with this tolerance (which
is all that the manufacturer will guarantee), the full range of resistor
values is available from 37.6 � to 120 �. In other words, the manufac-
turer is guaranteeing the full range, using the tolerances to fill in the

37.6 � 56.4 � 80 � 120 �

47 � 68 � 100 �

54.4 � 81.6 �

(a)

50.4 � 61.6 �

90 � 110 �

47 � 68 � 100 �

90.2 �73.8 �

(b)

± 10%100 �± 10%47 �

42.3 � 51.7 �

56 � 82 �

61.2 � 74.8 �

± 10%82 �

± 10%56 �

± 20%68 �

± 20%100 �± 20%47 �

± 20%68 �

FIG. 3.29

Guaranteeing the full range of resistor values for the given tolerance: (a) 20%;
(b) 10%.
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gaps. Dropping to the 10% level introduces the 56-� and 82-� resistors
to fill in the gaps, as shown in Fig. 3.29(b). Dropping to the 5% level
would require additional resistor values to fill in the gaps. In total,
therefore, the resistor values were chosen to ensure that the full range
was covered, as determined by the tolerances employed. Of course, if a
specific value is desired but is not one of the standard values, combina-
tions of standard values will often result in a total resistance very close
to the desired level. If this approach is still not satisfactory, a poten-
tiometer can be set to the exact value and then inserted in the network.

Throughout the text you will find that many of the resistor values
are not standard values. This was done to reduce the mathematical
complexity, which might deter from or cloud the procedure or analy-
sis technique being introduced. In the problem sections, however, stan-
dard values are frequently employed to ensure that the reader starts to
become familiar with the commercial values available.

3.9 CONDUCTANCE

By finding the reciprocal of the resistance of a material, we have a
measure of how well the material will conduct electricity. The quantity
is called conductance, has the symbol G, and is measured in siemens
(S) (note Fig. 3.30). In equation form, conductance is

(siemens, S) (3.12)

A resistance of 1 M� is equivalent to a conductance of 10�6 S, and
a resistance of 10 � is equivalent to a conductance of 10�1 S. The
larger the conductance, therefore, the less the resistance and the greater
the conductivity.

In equation form, the conductance is determined by

(S) (3.13)

indicating that increasing the area or decreasing either the length or the
resistivity will increase the conductance.

EXAMPLE 3.14 What is the relative increase or decrease in conduc-
tivity of a conductor if the area is reduced by 30% and the length is
increased by 40%? The resistivity is fixed.

Solution: Eq. (3.11):
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FIG. 3.30

Werner von Siemens.

German (Lenthe,
Berlin)

(1816–92)

Electrical Engineer 

Telegraph 

Manufacturer,

Siemens & Halske 
AG

Bettman Archives
Photo Number 336.19

Developed an electroplating process during a brief
stay in prison for acting as a second in a duel
between fellow officers of the Prussian army.
Inspired by the electronic telegraph invented by Sir
Charles Wheatstone in 1817, he improved on the
design and proceeded to lay cable with the help of
his brother Carl across the Mediterranean and from
Europe to India. His inventions included the first
self-excited generator, which depended on the resid-
ual magnetism of its electronmagnet rather than an
inefficient permanent magnet. In 1888 he was raised
to the rank of nobility with the addition of von to his
name. The current firm of Siemens AG has manu-
facturing outlets in some 35 countries with sales
offices in some 125 countries.
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3.10 OHMMETERS

The ohmmeter is an instrument used to perform the following tasks
and several other useful functions:

1. Measure the resistance of individual or combined elements
2. Detect open-circuit (high-resistance) and short-circuit (low-resis-

tance) situations
3. Check continuity of network connections and identify wires of a

multilead cable
4. Test some semiconductor (electronic) devices

For most applications, the ohmmeters used most frequently are the
ohmmeter section of a VOM or DMM. The details of the internal cir-
cuitry and the method of using the meter will be left primarily for a
laboratory exercise. In general, however, the resistance of a resistor
can be measured by simply connecting the two leads of the meter
across the resistor, as shown in Fig. 3.31. There is no need to be
concerned about which lead goes on which end; the result will be the
same in either case since resistors offer the same resistance to the
flow of charge (current) in either direction. If the VOM is employed,
a switch must be set to the proper resistance range, and a nonlinear
scale (usually the top scale of the meter) must be properly read to
obtain the resistance value. The DMM also requires choosing the
best scale setting for the resistance to be measured, but the result
appears as a numerical display, with the proper placement of the dec-
imal point as determined by the chosen scale. When measuring the
resistance of a single resistor, it is usually best to remove the resis-
tor from the network before making the measurement. If this is diffi-
cult or impossible, at least one end of the resistor must not be con-
nected to the network, or the reading may include the effects of the
other elements of the system.

If the two leads of the meter are touching in the ohmmeter mode, the
resulting resistance is zero. A connection can be checked as shown in
Fig. 3.32 by simply hooking up the meter to either side of the connec-
tion. If the resistance is zero, the connection is secure. If it is other than
zero, the connection could be weak, and, if it is infinite, there is no con-
nection at all.

If one wire of a harness is known, a second can be found as shown
in Fig. 3.33. Simply connect the end of the known lead to the end of
any other lead. When the ohmmeter indicates zero ohms (or very low
resistance), the second lead has been identified. The above procedure
can also be used to determine the first known lead by simply connect-
ing the meter to any wire at one end and then touching all the leads at
the other end until a zero-ohm indication is obtained.
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�

FIG. 3.31

Measuring the resistance of a single element.

�

FIG. 3.32

Checking the continuity of a connection.

�

FIG. 3.33

Identifying the leads of a multilead cable.
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Preliminary measurements of the condition of some electronic
devices such as the diode and transistor can be made using the ohmmeter.
The meter can also be used to identify the terminals of such devices.

One important note about the use of any ohmmeter:

Never hook up an ohmmeter to a live circuit!

The reading will be meaningless and you may damage the instrument.
The ohmmeter section of any meter is designed to pass a small sensing
current through the resistance to be measured. A large external current
could damage the movement and would certainly throw off the calibra-
tion of the instrument. In addition,

never store a VOM or a DMM in the resistance mode.

The two leads of the meter could touch and the small sensing current
could drain the internal battery. VOMs should be stored with the selec-
tor switch on the highest voltage range, and the selector switch of
DMMs should be in the off position.

3.11 THERMISTORS

The thermistor is a two-terminal semiconductor device whose resis-
tance, as the name suggests, is temperature sensitive. A representative
characteristic appears in Fig. 3.34 with the graphic symbol for the
device. Note the nonlinearity of the curve and the drop in resistance
from about 5000 � to 100 � for an increase in temperature from 20°C
to 100°C. The decrease in resistance with an increase in temperature
indicates a negative temperature coefficient.

The temperature of the device can be changed internally or exter-
nally. An increase in current through the device will raise its tempera-
ture, causing a drop in its terminal resistance. Any externally applied
heat source will result in an increase in its body temperature and a drop
in resistance. This type of action (internal or external) lends itself well
to control mechanisms. Many different types of thermistors are shown
in Fig. 3.35. Materials employed in the manufacture of thermistors
include oxides of cobalt, nickel, strontium, and manganese.
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FIG. 3.34

Thermistor: (a) characteristics; (b) symbol.

FIG. 3.35

NTC (negative temperature coefficient) and PTC (positive temperature
coefficient) thermistors. (Courtesy of Siemens Components, Inc.)
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FIG. 3.36

Photoconductive cell: (a) characteristics; 
(b) symbol.

FIG. 3.37

Photoconductive cells. (Courtesy of EG&G
VACTEC, Inc.)

Note the use of a log scale (to be discussed in Chapter 23) in Fig. 3.34
for the vertical axis. The log scale permits the display of a wider range
of specific resistance levels than a linear scale such as the horizontal
axis. Note that it extends from 0.0001 �· cm to 100,000,000 �· cm over
a very short interval. The log scale is used for both the vertical and the
horizontal axis of Fig. 3.36.

3.12 PHOTOCONDUCTIVE CELL

The photoconductive cell is a two-terminal semiconductor device
whose terminal resistance is determined by the intensity of the incident
light on its exposed surface. As the applied illumination increases in
intensity, the energy state of the surface electrons and atoms increases,
with a resultant increase in the number of “free carriers” and a corre-
sponding drop in resistance. A typical set of characteristics and the
photoconductive cell’s graphic symbol appear in Fig. 3.36. Note the
negative illumination coefficient. Several cadmium sulfide photocon-
ductive cells appear in Fig. 3.37.

3.13 VARISTORS

Varistors are voltage-dependent, nonlinear resistors used to suppress
high-voltage transients; that is, their characteristics are such as to limit
the voltage that can appear across the terminals of a sensitive device or
system. A typical set of characteristics appears in Fig. 3.38(a), along
with a linear resistance characteristic for comparison purposes. Note
that at a particular “firing voltage,” the current rises rapidly but the volt-
age is limited to a level just above this firing potential. In other words,
the magnitude of the voltage that can appear across this device cannot
exceed that level defined by its characteristics. Through proper design
techniques this device can therefore limit the voltage appearing across
sensitive regions of a network. The current is simply limited by the net-
work to which it is connected. A photograph of a number of commer-
cial units appears in Fig. 3.38(b).

FIG. 3.38

Varistors available with maximum dc voltage ratings between 18 V and 615 V.
(Courtesy of Philips Components, Inc.)
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3.14 APPLICATIONS

The following are examples of how resistance can be used to perform a
variety of tasks, from heating to measuring the stress or strain on a sup-
porting member of a structure. In general, resistance is a component of
every electrical or electronic application.

Electric Baseboard Heating Element

One of the most common applications of resistance is in household fix-
tures such as toasters and baseboard heating where the heat generated
by current passing through a resistive element is employed to perform a
useful function.

Recently, as we remodeled our house, the local electrician informed
us that we were limited to 16 ft of electric baseboard on a single circuit.
That naturally had me wondering about the wattage per foot, the result-
ing current level, and whether the 16-ft limitation was a national stan-
dard. Reading the label on the 2-ft section appearing in Fig. 3.39(a), I
found VOLTS AC 240/208, WATTS 750/575 [the power rating will be
described in Chapter 4] AMPS 3.2/2.8. Since my panel is rated 208 V
(as are those in most residential homes), the wattage rating per foot 
is 575 W/2 or 287.5 W at a current of 2.8 A. The total wattage for the
16 ft is therefore 16 � 287.5 W or 4600 W. In Chapter 4 you will find
that the power to a resistive load is related to the current and applied
voltage by the equation P � VI. The total resulting current can then be
determined using this equation in the following manner: I � P/V �
4600 W/208 V � 22.12 A. The result was that we needed a circuit
breaker larger than 22.12 A; otherwise, the circuit breaker would trip
every time we turned the heat on. In my case the electrician used a 
30-A breaker to meet the National Fire Code requirement that does not
permit exceeding 80% of the rated current for a conductor or breaker.
In most panels a 30-A breaker takes two slots of your panel, whereas
the more common 20-A breaker takes only one slot. If you have a
moment, take a look in your own panel and note the rating of the break-
ers used for various circuits of your home.

Going back to Table 3.2, we find that the #12 wire commonly used
for most circuits in the home has a maximum rating of 20 A and would
not be suitable for the electric baseboard. Since #11 is usually not com-
mercially available, a #10 wire with a maximum rating of 30 A was
used. You might wonder why the current drawn from the supply is
22.12 A while that required for one unit was only 2.8 A. This difference
is due to the parallel combination of sections of the heating elements, a
configuration that will be described in Chapter 6. It is now clear why
they specify a 16-ft limitation on a single circuit. Additional elements
would raise the current to a level that would exceed the code level for
#10 wire and would approach the maximum rating of the circuit breaker.

Figure 3.39(b) shows a photo of the interior construction of the heat-
ing element. The red feed wire on the right is connected to the core of
the heating element, and the black wire at the other end passes through
a protective heater element and back to the terminal box of the unit (the
place where the exterior wires are brought in and connected). If you
look carefully at the end of the heating unit as shown in Fig. 3.39(c),
you will find that the heating wire that runs through the core of the
heater is not connected directly to the round jacket holding the fins in
place. A ceramic material (insulator) separates the heating wire from
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the fins to remove any possibility of conduction between the current
passing through the bare heating element and the outer fin structure.
Ceramic materials are used because they are excellent conductors of
heat and because they have a high retentivity for heat so the surround-
ing area will remain heated for a period of time even after the current
has been turned off. As shown in Fig. 3.39(d), the heating wire that runs
through the metal jacket is normally a nichrome composite (because
pure nichrome is quite brittle) wound in the shape of a coil to compen-
sate for expansion and contraction with heating and also to permit a
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FIG. 3.39

Electric baseboard: (a) 2-ft section; (b) interior; (c) heating element; 
(d) nichrome coil.
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longer heating element in standard-length baseboard. For interest sake
we opened up the core and found that the nichrome wire in the core of
a 2-ft baseboard was actually 7 ft long, or a 3.5 : 1 ratio. The thinness
of the wire was particularly noteworthy, measuring out at about 8 mils
in diameter, not much thicker than a hair. Recall from this chapter that
the longer the conductor and the thinner the wire, the greater the resis-
tance. We took a section of the nichrome wire and tried to heat it with
a reasonable level of current and the application of a hair dryer. The
change in resistance was almost unnoticeable. In other words, all our
effort to increase the resistance with the basic elements available to us
in the lab was fruitless. This was an excellent demonstration of the
meaning of the temperature coefficient of resistance in Table 3.6. Since
the coefficient is so small for nichrome, the resistance does not measur-
ably change unless the change in temperature is truly significant. The
curve of Fig. 3.14 would therefore be close to horizontal for nichrome.
For baseboard heaters this is an excellent characteristic because the heat
developed, and the power dissipated, will not vary with time as the con-
ductor heats up with time. The flow of heat from the unit will remain
fairly constant. 

The feed and return cannot be soldered to the nichrome heater wire
for two reasons. First, you cannot solder nichrome wires to each other
or to other types of wire. Second, if you could, there could be a prob-
lem because the heat of the unit could rise above 880°F at the point
where the wires are connected, and the solder could melt and the con-
nection could be broken. Nichrome must be spot welded or crimped
onto the copper wires of the unit. Using Eq. (3.1) and the 8-mil mea-
sured diameter, and assuming pure nichrome for the moment, the resis-
tance of the 7-ft length is
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R � 65.6 �

In the next chapter a power equation will be introduced in detail
relating power, current, and resistance in the following manner: P �
I2R. Using the above data and solving for the resistance, we obtain
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R � 73.34 �

which is very close to the value calculated above from the geometric
shape since we cannot be absolutely sure about the resistivity value for
the composite.

During normal operation the wire heats up and passes that heat on to
the fins, which in turn heat the room via the air flowing through them.
The flow of air through the unit is enhanced by the fact that hot air
rises, so when the heated air leaves the top of the unit, it draws cold
area from the bottom to contribute to the convection effect. Closing off
the top or bottom of the unit would effectively eliminate the convection
effect, and the room would not heat up. A condition could occur in
which the inside of the heater became too hot, causing the metal casing
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also to get too hot. This concern is the primary reason for the thermal
protective element introduced above and appearing in Fig. 3.39(b). The
long, thin copper tubing in Fig. 3.39 is actually filled with an oil-type
fluid that will expand when heated. If too hot, it will expand, depress a
switch in the housing, and turn off the heater by cutting off the current
to the heater wire.

Dimmer Control in an Automobile

A two-point rheostat is the primary element in the control of the light
intensity on the dashboard and accessories of a car. The basic network
appears in Fig. 3.40 with typical voltage and current levels. When the
light switch is closed (usually by pulling the light control knob out from
the dashboard), current will be established through the 50-� rheostat
and then to the various lights on the dashboard. As the knob of the con-
trol switch is turned, it will control the amount of resistance between
points a and b of the rheostat. The more resistance between points a and
b, the less the current and the less the brightness of the various lights.
Note the additional switch in the glove compartment light which is acti-
vated by the opening of the door of the compartment. Aside from the
glove compartment light, all the lights of Fig. 3.40 will be on at the same
time when the light switch is activated. The first branch after the rheo-
stat contains two bulbs of 6-V rating rather than the 12-V bulbs appear-
ing in the other branches. The smaller bulbs of this branch will produce
a softer, more even light for specific areas of the panel. Note that the
sum of the two bulbs (in series) is 12 V to match that across the other
branches. The division of voltage in any network will be covered in
detail in Chapters 5 and 6.

Typical current levels for the various branches have also been pro-
vided in Fig. 3.40. You will learn in Chapter 6 that the current drain
from the battery and through the fuse and rheostat approximately equals
the sum of the currents in the branches of the network. The result is that
the fuse must be able to handle current in amperes, so a 15-A fuse was
employed (even though the bulbs appear in Fig. 3.40 as 12-V bulbs to
match the battery).

Whenever the operating voltage and current levels of a component
are known, the internal “hot” resistance of the unit can be determined
using Ohm’s law, to be introduced in detail in the next chapter. Basi-
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FIG. 3.40

Dashboard dimmer control in an automobile.
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cally this law relates voltage, current, and resistance by I � V/R. For
the 12-V bulb at a rated current of 300 mA, the resistance is R � V/I �
12 V/300 mA � 40 �. For the 6-V bulbs it is 6 V/300 mA � 80 �. Fur-
ther comment regarding the power levels and resistance levels will be
reserved for the chapters to follow.

The preceding description assumed an ideal level of 12 V for the bat-
tery. In actuality, 6.3-V and 14-V bulbs are used to match the charging
level of most automobiles.

Strain Gauges

Any change in the shape of a structure can be detected using strain
gauges whose resistance will change with applied stress or flex. An
example of a strain gauge is shown in Fig. 3.41. Strain gauges are semi-
conductor devices whose terminal resistance will change in a nonlinear
(not a straight-line) fashion through a fairly wide range in values when
they are stressed by compression or extension. Since the stress gauge
does emit a signal, a signal processor must also be part of the system to
translate the change in resistance to some meaningful output. One sim-
ple example of the use of resistive strain gauges is to monitor earth-
quake activity. When the gauge is placed across an area of suspected
earthquake activity, the slightest separation in the earth will change the
terminal resistance, and the processor will display a result sensitive to
the amount of separation. Another example is in alarm systems where
the slightest change in the shape of a supporting beam when someone
walks overhead will result in a change in terminal resistance, and an
alarm will sound. Other examples include placing strain gauges on
bridges to maintain an awareness of their rigidity and on very large gen-
erators to check whether various moving components are beginning to
separate because of a wearing of the bearings or spacers. The small
mouse control within the keyboard of a portable computer can be a
series of stress gauges that reveal the direction of stress applied to the
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Typical Installation

20-26 AWG instrumentation wire

Terminal pads for stress relief and junction for different gauge wire

30 AWG or ribbon leads

Model SGN    4/12
12-Ω terminal resistance
Overall length: 5.5mm ≈ 0.22" 

_

≈=

FIG. 3.41

Resistive strain gauge. (© Copyright Omega Engineering, Inc. All rights
reserved. Reproduced with the permission of Omega Engineering, Inc.,

Stamford, CT 06907.)
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controlling element on the keyboard. Movement in one direction can
extend or compress a resistance gauge which can monitor and control
the motion of the mouse on the screen.

3.15 MATHCAD

Throughout the text a mathematical software package called Mathcad
will be used to introduce a variety of operations that a math software
package can perform. There is no need to obtain a copy of the software
package to continue with the material covered in this text. The coverage
is at a very introductory level simply to introduce the scope and power
of the package. All the exercises appearing at the end of each chapter
can be done without Mathcad.

Once the package is installed, all operations begin with the basic
screen of Fig. 3.42. The operations must be performed in the sequence
appearing in Fig. 3.43, that is, from left to right and then from top to
bottom. For example, if an equation on the second line is to operate on
a specific variable, the variable must be defined to the left of or above
the equation.
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FIG. 3.42

Using Mathcad to perform a basic mathematical operation.

To perform any mathematical calculation, simply click on the screen
at any convenient point to establish a crosshair on the display (the loca-
tion of the first entry). Then type in the mathematical operation such as
20 � 2 � 8/6 as shown in Fig. 3.42; the instant the equal sign is selected,
the result, 17.333, will appear as shown in Fig. 3.42. The multiplication
is obtained using the asterisk (*) appearing at the top of the number 8
key (under the SHIFT CONTROL key). The division is set by the /
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key at the bottom right of the keyboard. The equal sign can be selected
from the top right corner of the keyboard. Another option is to apply the
sequence View-Toolbars-Calculator to obtain the Calculator of Fig.
3.42. Then use the calculator to enter the entire expression and obtain
the result using the left clicker of the mouse.

As an example in which variables must be defined, the resistance of
a 200-ft length of copper wire with a diameter of 0.01 in. will be
determined. First, as shown in Fig. 3.44, the variables for resistivity,
length, and diameter must be defined. This is accomplished by first
calling for the Greek palette through View-Toolbars-Greek and
selecting the Greek letter rho (r) followed by a combined Shift-colon
(Shift:) operation. A colon and an equal sign will appear, after which
10.37 is entered. For all the calculations to follow, the value of r has
been defined. A left click on the screen will then remove the rectan-
gular enclosure and place the variable and its value in memory. Pro-
ceed in the same way to define the length l and the diameter d. Next
the diameter in millimeters is defined by multiplying the diameter in
inches by 1000, and the area is defined by the diameter in millimeters
squared. Note that m had to be defined to the left of the expression for
the area, and the variable d was defined in the line above. The power
of 2 was obtained by first selecting the superscript symbol (^) at the
top of the number 6 on the keyboard and then entering the number 2
in the Mathcad bracket. Or you can simply type the letter m and
choose from the Calculator palette. In fact, all the operations of
multiplication, division, etc., required to determine the resistance R
can be lifted from the Calculator palette.

On the next line of Fig. 3.44, the values of m and A were calculated
by simply typing in m followed by the keyboard equal sign. Finally, the

x2

FIG. 3.43

Defining the order of mathematical operations
for Mathcad.

FIG. 3.44

Using Mathcad to calculate the resistance of a copper conductor.
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12. Determine the increase in resistance of a copper conduc-
tor if the area is reduced by a factor of 4 and the length
is doubled. The original resistance was 0.2 �. The tem-
perature remains fixed.
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FIG. 3.46

Problem 11.

4 ft

1 2 in./

3 in.

10. A wire 1000 ft long has a resistance of 0.5 k� and an area
of 94 CM. Of what material is the wire made (T � 20°C)?

*11. a. What is the resistance of a copper bus-bar with the
dimensions shown (T � 20°C) in Fig. 3.46?

b. Repeat (a) for aluminum and compare the results.
c. Without working out the numerical solution, deter-

mine whether the resistance of the bar (aluminum or
copper) will increase or decrease with an increase in
length. Explain your answer.

d. Repeat (c) for an increase in cross-sectional area.

equation for the resistance R is defined in terms of the variables, and the
result is obtained. The true value of developing in the above sequence
is the fact that you can place the program in memory and, when the
need arises, call it up and change a variable or two—the result will
appear immediately. There is no need to reenter all the definitions—just
change the numerical value.

In the chapters to follow, Mathcad will appear at every opportunity
to demonstrate its ability to perform calculations in a quick, effective
manner. You will probably want to learn more about this time-saving
and accuracy-checking option.

PROBLEMS

SECTION 3.2 Resistance: Circular Wires

1. Convert the following to mils:
a. 0.5 in. b. 0.01 in.
c. 0.004 in. d. 1 in.
e. 0.02 ft f. 0.01 cm

2. Calculate the area in circular mils (CM) of wires having
the following diameters:
a. 0.050 in. b. 0.016 in.
c. 0.30 in. d. 0.1 cm
e. 0.003 ft f. 0.0042 m

3. The area in circular mils is
a. 1600 CM b. 900 CM
c. 40,000 CM d. 625 CM
e. 7.75 CM f. 81 CM
What is the diameter of each wire in inches?

4. What is the resistance of a copper wire 200 ft long and
0.01 in. in diameter (T � 20°C)?

5. Find the resistance of a silver wire 50 yd long and 0.0045
in. in diameter (T � 20°C).

6. a. What is the area in circular mils of an aluminum con-
ductor that is 80 ft long with a resistance of 2.5 �?

b. What is its diameter in inches?

7. A 2.2-� resistor is to be made of nichrome wire. If the
available wire is 1/32 in. in diameter, how much wire is
required?

8. a. What is the area in circular mils of a copper wire that
has a resistance of 2.5 � and is 300 ft long (T �
20°C)?

b. Without working out the numerical solution, deter-
mine whether the area of an aluminum wire will be
smaller or larger than that of the copper wire. Explain.

c. Repeat (b) for a silver wire.

9. In Fig. 3.45, three conductors of different materials are
presented.
a. Without working out the numerical solution, deter-

mine which section would appear to have the most
resistance. Explain.

b. Find the resistance of each section and compare with
the result of (a) (T � 20°C).

Aluminum:
l  =  50 ft,
d  =  50 mils

Copper:  l  =  10 ft, d  =  10 mils

Silver:  l  =  1 ft, d  =  1 mil

FIG. 3.45

Problem 9.
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c. Use the equation r2 � kr1 to determine the conver-
sion factor k if r1 is the solution of part (a) and r2 the
solution of part (b).

E

d = 30 ft

Load

Solid round copper wire

FIG. 3.47

Problem 16.

FIG. 3.48

Problem 22.

R
1 inch

= 1 m�

1000 ft.

*13. What is the new resistance level of a copper wire if the
length is changed from 200 ft to 100 yd, the area is
changed from 40,000 CM to 0.04 in.2, and the original
resistance was 800 m�?

SECTION 3.3 Wire Tables

14. a. Using Table 3.2, find the resistance of 450 ft of #11
and #14 AWG wires.

b. Compare the resistances of the two wires.
c. Compare the areas of the two wires.

15. a. Using Table 3.2, find the resistance of 1800 ft of #8
and #18 AWG wires.

b. Compare the resistances of the two wires.
c. Compare the areas of the two wires.

16. a. For the system of Fig. 3.47, the resistance of each line
cannot exceed 0.006 �, and the maximum current
drawn by the load is 110 A. What gage wire should be
used?

b. Repeat (a) for a maximum resistance of 0.003 �,
d � 30 ft, and a maximum current of 110 A.

*17. a. From Table 3.2, determine the maximum permissible
current density (A/CM) for an AWG #0000 wire.

b. Convert the result of (a) to A/in.2.
c. Using the result of (b), determine the cross-sectional

area required to carry a current of 5000 A.

SECTION 3.4 Resistance: Metric Units

18. Using metric units, determine the length of a copper
wire that has a resistance of 0.2 � and a diameter of
1/10 in.

19. Repeat Problem 11 using metric units; that is, convert the
given dimensions to metric units before determining the
resistance.

20. If the sheet resistance of a tin oxide sample is 100 �,
what is the thickness of the oxide layer?

21. Determine the width of a carbon resistor having a sheet
resistance of 150 � if the length is 1/2 in. and the resis-
tance is 500 �.

*22. Derive the conversion factor between r (CM ⋅� /ft) and r
(� ⋅cm) by
a. Solving for r for the wire of Fig. 3.48 in CM ⋅� /ft.
b. Solving for r for the same wire of Fig. 3.48 in � ⋅cm

by making the necessary conversions.

SECTION 3.5 Temperature Effects

23. The resistance of a copper wire is 2 � at 10°C. What is
its resistance at 60°C?

24. The resistance of an aluminum bus-bar is 0.02 � at 0°C.
What is its resistance at 100°C?

25. The resistance of a copper wire is 4 � at 70°F. What is
its resistance at 32°F?

26. The resistance of a copper wire is 0.76 � at 30°C. What
is its resistance at �40°C?

27. If the resistance of a silver wire is 0.04 � at �30°C,
what is its resistance at 0°C?

*28. a. The resistance of a copper wire is 0.002 � at room
temperature (68°F). What is its resistance at 32°F
(freezing) and 212°F (boiling)?

b. For (a), determine the change in resistance for each
10° change in temperature between room temperature
and 212°F.

29. a. The resistance of a copper wire is 0.92 � at 4°C. At
what temperature (°C) will it be 1.06 �?

b. At what temperature will it be 0.15 �?

*30. a. If the resistance of a 1000-ft length of copper wire is
10 � at room temperature (20°C), what will its resis-
tance be at 50 K (Kelvin units) using Eq. (3.6)?

b. Repeat part (a) for a temperature of 38.65 K. Com-
ment on the results obtained by reviewing the curve
of Fig. 3.14.

c. What is the temperature of absolute zero in Fahren-
heit units?

31. a. Verify the value of a20 for copper in Table 3.6 by substi-
tuting the inferred absolute temperature into Eq. (3.7).

b. Using Eq. (3.8) find the temperature at which the
resistance of a copper conductor will increase to 1 �
from a level of 0.8 � at 20°C.

32. Using Eq. (3.8), find the resistance of a copper wire at
16°C if its resistance at 20°C is 0.4 �.

*33. Determine the resistance of a 1000-ft coil of #12 copper
wire sitting in the desert at a temperature of 115°F.

34. A 22-� wire-wound resistor is rated at �200 PPM for a
temperature range of �10°C to �75°C. Determine its
resistance at 65°C.

35. Determine the PPM rating of the 10-k� carbon composi-
tion resistor of Fig. 3.19 using the resistance level deter-
mined at 90°C.



48. Is there an overlap in coverage between 20% resistors?
That is, determine the tolerance range for a 10-� 20%
resistor and a 15-� 20% resistor, and note whether their
tolerance ranges overlap.

49. Repeat Problem 48 for 10% resistors of the same value.

SECTION 3.9 Conductance

50. Find the conductance of each of the following resis-
tances:
a. 0.086 � b. 4 k�
c. 2.2 M�
Compare the three results.

51. Find the conductance of 1000 ft of #18 AWG wire made of
a. copper
b. aluminum
c. iron

*52. The conductance of a wire is 100 S. If the area of the
wire is increased by 2/3 and the length is reduced by the
same amount, find the new conductance of the wire if the
temperature remains fixed.

SECTION 3.10 Ohmmeters

53. How would you check the status of a fuse with an ohm-
meter?

54. How would you determine the on and off states of a
switch using an ohmmeter?

55. How would you use an ohmmeter to check the status of a
light bulb?

SECTION 3.11 Thermistors

*56. a. Find the resistance of the thermistor having the char-
acteristics of Fig. 3.34 at �50°C, 50°C, and 200°C.
Note that it is a log scale. If necessary, consult a ref-
erence with an expanded log scale.

b. Does the thermistor have a positive or a negative tem-
perature coefficient?

c. Is the coefficient a fixed value for the range �100°C
to 400°C? Why?

d. What is the approximate rate of change of r with tem-
perature at 100°C?

SECTION 3.12 Photoconductive Cell

*57. a. Using the characteristics of Fig. 3.36, determine the
resistance of the photoconductive cell at 10 and 100
foot-candles of illuminaton. As in Problem 56, note
that it is a log scale.

b. Does the cell have a positive or a negative illumina-
tion coefficient?

c. Is the coefficient a fixed value for the range 0.1 to
1000 foot-candles? Why?

d. What is the approximate rate of change of R with illu-
mination at 10 foot-candles?
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SECTION 3.6 Superconductors

36. Visit your local library and find a table listing the critical
temperatures for a variety of materials. List at least five
materials with the critical temperatures that are not men-
tioned in this text. Choose a few materials that have rela-
tively high critical temperatures.

37. Find at least one article on the application of supercon-
ductivity in the commercial sector, and write a short sum-
mary, including all interesting facts and figures.

*38. Using the required 1-MA/cm2 density level for IC manu-
facturing, determine what the resulting current would be
through a #12 house wire. Compare the result obtained
with the allowable limit of Table 3.2.

*39. Research the SQUID magnetic field detector and review
its basic mode of operation and an application or two.

SECTION 3.7 Types of Resistors

40. a. What is the approximate increase in size from a 1-W
to a 2-W carbon resistor?

b. What is the approximate increase in size from a 
1/2-W to a 2-W carbon resistor?

c. In general, can we conclude that for the same type of
resistor, an increase in wattage rating requires an
increase in size (volume)? Is it almost a linear rela-
tionship? That is, does twice the wattage require an
increase in size of 2�1?

41. If the 10-k� resistor of Fig. 3.19 is exactly 10 k� at
room temperature, what is its approximate resistance at
�30°C and 100°C (boiling)?

42. Repeat Problem 41 at a temperature of 120°F.

43. If the resistance between the outside terminals of a linear
potentiometer is 10 k�, what is its resistance between the
wiper (movable) arm and an outside terminal if the resis-
tance between the wiper arm and the other outside termi-
nal is 3.5 k�?

44. If the wiper arm of a linear potentiometer is one-quarter
the way around the contact surface, what is the resistance
between the wiper arm and each terminal if the total
resistance is 25 k�?

*45. Show the connections required to establish 4 k� between
the wiper arm and one outside terminal of a 10-k� poten-
tiometer while having only zero ohms between the other
outside terminal and the wiper arm.

SECTION 3.8 Color Coding and 

Standard Resistor Values

46. Find the range in which a resistor having the following
color bands must exist to satisfy the manufacturer’s toler-
ance:

1st band 2nd band 3rd band 4th band

a. green blue orange gold
b. red red brown silver
c. brown black black —

47. Find the color code for the following 10% resistors:
a. 220 � b. 4700 �
c. 68 k� d. 9.1 M�
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SECTION 3.13 Varistors

58. a. Referring to Fig. 3.38(a), find the terminal voltage of
the device at 0.5 mA, 1 mA, 3 mA, and 5 mA.

b. What is the total change in voltage for the indicated
range of current levels?

c. Compare the ratio of maximum to minimum current
levels above to the corresponding ratio of voltage 
levels.

GLOSSARY

Absolute zero The temperature at which all molecular
motion ceases; �273.15°C.

Circular mil (CM) The cross-sectional area of a wire having
a diameter of one mil.

Color coding A technique employing bands of color to indi-
cate the resistance levels and tolerance of resistors.

Conductance (G) An indication of the relative ease with
which current can be established in a material. It is meas-
ured in siemens (S).

Cooper effect The “pairing” of electrons as they travel
through a medium.

Ductility The property of a material that allows it to be
drawn into long, thin wires.

Inferred absolute temperature The temperature through
which a straight-line approximation for the actual resis-
tance-versus-temperature curve will intersect the tempera-
ture axis.

Malleability The property of a material that allows it to be
worked into many different shapes.

Negative temperature coefficient of resistance The value
revealing that the resistance of a material will decrease with
an increase in temperature.

Ohm (�) The unit of measurement applied to resistance.
Ohmmeter An instrument for measuring resistance levels.
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SECTION 3.15 Mathcad

59. Verify the results of Example 3.3 using Mathcad.

60. Verify the results of Example 3.11 using Mathcad.

Photoconductive cell A two-terminal semiconductor device
whose terminal resistance is determined by the intensity of
the incident light on its exposed surface.

Positive temperature coefficient of resistance The value
revealing that the resistance of a material will increase with
an increase in temperature.

Potentiometer A three-terminal device through which poten-
tial levels can be varied in a linear or nonlinear manner.

PPM/°C Temperature sensitivity of a resistor in parts per
million per degree Celsius.

Resistance A measure of the opposition to the flow of charge
through a material.

Resistivity (r) A constant of proportionality between the
resistance of a material and its physical dimensions.

Rheostat An element whose terminal resistance can be var-
ied in a linear or nonlinear manner.

Sheet resistance Defined by r/d for thin-film and integrated
circuit design.

Superconductor Conductors of electric charge that have for
all practical purposes zero ohms.

Thermistor A two-terminal semiconductor device whose
resistance is temperature sensitive.

Varistor A voltage-dependent, nonlinear resistor used to
suppress high-voltage transients.





Ohm’s Law, Power,
and Energy

4.1 OHM’S LAW

Consider the following relationship:

(4.1)

Every conversion of energy from one form to another can be related to
this equation. In electric circuits, the effect we are trying to establish is
the flow of charge, or current. The potential difference, or voltage,
between two points is the cause (“pressure”), and the opposition is the
resistance encountered.

An excellent analogy for the simplest of electrical circuits is the
water in a hose connected to a pressure valve. Think of the electrons in
the copper wire as the water in the hose, the pressure valve as the
applied voltage, and the size of the hose as the factor that determines
the resistance. If the pressure valve is closed, the water simply sits in
the hose without motion, much like the electrons in a conductor with-
out an applied voltage. When we open the pressure valve, water will
flow through the hose much like the electrons in a copper wire when the
voltage is applied. In other words, the absence of the “pressure” in one
case and the voltage in the other will simply result in a system without
motion or reaction. The rate at which the water will flow in the hose is
a function of the size of the hose. A hose with a very small diameter
will limit the rate at which water can flow through the hose, just as a
copper wire with a small diameter will have a high resistance and will
limit the current.

In summary, therefore, the absence of an applied “pressure” such as
voltage in an electric circuit will result in no reaction in the system and
no current in the electric circuit. Current is a reaction to the applied
voltage and not the factor that gets the system in motion. To continue
with the analogy, the more the pressure at the spigot, the more the rate
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of water flow through the hose, just as applying a higher voltage to the
same circuit will result in a higher current.

Substituting the terms introduced above into Eq. (4.1) results in

Current �

and (amperes, A) (4.2)

Equation (4.2) is known as Ohm’s law in honor of Georg Simon Ohm
(Fig. 4.1). The law clearly reveals that for a fixed resistance, the greater
the voltage (or pressure) across a resistor, the more the current, and the
more the resistance for the same voltage, the less the current. In other
words, the current is proportional to the applied voltage and inversely
proportional to the resistance.

By simple mathematical manipulations, the voltage and resistance
can be found in terms of the other two quantities:

(volts, V) (4.3)

and (ohms, �) (4.4)

The three quantities of Eqs. (4.2) through (4.4) are defined by the
simple circuit of Fig. 4.2. The current I of Eq. (4.2) results from apply-
ing a dc supply of E volts across a network having a resistance R. Equa-
tion (4.3) determines the voltage E required to establish a current I
through a network with a total resistance R, and Equation (4.4) provides
the resistance of a network that results in a current I due to an
impressed voltage E.

Note in Fig. 4.2 that the voltage source “pressures” current in a
direction that passes from the negative to the positive terminal of the
battery. This will always be the case for single-source circuits. The effect
of more than one source in the network will be examined in the chap-
ters to follow. The symbol for the voltage of the battery (a source of
electrical energy) is the uppercase letter E, whereas the loss in potential
energy across the resistor is given the symbol V. The polarity of the
voltage drop across the resistor is as defined by the applied source
because the two terminals of the battery are connected directly across
the resistive element.

EXAMPLE 4.1 Determine the current resulting from the application
of a 9-V battery across a network with a resistance of 2.2 �.

Solution: Eq. (4.2):

I � � � 4.09 A

EXAMPLE 4.2 Calculate the resistance of a 60-W bulb if a current of
500 mA results from an applied voltage of 120 V.
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FIG. 4.2

Basic circuit.
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(1789–1854)
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University of 
Cologne 
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Photo No. 51,145

In 1827, developed one of the most important laws
of electric circuits: Ohm’s law. When the law was
first introduced, the supporting documentation was
considered lacking and foolish, causing him to lose
his teaching position and search for a living doing
odd jobs and some tutoring. It took some 22 years
for his work to be recognized as a major contribu-
tion to the field. He was then awarded a chair at the
University of Munich and received the Copley
Medal of the Royal Society in 1841. His research
also extended into the areas of molecular physics,
acoustics, and telegraphic communication.

FIG. 4.1

Georg Simon Ohm.
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Defining polarities.
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Solution: Eq. (4.4):

R � � � 240 �

For an isolated resistive element, the polarity of the voltage drop is
as shown in Fig. 4.3(a) for the indicated current direction. A reversal in
current will reverse the polarity, as shown in Fig. 4.3(b). In general, the
flow of charge is from a high (�) to a low (�) potential. Polarities as
established by current direction will become increasingly important in
the analysis to follow.

EXAMPLE 4.3 Calculate the current through the 2-k� resistor of Fig.
4.4 if the voltage drop across it is 16 V.

Solution:

I � � � 8 mA

EXAMPLE 4.4 Calculate the voltage that must be applied across the
soldering iron of Fig. 4.5 to establish a current of 1.5 A through the iron
if its internal resistance is 80 �.

Solution:

E � IR � (1.5 A)(80 �) � 120 V

In a number of the examples in this chapter, such as Example 4.4
above, the voltage applied is actually that obtained from an ac outlet in
the home, office, or laboratory. This approach was used to provide an
opportunity for the student to relate to real-world situations as soon as
possible and to demonstrate that a number of the equations derived in
this chapter are applicable to ac networks also. Chapter 13 will provide
a direct relationship between ac and dc voltages that permits the math-
ematical substitutions used in this chapter. In other words, don’t be con-
cerned about the fact that some of the voltages and currents appearing
in the examples of this chapter are actually ac voltages, because the
equations for dc networks have exactly the same format, and all the
solutions will be correct.

4.2 PLOTTING OHM’S LAW

Graphs, characteristics, plots, and the like, play an important role in
every technical field as a mode through which the broad picture of the
behavior or response of a system can be conveniently displayed. It is
therefore critical to develop the skills necessary both to read data and to
plot them in such a manner that they can be interpreted easily.

For most sets of characteristics of electronic devices, the current is rep-
resented by the vertical axis (ordinate), and the voltage by the horizontal
axis (abscissa), as shown in Fig. 4.6. First note that the vertical axis is in

16 V
��
2 � 103 �

V
�
R

120 V
��
500 � 10�3 A

E
�
I

V
I R

16 V

2 k�I

+ –

FIG. 4.4

Example 4.3.

E

+
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R 80 �

I  =  1.5 A

E

+
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FIG. 4.5

Example 4.4.

FIG. 4.6

Plotting Ohm’s law.
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amperes and the horizontal axis is in volts. For some plots, I may be in mil-
liamperes (mA), microamperes (mA), or whatever is appropriate for the
range of interest. The same is true for the levels of voltage on the horizon-
tal axis. Note also that the chosen parameters require that the spacing
between numerical values of the vertical axis be different from that of the
horizontal axis. The linear (straight-line) graph reveals that the resistance
is not changing with current or voltage level; rather, it is a fixed quantity
throughout. The current direction and the voltage polarity appearing at the
top of Fig. 4.6 are the defined direction and polarity for the provided plot.
If the current direction is opposite to the defined direction, the region
below the horizontal axis is the region of interest for the current I. If the
voltage polarity is opposite to that defined, the region to the left of the cur-
rent axis is the region of interest. For the standard fixed resistor, the first
quadrant, or region, of Fig. 4.6 is the only region of interest. However, you
will encounter many devices in your electronics courses that will use the
other quadrants of a graph.

Once a graph such as Fig. 4.6 is developed, the current or voltage at any
level can be found from the other quantity by simply using the resulting
plot. For instance, at V � 25 V, if a vertical line is drawn on Fig. 4.6 to the
curve as shown, the resulting current can be found by drawing a horizon-
tal line over to the current axis, where a result of 5A is obtained. Similarly,
at V � 10 V, a vertical line to the plot and a horizontal line to the current
axis will result in a current of 2 A, as determined by Ohm’s law.

If the resistance of a plot is unknown, it can be determined at any
point on the plot since a straight line indicates a fixed resistance. At any
point on the plot, find the resulting current and voltage, and simply sub-
stitute into the following equation:

(4.5)

To test Eq. (4.5), consider a point on the plot where V � 20 V and 
I � 4 A. The resulting resistance is Rdc � V/I � 20 V/4 A � 5 �. For
comparison purposes, a 1-� and 10-� resistor were plotted on the
graph of Fig. 4.7. Note that the less the resistance, the steeper the slope
(closer to the vertical axis) of the curve.

If we write Ohm’s law in the following manner and relate it to the
basic straight-line equation  

we find that the slope is equal to 1 divided by the resistance value, as
indicated by the following:

(4.6)

where D signifies a small, finite change in the variable.
Equation (4.6) clearly reveals that the greater the resistance, the less

the slope. If written in the following form, Equation (4.6) can be used
to determine the resistance from the linear curve:

m � slope � �
D

D

y

x
� � �

D

D

V

I
� � �

R

1
�

I � 
R 
1  • E � 0

�y m x � b•

Rdc � �
V
I
�

V
I R

FIG. 4.7

Demonstrating on an I-V plot that the less the
resistance, the steeper is the slope.
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FIG. 4.8

Applying Eq. (4.6).

(ohms) (4.7)

The equation states that by choosing a particular DV (or DI), one can
obtain the corresponding DI (or DV, respectively) from the graph, as
shown in Fig. 4.8, and then determine the resistance. It the plot is a
straight line, Equation (4.7) will provide the same result no matter
where the equation is applied. However, if the plot curves at all, the
resistance will change.

R � �
D

D

V
I

�

0

1

2

3

4

5

I (mA)

V (V)2 4 6 8 10

∆I   =  1 mA

∆V  =  2 V

FIG. 4.9

Example 4.5.

EXAMPLE 4.5 Determine the resistance associated with the curve of
Fig. 4.9 using Eqs. (4.5) and (4.7), and compare results.

Solution: At V � 6 V, I � 3 mA, and

Rdc � � � 2 k�

For the interval between 6 V and 8 V,

R � � � 2 k�

The results are equivalent.

Before leaving the subject, let us first investigate the characteristics
of a very important semiconductor device called the diode, which will
be examined in detail in basic electronics courses. This device will ide-
ally act like a low-resistance path to current in one direction and a high-
resistance path to current in the reverse direction, much like a switch
that will pass current in only one direction. A typical set of characteris-
tics appears in Fig. 4.10. Without any mathematical calculations, the
closeness of the characteristic to the voltage axis for negative values of
applied voltage indicates that this is the low-conductance (high resis-
tance, switch opened) region. Note that this region extends to approxi-
mately 0.7 V positive. However, for values of applied voltage greater
than 0.7 V, the vertical rise in the characteristics indicates a high-
conductivity (low resistance, switch closed) region. Application of
Ohm’s law will now verify the above conclusions.

2 V
�
1 mA

DV
�
D I

6 V
�
3 mA

V
�
I
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V

I R

At V � �1 V,

Rdiode � � �

� 20 �
(a relatively low value for most applications)

At V � �1 V,

Rdiode � �

� 1 M�

(which is often represented by an open-circuit equivalent)

4.3 POWER

Power is an indication of how much work (the conversion of energy
from one form to another) can be done in a specified amount of time,
that is, a rate of doing work. For instance, a large motor has more
power than a small motor because it can convert more electrical energy
into mechanical energy in the same period of time. Since converted
energy is measured in joules (J) and time in seconds (s), power is mea-
sured in joules/second (J/s). The electrical unit of measurement for
power is the watt (W), defined by

(4.8)

In equation form, power is determined by

(watts, W, or joules/second, J/s) (4.9)

with the energy W measured in joules and the time t in seconds.
Throughout the text, the abbreviation for energy (W) can be distin-

guished from that for the watt (W) by the fact that one is in italics while
the other is in roman. In fact, all variables in the dc section appear in
italics while the units appear in roman.

P � �
W
t
�

1 watt (W) � 1 joule/second (J/s)

1 V
�
1 mA

V
�
I

1 V
��
50 � 10�3 A

1 V
�
50 mA

V
�
I

FIG. 4.10

Semiconductor diode characteristic.
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The unit of measurement, the watt, is derived from the surname of
James Watt (Fig. 4.11), who was instrumental in establishing the stan-
dards for power measurements. He introduced the horsepower (hp) as
a measure of the average power of a strong dray horse over a full work-
ing day. It is approximately 50% more than can be expected from the
average horse. The horsepower and watt are related in the following
manner:

The power delivered to, or absorbed by, an electrical device or system
can be found in terms of the current and voltage by first substituting Eq.
(2.7) into Eq. (4.9):

P � � � V 

But I �

so that (watts) (4.10)

By direct substitution of Ohm’s law, the equation for power can be
obtained in two other forms:

P � VI � V� �

and (watts) (4.11)

or P � VI � (IR)I

and (watts) (4.12)

The result is that the power absorbed by the resistor of Fig. 4.12 can
be found directly depending on the information available. In other
words, if the current and resistance are known, it pays to use Eq. (4.12)
directly, and if V and I are known, use of Eq. (4.10) is appropriate. It
saves having to apply Ohm’s law before determining the power.

Power can be delivered or absorbed as defined by the polarity of the
voltage and the direction of the current. For all dc voltage sources,
power is being delivered by the source if the current has the direction
appearing in Fig. 4.13(a). Note that the current has the same direction
as established by the source in a single-source network. If the current
direction and polarity are as shown in Fig. 4.13(b) due to a multisource
network, the battery is absorbing power much as when a battery is
being charged.

For resistive elements, all the power delivered is dissipated in the
form of heat because the voltage polarity is defined by the current direc-
tion (and vice versa), and current will always enter the terminal of
higher potential corresponding with the absorbing state of Fig. 4.13(b).
A reversal of the current direction in Fig. 4.12 will also reverse the
polarity of the voltage across the resistor and match the conditions of
Fig. 4.13(b).

P � I2R

P � �
V
R

2

�

V
�
R

P � VI

Q
�
t

Q
�
t

QV
�

t

W
�
t

1 horsepower � 746 watts

V
I R

V

R

+ –I

P

FIG. 4.12

Defining the power to a resistive element.

E
+–

I

(a)

E
+ –

I
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FIG. 4.13

Battery power: (a) supplied; (b) absorbed.

Scottish (Greenock, 
Birmingham)

(1736–1819)

Instrument Maker 

and Inventor 

Elected Fellow of the 

Royal Society of 

London in 1785

Courtesy of the 
Smithsonian Institution

Photo No. 30,391

In 1757, at the age of 21, used his innovative talents
to design mathematical instruments such as the
quadrant, compass, and various scales. In 1765, in-
troduced the use of a separate condenser to increase
the efficiency of steam engines. In the years to fol-
low he received a number of important patents on
improved engine design, including a rotary motion
for the steam engine (versus the reciprocating action)
and a double-action engine, in which the piston
pulled as well as pushed in its cyclic motion. Intro-
duced the term horsepower as the average power
of a strong dray (small cart) horse over a full work-
ing day.

FIG. 4.11

James Watt.
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The magnitude of the power delivered or absorbed by a battery is
given by

(watts) (4.13)

with E the battery terminal voltage and I the current through the source.

EXAMPLE 4.6 Find the power delivered to the dc motor of Fig. 4.14.

Solution:

P � VI � (120 V)(5 A) � 600 W � 0.6 kW

EXAMPLE 4.7 What is the power dissipated by a 5-� resistor if the
current is 4 A?

Solution:

P � I2R � (4 A)2(5 �) � 80 W

EXAMPLE 4.8 The I-V characteristics of a light bulb are provided in
Fig. 4.15. Note the nonlinearity of the curve, indicating a wide range in
resistance of the bulb with applied voltage as defined by the discussion
of Section 4.2. If the rated voltage is 120 V, find the wattage rating of
the bulb. Also calculate the resistance of the bulb under rated condi-
tions.

Solution: At 120 V,

I � 0.625 A

and P � VI � (120 V)(0.625 A) � 75 W

At 120 V,

R � � � 192 �

Sometimes the power is given and the current or voltage must be
determined. Through algebraic manipulations, an equation for each
variable is derived as follows:

P � I2R ⇒ I2 �

and I � ��
P
R

�� (amperes) (4.14)

P � ⇒ V2 � PR

and (volts) (4.15)

EXAMPLE 4.9 Determine the current through a 5-k� resistor when
the power dissipated by the element is 20 mW.

V � �P�R�

V2

�
R

P
�
R

120 V
�
0.625 A

V
�
I

P � EI

V
I R

5 A

120 V
+

–

Electrical
power
applied

Mechanical
horsepower
developed

FIG. 4.14

Example 4.6.

625

0 120 V (V)

higher R

I (mA)

lower R

FIG. 4.15

The nonlinear I-V characteristics of a 75-W
light bulb.
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Solution: Eq. (4.14):

I � ��
P
R

�� � �� � �4� �� 1�0���6� � 2 � 10�3 A

� 2 mA

4.4 WATTMETERS

As one might expect, there are instruments that can measure the power
delivered by a source and to a dissipative element. One such instrument,
the wattmeter, appears in Fig. 4.16. Since power is a function of both
the current and the voltage levels, four terminals must be connected as
shown in Fig. 4.17 to measure the power to the resistor R.

20 � 10�3 W
��

5 � 103 �

V
I R

FIG. 4.16

Wattmeter. (Courtesy of Electrical Instrument 
Service, Inc.)

(a)
Wattmeter

R
+

–
V
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+–
+–

I

PC +

–

(b)

W
+–

+–

VR

I

FIG. 4.17

Wattmeter connections.

If the current coils (CC) and potential coils (PC) of the wattmeter are
connected as shown in Fig. 4.17, there will be an up-scale reading on
the wattmeter. A reversal of either coil will result in a below-zero indi-
cation. Three voltage terminals may be available on the voltage side to
permit a choice of voltage levels. On most wattmeters, the current ter-
minals are physically larger than the voltage terminals to provide safety
and to ensure a solid connection.

4.5 EFFICIENCY

A flowchart for the energy levels associated with any system that con-
verts energy from one form to another is provided in Fig. 4.18. Take
particular note of the fact that the output energy level must always be
less than the applied energy due to losses and storage within the system.
The best one can hope for is that Wo and Wi are relatively close in mag-
nitude.

Conservation of energy requires that

Energy input � energy output � energy lost or stored in the system

Dividing both sides of the relationship by t gives

� �
Wlost or stored by the system
���

t

Wout
�

t

Win
�

t



106  OHM’S LAW, POWER, AND ENERGY

Since P � W/t, we have the following:

(W) (4.16)

The efficiency (h) of the system is then determined by the following
equation:

Efficiency �

and (decimal number) (4.17)

where h (lowercase Greek letter eta) is a decimal number. Expressed as
a percentage,

(percent) (4.18)

In terms of the input and output energy, the efficiency in percent is
given by

(percent) (4.19)

The maximum possible efficiency is 100%, which occurs when Po �
Pi, or when the power lost or stored in the system is zero. Obviously,
the greater the internal losses of the system in generating the necessary
output power or energy, the lower the net efficiency.

EXAMPLE 4.10 A 2-hp motor operates at an efficiency of 75%. What
is the power input in watts? If the applied voltage is 220 V, what is the
input current?

Solution:

h% � � 100%

0.75 �
(2 hp)(746 W/hp)
��

Pi

Po
�
Pi

h% � �
W

W
o

i
� � 100%

h% � �
P

P
o

i
� � 100%

h � �
P

P
o

i
�

power output
��
power input

Pi � Po � Plost or stored

V
I R

Energy input
Wi

Energy output
Wo

System

Energy
stored

Energy
lost

Wlost or stored

FIG. 4.18

Energy flow through a system.
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and Pi � � 1989.33 W

Pi � EI or I � � � 9.04 A

EXAMPLE 4.11 What is the output in horsepower of a motor with an
efficiency of 80% and an input current of 8 A at 120 V?

Solution:

h% � � 100%

0.80 �

and Po � (0.80)(120 V)(8 A) � 768 W

with 768 W� � � 1.029 hp

EXAMPLE 4.12 If h � 0.85, determine the output energy level if the
applied energy is 50 J.

Solution:

h � ⇒ Wo � hWi

� (0.85)(50 J)
� 42.5 J

The very basic components of a generating (voltage) system are
depicted in Fig. 4.19. The source of mechanical power is a structure
such as a paddlewheel that is turned by water rushing over the dam. The
gear train will then ensure that the rotating member of the generator is
turning at rated speed. The output voltage must then be fed through a
transmission system to the load. For each component of the system, an

Wo
�
Wi

1 hp
�
746 W

Po
��
(120 V)(8 A)

Po
�
Pi

1989.33 W
��

220 V

Pi
�
E

1492 W
�

0.75

V
I R

Generator

Load
Transmission system

Po2
Pi3

Po3

Pi2
Po1

Pi1

Gear train

  3η RL

FIG. 4.19

Basic components of a generating system.
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input and output power have been indicated. The efficiency of each sys-
tem is given by

h1 � h2 � h3 �

If we form the product of these three efficiencies,

h1 ⋅ h2 ⋅ h3 � ⋅ ⋅

and substitute the fact that Pi2
� Po1

and Pi3
� Po2

, we find that the
quantities indicated above will cancel, resulting in Po3

/Pi1
, which is a

measure of the efficiency of the entire system. In general, for the repre-
sentative cascaded system of Fig. 4.20,

(4.20)htotal � h1 ⋅ h2 ⋅ h3 ⋅ ⋅ ⋅ hn

Po3�
Pi3

Po2�
Pi2

Po1�
Pi1

Po3�
Pi3

Po2�
Pi2

Po1�
Pi1

V
I R

ηnηη3ηη2ηη1η

FIG. 4.20

Cascaded system.

EXAMPLE 4.13 Find the overall efficiency of the system of Fig. 4.19
if h1 � 90%, h2 � 85%, and h3 � 95%.

Solution:

hT � h1 ⋅ h2 ⋅ h3 � (0.90)(0.85)(0.95) � 0.727, or 72.7%

EXAMPLE 4.14 If the efficiency h1 drops to 40%, find the new overall
efficiency and compare the result with that obtained in Example 4.13.

Solution:

hT � h1 ⋅ h2 ⋅ h3 � (0.40)(0.85)(0.95) � 0.323, or 32.3%

Certainly 32.3% is noticeably less than 72.7%. The total efficiency of a
cascaded system is therefore determined primarily by the lowest effi-
ciency (weakest link) and is less than (or equal to if the remaining effi-
ciencies are 100%) the least efficient link of the system.

4.6 ENERGY

For power, which is the rate of doing work, to produce an energy con-
version of any form, it must be used over a period of time. For example,
a motor may have the horsepower to run a heavy load, but unless the
motor is used over a period of time, there will be no energy conversion.
In addition, the longer the motor is used to drive the load, the greater
will be the energy expended.

The energy (W) lost or gained by any system is therefore determined
by

(wattseconds, Ws, or joules) (4.21)W � Pt
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Since power is measured in watts (or joules per second) and time in
seconds, the unit of energy is the wattsecond or joule (note Fig. 4.21)
as indicated above. The wattsecond, however, is too small a quantity for
most practical purposes, so the watthour (Wh) and kilowatthour (kWh)
were defined, as follows:

(4.22)

Energy (kWh) � (4.23)

Note that the energy in kilowatthours is simply the energy in watthours
divided by 1000. To develop some sense for the kilowatthour energy
level, consider that 1 kWh is the energy dissipated by a 100-W bulb in
10 h.

The kilowatthour meter is an instrument for measuring the energy
supplied to the residential or commercial user of electricity. It is normally
connected directly to the lines at a point just prior to entering the power
distribution panel of the building. A typical set of dials is shown in Fig.
4.22(a) with a photograph of an analog kilowatthour meter. As indicated,
each power of ten below a dial is in kilowatthours. The more rapidly the
aluminum disc rotates, the greater the energy demand. The dials are con-
nected through a set of gears to the rotation of this disc. A solid-state dig-
ital meter with an extended range of capabilities appears in Fig. 4.22(b).

power (W) � time (h)
���

1000

Energy (Wh) � power (W) � time (h)

V
I R

FIG. 4.22

Kilowatthour meters: (a) analog; (b) digital. (Courtesy of ABB Electric 
Metering Systems.)

EXAMPLE 4.15 For the dial positions of Fig. 4.22(a), calculate the
electricity bill if the previous reading was 4650 kWh and the average
cost is 9¢ per kilowatthour.

Solution:

5360 kWh � 4650 kWh � 710 kWh used

710 kWh� � � $63.90
9¢

�
kWh

British (Salford, 
Manchester)

(1818–89)

Physicist 

Honorary Doctorates 

from the 

Universities of 

Dublin and Oxford

Bettmann Archive Photo
Number 076800P

Contributed to the important fundamental law of
conservation of energy by establishing that various
forms of energy, whether electrical, mechanical, or
heat, are in the same family and can be exchanged
from one form to another. In 1841 introduced
Joule’s law, which stated that the heat developed by
electric current in a wire is proportional to the prod-
uct of the current squared and the resistance of the
wire (I2R). He further determined that the heat emit-
ted was equivalent to the power absorbed and there-
fore heat is a form of energy.

FIG. 4.21

James Prescott Joule.



110  OHM’S LAW, POWER, AND ENERGY

EXAMPLE 4.16 How much energy (in kilowatthours) is required to
light a 60-W bulb continuously for 1 year (365 days)?

Solution:

W � � �

� 525.60 kWh

EXAMPLE 4.17 How long can a 205-W television set be on before
using more than 4 kWh of energy?

Solution:

W � ⇒ t (hours) �

� � 19.51 h

EXAMPLE 4.18 What is the cost of using a 5-hp motor for 2 h if the
rate is 9¢ per kilowatthour?

Solution:

W (kilowatthours) � � � 7.46 kWh

Cost � (7.46 kWh)(9¢/kWh) � 67.14¢

EXAMPLE 4.19 What is the total cost of using all of the following at
9¢ per kilowatthour?

A 1200-W toaster for 30 min
Six 50-W bulbs for 4 h
A 400-W washing machine for 45 min
A 4800-W electric clothes dryer for 20 min

Solution:

W

� 

� �

W �3.7 kWh

Cost � (3.7 kWh)(9¢/kWh) � 33.3¢

The chart in Fig. 4.23 shows the average cost per kilowatthour com-
pared to the kilowatthours used per customer. Note that the cost today is
above the level of 1926 and the average customer uses more than 20 times
as much electrical energy in a year. Keep in mind that the chart of Fig. 4.23
is the average cost across the nation. Some states have average rates close
to 5¢ per kilowatthour, whereas others approach 12¢ per kilowatthour.

Table 4.1 lists some common household appliances with their typi-
cal wattage ratings. It might prove interesting for the reader to calculate
the cost of operating some of these appliances over a period of time
using the chart in Fig. 4.23 to find the cost per kilowatthour.

3700 Wh
�

1000
600 Wh � 1200 Wh � 300 Wh � 1600 Wh
�����

1000

(1200 W)(�
1
2

� h) � (6)(50 W)(4 h) � (400 W)(�
3
4

� h) � (4800 W)(�
1
3

� h)
�������

1000

(5 hp � 746 W/hp)(2 h)
���

1000
Pt

�
1000

(4 kWh)(1000)
��

205 W

(W)(1000)
��

P
Pt

�
1000

525,600 Wh
��

1000
(60 W)(24 h/day)(365 days)
���

1000
Pt

�
1000

V
I R
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FIG. 4.23

Cost per kWh and average kWh per customer versus time. (Courtesy of Edison
Electric Institute.)

TABLE 4.1

Typical wattage ratings of some common household items.

Appliance Wattage Rating Appliance Wattage Rating

Air conditioner 860 Lap-top computer:
Blow dryer 1,300 Sleep � 1 W (Typically 0.3 W to 0.5 W)
Cassette player/recorder 5 Normal 10–20 W
Cellular phone: High 25–35 W
Standby � 35 mW Microwave oven 1,200
Talk � 4.3 W Pager 1–2 mW

Clock 2 Phonograph 75
Clothes dryer (electric) 4,800 Projector 1,200
Coffee maker 900 Radio 70
Dishwasher 1,200 Range (self-cleaning) 12,200
Fan: Refrigerator (automatic defrost) 1,800
Portable 90 Shaver 15
Window 200 Stereo equipment 110

Heater 1,322 Sun lamp 280
Heating equipment: Toaster 1,200
Furnace fan 320 Trash compactor 400
Oil-burner motor 230 TV (color) 200

Iron, dry or steam 1,100 Videocassette recorder 110
Washing machine 500
Water heater 4,500

Courtesy of General Electric Co.
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4.7 CIRCUIT BREAKERS, GFCIs, AND FUSES

The incoming power to any large industrial plant, heavy equipment,
simple circuit in the home, or meters used in the laboratory must be
limited to ensure that the current through the lines is not above the rated
value. Otherwise, the conductors or the electrical or electronic equip-
ment may be damaged, or dangerous side effects such as fire or smoke
may result. To limit the current level, fuses or circuit breakers are
installed where the power enters the installation, such as in the panel in
the basement of most homes at the point where the outside feeder lines
enter the dwelling. The fuses of Fig. 4.24 have an internal metallic con-
ductor through which the current will pass; a fuse will begin to melt if
the current through the system exceeds the rated value printed on the
casing. Of course, if the fuse melts through, the current path is broken
and the load in its path is protected.

In homes built in recent years, fuses have been replaced by circuit
breakers such as those appearing in Fig. 4.25. When the current exceeds
rated conditions, an electromagnet in the device will have sufficient
strength to draw the connecting metallic link in the breaker out of the
circuit and open the current path. When conditions have been corrected,
the breaker can be reset and used again.
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FIG. 4.24

Fuses: (a) CC-TRON ® (0–10 A); (b)
subminiature solid matrix; (c) Semitron

(0–600 A). (Courtesy of Bussman
Manufacturing Co.)

(a)

(b)

(c)

FIG. 4.25

Circuit breakers. (Courtesy of Potter and Brumfield Division, AMF, Inc.)

FIG. 4.26

Ground fault current interrupter (GFCI) 
125-V ac, 60-Hz, 15-A outlet. (Courtesy of Leviton, Inc.)

The most recent National Electrical Code requires that outlets in the
bathroom and other sensitive areas be of the ground fault current inter-
rupt (GFCI) variety; GCFIs are designed to trip more quickly than 
the standard circuit breaker. The commercial unit of Fig. 4.26 trips in 
5 ns. It has been determined that 6 mA is the maximum level that most
individuals can be exposed to for a short period of time without the risk
of serious injury. A current higher than 11 mA can cause involuntary
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muscle contractions that could prevent a person from letting go of the
conductor and possibly cause him or her to enter a state of shock.
Higher currents lasting more than a second can cause the heart to go
into fibrillation and possibly cause death in a few minutes. The GFCI is
able to react as quickly as it does by sensing the difference between the
input and output currents to the outlet; the currents should be the same
if everything is working properly. An errant path such as through an
individual establishes a difference in the two current levels and causes
the breaker to trip and disconnect the power source.

4.8 APPLICATIONS

Microwave Oven

It is probably safe to say that most modern homeowners have a
microwave oven such as appearing in Fig. 4.27(a)—even those of us
who went through the phase of worrying about whether it was safe and
whether it was a proper way to prepare food. Now we use the oven so
often during the day that we wonder how we ever did without it before.
For most users, its operating efficiency is not the biggest concern, prob-
ably because its impact on the monthly bill is not that easy to define
with so many appliances in the home. However, it might be of some
interest to examine the unit in more detail and apply some of the theory
presented in this chapter.
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FIG. 4.27

Microwave oven: (a) photo; (b) basic construction.
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First, some general comments. Most microwaves are rated at 500 W
to 1200 W at a frequency of 2.45 GHz (almost 2.5 billion cycles per
second compared to the 60 cycles per second for the ac voltage at the
typical home outlet—details in Chapter 13). The heating occurs
because the water molecules in the food are vibrated at such a high fre-
quency that the friction with neighboring molecules causes the heating
effect. Since it is the high frequency of vibration that heats the food,
there is no need for the material to be a conductor of electricity. How-
ever, any metal placed in the microwave can act as an antenna (espe-
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cially if it has any points or sharp edges) that will attract the microwave
energy and reach very high temperatures. In fact, a browning skillet is
now made for microwaves that has some metal embedded in the bottom
and sides to attract the microwave energy and raise the temperature at
the surface between the food and skillet to give the food a brown color
and a crisp texture. Even if the metal did not act as an antenna, it is a
good conductor of heat and could get quite hot as it draws heat from the
food. Any container with low moisture content can be used to heat
foods in a microwave. Because of this requirement, manufacturers have
developed a whole line of microwave cookware that is very low in
moisture content. Theoretically, glass and plastic have very little mois-
ture content, but even so when heated in the oven for a minute or so,
they do get warm. It could be the moisture in the air that clings to the
surface of each or perhaps the lead used in good crystal. In any case,
microwaves should be used only to prepare food. They were not
designed to be dryers or evaporators. The instructions with every
microwave specify that the oven should not be turned on when empty.
Even though the oven may be empty, microwave energy will be gener-
ated and will make every effort to find a channel for absorption. If the
oven is empty, the energy might be attracted to the oven itself and could
do some damage. To demonstrate that a dry empty glass or plastic con-
tainer will not attract a significant amount of microwave energy, place
two glasses in an oven, one with water and the other empty. After one
minute you will find the glass with the water quite warm due to the
heating effect of the hot water while the other is close to its original
temperature. In other words, the water created a heat sink for the major-
ity of the microwave energy, leaving the empty glass as a less attractive
path for heat conduction. Dry paper towels and plastic wrap can be used
in the oven to cover dishes since they initially have low water molecule
content, and paper and plastic are not good conductors of heat. How-
ever, it would very unsafe to place a paper towel in an oven alone
because, as said above, the microwave energy will look for an absorb-
ing medium and could set the paper on fire.

The cooking of food by a conventional oven is from the outside in.
The same is true for microwave ovens, but they have the additional
advantage of being able to penetrate the outside few centimeters of the
food, reducing the cooking time substantially. The cooking time with a
microwave oven is related to the amount of food in the oven. Two cups
of water will take longer to heat than one cup, although it is not a lin-
ear relationship so it won’t take twice as long—perhaps 75% to 90%
longer. Eventually, if you place enough food in the microwave oven and
compare the longer cooking time to that with a conventional oven, you
will reach a crossover point where it would be just as wise to use a con-
ventional oven and get the texture in the food you might prefer.

The basic construction of the microwave is depicted in Fig. 4.27(b).
It uses a 120-V ac supply which is then converted through a high-
voltage transformer to one having peak values approaching 5000 V (at
substantial current levels)—sufficient warning to leave microwave
repair to the local service location. Through the rectifying process
briefly described in Chapter 2, a high dc voltage of a few thousand volts
will be generated that will appear across a magnetron. The magnetron,
through its very special design (currently the same design as in WW II
when it was invented by the British for their high-power radar units),
will generate the required 2.45-GHz signal for the oven. It should be
pointed out also that the magnetron has a specific power level of oper-
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ation that cannot be controlled—once it’s on, it’s on at a set power level.
One may then wonder how the cooking temperature and duration can be
controlled. This is accomplished through a controlling network that
determines the amount of off and on time during the input cycle of the
120-V supply. Higher temperatures are achieved by setting a high ratio
of on to off time, while low temperatures are set by the reverse action.

One unfortunate characteristic of the magnetron is that in the conver-
sion process, it generates a great deal of heat that does not go toward the
heating of the food and that must be absorbed by heat sinks or dispersed
by a cooling fan. Typical conversion efficiencies are between 55% and
75%. Considering other losses inherent in any operating system, it is
reasonable to assume that most microwaves are between 50% and 60%
efficient. However, the conventional oven with its continually operating
exhaust fan and heating of the oven, cookware, surrounding air, and so
on, also has significant losses, even if it is less sensitive to the amount
of food to be cooked. All in all, the convenience factor is probably the
other factor that weighs the heaviest in this discussion. It also leaves the
question of how our time is figured into the efficiency equation.

For specific numbers, let us consider the energy associated with bak-
ing a 5-oz potato in a 1200-W microwave oven for 5 min if the conver-
sion efficiency is an average value of 55%. First, it is important to real-
ize that when a unit is rated as 1200 W, that is the rated power drawn
from the line during the cooking process. If the microwave is plugged
into a 120-V outlet, the current drawn is

I � P/V � 1200 W/120 V � 10.0 A

which is a significant level of current. Next, we can determine the
amount of power dedicated solely to the cooking process by using the
efficiency level. That is, 

Po � hPi � (0.55)(1200 W) � 600 W

The energy transferred to the potato over a period of 5 min can then be
determined from

W � Pt � (660 W)(5 min)(60 s/1 min) � 198 kJ

which is about half of the energy (nutritional value) derived from eating
a 5-oz potato. The number of kilowatthours drawn by the unit is deter-
mined from

W � Pt/1000 � (1200 W)(5/60 h)/1000 � 0.1 kWh

At a rate of 10¢/kWh we find that we can cook the potato for 1 penny—
relatively speaking, pretty cheap. A typical 1550-W toaster oven would
take an hour to heat the same potato, resulting in 1.55 kWh and a cost
of 15.5 cents—a significant increase in cost.

Household Wiring

A number of facets of household wiring can be discussed without
examining the manner in which they are physically connected. In the
chapters to follow, additional coverage will be provided to ensure that
you develop a solid fundamental understanding of the overall household
wiring system. At the very least you will establish a background that
will permit you to answer questions that you should be able to answer
as a student of this field.
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The one specification that defines the overall system is the maximum
current that can be drawn from the power lines since the voltage is fixed
at 120 V or 208 V (depending on how the power lines are utilized). For
most older homes with a heating system other than electric, a 100-A ser-
vice is the norm. Today, with all the electronic systems becoming com-
monplace in the home, many people are opting for the 200-A service
even if they don’t have electric heat. A 100-A service specifies that the
maximum current that can be drawn through the power lines into your
home is 100 A. Using the line-to-line rated voltage and the full-service
current (and assuming all resistive-type loads), we can determine the
maximum power that can be delivered using the basic power equation:

P � EI � (208 V)(100 A) � 20,800 W � 20.8 kW

This rating reveals that the total rating of all the units turned on in the
home cannot exceed 20.8 kW at any one time. If it did, we could expect
the main breaker at the top of the power panel to open. Initially, 20.8 kW
may seem like quite a large rating, but when you consider that a self-
cleaning electric oven may draw 12.2 kW, a dryer 4.8 kW, a water
heater 4.5 kW, and a dishwasher 1.2 kW, we are already at 22.7 kW (if
all the units are operating at peak demand), and we haven’t turned the
lights or TV on yet. Obviously, the use of an electric oven alone may
strongly suggest considering a 200-A service. However, one must be
aware that seldom are all the burners of a stove used at once, and the
oven incorporates a thermostat to control the temperature so that it is
not on all the time. The same is true for the water heater and dish-
washer, so the chances of all the units in a home demanding full service
at the same time is very slim. Certainly, a typical home with electric
heat that may draw 16 kW just for heating in cold weather must con-
sider a 200-A service. One must also understand that there is some lee-
way in maximum ratings for safety purposes. In other words, a system
designed for a maximum load of 100 A can accept a slightly higher cur-
rent for short periods of time without significant damage. For the long
term, however, it should not be exceeded.

Changing the service to 200 A is not simply a matter of changing the
panel in the basement—a new, heavier line must be run from the road
to the house. In some areas feeder cables are aluminum because of the
reduced cost and weight. In other areas, aluminum is not permitted
because of its temperature sensitivity (expansion and contraction), and
copper must be used. In any event, when aluminum is used, the con-
tractor must be absolutely sure that the connections at both ends are
very secure. The National Electric Code specifies that 100-A service
must use a #4 AWG copper conductor or #2 aluminum conductor. For
200-A service, a 2/0 copper wire or a 4/0 aluminum conductor must be
used as shown in Fig. 4.28(a). A 100-A or 200-A service must have two
lines and a service neutral as shown in Fig. 4.28(b). Note in Fig. 4.28(b)
that the lines are coated and insulated from each other, and the service
neutral is spread around the inside of the wire coating. At the terminal
point, all the strands of the service neutral are gathered together and
securely attached to the panel. It is fairly obvious that the cables of Fig.
4.28(a) are stranded for added flexibility.

Within the system the incoming power is broken down into a num-
ber of circuits with lower current ratings utilizing 15-A, 20-A, 30-A,
and 40-A protective breakers. Since the load on each breaker should not
exceed 80% of its rating, in a 15-A breaker the maximum current
should be limited to 80% of 15 A or 12 A, with 16 A for a 20-A
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breaker, 24 A for a 30-A breaker, and 32 A for a 40-A breaker. The
result is that a home with 200-A service can theoretically have a maxi-
mum of 12 circuits (200 A/16 A � 12.5) utilizing the 16-A maximum
current ratings associated with 20-A breakers. However, if aware of the
loads on each circuit, the electrician can install as many circuits as he
feels appropriate. The code further specifies that a #14 wire shall not
carry a current in excess of 15 A, a #12 in excess of 20 A, and a #10 in
excess of 30 A. Thus, #12 wire is now the most common for general
home wiring to ensure that it can handle any excursions beyond 15 A
on the 20-A breaker (the most common breaker size). The #14 wire is
often used in conjunction with the #12 wire in areas where it is known
that the current levels are limited. The #10 wire is typically used for
high-demand appliances such as dryers and ovens. The circuits them-
selves are usually broken down into those that provide lighting, outlets,
and so on. Some circuits (such as ovens and dryers) require a higher
voltage of 208 V, obtained by using two power lines and the neutral.
The higher voltage reduces the current requirement for the same power
rating with the net result that the appliance can usually be smaller. For
example, the size of an air conditioner with the same cooling ability
is measurably smaller when designed for a 208-V line than when
designed for 120 V. Most 208-V lines, however, demand a current level
that requires 30-A or 40-A breakers and special outlets to ensure that
appliances rated at 120 V are not connected to the same outlet. If time
permits, check the panel in your home and take note of the number of
circuits—in particular the rating of each breaker and the number of
208-V lines indicated by breakers requiring two slots of the panel. Total
the current ratings of all the breakers in your panel, and explain, using
the above information, why the total exceeds your feed level.

For safety sake, grounding is a very important part of the electrical
system in your home. The National Electric Code requires that the neu-
tral wire of the above system be grounded to an earth-driven rod, a
metallic water piping system of 10 ft or more, or a buried metal plate.
That ground is then passed on through the electrical circuits of the
home for further protection. In a later chapter the details of the connec-
tions and grounding methods will be introduced.
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FIG. 4.28

200-A service conductors: (a) 4/0 aluminum and 2/0 copper; (b) three-wire 4/0
aluminum service.
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4.9 COMPUTER ANALYSIS

Now that a complete circuit has been introduced and examined in
detail, we can begin the application of computer methods. As men-
tioned in Chapter 1, three software packages will be introduced to
demonstrate the options available with each and the differences that
exist. All have a broad range of support in the educational and industrial
communities. The student version of PSpice (OrCAD Release 9.2 from
Cadence Design Systems) will receive the most attention, followed by
Electronics Workbench from Multisim and then a few sample programs
using a programming language called C��. Each approach has its own
characteristics with procedures that must be followed exactly; other-
wise, error messages will appear. Do not assume that you can “force”
the system to respond the way you would prefer—every step is well
defined, and one error on the input side can result in results of a mean-
ingless nature. At times you may believe that the system is in error
because you are absolutely sure you followed every step correctly. In
such cases, accept the fact that something was entered incorrectly, and
review all your work very carefully. All it takes is a comma instead of
a period or a decimal point to generate incorrect results.

Be patient with the learning process; keep notes of specific maneu-
vers that you learn; and don’t be afraid to ask for help when you  need
it. For each approach there is always the initial concern about how to
start and proceed through the first phases of the analysis. However, be
assured that with time and exposure you will work through the required
maneuvers at a speed you never would have expected. In time you will
be absolutely delighted with the results you can obtain using computer
methods.

In this section, Ohm’s law will be investigated using the software
packages PSpice and Electronics Workbench (EWB) to analyze the cir-
cuit in Fig. 4.29. Both require that the circuit first be “drawn” on the
computer screen and then analyzed (simulated) to obtain the desired
results. As mentioned above, the analysis program is fixed in stone and
cannot be changed by the user. The proficient user is one who can draw
the most out of a computer software package. In a later chapter, the
C�� programming language will be introduced in some detail to
demonstrate how a user can control the analysis procedure and how the
results are displayed.

Although the author feels that there is sufficient material in the text
to carry a new student of the material through the programs provided,
be aware that this is not a computer text. Rather, it is one whose pri-
mary purpose is simply to introduce the different approaches and how
they can be applied effectively. Today, some excellent texts and manu-
als are available that cover the material in a great deal more detail and
perhaps at a slower pace. In fact, the quality of the available literature
has improved dramatically in recent years.

PSpice

Readers who were familiar with older versions of PSpice such as ver-
sion 8 will find that the major changes in this latest 9.2 version are pri-
marily in the front end and the simulation process. After executing a
few programs, you will find that most of the procedures you learned
from older versions will be applicable here also—at least the sequential
process has a number of strong similarities.
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FIG. 4.29

Circuit to be analyzed using PSpice 
and Electronics Workbench.
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Once 9.2 OrCAD Lite has been installed, the first required procedure
is to open a Folder in the C: drive for storage of the circuit files that
will result from the analysis. Be aware, however, that

once the folder has been defined, it does not have to be defined for
each new project unless you choose to do so. If you are satisfied with
one location (folder) for all your projects, this is a one-time operation
that does not have to be repeated with each network.

To establish the Folder, simply right-click the mouse on Start to
obtain a listing that includes Explore. Select Explore, and then use the
sequence File-New Folder to obtain a new folder on the screen waiting
for a name. Type in PSpice (the author’s choice) followed by a left click
of the mouse to install. Then exit (using the X at the top right of the
screen) the Exploring-Start Menu, and the first step is complete—
you’re on your way. The folder PSpice has been established for all the
projects you plan to work on in this text.

Our first project can now be initiated by double-clicking on the
Orcad Lite Edition icon on the screen, or you can use the sequence
Start-Programs-Orcad Family Release 9.2 Lite Edition. The result-
ing screen has only a few active keys on the top toolbar. The first at the
top left is the Create new document key (or you can use the sequence
File-New Project). Selecting the key will result in a New Project dia-
log box in which the Name of the project must be entered. For our pur-
poses we will choose Ohmslaw as shown in the heading of Fig. 4.30
and select Analog or Mixed A/D (to be used for all the analyses of this
text). Note at the bottom of the dialog box that the Location appears as
C:\PSpice as set above. Click OK, and another dialog box will appear

FIG. 4.30

Using PSpice to determine the voltage, current, and power levels for the circuit 
of Fig. 4.29.
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titled Create PSpice Project. Select Create a blank project (again,
for all the analyses to be performed in this text). Click OK, and a third
toolbar will appear at the top of the screen with some of the keys
enabled. A Project Manager Window will appear with Ohmslaw as its
heading. The new project listing will appear with an icon and an associ-
ated � sign in a small square. Clicking on the � sign will take the list-
ing a step further to SCHEMATIC1. Click � again, and PAGE1 will
appear; clicking on a � sign will reverse the process. Double-clicking on
PAGE1 will create a working window titled SCHEMATIC1: PAGE1,
revealing that a project can have more than one schematic file and more
than one associated page. The width and height of the window can be
adjusted by grabbing an edge to obtain a double-headed arrow and
dragging the border to the desired location. Either window on the
screen can be moved by clicking on the top heading to make it dark
blue and then dragging it to any location.

Now we are ready to build the simple circuit of Fig. 4.29. Select
the Place a part key (the second key from the top of the toolbar on
the right) to obtain the Place Part dialog box. Since this is the first
circuit to be constructed, we must ensure that the parts appear in the
list of active libraries. Select Add Library-Browse File, and select
analog.olb, eval.olb, and source.olb. When each appears under the
File name heading, select Open. All three files will be required to
build the networks appearing in this text. However, it is important to
realize that

once the library files have been selected, they will appear in the active
listing for each new project without having to add them each time—a
step, such as the Folder step above, that does not have to be repeated
with each similar project.

Click OK, and we can now place components on the screen. For the
dc voltage source, first select the Place a part key and then select
SOURCE in the library listing. Under Part List, a list of available
sources will appear; select VDC for this project. Once VDC has been
selected, its symbol, label, and value will appear on the picture window
at the bottom right of the dialog box. Click OK, and the VDC source
will follow the cursor across the screen. Move it to a convenient loca-
tion, left-click the mouse, and it will be set in place as shown in Fig.
4.30. Since only one source is required, a right click of the mouse will
result in a list of options, in which End Mode appears at the top.
Choosing this option will end the procedure, leaving the source in a red
dashed box. The fact that it is red indicates that it is an active mode and
can be operated on. One more left click of the mouse, and the source
will be in place and the red active status removed.

One of the most important steps in the procedure is to ensure that a
0-V ground potential is defined for the network so that voltages at any
point in the network have a reference point. The result is a requirement
that every network must have a ground defined. For our purposes, the
0/SOURCE option will be our choice when the GND key is selected.
It will ensure that one side of the source is defined as 0 V. Finally, we
need to add a resistor to the network by selecting the Place a part key
again and then selecting the ANALOG library. Scrolling the options,
note that R will appear and should be selected. Click OK, and the resis-
tor will appear next to the cursor on the screen. Move it to the desired
location and click it in place. Then right-click the mouse and End
Mode, and the resistor has been entered into the schematic’s memory.



V
I R COMPUTER ANALYSIS  121

Unfortunately, the resistor ended up in the horizontal position, and the
circuit of Fig. 4.29 has the resistor in the vertical position. No problem:
Simply select the resistor again to make it red, and right-click the
mouse. A listing will appear in which Rotate is an option. It will turn
the resistor 90° in the counterclockwise direction. It can also be rotated
90° by simultaneously selecting Ctrl-R.

All the required elements are on the screen, but they need to be con-
nected. This is accomplished by selecting the Place a wire key that
looks like a step in the right toolbar. The result is a crosshair with the
center that should be placed at the point to be connected. Place the
crosshair at the top of the voltage source, and left-click it once to con-
nect it to that point. Then draw a line to the end of the next element, and
click the mouse again when the crosshair is at the correct point. A red
line will result with a square at each end to confirm that the connection
has been made. Then move the crosshair to the other elements, and
build the circuit. Once everything is connected, a right click will pro-
vide the End Mode option. Don’t forget to connect the source to
ground as shown in Fig. 4.30.

Now we have all the elements in place, but their labels and values
are wrong. To change any parameter, simply double-click on the param-
eter (the label or the value) to obtain the Display Properties dialog
box. Type in the correct label or value, click OK, and the quantity is
changed on the screen. The labels and values can be moved by simply
clicking on the center of the parameter until it is closely surrounded by
the four small squares and then dragging it to the new location. Another
left click, and it is deposited in its new location.

Finally, we can initiate the analysis process, called Simulation, by
selecting the Create a new simulation profile key near the top left of
the display—it resembles a data page with a star in the top left corner.
A New Simulation dialog box will result that first asks for the Name
of the simulation. Bias Point is selected for a dc solution, and none is
left in the Inherit From request. Then select Create, and a Simulation
Setting dialog box will appear in which Analysis-Analysis Type-Bias
Point is sequentially selected. Click OK, and select the Run key
(which looks like an isolated blue arrowhead) or choose PSpice-Run
from the menu bar. An Output Window will result that appears to be
somewhat inactive. It will not be used in the current analysis, so close
(X) the window, and the circuit of Fig. 4.30 will appear with the volt-
age, current, and power levels of the network. The voltage, current, or
power levels can be removed (or replaced) from the display by simply
selecting the V, I, or W in the third toolbar from the top. Individual val-
ues can be removed by simply selecting the value and pressing the
Delete key or the scissors key in the top menu bar. Resulting values can
be moved by simply left-clicking the value and dragging it to the
desired location.

Note in Fig. 4.30 that the current is 3 mA (as expected) at each point
in the network, and the power delivered by the source and dissipated by
the resistor is the same, or 36 mW. There are also 12 V across the resis-
tor as required by the configuration.

There is no question that the description above was long for such a
trivial circuit. However, keep in mind that we needed to introduce many
new facets of using PSpice that will not be touched on again in the
future. By the time you finish analyzing your third or fourth network,
the above procedure will appear routine and will move rather quickly.
You will once again be looking for new challenges.
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Electronics Workbench (EWB)

For comparison purposes, Electronics Workbench will be used to ana-
lyze the circuit in Fig. 4.29. Although there are differences between
PSpice and EWB, such as the initiation process, constructing the net-
works, making the measurements, and setting up the simulation proce-
dure, there are sufficient similarities between the two approaches to
make it easier to learn one if you are already familiar with the other.
The similarities will be obvious only if you make an attempt to learn
both. One of the major differences between the two is the option to use
actual instruments in EWB to make the measurements—a positive trait
in preparation for the laboratory experience. However, in EWB you
may not find the extensive list of options available with PSpice. In gen-
eral, however, both software packages are well prepared to take us
through the types of analyses to be encountered in this text.

When the Multisim 2001 icon is selected from the opening window,
a screen will appear with the heading Multisim-Circuit 1. A menu bar
appears across the top of the screen, with one toolbar below the menu
bar and one to each side of the screen. The toolbars appearing can be
controlled by the sequence View-Toolbars followed by a selection of
which toolbars you want to appear. For the analysis of this text, all the
toolbars were selected. For the placement of components, View-Show
Grid was selected so that a grid would appear on the screen. As you
place an element, it will automatically be placed in a relationship spe-
cific to the grid structure.

Now to build the circuit of Fig. 4.29. First take the cursor and place
it on the battery symbol at the top of the component toolbar at the left
of the screen. One left click of the mouse, and a list of sources will
appear. Place the cursor on any one of the sources, and text will appear
on the screen defining the type of source. Placing the cursor on the third
key pad down will result in DC VOLTAGE SOURCE. Left-click
again, and the battery symbol will appear on the screen next to the loca-
tion of the cursor. Move the cursor to the desired location, and with a
single left click of the mouse the battery symbol can be set in place.
The operation is complete. If you want to delete the source, simply
click on the symbol again with a left click of the mouse to create four
small squares around the source. These squares indicate that the source
is in the active mode and can be operated on. If you want to delete it,
simply click on the Delete key or select the scissor key pad on the top
toolbar. If you want to modify the source, perform a right click of the
mouse outside the four small squares, and you get one list. Perform the
right click within the four squares, and you have a different set of
options. At any time, if you want to remove the active state, simply per-
form a left click anywhere on the screen. If you want to move the
source, simply click on the source symbol to create the four squares, but
do not release the clicker. Hold it down and drag the source to the pre-
ferred location. When the source is in place, release the clicker, and one
more click will remove the active state. To remove the SOURCES tool-
bar, simply click on the X in the top right corner of the toolbar.

The next key down from the source key that looks like a resistor
controls the display of the Basic passive components of a network.
Click once on the symbol, and two columns of components will
appear. From now on, whenever possible, the word click will imply a
left click of the mouse. The need for a right click will continue to be
spelled out.
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For the circuit of Fig. 4.29 we need a resistor. When you place the
cursor over the left resistor, the text RESISTOR will appear. When you
place it over the right resistor, the text RESISTOR–VIRTUAL will
appear. For all the analyses in this text using EWB, the virtual resistor
will be used. The term RESISTOR is used for all resistors of a stan-
dard commercial value—the values typically made commercially. The
term VIRTUAL is applied to any component in which you, the user,
can define the value you want. Click once on the virtual resistor, and it
will appear on the screen next to the cursor in the horizontal position.
In Fig. 4.29 it is in the vertical position, so a rotation must be made.
This can be done by clicking on the resistor to obtain the active state
and then performing a right click of the mouse within the four squares.
A number of options appear, including deleting (Cut) the component,
copy, change position, and color. Since we want to rotate 90° clock-
wise, we select that option, and the resistor will automatically be
rotated 90°. Now, as with the battery, to place the resistor in position,
simply click on the resistor symbol to create the four small squares, and
then, holding the left clicker down, drag the resistor to the desired posi-
tion. When the resistor is in place, release the clicker, and click again to
remove the four squares—the resistor is in place.

Finally, we need a ground for all networks. Going back to the
SOURCES parts bin, we find that a ground is the first option at the top
of the toolbar. Select the GROUND on the left, and place it on the
screen below the voltage source as shown in Fig. 4.31. Now, before
connecting the components together, move the labels and the value of
each component to the relative positions shown in Fig. 4.31. This is
accomplished by simply clicking on the label or value to create a small

FIG. 4.31

Using Electronics Workbench to determine the voltage and current level for the
circuit of Fig. 4.29.



set of squares around the element and then dragging the element to the
desired location. Release the clicker, and then click again to set the ele-
ment in place. To change the label or value, simply double-click on the
label (such as V1), and a Battery dialog box will appear. Select Label
and enter E as the Reference ID. Then, before leaving the dialog box,
go to Value and change the value if necessary. It is very important to
realize that you cannot type in the units where the V now appears. The
prefix is controlled by the scroll keys at the left of the unit of measure.
For practice, try the scroll keys, and you will find that you can go from
pV to TV. For now leave it as simply V. Click OK, and both have been
changed on the screen. The same process can be applied to the resistive
element to obtain the label and value appearing in Fig. 4.31.

Next, we should tell the system which results should be generated
and how they should be displayed. For this example we will use a mul-
timeter to measure both the current and the voltage of the circuit. The
Multimeter is the first option in the list of instruments appearing in the
toolbar to the right of the screen. When selected, it will appear on the
screen and be placed anywhere using the same procedure defined for
the components above. The voltmeter was turned clockwise using the
procedure described above for the elements. Double-click on either
meter symbol, and a Multimeter dialog box will appear in which the
function of the meter must be defined. Since the meter XMM1 will be
used as an ammeter, the letter A will be selected and the horizontal line
to indicate dc level. There is no need to select Set for the default values
since they have been chosen for the broad range of applications. The
dialog meters can be moved to any location by simply clicking on their
heading bar to make it dark blue and then dragging the meter to the pre-
ferred position. For the voltmeter, V and the horizontal bar were
selected as shown in Fig. 4.31.

Finally, the elements need to be connected. This is accomplished by
simply bringing the cursor to one end of an element, say, the top of the
voltage source, with the result that a small dot and a crosshair will
appear at the top end of the element. Click the mouse once, follow the
path you want, and place the crosshair over the positive terminal of the
ammeter. Then click again and the wire will appear in place.

At this point you should be aware that the software package has its
preferences about how it wants the elements to be connected. That is,
you may try to draw it one way, but the computer generation may be a
different path. In time you will be aware of those preferences and will
be able to set up the network to your liking. Now continue making the
connections appearing in Fig. 4.31, moving elements of adjusting lines
as necessary. Be sure that the small dot appears at any point where you
want a connection. Its absence suggests that the connection has not
been made and the software program has not accepted the entry.

Now we are ready to run the program and view the solution. The
analysis can be initiated in a number of ways. One option is to select
Simulate from the top toolbar, followed by RUN/STOP. Another is to
select the Simulate key in the design bar grouping in the top toolbar. It
appears as a sharp, jagged, green plot on a black background. The last
option, and the one we will use the most, requires an OFF/ON, 0/1
switch on the screen. It is obtained through VIEW-Show Simulate
Switch and will appear as shown in the top right corner of Fig. 4.31.
Using this last option, the analysis (called Simulation) is initiated by
placing the cursor on the 1 of the switch and left-clicking the mouse.
The analysis will be performed, and the current and voltage will appear
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PROBLEMS

SECTION 4.1 Ohm’s Law

1. What is the potential drop across a 6-� resistor if the cur-
rent through it is 2.5 A?

2. What is the current through a 72-� resistor if the voltage
drop across it is 12 V?

3. How much resistance is required to limit the current to
1.5 mA if the potential drop across the resistor is 6 V?

4. At starting, what is the current drain on a 12-V car bat-
tery if the resistance of the starting motor is 0.056 �?

5. If the current through a 0.02-M� resistor is 3.6 mA, what
is the voltage drop across the resistor?

6. If a voltmeter has an internal resistance of 15 k�, find the
current through the meter when it reads 62 V.

7. If a refrigerator draws 2.2 A at 120 V, what is its resis-
tance?

8. If a clock has an internal resistance of 7.5 k�, find the
current through the clock if it is plugged into a 120-V
outlet.

9. A washing machine is rated at 4.2 A at 120 V. What is its
internal resistance?

10. If a soldering iron draws 0.76 A at 120 V, what is its
resistance?

11. The input current to a transistor is 20 mA. If the applied
(input) voltage is 24 mV, determine the input resistance
of the transistor.

12. The internal resistance of a dc generator is 0.5 �. Deter-
mine the loss in terminal voltage across this internal
resistance if the current is 15 A.

*13. a. If an electric heater draws 9.5 A when connected to a
120-V supply, what is the internal resistance of the
heater?

b. Using the basic relationships of Chapter 2, how much
energy is converted in 1 h?

SECTION 4.2 Plotting Ohm’s Law

14. Plot the linear curves of a 100-� and a 0.5-� resistor on
the graph of Fig. 4.6. If necessary, reproduce the graph.

15. Sketch the characteristics of a device that has an internal
resistance of 20 � from 0 to 10 V and an internal resis-
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on the meter as shown in Fig. 4.31. Note that both are providing the
expected results.

Now for one of the most important things to learn about applying
EWB:

Always stop or end the simulation (clicking on 0 or choosing OFF)
before making any changes in the network. When the simulation is
initiated, it will stay in that mode until turned off. 

There was obviouly a great deal of material to learn in this first exer-
cise using Electronics Workbench. Be assured, however, that as we con-
tinue with more examples, you will find the procedure quite straight-
forward and actually enjoyable to apply.

tance of 2 � for higher voltages. Use the axes of Fig. 4.6.
If necessary, reproduce the graph.

16. Plot the linear curves of a 2-k� and a 50-k� resistor on
the graph of Fig. 4.6. Use a horizontal scale that extends
from 0 to 20 V and a vertical axis scaled off in milli-
amperes. If necessary, reproduce the graph.

17. What is the change in voltage across a 2-k� resistor
established by a change in current of 400 mA through the
resistor?

*18. a. Using the axes of Fig. 4.10, sketch the characteristics
of a device that has an internal resistance of 500 �
from 0 to 1 V and 50 � between 1 V and 2 V. Its resis-
tance then changes to �20 � for higher voltages. The
result is a set of characteristics very similar to those of
an electronic device called a tunnel diode.

b. Using the above characteristics, determine the result-
ing current at voltages of 0.7 V, 1.5 V, and 2.5 V.

SECTION 4.3 Power

19. If 420 J of energy are absorbed by a resistor in 7 min,
what is the power to the resistor?

20. The power to a device is 40 joules per second (J/s). How
long will it take to deliver 640 J?

21. a. How many joules of energy does a 2-W nightlight dis-
sipate in 8 h?

b. How many kilowatthours does it dissipate?

22. A resistor of 10 � has charge flowing through it at the
rate of 300 coulombs per minute (C/min). How much
power is dissipated?

23. How long must a steady current of 2 A exist in a resistor
that has 3 V across it to dissipate 12 J of energy?

24. What is the power delivered by a 6-V battery if the
charge flows at the rate of 48 C/min?

25. The current through a 4-� resistor is 7 mA. What is the
power delivered to the resistor?

26. The voltage drop across a 3-� resistor is 9 mV. What is
the power input to the resistor?

27. If the power input to a 4-� resistor is 64 W, what is the
current through the resistor?

28. A 1/2-W resistor has a resistance of 1000 �. What is the
maximum current that it can safely handle?
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29. A 2.2-k� resistor in a stereo system dissipates 42 mW of
power. What is the voltage across the resistor?

30. A dc battery can deliver 45 mA at 9 V. What is the power
rating?

31. What are the “hot” resistance level and current rating of
a 120-V, 100-W bulb?

32. What are the internal resistance and voltage rating of a
450-W automatic washer that draws 3.75 A?

33. A calculator with an internal 3-V battery draws 0.4 mW
when fully functional.
a. What is the current demand from the supply?
b. If the calculator is rated to operate 500 h on the same

battery, what is the ampere-hour rating of the battery?

34. A 20-k� resistor has a rating of 100 W. What are the
maximum current and the maximum voltage that can be
applied to the resistor?

*35. a. Plot power versus current for a 100-� resistor. Use a
power scale from 0 to 1 W and a current scale from 0
to 100 mA with divisions of 0.1 W and 10 mA,
respectively.

b. Is the curve linear or nonlinear?
c. Using the resulting plot, determine the current at a

power level of 500 mW.

*36. A small, portable black-and-white television draws 0.455A
at 9V.
a. What is the power rating of the television?
b. What is the internal resistance of the television?
c. What is the energy converted in 6 h of typical battery

life?

*37. a. If a home is supplied with a 120-V, 100-A service,
find the maximum power capability.

b. Can the homeowner safely operate the following
loads at the same time?
5-hp motor
3000-W clothes dryer
2400-W electric range
1000-W steam iron

SECTION 4.5 Efficiency

38. What is the efficiency of a motor that has an output of 
0.5 hp with an input of 450 W?

39. The motor of a power saw is rated 68.5% efficient. If 1.8 hp
are required to cut a particular piece of lumber, what is the
current drawn from a 120-V supply?

40. What is the efficiency of a dryer motor that delivers 1 hp
when the input current and voltage are 4 A and 220 V,
respectively?

41. A stereo system draws 2.4 A at 120 V. The audio output
power is 50 W.
a. How much power is lost in the form of heat in the sys-

tem?
b. What is the efficiency of the system?

42. If an electric motor having an efficiency of 87% and
operating off a 220-V line delivers 3.6 hp, what input
current does the motor draw?

43. A motor is rated to deliver 2 hp.
a. If it runs on 110 V and is 90% efficient, how many

watts does it draw from the power line?
b. What is the input current?
c. What is the input current if the motor is only 70%

efficient?

44. An electric motor used in an elevator system has an effi-
ciency of 90%. If the input voltage is 220 V, what is the
input current when the motor is delivering 15 hp?

45. A 2-hp motor drives a sanding belt. If the efficiency of
the motor is 87% and that of the sanding belt 75% due to
slippage, what is the overall efficiency of the system?

46. If two systems in cascade each have an efficiency of 80%
and the input energy is 60 J, what is the output energy?

47. The overall efficiency of two systems in cascade is 72%.
If the efficiency of one is 0.9, what is the efficiency in
percent of the other?

*48. If the total input and output power of two systems in cas-
cade are 400 W and 128 W, respectively, what is the effi-
ciency of each system if one has twice the efficiency of
the other?

49. a. What is the total efficiency of three systems in cas-
cade with efficiencies of 98%, 87%, and 21%?

b. If the system with the least efficiency (21%) were
removed and replaced by one with an efficiency of
90%, what would be the percentage increase in total
efficiency?

50. a. Perform the following conversions:
1 Wh to joules
1 kWh to joules

b. Based on the results of part (a), discuss when it is
more appropriate to use one unit versus the other.

SECTION 4.6 Energy

51. A 10-� resistor is connected across a 15-V battery.
a. How many joules of energy will it dissipate in 1 min?
b. If the resistor is left connected for 2 min instead of 

1 min, will the energy used increase? Will the power
dissipation level increase?

52. How much energy in kilowatthours is required to keep a
230-W oil-burner motor running 12 h a week for 5
months? (Use 41⁄3 weeks � 1 month.)

53. How long can a 1500-W heater be on before using more
than 10 kWh of energy?

54. How much does it cost to use a 30-W radio for 3 h at 9¢
per kilowatthour?

55. a. In 10 h an electrical system converts 500 kWh of elec-
trical energy into heat. What is the power level of the
system?

b. If the applied voltage is 208 V, what is the current
drawn from the supply?

c. If the efficiency of the system is 82%, how much
energy is lost or stored in 10 h?

56. a. At 9¢ per kilowatthour, how long can one play a
250-W color television for $1?
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GLOSSARY

Circuit breaker A two-terminal device designed to ensure
that current levels do not exceed safe levels. If “tripped,” it
can be reset with a switch or a reset button.

Diode A semiconductor device whose behavior is much like
that of a simple switch; that is, it will pass current ideally in
only one direction when operating within specified limits.

Efficiency (h) A ratio of output to input power that provides
immediate information about the energy-converting charac-
teristics of a system.

Energy (W) A quantity whose change in state is deter-
mined by the product of the rate of conversion (P) and
the period involved (t). It is measured in joules (J) or
wattseconds (Ws).

Fuse A two-terminal device whose sole purpose is to ensure
that current levels in a circuit do not exceed safe levels.
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b. For $1, how long can one use a 4.8-kW dryer?
c. Compare the results of parts (a) and (b), and comment

on the effect of the wattage level on the relative cost
of using an appliance.

57. What is the total cost of using the following at 9¢ per
kilowatthour?
860-W air conditioner for 24 h
4800-W clothes dryer for 30 min
400-W washing machine for 1 h
1200-W dishwasher for 45 min

*58. What is the total cost of using the following at 9¢ per
kilowatthour?
110-W stereo set for 4 h
1200-W projector for 20 min
60-W tape recorder for 1.5 h
150-W color television set for 3 h 45 min

SECTION 4.9 Computer Analysis

PSpice or Electronics Workbench

59. Repeat the analysis of the circuit of Fig. 4.29 with E �
400 mV and R � 0.04 M�.

60. Repeat the analysis of the circuit of Fig. 4.29, but reverse
the polarity of the battery and use E � 0.02 V and R �
240 �.

Programming Language (C��, QBASIC, Pascal, etc.)

61. Write a program to calculate the cost of using five differ-
ent appliances for varying lengths of time if the cost is 9¢
per kilowatthour.

62. Request I, R, and t and determine V, P, and W. Print out
the results with the proper units.

Horsepower (hp) Equivalent to 746 watts in the electrical
system.

Kilowatthour meter An instrument for measuring kilo-
watthours of energy supplied to a residential or commercial
user of electricity.

Ohm’s law An equation that establishes a relationship
among the current, voltage, and resistance of an electrical
system.

Power An indication of how much work can be done in a
specified amount of time; a rate of doing work. It is mea-
sured in joules/second (J/s) or watts (W).

Wattmeter An instrument capable of measuring the power
delivered to an element by sensing both the voltage across
the element and the current through the element.





5.1 INTRODUCTION

Two types of current are readily available to the consumer today. One is
direct current (dc), in which ideally the flow of charge (current) does
not change in magnitude (or direction) with time. The other is sinu-
soidal alternating current (ac), in which the flow of charge is continu-
ally changing in magnitude (and direction) with time. The next few
chapters are an introduction to circuit analysis purely from a dc
approach. The methods and concepts will be discussed in detail for
direct current; when possible, a short discussion will suffice to cover
any variations we might encounter when we consider ac in the later
chapters.

The battery of Fig. 5.1, by virtue of the potential difference between
its terminals, has the ability to cause (or “pressure”) charge to flow
through the simple circuit. The positive terminal attracts the electrons
through the wire at the same rate at which electrons are supplied by the
negative terminal. As long as the battery is connected in the circuit and
maintains its terminal characteristics, the current (dc) through the cir-
cuit will not change in magnitude or direction.
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E (volts)

Iconventional

Ielectron

I  = V
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R

= —
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FIG. 5.1

Introducing the basic components of an electric circuit.

If we consider the wire to be an ideal conductor (that is, having no
opposition to flow), the potential difference V across the resistor will
equal the applied voltage of the battery: V (volts) � E (volts).

5
Series Circuits
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The current is limited only by the resistor R. The higher the resis-
tance, the less the current, and conversely, as determined by Ohm’s law.

By convention (as discussed in Chapter 2), the direction of conven-
tional current flow Iconventional as shown in Fig. 5.1 is opposite to that of
electron flow (Ielectron). Also, the uniform flow of charge dictates that the
direct current I be the same everywhere in the circuit. By following the
direction of conventional flow, we notice that there is a rise in potential
across the battery (� to �), and a drop in potential across the resistor (�
to �). For single-voltage-source dc circuits, conventional flow always
passes from a low potential to a high potential when passing through a
voltage source, as shown in Fig. 5.2. However, conventional flow always
passes from a high to a low potential when passing through a resistor for
any number of voltage sources in the same circuit, as shown in Fig. 5.3.

The circuit of Fig. 5.1 is the simplest possible configuration. This
chapter and the chapters to follow will add elements to the system in a
very specific manner to introduce a range of concepts that will form a
major part of the foundation required to analyze the most complex sys-
tem. Be aware that the laws, rules, and so on, introduced in Chapters 5
and 6 will be used throughout your studies of electrical, electronic, or
computer systems. They will not be dropped for a more advanced set as
you progress to more sophisticated material. It is therefore critical that
the concepts be understood thoroughly and that the various procedures
and methods be applied with confidence.

5.2 SERIES CIRCUITS

A circuit consists of any number of elements joined at terminal points,
providing at least one closed path through which charge can flow. The
circuit of Fig. 5.4(a) has three elements joined at three terminal points
(a, b, and c) to provide a closed path for the current I.

Two elements are in series if

1. They have only one terminal in common (i.e., one lead of one is
connected to only one lead of the other).

2. The common point between the two elements is not connected to
another current-carrying element.

In Fig. 5.4(a), the resistors R1 and R2 are in series because they have
only point b in common. The other ends of the resistors are connected
elsewhere in the circuit. For the same reason, the battery E and resistor
R1 are in series (terminal a in common), and the resistor R2 and the bat-
tery E are in series (terminal c in common). Since all the elements are
in series, the network is called a series circuit. Two common examples
of series connections include the tying of small pieces of rope together
to form a longer rope and the connecting of pipes to get water from one
point to another.

If the circuit of Fig. 5.4(a) is modified such that a current-carrying
resistor R3 is introduced, as shown in Fig. 5.4(b), the resistors R1 and R2

are no longer in series due to a violation of number 2 of the above def-
inition of series elements.

The current is the same through series elements.

For the circuit of Fig. 5.4(a), therefore, the current I through each resis-
tor is the same as that through the battery. The fact that the current is
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FIG. 5.2

Defining the direction of conventional flow for
single-source dc circuits.
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Defining the polarity resulting from a
conventional current I through a resistive
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(a) Series circuit; (b) situation in which R1

and R2 are not in series.



the same through series elements is often used as a path to determine
whether two elements are in series or to confirm a conclusion.

A branch of a circuit is any portion of the circuit that has one or
more elements in series. In Fig. 5.4(a), the resistor R1 forms one branch
of the circuit, the resistor R2 another, and the battery E a third.

The total resistance of a series circuit is the sum of the resistance
levels.

In Fig. 5.4(a), for example, the total resistance (RT) is equal to R1 � R2.
Note that the total resistance is actually the resistance “seen” by the bat-
tery as it “looks” into the series combination of elements as shown in
Fig. 5.5.

In general, to find the total resistance of N resistors in series, the fol-
lowing equation is applied:

(ohms, �) (5.1)

Once the total resistance is known, the circuit of Fig. 5.4(a) can be
redrawn as shown in Fig. 5.6, clearly revealing that the only resistance
the source “sees” is the total resistance. It is totally unaware of how the
elements are connected to establish RT. Once RT is known, the current
drawn from the source can be determined using Ohm’s law, as follows:

(amperes, A) (5.2)

Since E is fixed, the magnitude of the source current will be totally
dependent on the magnitude of RT. A larger RT will result in a relatively
small value of Is, while lesser values of RT will result in increased cur-
rent levels.

The fact that the current is the same through each element of Fig.
5.4(a) permits a direct calculation of the voltage across each resistor
using Ohm’s law; that is,

(volts, V) (5.3)

The power delivered to each resistor can then be determined using
any one of three equations as listed below for R1:

(watts, W) (5.4)

The power delivered by the source is

(watts, W) (5.5)

The total power delivered to a resistive circuit is equal to the total
power dissipated by the resistive elements.

That is,

(5.6)Pdel � P1 � P2 � P3 � . . . � PN

Pdel � EI

P1 � V1I1 � I 2
1 R1 � �

V

R1

2
1

�

V1 � IR1, V2 � IR2, V3 � IR3, . . . , VN � IRN

Is � �
R
E

T
�

RT � R1 � R2 � R3 � . . . � RN
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FIG. 5.5

Resistance “seen” by source.
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FIG. 5.6

Replacing the series resistors R1 and R2 of
Fig. 5.5 with the total resistance.



EXAMPLE 5.1

a. Find the total resistance for the series circuit of Fig. 5.7.
b. Calculate the source current Is.
c. Determine the voltages V1, V2, and V3.
d. Calculate the power dissipated by R1, R2, and R3.
e. Determine the power delivered by the source, and compare it to the

sum of the power levels of part (d).

Solutions:

a. RT � R1 � R2 � R3 � 2 � � 1 � � 5 � � 8 �

b. Is � �
R
E

T
� � � 2.5 A

c. V1 � IR1 � (2.5 A)(2 �) � 5 V
V2 � IR2 � (2.5 A)(1 �) � 2.5 V
V3 � IR3 � (2.5 A)(5 �) � 12.5 V

d. P1 � V1I1 � (5 V)(2.5 A) � 12.5 W
P2 � I2

2R2 � (2.5 A)2(1 �) � 6.25 W
P3 � V2

3 /R3 � (12.5 V)2/5 � � 31.25 W

e. Pdel � EI � (20 V)(2.5 A) � 50 W
Pdel � P1 � P2 � P3

50 W � 12.5 W � 6.25 W � 31.25 W
50 W � 50 W (checks)

To find the total resistance of N resistors of the same value in series,
simply multiply the value of one of the resistors by the number in
series; that is,

(5.7)

EXAMPLE 5.2 Determine RT, I, and V2 for the circuit of Fig. 5.8.

Solution: Note the current direction as established by the battery
and the polarity of the voltage drops across R2 as determined by the cur-
rent direction. Since R1 � R3 � R4,

RT � NR1 � R2 � (3)(7 �) � 4 � � 21 � � 4 � � 25 �

I � � � 2 A

V2 � IR2 � (2 A)(4 �) � 8 V

Examples 5.1 and 5.2 are straightforward substitution-type problems
that are relatively easy to solve with some practice. Example 5.3, how-
ever, is evidence of another type of problem that requires a firm grasp
of the fundamental equations and an ability to identify which equation
to use first. The best preparation for this type of exercise is simply to
work through as many problems of this kind as possible.

EXAMPLE 5.3 Given RT and I, calculate R1 and E for the circuit of
Fig. 5.9.

50 V
�
25 �

E
�
RT

RT � NR

20 V
�
8 �
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FIG. 5.8

Example 5.2.

R1 = 7 �I

RT

I

R2 = 4 �

– V2 +

I R4

7 �

R3 7 �50 V
–

E
+

R3 6 k�

4 k�

R1 R2

E
RT  =  12 k�

I  =  6 mA

FIG. 5.9

Example 5.3.

FIG. 5.7

Example 5.1.

20 V R2 1 �

R1 = 2 �

+ V1 –

+
V2
–

R3 = 5 �

– V3 +

+
E
–

I

RT

I



Solution:

RT � R1 � R2 � R3

12 k� � R1 � 4 k� � 6 k�

R1 � 12 k� � 10 k� � 2 k�

E � IRT � (6 � 10�3 A)(12 � 103 �) � 72 V

5.3 VOLTAGE SOURCES IN SERIES

Voltage sources can be connected in series, as shown in Fig. 5.10, to
increase or decrease the total voltage applied to a system. The net volt-
age is determined simply by summing the sources with the same polar-
ity and subtracting the total of the sources with the opposite “pressure.”
The net polarity is the polarity of the larger sum.

In Fig. 5.10(a), for example, the sources are all “pressuring” current
to the right, so the net voltage is

ET � E1 � E2 � E3 � 10 V � 6 V � 2 V � 18 V

as shown in the figure. In Fig. 5.10(b), however, the greater “pressure”
is to the left, with a net voltage of

ET � E2 � E3 � E1 � 9 V � 3 V � 4 V � 8 V

and the polarity shown in the figure.

5.4 KIRCHHOFF’S VOLTAGE LAW

Note Fig. 5.11.

Kirchhoff’s voltage law (KVL) states that the algebraic sum of the
potential rises and drops around a closed loop (or path) is zero.

A closed loop is any continuous path that leaves a point in one
direction and returns to that same point from another direction without
leaving the circuit. In Fig. 5.12, by following the current, we can trace
a continuous path that leaves point a through R1 and returns through E
without leaving the circuit. Therefore, abcda is a closed loop. For us
to be able to apply Kirchhoff’s voltage law, the summation of poten-
tial rises and drops must be made in one direction around the closed
loop.

For uniformity, the clockwise (CW) direction will be used through-
out the text for all applications of Kirchhoff’s voltage law. Be aware,
however, that the same result will be obtained if the counterclockwise
(CCW) direction is chosen and the law applied correctly.

A plus sign is assigned to a potential rise (� to �), and a minus sign
to a potential drop (� to �). If we follow the current in Fig. 5.12 from
point a, we first encounter a potential drop V1 (� to �) across R1 and
then another potential drop V2 across R2. Continuing through the volt-
age source, we have a potential rise E (� to �) before returning 
to point a. In symbolic form, where Σ represents summation, the
closed loop, and V the potential drops and rises, we have

(Kirchhoff’s voltage law
V � 0

in symbolic form)
(5.8)�
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(b)

FIG. 5.10

Reducing series dc voltage sources to a 
single source.

FIG. 5.12

Applying Kirchhoff’s voltage law to a series 
dc circuit.
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Physicist

Professor of Physics,

University of
Heidelberg
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between the currents and voltages of a network in
1847. Did extensive research with German chemist
Robert Bunsen (developed the Bunsen burner), re-
sulting in the discovery of the important elements of
cesium and rubidium.

FIG. 5.11

Gustav Robert Kirchhoff.



which for the circuit of Fig. 5.12 yields (clockwise direction, following
the current I and starting at point d):

�E � V1 � V2 � 0

or E � V1 � V2

revealing that

the applied voltage of a series circuit equals the sum of the voltage
drops across the series elements.

Kirchhoff’s voltage law can also be stated in the following form:

Vrises � Vdrops (5.9)

which in words states that the sum of the rises around a closed loop
must equal the sum of the drops in potential. The text will emphasize
the use of Eq. (5.8), however.

If the loop were taken in the counterclockwise direction starting at
point a, the following would result:

V � 0

�E � V2 � V1 � 0

or, as before, E � V1 � V2

The application of Kirchhoff’s voltage law need not follow a path that
includes current-carrying elements.

For example, in Fig. 5.13 there is a difference in potential between
points a and b, even though the two points are not connected by a cur-
rent-carrying element. Application of Kirchhoff’s voltage law around
the closed loop will result in a difference in potential of 4 V between
the two points. That is, using the clockwise direction:

�12 V � Vx � 8 V � 0

and Vx � 4 V

EXAMPLE 5.4 Determine the unknown voltages for the networks of
Fig. 5.14.

�

��
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FIG. 5.13

Demonstration that a voltage can exist be-
tween two points not connected by a current-

carrying conductor.

Vx

12 V 8 V

+ –
a b

(b)

32 V

R1

E

+  12 V  –

R3 14 V

R2

+  6 V  –

+

–

+

–

Vx

(a)

R1

E1

+  V1  –
R2

+  4.2 V  –

9 VE216 V

FIG. 5.14

Example 5.4.

Solution: When applying Kirchhoff’s voltage law, be sure to con-
centrate on the polarities of the voltage rise or drop rather than on the



type of element. In other words, do not treat a voltage drop across a
resistive element differently from a voltage drop across a source. If the
polarity dictates that a drop has occurred, that is the important fact
when applying the law. In Fig. 5.14(a), for instance, if we choose the
clockwise direction, we will find that there is a drop across the resistors
R1 and R2 and a drop across the source E2. All will therefore have a
minus sign when Kirchhoff’s voltage law is applied.

Application of Kirchhoff’s voltage law to the circuit of Fig. 5.14(a)
in the clockwise direction will result in

�E1 � V1 � V2 � E2 � 0

and V1 � E1 � V2 � E2 � 16 V � 4.2 V � 9 V
� 2.8 V

The result clearly indicates that there was no need to know the values
of the resistors or the current to determine the unknown voltage. Suffi-
cient information was carried by the other voltage levels to permit a
determination of the unknown.

In Fig. 5.14(b) the unknown voltage is not across a current-carrying
element. However, as indicated in the paragraphs above, Kirchhoff’s
voltage law is not limited to current-carrying elements. In this case
there are two possible paths for finding the unknown. Using the clock-
wise path, including the voltage source E, will result in

�E � V1 � Vx � 0

and Vx � E � V1 � 32 V � 12 V
� 20 V

Using the clockwise direction for the other loop involving R2 and R3

will result in

�Vx � V2 � V3 � 0

and Vx � V2 � V3 � 6 V � 14 V
� 20 V

matching the result above.

EXAMPLE 5.5 Find V1 and V2 for the network of Fig. 5.15.

Solution: For path 1, starting at point a in a clockwise direction:

�25 V � V1 � 15 V � 0

and V1 � 40 V

For path 2, starting at point a in a clockwise direction:

�V2 � 20 V � 0

and V2 � �20 V

The minus sign simply indicates that the actual polarities of the poten-
tial difference are opposite the assumed polarity indicated in Fig. 5.15.

The next example will emphasize the fact that when we are applying
Kirchhoff’s voltage law, it is the polarities of the voltage rise or drop
that are the important parameters, and not the type of element involved.
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+ –
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1

a
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FIG. 5.15

Example 5.5.



EXAMPLE 5.6 Using Kirchhoff’s voltage law, determine the unknown
voltages for the network of Fig. 5.16.
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Solution: Note in each circuit that there are various polarities across
the unknown elements since they can contain any mixture of compo-
nents. Applying Kirchhoff’s voltage law to the network of Fig. 5.16(a)
in the clockwise direction will result in

60 V � 40 V � Vx � 30 V � 0

and Vx � 60 V � 30 V � 40 V � 90 V � 40 V
� 50 V

In Fig. 5.16(b) the polarity of the unknown voltage is not provided.
In such cases, make an assumption about the polarity, and apply Kirch-
hoff’s voltage law as before. If the result has a plus sign, the assumed
polarity was correct. If it has a minus sign, the magnitude is correct, but
the assumed polarity has to be reversed. In this case if we assume a to
be positive and b to be negative, an application of Kirchhoff’s voltage
law in the clockwise direction will result in

�6 V � 14 V � Vx � 2 V � 0

and Vx � �20 V � 2 V
� �18 V

Since the result is negative, we know that a should be negative and b
should be positive, but the magnitude of 18 V is correct.

EXAMPLE 5.7 For the circuit of Fig. 5.17:
a. Find RT.
b. Find I.
c. Find V1 and V2.
d. Find the power to the 4-� and 6-� resistors.
e. Find the power delivered by the battery, and compare it to that dissi-

pated by the 4-� and 6-� resistors combined.
f. Verify Kirchhoff’s voltage law (clockwise direction).

Solutions:

a. RT � R1 � R2 � 4 � � 6 � � 10 �

b. I � � � 2 A
20 V
�
10 �

E
�
RT

FIG. 5.17

Example 5.7.

20 V
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4 �
+

–

R2

6 �

E

I

RT I

I

+  V1  – +  V2  –

FIG. 5.16

Example 5.6.
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c. V1 � IR1 � (2 A)(4 �) � 8 V
V2 � IR2 � (2 A)(6 �) � 12 V

d. P4� � � � � 16 W

P6� � I2R2 � (2 A)2(6 �) � (4)(6) � 24 W

e. PE � EI � (20 V)(2 A) � 40 W
PE � P4� � P6�

40 W � 16 W � 24 W
40 W � 40 W (checks)

f. V � �E � V1 � V2 � 0
E � V1 � V2

20 V � 8 V � 12 V
20 V � 20 V (checks)

EXAMPLE 5.8 For the circuit of Fig. 5.18:
a. Determine V2 using Kirchhoff’s voltage law.
b. Determine I.
c. Find R1 and R3.

Solutions:

a. Kirchhoff’s voltage law (clockwise direction):

�E � V3 � V2 � V1 � 0

or E � V1 � V2 � V3

and V2 � E � V1 � V3 � 54 V � 18 V � 15 V � 21 V

b. I � � � 3 A

c. R1 � � � 6 �

R3 � � � 5 �

5.5 INTERCHANGING SERIES ELEMENTS

The elements of a series circuit can be interchanged without affecting
the total resistance, current, or power to each element. For instance, the
network of Fig. 5.19 can be redrawn as shown in Fig. 5.20 without
affecting I or V2. The total resistance RT is 35 � in both cases, and I �
70 V/35 � � 2 A. The voltage V2 � IR2 � (2 A)(5 �) � 10 V for both
configurations.

EXAMPLE 5.9 Determine I and the voltage across the 7-� resistor for
the network of Fig. 5.21.

Solution: The network is redrawn in Fig. 5.22.

RT � (2)(4 �) � 7 � � 15 �

I � � � 2.5 A

V7� � IR � (2.5 A)(7 �) � 17.5 V

37.5 V
�
15 �

E
�
RT

15 V
�
3 A

V3
�
I

18 V
�
3 A

V1
�
I

21 V
�
7 �

V2
�
R2

�

64
�
4

(8 V)2

�
4

V2
1�

R1
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E
+
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+ –

V3 = 15 V

R3

– +

FIG. 5.18

Example 5.8.

75 V

R1

10 �

+

–

R2

5 �

E

I

+  V2  –

R3 20 �

75 V
+

E
–

R2 5 � V2
–

+
R1 R3

10 � 20 �

I

FIG. 5.19

Series dc circuit with elements to be inter-
changed.

FIG. 5.20

Circuit of Fig. 5.19 with R2 and R3

interchanged.

50 V
+

–

4 �

I

V+ –
7 �

4 �

12.5 V
+ –

FIG. 5.21

Example 5.9.



5.6 VOLTAGE DIVIDER RULE

In a series circuit,

the voltage across the resistive elements will divide as the magnitude
of the resistance levels.

For example, the voltages across the resistive elements of Fig. 5.23
are provided. The largest resistor of 6 � captures the bulk of the applied
voltage, while the smallest resistor R3 has the least. Note in addition
that, since the resistance level of R1 is 6 times that of R3, the voltage
across R1 is 6 times that of R3. The fact that the resistance level of R2 is
3 times that of R1 results in three times the voltage across R2. Finally,
since R1 is twice R2, the voltage across R1 is twice that of R2. In gen-
eral, therefore, the voltage across series resistors will have the same
ratio as their resistance levels.

It is particularly interesting to note that, if the resistance levels of all
the resistors of Fig. 5.23 are increased by the same amount, as shown in
Fig. 5.24, the voltage levels will all remain the same. In other words,
even though the resistance levels were increased by a factor of 1 mil-
lion, the voltage ratios remain the same. Clearly, therefore, it is the ratio
of resistor values that counts when it comes to voltage division and not
the relative magnitude of all the resistors. The current level of the net-
work will be severely affected by the change in resistance level from
Fig. 5.23 to Fig. 5.24, but the voltage levels will remain the same.

Based on the above, a first glance at the series network of Fig. 5.25
should suggest that the major part of the applied voltage will appear
across the 1-M� resistor and very little across the 100-� resistor. In
fact, 1 M� � (1000)1 k� � (10,000)100 �, revealing that V1 �
1000V2 � 10,000V3.

Solving for the current and then the three voltage levels will result in

I � �
R
E

T
� � � 99.89 mA

and

V1 � IR1 � (99.89 mA)(1 M�) � 99.89 V

V2 � IR2 � (99.89 mA)(1 k�) � 99.89 mV � 0.09989 V

V3 � IR3 � (99.89 mA)(100 �) � 9.989 mV � 0.009989 V

clearly substantiating the above conclusions. For the future, therefore,
use this approach to estimate the share of the input voltage across series
elements to act as a check against the actual calculations or to simply
obtain an estimate with a minimum of effort.

100 V
��
1,001,100 �
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50 V

4 �

+

–

4 �

I

7 �

+

–

12.5 V

37.5 V

4 �

+

–

4 �

I

7 �V
+

–
V
+

–

FIG. 5.22

Redrawing the circuit of Fig. 5.21.

1 �
+

R3 2 V
–

3 �
+

R2 6 V
–

6 �
+

R1 12 V
–

20 VE

FIG. 5.23

Revealing how the voltage will divide across 
series resistive elements.

20 V 3 M� 6 V
+

–
E R2

6 M� 12 V
+

–
R1

1 M� 2 V
+

–
R3

FIG. 5.24

The ratio of the resistive values determines the 
voltage division of a series dc circuit.
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FIG. 5.25

The largest of the series resistive elements will 
capture the major share of the applied

voltage.



In the above discussion the current was determined before the volt-
ages of the network were determined. There is, however, a method
referred to as the voltage divider rule (VDR) that permits determining
the voltage levels without first finding the current. The rule can be
derived by analyzing the network of Fig. 5.26.

RT � R1 � R2

and I � �
R
E

T
�

Applying Ohm’s law:

V1 � IR1 � ��
R
E

T
��R1 � �

R
R
1

T

E
�

with V2 � IR2 � ��
R
E

T
��R2 � �

R
R
2

T

E
�

Note that the format for V1 and V2 is

(voltage divider rule) (5.10)

where Vx is the voltage across Rx, E is the impressed voltage across the
series elements, and RT is the total resistance of the series circuit.

In words, the voltage divider rule states that

the voltage across a resistor in a series circuit is equal to the value of
that resistor times the total impressed voltage across the series
elements divided by the total resistance of the series elements.

EXAMPLE 5.10 Determine the voltage V1 for the network of Fig.
5.27.

Solution: Eq. (5.10):

V1 � �
R
R
1

T

E
� � � � � 16 V

EXAMPLE 5.11 Using the voltage divider rule, determine the voltages
V1 and V3 for the series circuit of Fig. 5.28.

Solution:

V1 � �
R
R
1

T

E
� � �

� � � 6 V

V3 � �
R
R
3

T

E
� � �

� � 24 V

The rule can be extended to the voltage across two or more series
elements if the resistance in the numerator of Eq. (5.10) is expanded to

360 V
�

15

(8 � 103 �)(45 V)
��

15 � 103 �

(8 k�)(45 V)
��

15 k�

90 V
�

15
(2 � 103 �)(45 V)
��

15 � 103 �

(2 k�)(45 V)
��

15 k�

(2 k�)(45 V)
���
2 k� � 5 k� � 8 k�

1280 V
�

80
(20 �)(64 V)
��
20 � � 60 �

R1E�
R1 � R2

Vx � �
R

R
x

T

E
�
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Developing the voltage divider rule.
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Example 5.10.
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FIG. 5.28

Example 5.11.



include the total resistance of the series elements that the voltage is to
be found across (R′); that is,

(volts) (5.11)

EXAMPLE 5.12 Determine the voltage V′ in Fig. 5.28 across resistors
R1 and R2.

Solution:

V′ � � � � 21 V

There is also no need for the voltage E in the equation to be the
source voltage of the network. For example, if V is the total voltage
across a number of series elements such as those shown in Fig. 5.29,
then

V2� � � � 6 V
54 V
�

9
(2 �)(27 V)

��
4 � � 2 � � 3 �

(7 k�)(45 V)
��

15 k�

(2 k� � 5 k�)(45 V)
���

15 k�

R′E
�
RT

V′ � �
R
R
′
T

E
�
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4 � 2 � 3 �

+  V2�  –

V  =  27  V+ –

FIG. 5.29

The total voltage across series elements need not be an independent voltage
source.

EXAMPLE 5.13 Design the voltage divider of Fig. 5.30 such that 
VR1

� 4VR2
.

Solution: The total resistance is defined by

RT � �
E
I
� � � 5 k�

Since VR1
� 4VR2

,

R1 � 4R2

Thus RT � R1 � R2 � 4R2 � R2 � 5R2

and 5R2 � 5 k�
R2 � 1 k�

and R1 � 4R2 � 4 k�

5.7 NOTATION

Notation will play an increasingly important role in the analysis to fol-
low. It is important, therefore, that we begin to examine the notation
used throughout the industry.

20 V
�
4 mA

20 VE

R2

VR1
R1

VR2

+

–

+

–

4 mA

FIG. 5.30

Example 5.13.



Voltage Sources and Ground

Except for a few special cases, electrical and electronic systems are
grounded for reference and safety purposes. The symbol for the ground
connection appears in Fig. 5.31 with its defined potential level—zero
volts. None of the circuits discussed thus far have contained the ground
connection. If Fig. 5.4(a) were redrawn with a grounded supply, it
might appear as shown in Fig. 5.32(a), (b), or (c). In any case, it is
understood that the negative terminal of the battery and the bottom of
the resistor R2 are at ground potential. Although Figure 5.32(c) shows
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0 V

FIG. 5.31

Ground potential.

(a)

R1

R2E

a

(c)

R2

E

R1

b

(b)

R2

E

R1

FIG. 5.32

Three ways to sketch the same series dc circuit.

no connection between the two grounds, it is recognized that such a
connection exists for the continuous flow of charge. If E � 12 V, then
point a is 12 V positive with respect to ground potential, and 12 V exist
across the series combination of resistors R1 and R2. If a voltmeter
placed from point b to ground reads 4 V, then the voltage across R2 is 
4 V, with the higher potential at point b.

On large schematics where space is at a premium and clarity is
important, voltage sources may be indicated as shown in Figs. 5.33(a)
and 5.34(a) rather than as illustrated in Figs. 5.33(b) and 5.34(b). In
addition, potential levels may be indicated as in Fig. 5.35, to permit a
rapid check of the potential levels at various points in a network with
respect to ground to ensure that the system is operating properly.

+

–

+ 12 V

R2

R1

R2

R1

12 V

(a) (b)

FIG. 5.33

Replacing the special notation for a dc
voltage source with the standard symbol.

– 5 V

R2 R2

R1

+

–
5 V

(a) (b)

R1

FIG. 5.34

Replacing the notation for a negative dc supply with the standard notation.

FIG. 5.35

The expected voltage level at a particular 
point in a network of the system is functioning 

properly.

Double-Subscript Notation

The fact that voltage is an across variable and exists between two
points has resulted in a double-subscript notation that defines the first

R1

R2

R3

25 V



Va

4 �10 V 4 VE =  10 V

6 �+ +

––

Vb

a b

subscript as the higher potential. In Fig. 5.36(a), the two points that
define the voltage across the resistor R are denoted by a and b. Since a
is the first subscript for Vab, point a must have a higher potential than
point b if Vab is to have a positive value. If, in fact, point b is at a higher
potential than point a, Vab will have a negative value, as indicated in
Fig. 5.36(b).
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+

a

Vab

(Vab  =  +)
R

–

b

(a)

I

+

a

Vab

(Vab  =  –)
R

–

b

(b)

I

In summary:

The double-subscript notation Vab specifies point a as the higher
potential. If this is not the case, a negative sign must be associated
with the magnitude of Vab.

In other words,

the voltage Vab is the voltage at point a with respect to (w.r.t.) point b.

Single-Subscript Notation

If point b of the notation Vab is specified as ground potential (zero
volts), then a single-subscript notation can be employed that provides
the voltage at a point with respect to ground.

In Fig. 5.37, Va is the voltage from point a to ground. In this case it
is obviously 10 V since it is right across the source voltage E. The volt-
age Vb is the voltage from point b to ground. Because it is directly
across the 4-� resistor, Vb � 4 V.

In summary:

The single-subscript notation Va specifies the voltage at point a with
respect to ground (zero volts). If the voltage is less than zero volts, a
negative sign must be associated with the magnitude of Va.

General Comments

A particularly useful relationship can now be established that will have
extensive applications in the analysis of electronic circuits. For the
above notational standards, the following relationship exists:

(5.12)

In other words, if the voltage at points a and b is known with respect
to ground, then the voltage Vab can be determined using Eq. (5.12). In
Fig. 5.37, for example,

Vab � Va � Vb � 10 V � 4 V
� 6 V

Vab � Va � Vb

FIG. 5.36

Defining the sign for double-subscript notation.

FIG. 5.37

Defining the use of single-subscript notation 
for voltage levels.



EXAMPLE 5.14 Find the voltage Vab for the conditions of Fig. 5.38.

Solution: Applying Eq. (5.12):

Vab � Va � Vb � 16 V � 20 V
� �4 V

Note the negative sign to reflect the fact that point b is at a higher
potential than point a.

EXAMPLE 5.15 Find the voltage Va for the configuration of Fig. 5.39.

Solution: Applying Eq. (5.12):

Vab � Va � Vb

and Va � Vab � Vb � 5 V � 4 V
� 9 V

EXAMPLE 5.16 Find the voltage Vab for the configuration of Fig.
5.40.

Solution: Applying Eq. (5.12):

Vab � Va � Vb � 20 V � (�15 V) � 20 V � 15 V
� 35 V

Note in Example 5.16 the care that must be taken with the signs
when applying the equation. The voltage is dropping from a high level
of �20 V to a negative voltage of �15 V. As shown in Fig. 5.41, this
represents a drop in voltage of 35 V. In some ways it’s like going from
a positive checking balance of $20 to owing $15; the total expenditure
is $35.

EXAMPLE 5.17 Find the voltages Vb, Vc, and Vac for the network of
Fig. 5.42.
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a bR

Va  =  +16 V Vb  =  +20 V

FIG. 5.38

Example 5.14.

Va

a bR

Vab  =  +5 V Vb  =  4 V

FIG. 5.39

Example 5.15.

R Vab10 k�

+

–

Va  =  +20 V

Vb  =  –15 V

FIG. 5.40

Example 5.16.

FIG. 5.41

The impact of positive and negative voltages 
on the total voltage drop.

V

Gnd (0 V)

Va  =  20 V

Vb  =  –15 V

Vab  =  35 V

FIG. 5.42

Example 5.17.

E2
a

b
+ –

+–

+

–

+ –

20 V

Vb

c

4 V

E1  =  10 V

FIG. 5.43

Determining Vb using the defined 
voltage levels.

V

4 V
6 V

10 V

Gnd (0 V)
Solution: Starting at ground potential (zero volts), we proceed
through a rise of 10 V to reach point a and then pass through a drop in
potential of 4 V to point b. The result is that the meter will read

Vb � �10 V � 4 V � 6 V

as clearly demonstrated by Fig. 5.43.



If we then proceed to point c, there is an additional drop of 20 V,
resulting in

Vc � Vb � 20 V � 6 V � 20 V � �14 V

as shown in Fig. 5.44.
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V

–4 V

+10 V

Gnd (0 V)

a

b

–20 V

c

Vc  =   –14 V

Vac  =   +24 V

The voltage Vac can be obtained using Eq. (5.12) or by simply refer-
ring to Fig. 5.44:

Vac � Va � Vc � 10 V � (�14 V)
� 24 V

EXAMPLE 5.18 Determine Vab, Vcb, and Vc for the network of Fig.
5.45.

Solution: There are two ways to approach this problem. The first is
to sketch the diagram of Fig. 5.46 and note that there is a 54-V drop
across the series resistors R1 and R2. The current can then be deter-
mined using Ohm’s law and the voltage levels as follows:

I � � 1.2 A

Vab � IR2 � (1.2 A)(25 �) � 30 V

Vcb � �IR1 � �(1.2 A)(20 �) � �24 V

Vc � E1 � �19 V

The other approach is to redraw the network as shown in Fig. 5.47
to clearly establish the aiding effect of E1 and E2 and then solve the
resulting series circuit.

I � �
E1

R

�

T

E2
� � � � 1.2 A

and Vab � 30 V Vcb � �24 V Vc � �19 V

54 V
�
45 �

19 V � 35 V
��

45 �

54 V
�
45 �

FIG. 5.44

Review of the potential levels for the circuit of Fig. 5.42.

Vab25 �

+

–

E2 = +35 V

R2

–

+

a

b

Vcb R1 20 �

E1 = –19 V

c

FIG. 5.45

Example 5.18.

+35 V

54 V

–19 V

Gnd (0 V)

V

FIG. 5.46

Determining the total voltage drop across the 
resistive elements of Fig. 5.45.

+

a

b

c

25 �R2

R1 20 �

–

+

–
E1 19 V

E2 35 V

I

–

+ –

+

FIG. 5.47

Redrawing the circuit of Fig. 5.45 using 
standard dc voltage supply symbols.



EXAMPLE 5.19 Using the voltage divider rule, determine the volt-
ages V1 and V2 of Fig. 5.48.

Solution: Redrawing the network with the standard battery symbol
will result in the network of Fig. 5.49. Applying the voltage divider
rule,

V1 � � � 16 V

V2 � � � 8 V

EXAMPLE 5.20 For the network of Fig. 5.50:

(2 �)(24 V)
��
4 � � 2 �

R2E
�
R1 � R2

(4 �)(24 V)
��
4 � � 2 �

R1E
�
R1 � R2
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V2

4 �R1V1

R2 2 �

+

–
V2

+

–

E  =  +24 V

FIG. 5.48

Example 5.19.

R1 4 � V1

+

–

R2 2 � V2

+

–

+

–
24 VE

FIG. 5.49

Circuit of Fig. 5.48 redrawn.

3 �

5 �E 10 V

Vab

R1 R2

Vb R3

a b

c

+ –

2 � +

–

a. Calculate Vab.
b. Determine Vb.
c. Calculate Vc.

Solutions:

a. Voltage divider rule:

Vab � �
R
R
1

T

E
� � � �2 V

b. Voltage divider rule:

Vb � VR2
� VR3

� �
(R2 �

RT

R3)E� � � 8 V

or Vb � Va � Vab � E � Vab � 10 V � 2 V � 8 V

c. Vc � ground potential � 0 V

5.8 INTERNAL RESISTANCE 
OF VOLTAGE SOURCES

Every source of voltage, whether a generator, battery, or laboratory sup-
ply as shown in Fig. 5.51(a), will have some internal resistance. The
equivalent circuit of any source of voltage will therefore appear as
shown in Fig. 5.51(b). In this section, we will examine the effect of the
internal resistance on the output voltage so that any unexpected changes
in terminal characteristics can be explained.

In all the circuit analyses to this point, the ideal voltage source (no
internal resistance) was used [see Fig. 5.52(a)]. The ideal voltage
source has no internal resistance and an output voltage of E volts with
no load or full load. In the practical case [Fig. 5.52(b)], where we con-

(3 � � 5 �)(10 V)
��

10 �

(2 �)(10 V)
��
2 � � 3 � � 5 �

FIG. 5.50

Example 5.20.



sider the effects of the internal resistance, the output voltage will be E
volts only when no-load (IL � 0) conditions exist. When a load is con-
nected [Fig. 5.52(c)], the output voltage of the voltage source will
decrease due to the voltage drop across the internal resistance.

By applying Kirchhoff’s voltage law around the indicated loop of
Fig. 5.52(c), we obtain

E � ILRint � VL � 0

or, since E � VNL

we have VNL � ILRint � VL � 0

and (5.13)

If the value of Rint is not available, it can be found by first solving for
Rint in the equation just derived for VL; that is,

Rint � �
VNL

I
�

L

VL� � �
V
I
N

L

L� � �
IL

I
R

L

L�

and (5.14)

A plot of the output voltage versus current appears in Fig. 5.53 for
the dc generator having the circuit representation of Fig. 5.51(b). Note
that any increase in load demand, starting at any level, causes an addi-
tional drop in terminal voltage due to the increasing loss in potential
across the internal resistance. At maximum current, denoted by IFL, the

Rint � �
V

I
N

L

L
� � RL

VL � VNL � ILRint
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POWER SUPPLY

(a) (b)

E– +

Rint

E

+

–

E +
–

E +
–

FIG. 5.51

(a) Sources of dc voltage; (b) equivalent circuit.

Rint

+

E

(c)

VL

–

IL IL

RL–

+

+ –
Rint

+

E

(b)

VNL  =  E

–

IL  =  0
RL

+

–

E
E

(a)

FIG. 5.52

Voltage source: (a) ideal, Rint � 0 �; (b) determining VNL; (c) determining Rint .
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voltage across the internal resistance is Vint � IFLRint � (10 A)(2 �) �
20 V, and the terminal voltage has dropped to 100 V—a significant dif-
ference when you can ideally expect a 120-V generator to provide the
full 120 V if you stay below the listed full-load current. Eventually, if
the load current were permitted to increase without limit, the voltage
across the internal resistance would equal the supply voltage, and the
terminal voltage would be zero. The larger the internal resistance, the
steeper is the slope of the characteristics of Fig. 5.53. In fact, for any
chosen interval of voltage or current, the magnitude of the internal
resistance is given by

(5.15)

For the chosen interval of 5–7 A (DIL � 2 A) on Fig. 5.53, DVL is
4 V, and Rint � DVL ⁄DIL � 4 V⁄ 2 A � 2 � .

A direct consequence of the loss in output voltage is a loss in power
delivered to the load. Multiplying both sides of Eq. (5.13) by the cur-
rent IL in the circuit, we obtain

(5.16)

EXAMPLE 5.21 Before a load is applied, the terminal voltage of the
power supply of Fig. 5.54(a) is set to 40 V. When a load of 500 � is
attached, as shown in Fig. 5.54(b), the terminal voltage drops to 38.5 V.
What happened to the remainder of the no-load voltage, and what is the
internal resistance of the source?

Solution: The difference of 40 V � 38.5 V � 1.5 V now appears
across the internal resistance of the source. The load current is 
38.5 V/0.5 k� � 77 mA. Applying Eq. (5.14),

Rint � �
V
I
N

L

L� � RL � � 0.5 k�

� 519.48 � � 500 � � 19.48 �

40 V
�
77 mA

ILVL � ILVNL � I2
LRint

Power Power output Power loss in
to load by battery the form of heat

Rint � �
D

D

V
IL

L�

VL

0

120 V

100 V
∆VL

1 2 3 4 5 6 7 8 9 10
IFL

I (A)

∆IL

FIG. 5.53

VL versus IL for a dc generator with Rint � 2 �.

FIG. 5.54

Example 5.21.

POWER SUPPLY POWER SUPPLY

RL 500 �  36 V

IL +

–

– +
40 V

(no load)

(b)(a)



EXAMPLE 5.22 The battery of Fig. 5.55 has an internal resistance of
2 �. Find the voltage VL and the power lost to the internal resistance if
the applied load is a 13-� resistor.

Solution:

IL � �
2 �

3
�

0 V
13 �
� � � 2 A

VL � VNL � ILRint � 30 V � (2 A)(2 �) � 26 V

Plost � I2
LRint � (2 A)2(2 �) � (4)(2) � 8 W

Procedures for measuring Rint will be described in Section 5.10.

5.9 VOLTAGE REGULATION

For any supply, ideal conditions dictate that for the range of load
demand (IL), the terminal voltage remain fixed in magnitude. In other
words, if a supply is set for 12 V, it is desirable that it maintain this ter-
minal voltage, even though the current demand on the supply may vary.
A measure of how close a supply will come to ideal conditions is given
by the voltage regulation characteristic. By definition, the voltage reg-
ulation (VR) of a supply between the limits of full-load and no-load
conditions (Fig. 5.56) is given by the following:

(5.17)

For ideal conditions, VFL � VNL and VR% � 0. Therefore, the
smaller the voltage regulation, the less the variation in terminal voltage
with change in load.

It can be shown with a short derivation that the voltage regulation is
also given by

(5.18)

In other words, the smaller the internal resistance for the same load, the
smaller the regulation and the more ideal the output.

EXAMPLE 5.23 Calculate the voltage regulation of a supply having
the characteristics of Fig. 5.53.

Solution:

VR% � �
VNL

V
�

FL

VFL� � 100% � � 100%

� � 100% � 20%
20
�
100

120 V � 100 V
��

100 V

VR% � �
R

R
i

L

nt
� � 100%

Voltage regulation (VR)% � �
VNL

V

�

FL

VFL
� � 100%

30 V
�
15 �
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Rint  =  2 Ω +

–

VL 13 ΩE  =  30 V
(VNL)

FIG. 5.55

Example 5.22.

Ideal characteristic

VL

VNL
VFL

0 IFL IL

FIG. 5.56

Defining voltage regulation.



EXAMPLE 5.24 Determine the voltage regulation of the supply of
Fig. 5.54.

Solution:

VR% � �
R
R

i

L

nt� � 100% � � 100% � 3.9%

5.10 MEASUREMENT TECHNIQUES

In Chapter 2, it was noted that ammeters are inserted in the branch in
which the current is to be measured. We now realize that such a condi-
tion specifies that

ammeters are placed in series with the branch in which the current is
to be measured

as shown in Fig. 5.57.
If the ammeter is to have minimal impact on the behavior of the net-

work, its resistance should be very small (ideally zero ohms) compared
to the other series elements of the branch such as the resistor R of Fig.
5.57. If the meter resistance approaches or exceeds 10% of R, it will
naturally have a significant impact on the current level it is measuring.
It is also noteworthy that the resistances of the separate current scales
of the same meter are usually not the same. In fact, the meter resistance
normally increases with decreasing current levels. However, for the
majority of situations one can simply assume that the internal ammeter
resistance is small enough compared to the other circuit elements that it
can be ignored.

For an up-scale (analog meter) or positive (digital meter) reading, an
ammeter must be connected with current entering the positive terminal
of the meter and leaving the negative terminal, as shown in Fig. 5.58.
Since most meters employ a red lead for the positive terminal and a
black lead for the negative, simply ensure that current enters the red
lead and leaves the black one.

Voltmeters are always hooked up across the element for which the
voltage is to be determined.

An up-scale or positive reading on a voltmeter is obtained by being sure
that the positive terminal (red lead) is connected to the point of higher
potential and the negative terminal (black lead) is connected to the
lower potential, as shown in Fig. 5.59.

19.48 �
�
500 �
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R

–+I

I

Rm

FIG. 5.57

Series connection of an ammeter.

+ –

I

R+ –

Red lead Black lead

I

FIG. 5.58

Connecting an ammeter for an up-scale 
(positive) reading.

+ –

R

+ –

Red lead Black lead

V

VRI

+ –

+

Red lead V

E
–

Black lead

FIG. 5.59

Hooking up a voltmeter to obtain an up-scale (positive) reading.

For the double-subscript notation, always hook up the red lead to the
first subscript and the black lead to the second; that is, to measure the
voltage Vab in Fig. 5.60, connect the red lead to point a and the black



lead to point b. For single-subscript notation, hook up the red lead to the
point of interest and the black lead to ground, as shown in Fig. 5.60 for
Va and Vb.
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+ –

+ –

Red lead Black lead

R2I

E R3

+

–+ –

+ –
R1

a b

+ –

Black lead

Red lead

Red lead

Black lead

VbVa

Vab

The internal resistance of a supply cannot be measured with an ohm-
meter due to the voltage present. However, the no-load voltage can be
measured by simply hooking up the voltmeter as shown in Fig. 5.61(a).
Do not be concerned about the apparent path for current that the meter
seems to provide by completing the circuit. The internal resistance of
the meter is usually sufficiently high to ensure that the resulting current
is so small that it can be ignored. (Voltmeter loading effects will be dis-
cussed in detail in Section 6.9.) An ammeter could then be placed
directly across the supply, as shown in Fig. 5.61(b), to measure the
short-circuit current ISC and Rint as determined by Ohm’s law: Rint �
ENL /ISC. However, since the internal resistance of the supply may be
very low, performing the measurement could result in high current lev-
els that could damage the meter and supply and possibly cause danger-
ous side effects. The setup of Fig. 5.61(b) is therefore not suggested. A
better approach would be to apply a resistive load that will result in a
supply current of about half the maximum rated value and measure the
terminal voltage. Then use Eq. (5.14).

FIG. 5.60

Measuring voltages with double- and single-subscript notation.

(b)

E

+ –
Rint

I

Isc

Not recommended !!

E

+ –

+ –

Rint
V

+

–

VNL = E

0 V

+

–

(a)

FIG. 5.61

(a) Measuring the no-load voltage E; (b) measuring the short-circuit current.



5.11 APPLICATIONS

Holiday Lights

In recent years the small blinking holiday lights with as many as 50 to
100 bulbs on a string have become very popular [see Fig. 5.62(a)].
Although holiday lights can be connected in series or parallel (to be
described in the next chapter), the smaller blinking light sets are nor-
mally connected in series. It is relatively easy to determine if the lights
are connected in series. If one wire enters and leaves the bulb casing,
they are in series. If two wires enter and leave, they are probably in par-
allel. Normally, when bulbs are connected in series, if one should burn
out (the filament breaks and the circuit opens), all the bulbs will go out
since the current path has been interrupted. However, the bulbs of Fig.
5.62(a) are specially designed, as shown in Fig. 5.62(b), to permit cur-
rent to continue to flow to the other bulbs when the filament burns out.
At the base of each bulb there is a fuse link wrapped around the two
posts holding the filament. The fuse link of a soft conducting metal
appears to be touching the two vertical posts, but in fact a coating on
the posts or fuse link prevents conduction from one to the other under
normal operating conditions. If a filament should burn out and create an
open circuit between the posts, the current through the bulb and other
bulbs would be interrupted if it were not for the fuse link. At the instant
a bulb opens up, current through the circuit is zero, and the full 120 V
from the outlet will appear across the bad bulb. This high voltage from
post to post of a single bulb is of sufficient potential difference to estab-
lish current through the insulating coatings and spot-weld the fuse link
to the two posts. The circuit is again complete, and all the bulbs will
light except the one with the activated fuse link. Keep in mind, how-
ever, that each time a bulb burns out, there will be more voltage across
the other bulbs of the circuit, making them burn brighter. Eventually, if
too many bulbs burn out, the voltage will reach a point where the other
bulbs will burn out in rapid succession. The result is that one must
replace burned-out bulbs at the earliest opportunity.

The bulbs of Fig. 5.62(a) are rated 2.5 V at 0.2 A or 200 mA. Since
there are 50 bulbs in series, the total voltage across the bulbs will be
50 � 2.5 V or 125 V which matches the voltage available at the typical

APPLICATIONS  151S

FIG. 5.62

Holiday lights: (a) 50-unit set; (b) bulb construction.
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home outlet. Since the bulbs are in series, the current through each bulb
will be 200 mA. The power rating of each bulb is therefore P � VI �
(2.5 V)(0.2 A) � 0.5 W with a total wattage demand of 50 � 0.5 W
� 25 W.

A schematic representation for the set of Fig. 5.62(a) is provided in
Fig. 5.63(a). Note that only one flasher unit is required. Since the bulbs
are in series, when the flasher unit interrupts the current flow, it will
turn off all the bulbs. As shown in Fig. 5.62(b), the flasher unit incor-
porates a bimetal thermal switch that will open when heated to a preset
level by the current. As soon as it opens, it will begin to cool down and
close again so that current can return to the bulbs. It will then heat up
again, open up, and repeat the entire process. The result is an on-and-
off action that creates the flashing pattern we are so familiar with. Nat-
urally, in a colder climate (for example, outside in the snow and ice), it
will initially take longer to heat up, so the flashing pattern will be
reduced at first; but in time as the bulbs warm up, the frequency will
increase.

The manufacturer specifies that no more than six sets should be con-
nected together. The first question that then arises is, How can sets be
connected together, end to end, without reducing the voltage across
each bulb and making all the lights dimmer? If you look closely at the

FIG. 5.63

(a) Single-set wiring diagram; (b) special wiring arrangement; (c) redrawn 
schematic; (d) special plug and flasher unit.

+2.5V–

125 V ac

Flasher

200 mA

50 bulbs

+2.5V– +2.5V– +2.5V– +2.5V– +2.5V–

“    ”

I = 200 mA

200 mA

(a)

125 V ac
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a

b

c

Three wires

Bulbs in series

50 bulbs

Connector Plug

a

b

c

Establish parallel
connection of
50-bulb strings

(b)

125 V ac

Isupply = 1.2 A 1 A 0.8 A 3(0.2 A) = 0.6 A

a a a a

b b b

c c c c

+

–

0.2 A 0.2 A 0.2 A

6 sets

(c)

Isupply

(d)



wiring, you will find that since the bulbs are connected in series, there is
one wire to each bulb with additional wires from plug to plug. Why
would they need two additional wires if the bulbs are connected in
series? The answer lies in the fact that when each set is connected
together, they will actually be in parallel (to be discussed in the next
chapter) by a unique wiring arrangement shown in Fig. 5.63(b) and
redrawn in Fig. 5.63(c) to clearly show the parallel arrangement. Note
that the top line is the hot line to all the connected sets, and the bottom
line is the return, neutral, or ground line for all the sets. Inside the plug
of Fig. 5.63(d) the hot line and return are connected to each set, with
the connections to the metal spades of the plug as shown in Fig.
5.63(b). We will find in the next chapter that the current drawn from
the wall outlet for parallel loads is the sum of the current to each
branch. The result, as shown in Fig. 5.63(c), is that the current drawn
from the supply is 6 � 200 mA � 1.2 A, and the total wattage for
all six sets is the product of the applied voltage and the source cur-
rent or (120 V)(1.2 A) � 144 W with 144 W/6 � 24 W per set.

Microwave Oven

Series circuits can be very effective in the design of safety equipment.
Although we all recognize the usefulness of the microwave oven, it can
be quite dangerous if the door is not closed or sealed properly. It is not
enough to test the closure at only one point around the door because the
door may be bent or distorted from continual use, and leakage could
result at some point distant from the test point. One common safety
arrangement appears in Fig. 5.64. Note that magnetic switches are
located all around the door, with the magnet in the door itself and the
magnetic door switch in the main frame. Magnetic switches are simply
switches where the magnet draws a magnetic conducting bar between
two contacts to complete the circuit—somewhat revealed by the symbol
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FIG. 5.64

Series safety switches in a microwave oven.
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for the device in the circuit diagram of Fig. 5.64. Since the magnetic
switches are all in series, they must all be closed to complete the circuit
and turn on the power unit. If the door is sufficiently out of shape to
prevent a single magnet from getting close enough to the switching
mechanism, the circuit will not be complete, and the power cannot be
turned on. Within the control unit of the power supply, either the series
circuit completes a circuit for operation or a sensing current is estab-
lished and monitored that controls the system operation.

Series Alarm Circuit

The circuit of Fig. 5.65 is a simple alarm circuit. Note that every ele-
ment of the design is in a series configuration. The power supply is a
5-V dc supply that can be provided through a design similar to that of
Fig. 2.31, a dc battery, or a combination of an ac and a dc supply that
ensures that the battery will always be at full charge. If all the sensors
are closed, a current of 5 mA will result because of the terminal load of
the relay of about 1 k�. That current energizes the relay and maintains
an off position for the alarm. However, if any of the sensors are opened,
the current will be interrupted, the relay will let go, and the alarm cir-
cuit will be energized. With relatively short wires and a few sensors, the
system should work well since the voltage drop across each will be
minimal. However, since the alarm wire is usually relatively thin,
resulting in a measurable resistance level, if the wire to the sensors is
too long, a sufficient voltage drop could occur across the line, reducing
the voltage across the relay to a point where the alarm fails to operate
properly. Thus, wire length is a factor that must be considered if a series
configuration is used. Proper sensitivity to the length of the line should
remove any concerns about its operation. An improved design will be
described in Chapter 8.

5.12 COMPUTER ANALYSIS

PSpice

In Section 4.9, the basic procedure for setting up the PSpice folder and
running the program were presented. Because of the detail provided in
that section, you should review it before proceeding with this example.
Because this is only the second example using PSpice, some detail will
be provided, but not at the level of Section 4.9.

The circuit to be investigated appears in Fig. 5.66. Since the PSpice
folder was established in Section 4.9, there is no need to repeat the
process here—it is immediately available. Double-clicking on the
Orcad Lite Edition icon will generate the Orcad Capture-Lite Edi-
tion window. A new project is then initiated by selecting the Create
document key at the top left of the screen (it looks like a page with a
star in the upper left corner). The result is the New Project dialog box
in which SeriesDC is inserted as the Name. The Analog or Mixed A/D
is already selected, and C:\PSpice appears as the Location—only the
Name had to be entered! Click OK, and the Create PSpice Project
dialog box will appear. Select Create a blank project, click OK, and
the working windows will appear. Grabbing the left edge of the
SCHEMATIC1:PAGE1 window will allow you to move it to the right
so that you can see both screens. Clicking the + sign in the Project
Manager window will allow you to set the sequence down to PAGE1.
If you prefer to change the name of the SCHEMATIC1, just select it
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FIG. 5.65

Series alarm circuit.

FIG. 5.66

Series dc network to be analyzed using
PSpice.
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and right-click on the mouse. A listing will appear in which Rename is
an option; selecting it will result in a Rename Schematic dialog box
in which SeriesDC can be entered. In Fig. 5.67 it was left as
SCHEMATIC1.

Now this next step is important! If the toolbar on the right edge does
not appear, be sure to double-click on PAGE1 in the Project Manager
window, or select the Schematic Window. When the heading of the
Schematic Window is dark blue, the toolbar will appear. To start build-
ing the circuit, select Place a part key (the second one down) to obtain
the Place Part dialog box. Note that now the SOURCE library is already
in place in the Library list from the efforts of Chapter 4; it does not have
to be reinstalled. Selecting SOURCE will result in the list of sources
under Part List, and VDC can be selected. Click OK, and the cursor can
put it in place with a single left click. Right-click and select End Mode
to end the process since the network has only one source. One more left
click and the source is in place. Now the Place a part key is selected
again, followed by ANALOG library to find the resistor R. Once the
resistor has been selected, an OK will place it next to the cursor on the
screen. This time, since three resistors need to be placed, there is no need
to go to End Mode between depositing each. Simply click one in place,
then the next, and finally the third. Then right-click to end the process
with End Mode. Finally, a GND must be added by selecting the appro-
priate key and selecting 0/SOURCE in the Place Ground dialog box.
Click OK, and place the ground as shown in Fig. 5.67.

The elements must now be connected using the Place a wire key to
obtain the crosshair on the screen. Start at the top of the voltage source
with a left click, and draw the wire, left-clicking it at every 90° turn.
When a wire is connected from one element to another, move on to the
next connection to be made—there is no need to go End Mode between
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FIG. 5.67

Applying PSpice to a series dc circuit.
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connections. Now the labels and values have to be set by double-clicking
on each parameter to obtain a Display Properties dialog box. Since the
dialog box appears with the quantity of interest in a blue background, sim-
ply type in the desired label or value, followed by OK. The network is
now complete and ready to be analyzed.

Before simulation, select the V, I, and W in the toolbar at the top of
the window to ensure that the voltages, currents, and power are dis-
played on the screen. To simulate, select the New Simulation Profile
key (which appears as a data sheet on the second toolbar down with a
star in the top left corner) to obtain the New Simulation dialog box.
Enter Bias Point for a dc solution under Name, and hit the Create key.
A Simulation Settings-Bias Point dialog box will appear in which
Analysis is selected and Bias Point is found under the Analysis type
heading. Click OK, and then select the Run PSpice key (the blue
arrow) to initiate the simulation. Exit the resulting screen, and the dis-
play of Fig. 5.67 will result.

The current is clearly 3 A for the circuit with 15 V across R3, and
36 V from a point between R1 and R2 to ground. The voltage across R2

is 36 V � 15 V � 21 V, and the voltage across R1 is 54 V � 36 V �
18 V. The power supplied or dissipated by each element is also listed.
There is no question that the results of Fig. 5.67 include a very nice
display of voltage, current, and power levels.

Electronics Workbench (EWB)

Since this is only the second circuit to be constructed using EWB, a
detailed list of steps will be included as a review. Essentially, however,
the entire circuit of Fig. 5.68 can be “drawn” using simply the con-
struction information introduced in Chapter 4.

After you have selected the Multisim 2001 icon, a Multisim-
Circuit 1 window will appear ready to accept the circuit elements.
Select the Sources key at the top of the left toolbar, and a Sources parts
bin will appear with 30 options. Selecting the top option will place the
GROUND on the screen of Fig. 5.68, and selecting the third option
down will result in DC–VOLTAGE–SOURCE. The resistors are
obtained by choosing the second key down on the left toolbar called the
Basic key. The result is 25 options in which RESISTOR–VIRTUAL is
selected. We must return to the RESISTOR–VIRTUAL key to place
each resistor on the screen. However, each new resistor is numbered in
sequence, although they are all given the default value of 1 k�.
Remember from the discussion of Chapter 4 that you should add the
meters before connecting the elements together because the meters take
space and must be properly oriented. The current will be determined by
the XMM1 ammeter and the voltages by XMM2 through XMM5. Of
particular importance, note that

in EWB the meters are connected in exactly the same way they would
be placed in an active circuit in the laboratory. Ammeters are in series
with the branch in which the current is to be determined, and
voltmeters are connected between the two points of interest (across
resistors). In addition, for positive readings, ammeters are connected
so that conventional current enters the positive terminal, and
voltmeters are connected so that the point of higher potential is
connected to the positive terminal.

The meter settings are made by double-clicking on the meter symbol
on the schematic. In each case, V or I had to be chosen, but the hori-
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FIG. 5.68

Applying Electronics Workbench to a series dc circuit.

zontal line for dc analysis is the same for each. Again, the Set key can
be selected to see what it controls, but the default values of meter input
resistance levels will be fine for all the analyses described in this text.
Leave the meters on the screen so that the various voltages and the cur-
rent level will be displayed after the simulation.

Recall from Chapter 4 that elements can be moved by simply clicking
on each schematic symbol and dragging it to the desired location. The
same is true for labels and values. Labels and values are set by double-
clicking on the label or value and entering your preference. Click OK,
and they will appear changed on the schematic. There is no need to first
select a special key to connect the elements. Simply bring the cursor to
the starting point to generate the small circle and crosshair. Click on the
starting point, and follow the desired path to the next connection path.
When in location, click again, and the line will appear. All connecting
lines can make 90° turns. However, you cannot follow a diagonal path
from one point to another. To remove any element, label, or line, simply
click on the quantity to obtain the four-square active status, and select the
Delete key or the scissors key on the top menu bar.

Before simulating, be sure that the Simulate Switch is visible by
selecting View-Show Simulate Switch. Then select the 1 option on the
switch, and the analysis will begin. The results appearing in Fig. 5.68
verify those obtained using PSpice and the longhand solution.

C��

We will now turn to the C�� language and review a program designed
to perform the same analysis just performed using PSpice and EWB.
As noted in earlier chapters, do not expect to understand all the details
of how the program was written and why specific paths were taken.
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The purpose here is simply to expose the reader to the general charac-
teristics of a program using this increasingly popular programming lan-
guage.

First take note of all the double forward slashes // in the program of
Fig. 5.69. They are used to identify comments in the program that will
not be recognized by the compiler when the program is run. They can

FIG. 5.69

C�� program designed to perform a complete analysis of the network 
of Fig. 5.66.
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also be used to remind the programmer about specific objectives to be
met at a particular point in the program or the reason for specific
entries. In this example, however, the primary purpose was to enlighten
the reader about the purpose of a particular entry or operation.

The #include tells the computer to include the file to follow in the
C�� program. The �iostream.h	 is a header file that sets up the
input-output path between the program and the disk operating system.
The class format defines the data type (in this case all floating points,
which means that a decimal point is included), and the public within the
{ } reveals that the variables value, voltage, and power are accessible
for operations outside the data structure.

Note that the main ( ) part of the program extends all the way
down to the bottom, as identified by the braces { }. Within this region
all the parameters of the network will be given values, all the calcula-
tions will be made, and finally all the results will be provided. Next,
three resistor objects are established. Rtotal is defined as a floating vari-
able, and a voltage source object is introduced. The values of the resis-
tors are then entered, and the total resistance is calculated. Next,
through cout, the total resistance is printed out using the Rtotal just cal-
culated. The \n” at the end of the cout line calls for a carriage return to
prepare for the next cout statement.

On the next line, the magnitude of the voltage source is introduced,
followed by the calculation of the source current, which is then printed
out on the next line. Next the voltage across each resistor is calculated
and printed out by the succeeding lines. Finally, the various powers are
calculated and printed out.

When run, the output will appear as shown in Fig. 5.70 with the
same results obtained using PSpice and EWB. As noted above, do not
be perplexed by all the details of why certain lines appear as they do.
Like everything, with proper instruction and experience, it will all
become fairly obvious. Do note, however, that the first few lines set up
the analysis to be performed by telling the computer the type of opera-
tions that need to be handled and the format of the data to be entered
and expected. There is then a main part of the program where all the
entries, calculations, and outputs are performed. When this program is
run, its flow is top-down; that is, one step follows the other without
looping back to certain points (an option to be described in a later pro-
gram). There was no need to number the lines or to include detailed
instructions. If all the comments were removed, the actual program
would be quite compact and straightforward, with most of the body of
the program being cout statements.

FIG. 5.70

Output results for the C�� program of Fig. 5.69.
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R
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E
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R
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PROBLEMS

SECTION 5.2 Series Circuits

1. Find the total resistance and current I for each circuit of
Fig. 5.71.

2. For the circuits of Fig. 5.72, the total resistance is speci-
fied. Find the unknown resistances and the current I for
each circuit.

FIG. 5.72

Problem 2.

2 �
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15 �I

E  =  60 V

E  =  35 V 25 � 25 �10 �

25 � 10 �
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0.1 M�

E

I

10 V 330 k�

1.2 k�

RT

3 k� 1.3 k�

I

E  =  120 V 4.5 k�

2.2 k�

(b)

(d)

(a)

(c)

RT

FIG. 5.71

Problems 1 and 36.
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(a)

I  =  4 mA

60 �

E

1.2 k�

2.74 k�

(b)

I  =  250 mA

8.2 �

E

1.2 �

2.7 �

4.7 �

FIG. 5.73

Problem 3.

FIG. 5.75

Problem 5.

FIG. 5.74

Problem 4.

2 �E

5 �

R

I

(a)

12 V

+

–RT  =  16 �

2.2 k�3.3 k�

RI

(b)

P  =  79.2 mW

–  9 V  +

E

*4. For each network of Fig. 5.74, determine the current I,
the source voltage E, the unknown resistance, and the
voltage across each element.

SECTION 5.3 Voltage Sources in Series

5. Determine the current I and its direction for each network
of Fig. 5.75. Before solving for I, redraw each network
with a single voltage source.

3. Find the applied voltage E necessary to develop the cur-
rent specified in each network of Fig. 5.73.

4.7 �

(a)

16 V

8 V

5.6 �

I

1.2 �

4.7 �

(b)

18 V

4 V

10 V
5.6 �

I

4 V
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FIG. 5.76

Problem 6.
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FIG. 5.77

Problem 7.
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24 V

10 V 6 V

2.2 k�V1 R1

+

–

(b)

V2+ –

R2  =  5.6 k�

FIG. 5.78

Problem 8.

*6. Find the unknown voltage source and resistor for the net-
works of Fig. 5.76. Also indicate the direction of the
resulting current.

SECTION 5.4 Kirchhoff’s Voltage Law

7. Find Vab with polarity for the circuits of Fig. 5.77. Each
box can contain a load or a power supply, or a combina-
tion of both.

8. Although the networks of Fig. 5.78 are not simply series
circuits, determine the unknown voltages using Kirch-
hoff’s voltage law.
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0.56 k�

9 V

27 V

2.2 k�

I5 V

V1+ –

1.2 k�

FIG. 5.79

Problem 9.

120 V

1 k�

I V2+ –

2 k�

V3+ –

3 k�

V1+ –

RT

FIG. 5.80

Problem 10.

9. Determine the current I and the voltage V1 for the net-
work of Fig. 5.79.

10. For the circuit of Fig. 5.80:
a. Find the total resistance, current, and unknown volt-

age drops.
b. Verify Kirchhoff’s voltage law around the closed

loop.
c. Find the power dissipated by each resistor, and note

whether the power delivered is equal to the power dis-
sipated.

d. If the resistors are available with wattage ratings of
1/2, 1, and 2 W, what minimum wattage rating can be
used for each resistor in this circuit?

11. Repeat Problem 10 for the circuit of Fig. 5.81.

*12. Find the unknown quantities in the circuits of Fig. 5.82
using the information provided.

13. Eight holiday lights are connected in series as shown in
Fig. 5.83.
a. If the set is connected to a 120-V source, what is the

current through the bulbs if each bulb has an internal
resistance of 28�

1
8

� �?
b. Determine the power delivered to each bulb.
c. Calculate the voltage drop across each bulb.
d. If one bulb burns out (that is, the filament opens),

what is the effect on the remaining bulbs?

+

22 �
RT

I

V1
–

10 �

5.6 �

33 �

+V4– +V3–

+
V2

–
6 V

FIG. 5.81

Problem 11.

FIG. 5.83

Problem 13.
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FIG. 5.82

Problem 12.
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24 W

4 �
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FIG. 5.84

Problem 14.

FIG. 5.85

Problems 15 and 37.
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*14. For the conditions specified in Fig. 5.84, determine the
unknown resistance.

2 k�

20 V

(a)

4 V

6 k�

R

+

–

R

200 V

(b)

3 �

+

–

6 �V  =  140 V

FIG. 5.86

Problem 16.

SECTION 5.6 Voltage Divider Rule

15. Using the voltage divider rule, find Vab (with polarity) for
the circuits of Fig. 5.85.

16. Find the unknown resistance using the voltage divider
rule and the information provided for the circuits of Fig.
5.86.
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R1 10 �

R2 30 �

R3 V3
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–

4 V

+

–

I

40 V

FIG. 5.87

Problem 17.

17. Referring to Fig. 5.87:
a. Determine V2 by simply noting that R2 � 3R1.
b. Calculate V3.
c. Noting the magnitude of V3 compared to V2 or V1,

determine R3 by inspection.
d. Calculate the source current I.
e. Calculate the resistance R3 using Ohm’s law, and

compare it to the result of part (c).

18. Given the information appearing in Fig. 5.88, find the
level of resistance for R1 and R3.

19. a. Design a voltage divider circuit that will permit the
use of an 8-V, 50-mA bulb in an automobile with a
12-V electrical system.

b. What is the minimum wattage rating of the chosen
resistor if 1⁄4-W, 1⁄2-W and 1-W resistors are available?

20. Determine the values of R1, R2, R3, and R4 for the voltage
divider of Fig. 5.89 if the source current is 16 mA.

21. Design the voltage divider of Fig. 5.90 such that VR1
�

(1/5)VR2
if I � 4 mA.

22. Find the voltage across each resistor of Fig. 5.91 if R1 �
2R3 and R2 � 7R3.

23. a. Design the circuit of Fig. 5.92 such that VR2
� 3VR1

and VR3
� 4VR2

.

b. If the current I is reduced to 10 mA, what are the new
values of R1, R2, and R3? How do they compare to the
results of part (a)?

FIG. 5.88

Problem 18.
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Problem 20.

FIG. 5.90

Problem 21.
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Problem 22.
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SECTION 5.7 Notation

24. Determine the voltages Va, Vb, and Vab for the networks
of Fig. 5.93.

FIG. 5.93

Problem 24.

(a)

8 V

VbVa

12 V

(b)

4 V

VbVa

6 V20 V

(c)

Vb+ 10 V

3 V 8 V

Va

21 V

25. Determine the current I (with direction) and the voltage V
(with polarity) for the networks of Fig. 5.94.

FIG. 5.94

Problem 25.

I

6 � 3 � V

120 V 60 V

I

30 �

–10 V

–70 V

20 �

10 �

V
(a) (b)

26. Determine the voltages Va and V1 for the networks of
Fig. 5.95.

V120 �
V1

2.2 k�

(a)

Va
8 V

(b)

+ 12 V
10 V

Va+ –

3.3 k�

– 8 V
10 � +

–
16 V

FIG. 5.95

Problem 26.

*27. For the network of Fig. 5.96, determine the voltages:
a. Va, Vb, Vc, Vd, Ve

b. Vab, Vdc, Vcb

c. Vac, Vdb

FIG. 5.96

Problem 27.

4 k�

b
47 V2 k�

20 V

a
3 k�

c d

e
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*29. For the integrated circuit of Fig. 5.98, determine V0, V4,
V7, V10, V23, V30, V67, V56, and I (magnitude and direc-
tion).

FIG. 5.98

Problem 29.

6 mA

2  k�

4 �

–8 V

–2 V

20 V

1
2

4
3 65

7
0

–2 V

4 V

I

*28. For the network of Fig. 5.97, determine the voltages:
a. Va, Vb, Vc, Vd

b. Vab, Vcb, Vcd

c. Vad, Vca 4 k�

2 k�a
b

c

6 k�

44 V

20 V

d

FIG. 5.97

Problem 28.

*30. For the integrated circuit of Fig. 5.99, determine V0, V03,
V2, V23, V12, and Ii.

3 k�
E

2 mA

3

21

0

20 V

Ii

1 k�5 mA

10 mA

FIG. 5.99

Problem 30.

VL 3.3 �

+

–

Rint  =  0.05 �

E  =  12 V

FIG. 5.100

Problems 32 and 35.

SECTION 5.8 Internal Resistance of Voltage Sources

31. Find the internal resistance of a battery that has a no-load
output voltage of 60 V and that supplies a current of 2 A
to a load of 28 �.

32. Find the voltage VL and the power loss in the internal
resistance for the configuration of Fig. 5.100.

33. Find the internal resistance of a battery that has a no-load
output voltage of 6 V and supplies a current of 10 mA to
a load of 1/2 k�.

SECTION 5.9 Voltage Regulation

34. Determine the voltage regulation for the battery of Prob-
lem 31.

35. Calculate the voltage regulation for the supply of Fig.
5.100.
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SECTION 5.12 Computer Analysis

PSpice or Electronics Workbench

36. Using schematics, determine the current I and the voltage
across each resistor for the network of Fig. 5.71(a).

37. Using schematics, determine the voltage Vab for the net-
work of Fig. 5.85(d).

Programming Language (C��, QBASIC, Pascal, etc.)

38. Write a program to determine the total resistance of any
number of resistors in series.

39. Write a program that will apply the voltage divider rule
to either resistor of a series circuit with a single source
and two series resistors.

40. Write a program to tabulate the current and power to the
resistor RL of the network of Fig. 5.101 for a range of
values for RL from 1 � to 20 �. Print out the value of RL

that results in maximum power to RL.
FIG. 5.101

Problem 40.

12 V

8 �

I PL

RL

GLOSSARY

Branch The portion of a circuit consisting of one or more
elements in series.

Circuit A combination of a number of elements joined at ter-
minal points providing at least one closed path through
which charge can flow.

Closed loop Any continuous connection of branches that
allows tracing of a path that leaves a point in one direction
and returns to that same point from another direction with-
out leaving the circuit.

Conventional current flow A defined direction for the flow
of charge in an electrical system that is opposite to that of
the motion of electrons.

Electron flow The flow of charge in an electrical system hav-
ing the same direction as the motion of electrons.

Internal resistance The inherent resistance found internal to
any source of energy.

Kirchhoff’s voltage law (KVL) The algebraic sum of the
potential rises and drops around a closed loop (or path) is
zero.

Series circuit A circuit configuration in which the elements
have only one point in common and each terminal is not
connected to a third, current-carrying element.

Voltage divider rule (VDR) A method by which a voltage in
a series circuit can be determined without first calculating
the current in the circuit.

Voltage regulation (VR) A value, given as a percent, that
provides an indication of the change in terminal voltage of
a supply with a change in load demand.



Parallel Circuits

6.1 INTRODUCTION

Two network configurations, series and parallel, form the framework
for some of the most complex network structures. A clear understand-
ing of each will pay enormous dividends as more complex methods and
networks are examined. The series connection was discussed in detail
in the last chapter. We will now examine the parallel circuit and all the
methods and laws associated with this important configuration.

6.2 PARALLEL ELEMENTS

Two elements, branches, or networks are in parallel if they have two
points in common.

In Fig. 6.1, for example, elements 1 and 2 have terminals a and b in
common; they are therefore in parallel.

b

1

a

2

FIG. 6.1

Parallel elements.

In Fig. 6.2, all the elements are in parallel because they satisfy the
above criterion. Three configurations are provided to demonstrate how
the parallel networks can be drawn. Do not let the squaring of the con-

6 P



170  PARALLEL CIRCUITS

nection at the top and bottom of Fig. 6.2(a) and (b) cloud the fact that
all the elements are connected to one terminal point at the top and bot-
tom, as shown in Fig. 6.2(c).

In Fig. 6.3, elements 1 and 2 are in parallel because they have ter-
minals a and b in common. The parallel combination of 1 and 2 is then
in series with element 3 due to the common terminal point b.

In Fig. 6.4, elements 1 and 2 are in series due to the common point
a, but the series combination of 1 and 2 is in parallel with element 3 as
defined by the common terminal connections at b and c.

In Figs. 6.1 through 6.4, the numbered boxes were used as a general
symbol representing single resistive elements, or batteries, or complex
network configurations.

Common examples of parallel elements include the rungs of a lad-
der, the tying of more than one rope between two points to increase the
strength of the connection, and the use of pipes between two points to
split the water between the two points at a ratio determined by the area
of the pipes.

6.3 TOTAL CONDUCTANCE AND RESISTANCE

Recall that for series resistors, the total resistance is the sum of the
resistor values.

For parallel elements, the total conductance is the sum of the
individual conductances.

That is, for the parallel network of Fig. 6.5, we write

(6.1)

Since increasing levels of conductance will establish higher current
levels, the more terms appearing in Eq. (6.1), the higher the input cur-

GT � G1 � G2 � G3 � . . .� GN

P

a

b

(a)

a

b

(b)

1 2 3 1 2 31 2 3

a

b
(c)

FIG. 6.2

Different ways in which three parallel elements may appear.

a b 3

2

1

FIG. 6.3

Network in which 1 and 2 are in parallel and
3 is in series with the parallel combination of

1 and 2.

a

b

1

2

3

c

FIG. 6.4

Network in which 1 and 2 are in series and 3
is in parallel with the series combination of 

1 and 2.

G1 G2 G3 GN
GT

FIG. 6.5

Determining the total conductance of parallel conductances.
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rent level. In other words, as the number of resistors in parallel
increases, the input current level will increase for the same applied volt-
age—the opposite effect of increasing the number of resistors in series.

Substituting resistor values for the network of Fig. 6.5 will result in
the network of Fig. 6.6. Since G � 1/R, the total resistance for the net-
work can be determined by direct substitution into Eq. (6.1):

P

R1
RT R2 R3

FIG. 6.6

Determining the total resistance of parallel resistors.

(6.2)

Note that the equation is for 1 divided by the total resistance rather than
the total resistance. Once the sum of the terms to the right of the equals
sign has been determined, it will then be necessary to divide the result
into 1 to determine the total resistance. The following examples will
demonstrate the additional calculations introduced by the inverse rela-
tionship.

EXAMPLE 6.1 Determine the total conductance and resistance for the
parallel network of Fig. 6.7.

Solution:

GT � G1 � G2 � � � 0.333 S � 0.167 S � 0.5 S

and RT � �
G
1

T
� � � 2 �

EXAMPLE 6.2 Determine the effect on the total conductance and
resistance of the network of Fig. 6.7 if another resistor of 10 � were
added in parallel with the other elements.

Solution:

GT � 0.5 S � � 0.5 S � 0.1 S � 0.6 S

RT � �
G
1

T
� � � 1.667 �

Note, as mentioned above, that adding additional terms increases the
conductance level and decreases the resistance level.

1
�
0.6 S

1
�
10 �

1
�
0.5 S

1
�
6 �

1
�
3 �

�
R
1

T
� � �

R
1

1
� � �

R
1

2
� � �

R
1

3
� � . . .� �

R
1

N
�

R1

RT

R2 6 Ω
GT

3 Ω

FIG. 6.7

Example 6.1.
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Solution:

�
R
1

T
� � � �

� � � � 0.5 S � 0.25 S � 0.2 S

� 0.95 S

and RT � � 1.053 �

The above examples demonstrate an interesting and useful (for
checking purposes) characteristic of parallel resistors:

The total resistance of parallel resistors is always less than the value
of the smallest resistor.

In addition, the wider the spread in numerical value between two paral-
lel resistors, the closer the total resistance will be to the smaller resis-
tor. For instance, the total resistance of 3 � in parallel with 6 � is 2 �,
as demonstrated in Example 6.1. However, the total resistance of 3 � in
parallel with 60 � is 2.85 �, which is much closer to the value of the
smaller resistor.

For equal resistors in parallel, the equation becomes significantly
easier to apply. For N equal resistors in parallel, Equation (6.2) becomes

�
R
1

T
� � �

R
1

� � �
R
1

� � �
R
1

� � . . . � �
R
1

�

N

� N� �

and (6.3)

In other words, the total resistance of N parallel resistors of equal value
is the resistance of one resistor divided by the number (N) of parallel
elements.

For conductance levels, we have

(6.4)GT � NG

RT � �
N
R

�

1
�
R

1
�
0.95 S

1
�
5 �

1
�
4 �

1
�
2 �

1
�
R3

1
�
R2

1
�
R1

P

R1

RT

R3 5 Ω2 ΩR2

RT
R3  =  5 Ω

4 ΩR1  =  2 Ω R2 4 Ω=

FIG. 6.8

Example 6.3.

EXAMPLE 6.3 Determine the total resistance for the network of 
Fig. 6.8.


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EXAMPLE 6.4

a. Find the total resistance of the network of Fig. 6.9.
b. Calculate the total resistance for the network of Fig. 6.10.

Solutions:

a. Figure 6.9 is redrawn in Fig. 6.11:

P

R1 12 �RT R2 12 � R3 12 �

FIG. 6.9

Example 6.4: three parallel resistors 
of equal value.

R1 2 � R2 R3 R42 � 2 � 2 �

RT

FIG. 6.10

Example 6.4: four parallel resistors 
of equal value.

R1 12 � R2 R312 � 12 �RT

FIG. 6.11

Redrawing the network of Fig. 6.9.

R1 2 � R2 R3 R42 � 2 � 2 �RT

FIG. 6.12

Redrawing the network of Fig. 6.10.

RT � � � 4 �

b. Figure 6.10 is redrawn in Fig. 6.12:

RT � � � 0.5 �

In the vast majority of situations, only two or three parallel resistive
elements need to be combined. With this in mind, the following equa-
tions were developed to reduce the effects of the inverse relationship
when determining RT.

For two parallel resistors, we write

� �

Multiplying the top and bottom of each term of the right side of the
equation by the other resistor will result in

� � � � � � � �

�

and (6.5)

In words,

the total resistance of two parallel resistors is the product of the two
divided by their sum.

For three parallel resistors, the equation for RT becomes

RT � (6.6a)

requiring that we be careful with all the divisions into 1.

1
��

�
R
1

1
� � �

R
1

2
� � �

R
1

3
�

RT � �
R1

R

�
1R2

R2
�

R2 � R1
��

R1R2

R1
�
R1R2

R2
�
R1R2

1
�
R2

R1
�
R1

1
�
R1

R2
�
R2

1
�
RT

1
�
R2

1
�
R1

1
�
RT

2 �
�

4
R
�
N

12 �
�

3

R
�
N
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Equation (6.6a) can also be expanded into the form of Eq. (6.5),
resulting in Eq. (6.6b):

RT � (6.6b)

with the denominator showing all the possible product combinations
of the resistors taken two at a time. An alternative to either form of Eq.
(6.6) is to simply apply Eq. (6.5) twice, as will be demonstrated in
Example 6.6.

EXAMPLE 6.5 Repeat Example 6.1 using Eq. (6.5).

Solution:

RT � � � � 2 �

EXAMPLE 6.6 Repeat Example 6.3 using Eq. (6.6a).

Solution:

RT �

� � �
0.5 � 0

1
.25 � 0.2
�

� � 1.053 �

Applying Eq. (6.5) twice yields

R ′T � 2 � �� 4 � � � �
4
�
3

(2 �)(4 �)
��
2 � � 4 �

1
�
0.95

1
���

�
2

1
�
� � �

4
1
�
� � �

5
1
�
�

1
��

�
R
1

1
� � �

R
1

2
� � �

R
1

3
�

18 �
�

9
(3 �)(6 �)
��
3 � � 6 �

R1R2
�
R1 � R2

R1R2R3
���
R1R2 � R1R3 � R2R3

P

RT � R ′T �� 5 � � � 1.053 �

Recall that series elements can be interchanged without affecting the
magnitude of the total resistance or current. In parallel networks,

parallel elements can be interchanged without changing the total
resistance or input current.

Note in the next example how redrawing the network can often clarify
which operations and equations should be applied.

EXAMPLE 6.7 Calculate the total resistance of the parallel network of
Fig. 6.13.

��
4
3

� ���5 ��
��

�
4
3

� � � 5 �
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R ′T � �
N
R

� � � 2 �

R″T � �
R2

R
�
2R4

R4
� � � � 8 �

and RT � R′T �� R″T

� � � � 1.6 �

The preceding examples show direct substitution, in which once the
proper equation is defined, it is only a matter of plugging in the num-
bers and performing the required algebraic maneuvers. The next two
examples have a design orientation, where specific network parameters
are defined and the circuit elements must be determined.

EXAMPLE 6.8 Determine the value of R2 in Fig. 6.15 to establish a
total resistance of 9 k�.

Solution:

RT �

RT (R1 � R2) � R1R2

RT R1 � RT R2 � R1R2

RT R1 � R1R2 � RT R2

RT R1 � (R1 � RT)R2

and (6.7)R2 � �
R1

RT

�

R

R
1

T
�

R1R2
�
R1 � R2

16 �
�

10

(2 �)(8 �)
��
2 � � 8 �

R′TR″T
��
R′T � R″T

In parallel with

648 �
�

81

(9 �)(72 �)
��
9 � � 72 �

6 �
�

3

P

RT

R1 6 � R2 9 � R3 6 � R4 72 � R5 6 �

FIG. 6.13

Example 6.7.

RT R1 6 � R3 6 � R5 6 � R2 72 �R49 �

R′T R″T

FIG. 6.14

Network of Fig. 6.13 redrawn.

R2R1 12 k�
RT  =  9 k�

FIG. 6.15

Example 6.8.

Solution: The network is redrawn in Fig. 6.14:
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Substituting values:

R2 �

� � 36 k�

EXAMPLE 6.9 Determine the values of R1, R2, and R3 in Fig. 6.16 if
R2 � 2R1 and R3 � 2R2 and the total resistance is 16 k�.

Solution:

�
R
1

T
� � � �

� � �

since R3 � 2R2 � 2(2R1) � 4R1

and � � � � � � �

� 1.75� �
with R1 � 1.75(16 k�) � 28 k�

Recall for series circuits that the total resistance will always increase
as additional elements are added in series.

For parallel resistors, the total resistance will always decrease as
additional elements are added in parallel.

The next example demonstrates this unique characteristic of parallel
resistors.

EXAMPLE 6.10

a. Determine the total resistance of the network of Fig. 6.17.
b. What is the effect on the total resistance of the network of Fig. 6.17

if an additional resistor of the same value is added, as shown in Fig.
6.18?

c. What is the effect on the total resistance of the network of Fig. 6.17
if a very large resistance is added in parallel, as shown in Fig. 6.19?

d. What is the effect on the total resistance of the network of Fig. 6.17
if a very small resistance is added in parallel, as shown in Fig. 6.20?

Solutions:

a. RT � 30 � � 30 � � � 15 �

b. RT � 30 � � 30 � � 30 � � � 10 � � 15 �

RT decreased

c. RT � 30 � � 30 � � 1 k� � 15 � � 1 k�

� � 14.778 � � 15 �

Small decrease in RT

(15 �)(1000 �)
��
15 � � 1000 �

30 �
�

3

30 �
�

2

1
�
R1

1
�
16 k�

1
�
R1

1
�
4

1
�
R1

1
�
2

1
�
R1

1
�
16 k�

1
�
4R1

1
�
2R1

1
�
R1

1
�
16 k�

1
�
R3

1
�
R2

1
�
R1

108 k�
�

3

(9 k�)(12 k�)
��
12 k� � 9 k�

P

R1 30 � R2RT 30 �

FIG. 6.17

Example 6.10: two equal, parallel resistors.

R2RT 30 �R1 30 � R3 30 �

FIG. 6.18

Adding a third parallel resistor of equal value
to the network of Fig. 6.17.

R2RT 30 �R1 30 � R3 1 k�

FIG. 6.19

Adding a much larger parallel resistor to the
network of Fig. 6.17.

R2RT 30 �R1 30 � R3 0.1 �

FIG. 6.20

Adding a much smaller parallel resistor to the 
network of Fig. 6.17.

R3RT  =  16 k�
R2R1

FIG. 6.16

Example 6.9.
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d. RT � 30 � � 30 � � 0.1 � � 15 � � 0.1 �

� � 0.099 � � 15 �

Significant decrease in RT

In each case the total resistance of the network decreased with the
increase of an additional parallel resistive element, no matter how large
or small. Note also that the total resistance is also smaller than that of
the smallest parallel element.

6.4 PARALLEL CIRCUITS

The network of Fig. 6.21 is the simplest of parallel circuits. All the ele-
ments have terminals a and b in common. The total resistance is deter-
mined by RT � R1R2 /(R1 � R2), and the source current by Is � E/RT.
Throughout the text, the subscript s will be used to denote a property of
the source. Since the terminals of the battery are connected directly
across the resistors R1 and R2, the following should be obvious:

The voltage across parallel elements is the same.

Using this fact will result in

V1 � V2 � E

and I1 � �

with I2 � �

If we take the equation for the total resistance and multiply both
sides by the applied voltage, we obtain

E� � � E� � �
and � �

Substituting the Ohm’s law relationships appearing above, we find that
the source current

Is � I1 � I2

permitting the following conclusion:

For single-source parallel networks, the source current (Is ) is equal
to the sum of the individual branch currents.

The power dissipated by the resistors and delivered by the source
can be determined from

P1 � V1I1 � I2
1R1 �

P2 � V2I2 � I2
2R2 �

Ps � EIs � I2
sRT �

E2

�
RT

V 2
2

�
R2

V 2
1

�
R1

E
�
R2

E
�
R1

E
�
RT

1
�
R2

1
�
R1

1
�
RT

E
�
R2

V2
�
R2

E
�
R1

V1
�
R1

(15 �)(0.1 �)
��
15 � � 0.1 �

P

R1

–

 +

V1E V2 R2

I2I1

RT

Is

a

b

–

 +

FIG. 6.21

Parallel network.
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EXAMPLE 6.11 For the parallel network of Fig. 6.22:

a. Calculate RT.
b. Determine Is.
c. Calculate I1 and I2, and demonstrate that Is � I1 � I2.
d. Determine the power to each resistive load.
e. Determine the power delivered by the source, and compare it to the

total power dissipated by the resistive elements.

Solutions:

a. RT � � � � 6 �

b. Is � � � 4.5 A

c. I1 � � � � 3 A

I2 � � � � 1.5 A

Is � I1 � I2

4.5 A � 3 A � 1.5 A

4.5 A � 4.5 A (checks)

d. P1 � V1I1 � EI1 � (27 V)(3 A) � 81 W
P2 � V2I2 � EI2 � (27 V)(1.5 A) � 40.5 W

e. Ps � EIs � (27 V)(4.5 A) � 121.5 W
� P1 � P2 � 81 W � 40.5 W � 121.5 W

EXAMPLE 6.12 Given the information provided in Fig. 6.23:

27 V
�
18 �

E
�
R2

V2
�
R2

27 V
�
9 �

E
�
R1

V1
�
R1

27 V
�
6 �

E
�
RT

162 �
�

27
(9 �)(18 �)
��
9 � � 18 �

R1R2
�
R1 � R2

P

I2

R3R1 R210 � 20 �E
 –

 +

Is

RT  =  4 � I1  =  4 A

FIG. 6.23

Example 6.12.

a. Determine R3.
b. Calculate E.
c. Find Is.
d. Find I2.
e. Determine P2.

Solutions:

a. � � �

� � �
1

�
R3

1
�
20 �

1
�
10 �

1
�
4 �

1
�
R3

1
�
R2

1
�
R1

1
�
RT

R1 V1E R2

I2I1

RT

Is

–

 +

9 � V218 �

–

 +

27 V

FIG. 6.22

Example 6.11.
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0.25 S � 0.1 S � 0.05 S �

0.25 S � 0.15 S �

� 0.1 S

R3 � � 10 �

b. E � V1 � I1R1 � (4 A)(10 �) � 40 V

c. Is � � � 10 A

d. I2 � � � � 2 A

e. P2 � I2
2R2 � (2 A)2(20 �) � 80 W

Mathcad Solution: This example provides an excellent opportunity
to practice our skills using Mathcad. As shown in Fig. 6.24, the known
parameters and quantities of the network are entered first, followed by
an equation for the unknown resistor R3. Note that after the first divi-
sion operator was selected, a left bracket was established (to be fol-
lowed eventually by a right enclosure bracket) to tell the computer that
the mathematical operations in the denominator must be carried out first
before the division into 1. In addition, each individual division into 1 is
separated by brackets to ensure that the division operation is performed
before each quantity is added to the neighboring factor. Finally, keep in
mind that the Mathcad bracket must encompass each individual expres-
sion of the denominator before you place the right bracket in place.

40 V
�
20 �

E
�
R2

V2
�
R2

40 V
�
4 �

E
�
RT

1
�
0.1 S

1
�
R3

1
�
R3

1
�
R3

P

FIG. 6.24

Using Mathcad to confirm the results of Example 6.12.
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In each case, the quantity of interest was entered below the defining
equation to obtain the numerical result by selecting an equal sign. As
expected, all the results match the longhand solution.

6.5 KIRCHHOFF’S CURRENT LAW

Kirchhoff’s voltage law provides an important relationship among volt-
age levels around any closed loop of a network. We now consider
Kirchhoff’s current law (KCL), which provides an equally important
relationship among current levels at any junction.

Kirchhoff’s current law (KCL) states that the algebraic sum of the
currents entering and leaving an area, system, or junction is zero.

In other words,

the sum of the currents entering an area, system, or junction must
equal the sum of the currents leaving the area, system, or junction.

In equation form:

(6.8)

In Fig. 6.25, for instance, the shaded area can enclose an entire sys-
tem, a complex network, or simply a junction of two or more paths. In
each case the current entering must equal that leaving, as witnessed by
the fact that

I1 � I4 � I2 � I3

4 A � 8 A � 2 A � 10 A
12 A � 12 A

The most common application of the law will be at the junction of
two or more paths of current flow, as shown in Fig. 6.26. For some stu-
dents it is difficult initially to determine whether a current is entering or
leaving a junction. One approach that may help is to picture yourself as
standing on the junction and treating the path currents as arrows. If the
arrow appears to be heading toward you, as is the case for I1 in Fig.
6.26, then it is entering the junction. If you see the tail of the arrow
(from the junction) as it travels down its path away from you, it is leav-
ing the junction, as is the case for I2 and I3 in Fig. 6.26.

Applying Kirchhoff’s current law to the junction of Fig. 6.26:

Σ Ientering � Σ Ileaving

6 A � 2 A � 4 A
6 A � 6 A (checks)

In the next two examples, unknown currents can be determined by
applying Kirchhoff’s current law. Simply remember to place all cur-
rent levels entering a junction to the left of the equals sign and the
sum of all currents leaving a junction to the right of the equals sign.
The water-in-the-pipe analogy is an excellent one for supporting and
clarifying the preceding law. Quite obviously, the sum total of the
water entering a junction must equal the total of the water leaving the
exit pipes.

In technology the term node is commonly used to refer to a junction
of two or more branches. Therefore, this term will be used frequently in
the analyses that follow.

Σ Ientering � Σ Ileaving

P

System,
complex
network,
junction

I2

I3

I4

I1
4 A 2 A

10 A

8 A

FIG. 6.25

Introducing Kirchhoff’s current law.

I1 = 6 A

I3 = 4 A

I2 = 2 A

FIG. 6.26

Demonstrating Kirchhoff’s current law.
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EXAMPLE 6.13 Determine the currents I3 and I4 of Fig. 6.27 using
Kirchhoff’s current law.

Solution: We must first work with junction a since the only un-
known is I3. At junction b there are two unknowns, and both cannot be
determined from one application of the law.

P

I3

I5 = 1 A

I4

b

I1 = 2 A

I2 = 3 A

a

FIG. 6.27

Example 6.13.

R1 R3

R2 R4
R5

I2  =  4 A

I  =  5 A
I5

a

I1 I3

I4

b

d

c

FIG. 6.28

Example 6.14.

At a:

Σ Ientering � Σ Ileaving

I1 � I2 � I3

2 A � 3 A � I3

I3 � 5 A

At b:

Σ Ientering � Σ Ileaving

I3 � I5 � I4

5 A � 1 A � I4

I4 � 6 A

EXAMPLE 6.14 Determine I1, I3, I4, and I5 for the network of Fig.
6.28.

Solution: At a:

Σ Ientering � Σ Ileaving

I � I1 � I2

5 A � I1 � 4 A

Subtracting 4 A from both sides gives

5 A � 4 A � I1 � 4 A � 4 A
I1 � 5 A � 4 A � 1 A
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At b:

Σ Ientering � Σ Ileaving

I1 � I3 � 1 A

as it should, since R1 and R3 are in series and the current is the same in
series elements.

At c:

I2 � I4 � 4 A

for the same reasons given for junction b.
At d:

Σ Ientering � Σ Ileaving

I3 � I4 � I5

1 A � 4 A � I5

I5 � 5 A

If we enclose the entire network, we find that the current entering is
I � 5 A; the net current leaving from the far right is I5 � 5 A. The two
must be equal since the net current entering any system must equal that
leaving.

EXAMPLE 6.15 Determine the currents I3 and I5 of Fig. 6.29 through
applications of Kirchhoff’s current law.

Solution: Note that since node b has two unknown quantities and
node a has only one, we must first apply Kirchhoff’s current law to
node a. The result can then be applied to node b.

For node a,

I1 � I2 � I3

4 A � 3 A � I3

and I3 � 7 A

For node b,

I3 � I4 � I5

7 A � 1 A � I5

and I5 � 7 A � 1 A � 6 A

EXAMPLE 6.16 Find the magnitude and direction of the currents I3,
I4, I6, and I7 for the network of Fig. 6.30. Even though the elements are
not in series or parallel, Kirchhoff’s current law can be applied to deter-
mine all the unknown currents.

Solution: Considering the overall system, we know that the current
entering must equal that leaving. Therefore,

I7 � I1 � 10 A

Since 10 A are entering node a and 12 A are leaving, I3 must be sup-
plying current to the node. 

Applying Kirchhoff’s current law at node a,

I1 � I3 � I2

10 A � I3 � 12 A

and I3 � 12 A � 10 A � 2 A

At node b, since 12 A are entering and 8 A are leaving, I4 must be
leaving. Therefore,

P

b

I2 = 3 A

I4 = 1 A

I5

a

I1 = 4 A

I3

FIG. 6.29

Example 6.15.

I2 = 12 A

I1 = 10 A

I5 = 8 A

I3 I6

I7d

c

a

b

I4

FIG. 6.30

Example 6.16.
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I2 � I4 � I5

12 A � I4 � 8 A

and I4 � 12 A � 8 A � 4 A

At node c, I3 is leaving at 2 A and I4 is entering at 4 A, requiring that
I6 be leaving. Applying Kirchhoff’s current law at node c,

I4 � I3 � I6

4 A � 2 A � I6

and I6 � 4 A � 2 A � 2 A

As a check at node d,

I5 � I6 � I7

8 A � 2 A � 10 A
10 A � 10 A (checks)

Looking back at Example 6.11, we find that the current entering the
top node is 4.5 A and the current leaving the node is I1 � I2 � 3 A �
1.5 A � 4.5 A. For Example 6.12, we have

Is � I1 � I2 � I3

10 A � 4 A � 2 A � I3

and I3 � 10 A � 6 A � 4 A

The application of Kirchhoff’s current law is not limited to networks
where all the internal connections are known or visible. For instance, all
the currents of the integrated circuit of Fig. 6.31 are known except I1.
By treating the system as a single node, we can apply Kirchhoff’s cur-
rent law using the following values to ensure an accurate listing of all
known quantities:

Ii Io

10 mA 5 mA
4 mA 4 mA
8 mA 2 mA

22 mA 6 mA
17 mA

Noting the total input current versus that leaving clearly reveals that I1

is a current of 22 mA � 17 mA � 5 mA leaving the system.

6.6 CURRENT DIVIDER RULE

As the name suggests, the current divider rule (CDR) will determine
how the current entering a set of parallel branches will split between the
elements.

For two parallel elements of equal value, the current will divide
equally.

For parallel elements with different values, the smaller the resistance,
the greater the share of input current.

For parallel elements of different values, the current will split with a
ratio equal to the inverse of their resistor values.

For example, if one of two parallel resistors is twice the other, then
the current through the larger resistor will be half the other.

P

5 mA 10 mA

4 mA

4 mA

8 mA2 mA

6 mA

I1

20 V

IC

FIG. 6.31

Integrated circuit.
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In Fig. 6.32, since I1 is 1 mA and R1 is six times R3, the current
through R3 must be 6 mA (without making any other calculations
including the total current or the actual resistance levels). For R2 the
current must be 2 mA since R1 is twice R2. The total current must then
be the sum of I1, I2, and I3, or 9 mA. In total, therefore, knowing only
the current through R1, we were able to find all the other currents of the
configuration without knowing anything more about the network.

P

For networks in which only the resistor values are given along with the
input current, the current divider rule should be applied to determine the
various branch currents. It can be derived using the network of Fig. 6.33.

1 mA

R1 6 � R2 3 � R3 1 �

IT = 9 mA

I3 must be 6 mA (      = 6)R1

R3

I2 must be 2 mA (      = 2)R1

R2
I1 =

FIG. 6.32

Demonstrating how current will divide between unequal resistors.

V R1 R2 R3 RNRT

I

I1 I2 I3 IN

+

–

FIG. 6.33

Deriving the current divider rule.

The input current I equals V/RT, where RT is the total resistance of the
parallel branches. Substituting V � IxRx into the above equation, where Ix

refers to the current through a parallel branch of resistance Rx, we have

I � �

and (6.9)

which is the general form for the current divider rule. In words, the cur-
rent through any parallel branch is equal to the product of the total
resistance of the parallel branches and the input current divided by the
resistance of the branch through which the current is to be determined.

For the current I1,

I1 � I

and for I2,

I2 � I

and so on.

RT
�
R2

RT
�
R1

Ix � �
R

R
T

x
�I

IxRx
�
RT

V
�
RT
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For the particular case of two parallel resistors, as shown in Fig.
6.34,

RT �

and I1 � I � I

and (6.10)

Similarly for I2,

(6.11)

In words, for two parallel branches, the current through either branch is
equal to the product of the other parallel resistor and the input current
divided by the sum (not the total parallel resistance) of the two parallel
resistances.

EXAMPLE 6.17 Determine the current I2 for the network of Fig. 6.35
using the current divider rule.

Solution:

I2 � � � �
1
4
2
�(6 A) � �

1
3

�(6 A)

� 2 A

EXAMPLE 6.18 Find the current I1 for the network of Fig. 6.36.

(4 k�)(6 A)
��
4 k� � 8 k�

R1Is
��
R1 � R2

I1

R2I

R1 � R2
�

I2

R1I

R1 � R2
�

Note difference in subscripts.

R1R2
�
—
R1

R
�

1

R2—
RT
�
R1

R1R2
�
R1 � R2

P

R1 R2

I2

Is  =  6 A

Is  =  6 A

4 k� 8 k�

FIG. 6.35

Example 6.17.

R1 R2

RT

I  =  42 mA

I1

R36 � 24 � 48 �

FIG. 6.36

Example 6.18

Solution: There are two options for solving this problem. The first is
to use Eq. (6.9) as follows:

� � � � 0.1667 S � 0.0417 S � 0.0208 S

� 0.2292 S

1
�
48 �

1
�
24 �

1
�
6 �

1
�
RT

R1 R2

I

I1 I2

FIG. 6.34

Developing an equation for current division 
between two parallel resistors.
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and RT � � 4.363 �

with I1 � I � (42 mA) � 30.54 mA

The second option is to apply Eq. (6.10) once after combining R2

and R3 as follows:

24 � � 48 � � � 16 �

and I1 � � 30.54 mA

Both options generated the same answer, leaving you with a choice
for future calculations involving more than two parallel resistors.

EXAMPLE 6.19 Determine the magnitude of the currents I1, I2, and I3

for the network of Fig. 6.37.

16 �(42 mA)
��
16 � � 6 �

(24 �)(48 �)
��
24 � � 48 �

4.363 �
�

6 �

RT
�
R1

1
�
0.2292 S

P

Solution: By Eq. (6.10), the current divider rule,

I1 � �
R1

R
�
2 I

R2
� � � 8 A

Applying Kirchhoff’s current law,

I � I1 � I2

and I2 � I � I1 � 12 A � 8 A � 4 A

or, using the current divider rule again,

I2 � �
R1

R
�

1I
R2

� � � 4 A

The total current entering the parallel branches must equal that leaving.
Therefore,

I3 � I � 12 A

or I3 � I1 � I2 � 8 A � 4 A � 12 A

EXAMPLE 6.20 Determine the resistance R1 to effect the division of
current in Fig. 6.38.

Solution: Applying the current divider rule,

I1 � �
R1

R
�
2 I

R2
�

(2 �)(12 A)
��
2 � � 4 �

(4 �)(12 A)
��
2 � � 4 �

R1

2 �

4 �

I3

R2

I1

I2

I  =  12 A

FIG. 6.37

Example 6.19.

R1

R2

7 �

I = 27 mA

I1 = 21 mA

FIG. 6.38

Example 6.20.
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and (R1 � R2)I1 � R2 I
R1I1 � R2 I1 � R2 I

R1I1 � R2 I � R2 I1

R1 � �
R2(I

I
�

1

I1)�

Substituting values:

R1 �

� 7 ���
2
6
1
�� � � 2 �

An alternative approach is

I2 � I � I1 (Kirchhoff’s current law)
� 27 mA � 21 mA � 6 mA

V2 � I2R2 � (6 mA)(7 �) � 42 mV

V1 � I1R1 � V2 � 42 mV

and R1 � � � 2 �

From the examples just described, note the following:

Current seeks the path of least resistance.

That is,

1. More current passes through the smaller of two parallel resistors.
2. The current entering any number of parallel resistors divides into

these resistors as the inverse ratio of their ohmic values. This rela-
tionship is depicted in Fig. 6.39.

42 mV
�
21 mA

V1�
I1

42 �
�

21

7 �(27 mA � 21 mA)
���

21 mA

P

I1

4 � 4 �

I

I1

I

2I1

1 � 2 �

I

I1

I

3I1

2 � 6 �

I

I1

I

6I1

1 � 3 �

I

2I1

I

6 �

I1

I1  =
I
9

I1  =
I
4

I1  =
I
3

I1  =
I
2

FIG. 6.39

Current division through parallel branches.

6.7 VOLTAGE SOURCES IN PARALLEL

Voltage sources are placed in parallel as shown in Fig. 6.40 only if they
have the same voltage rating. The primary reason for placing two or
more batteries in parallel of the same terminal voltage would be to
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increase the current rating (and, therefore, the power rating) of the
source. As shown in Fig. 6.40, the current rating of the combination is
determined by Is � I1 � I2 at the same terminal voltage. The resulting
power rating is twice that available with one supply.

If two batteries of different terminal voltages were placed in parallel,
both would be left ineffective or damaged because the terminal voltage
of the larger battery would try to drop rapidly to that of the lower
supply. Consider two lead-acid car batteries of different terminal
voltage placed in parallel, as shown in Fig. 6.41.

The relatively small internal resistances of the batteries are the only
current-limiting elements of the resulting series circuit. The current is

I � � � � 120 A

which far exceeds the continuous drain rating of the larger supply,
resulting in a rapid discharge of E1 and a destructive impact on the
smaller supply.

6.8 OPEN AND SHORT CIRCUITS

Open circuits and short circuits can often cause more confusion and dif-
ficulty in the analysis of a system than standard series or parallel con-
figurations. This will become more obvious in the chapters to follow
when we apply some of the methods and theorems.

An open circuit is simply two isolated terminals not connected by
an element of any kind, as shown in Fig. 6.42(a). Since a path for con-
duction does not exist, the current associated with an open circuit must
always be zero. The voltage across the open circuit, however, can be
any value, as determined by the system it is connected to. In summary,
therefore,

an open circuit can have a potential difference (voltage) across its
terminals, but the current is always zero amperes.

6 V
�
0.05 �

12 V � 6 V
��
0.03 � � 0.02 �

E1 � E2
��
Rint1 � Rint2

I1

12 VE1 E2 E12 V 12 V

I2
Is Is  =  I1  +  I2

FIG. 6.40

Parallel voltage sources.

E1 E2

Rint1
Rint2

I

0.02 �0.03 �

6 V12 V

FIG. 6.41

Parallel batteries of different terminal 
voltages.

V

I = 0 A

+

–
V = 0 V

Short circuit

+

–

Open circuit

I

(a) (b)

FIG. 6.42

Two special network configurations.–

+

I  =  0  A
a

b

 –

+
E Vopen circuit  =  E volts

FIG. 6.43

Demonstrating the characteristics of an 
open circuit.

In Fig. 6.43, an open circuit exists between terminals a and b.As shown
in the figure, the voltage across the open-circuit terminals is the supply
voltage, but the current is zero due to the absence of a complete circuit.
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A short circuit is a very low resistance, direct connection between
two terminals of a network, as shown in Fig. 6.42(b). The current
through the short circuit can be any value, as determined by the system
it is connected to, but the voltage across the short circuit will always be
zero volts because the resistance of the short circuit is assumed to be
essentially zero ohms and V � IR � I(0 �) � 0 V.

In summary, therefore,

a short circuit can carry a current of a level determined by the
external circuit, but the potential difference (voltage) across its
terminals is always zero volts.

In Fig. 6.44(a), the current through the 2-� resistor is 5 A. If a short
circuit should develop across the 2-� resistor, the total resistance of the
parallel combination of the 2-� resistor and the short (of essentially zero

ohms) will be 2 � �� 0 � � � 0 �, and the current will rise to

very high levels, as determined by Ohm’s law:

I � � ∞ A
10 V
�
0 �

E
�
R

(2 �)(0 �)
��
2 � � 0 �

P

I  =  5 A

–

+
E 2 �R10 V

10-A fuse

–

+
E R10 V

RT
IR  =  0 A

I

Vshort circuit  =  0 V

–

“Shorted out” Short circuit

(a) (b)

+

FIG. 6.44

Demonstrating the effect of a short circuit on current levels.

R1

2 kΩ

R2

4 kΩ+

–

20 VE

a

b

+

–

Vab

I

FIG. 6.45

Example 6.21.

The effect of the 2-� resistor has effectively been “shorted out” by
the low-resistance connection. The maximum current is now limited
only by the circuit breaker or fuse in series with the source.

For the layperson, the terminology short circuit or open circuit is
usually associated with dire situations such as power loss, smoke, or
fire. However, in network analysis both can play an integral role in
determining specific parameters about a system. Most often, however, if
a short-circuit condition is to be established, it is accomplished with a
jumper—a lead of negligible resistance to be connected between the
points of interest. Establishing an open circuit simply requires making
sure that the terminals of interest are isolated from each other.

EXAMPLE 6.21 Determine the voltage Vab for the network of Fig.
6.45.

Solution: The open circuit requires that I be zero amperes. The volt-
age drop across both resistors is therefore zero volts since V � IR �
(0)R � 0 V. Applying Kirchhoff’s voltage law around the closed loop,

Vab � E � 20 V
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EXAMPLE 6.22 Determine the voltages Vab and Vcd for the network
of Fig. 6.46.

Solution: The current through the system is zero amperes due to the
open circuit, resulting in a 0-V drop across each resistor. Both resistors
can therefore be replaced by short circuits, as shown in Fig. 6.47. The
voltage Vab is then directly across the 10-V battery, and

Vab � E1 � 10 V

The voltage Vcd requires an application of Kirchhoff’s voltage law:

�E1 � E2 � Vcd � 0

or Vcd � E1 � E2 � 10 V � 30 V � �20 V

The negative sign in the solution simply indicates that the actual volt-
age Vcd has the opposite polarity of that appearing in Fig. 6.46.

EXAMPLE 6.23 Determine the unknown voltage and current for each
network of Fig. 6.48.

P

R1

10 Ω

R2

50 Ω

+

–

10 V

c

d

+

–

VcdE1

a

b

E2
+ –

+

–

Vab

30 V

FIG. 6.46

Example 6.22.

+

–

10 V

c

d

+

–

VcdE1

a

b

E2+ –

+

–

Vab

30 V

FIG. 6.47

Circuit of Fig. 6.46 redrawn.

(b)

22 V

R1

1.2 k�

E

I

+  V  –R2

8.2 k�

(a)

R1 6 �

IT = 12 mA

+

V

–

I

R2 12 �

FIG. 6.48

Example 6.23.

(b)

22 V

R1

E

I = 0 A

+  22 V  –R2

(a)

R1 6 �

I = 0 A

R2 12 �

I = 0 A 12 mA
+

V = 0 V

–

FIG. 6.49

Solutions to Example 6.23.

Solution: For the network of Fig. 6.48(a), the current IT will take the
path of least resistance, and, since the short-circuit condition at the end
of the network is the least-resistance path, all the current will pass
through the short circuit. This conclusion can be verified using Eq.
(6.9). The voltage across the network is the same as that across the
short circuit and will be zero volts, as shown in Fig. 6.49(a).

For the network of Fig. 6.48(b), the open-circuit condition requires
that the current be zero amperes. The voltage drops across the resistors
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must therefore be zero volts, as determined by Ohm’s law [VR � IR �
(0)R � 0 V], with the resistors simply acting as a connection from the
supply to the open circuit. The result is that the open-circuit voltage
will be E � 22 V, as shown in Fig. 6.49(b).

EXAMPLE 6.24 Calculate the current I and the voltage V for the net-
work of Fig. 6.50.

Solution: The 10-k� resistor has been effectively shorted out by the
jumper, resulting in the equivalent network of Fig. 6.51. Using Ohm’s
law,

I � � � 3.6 mA

and V � E � 18 V

EXAMPLE 6.25 Determine V and I for the network of Fig. 6.52 if the
resistor R2 is shorted out.

Solution: The redrawn network appears in Fig. 6.53. The current
through the 3-� resistor is zero due to the open circuit, causing all the
current I to pass through the jumper. Since V3Q � IR � (0)R � 0 V, the
voltage V is directly across the short, and

V � 0 V

with I � � � 3 A

6.9 VOLTMETERS: LOADING EFFECT

In Chapters 2 and 5, it was noted that voltmeters are always placed
across an element to measure the potential difference. We now realize
that this connection is synonymous with placing the voltmeter in paral-
lel with the element. The insertion of a meter in parallel with a resistor
results in a combination of parallel resistors as shown in Fig. 6.54.
Since the resistance of two parallel branches is always less than the
smaller parallel resistance, the resistance of the voltmeter should be as
large as possible (ideally infinite). In Fig. 6.54, a DMM with an inter-
nal resistance of 11 M� is measuring the voltage across a 10-k� resis-
tor. The total resistance of the combination is

RT � 10 k� �� 11 M� � � 9.99 k�

and we find that the network is essentially undisturbed. However, if we
use a VOM with an internal resistance of 50 k� on the 2.5-V scale, the
parallel resistance is

RT � 10 k� �� 50 k� � � 8.33 k�

and the behavior of the network will be altered somewhat since the 
10-k� resistor will now appear to be 8.33 k� to the rest of the network.

The loading of a network by the insertion of meters is not to be taken
lightly, especially in research efforts where accuracy is a primary con-
sideration. It is good practice always to check the meter resistance level

(104 �)(50 � 103 �)
���
104 � � (50 � 103 �)

(104 �)(11 � 106 �)
���
104 � � (11 � 106 �)

6 V
�
2 �

E
�
R1

18 V
�
5 k�

E
�
R1

P

 –

 +

R1

+  V  –

E 18 V

5 k�

I

FIG. 6.51

Network of Fig. 6.50 redrawn.

R1

2 Ω

R3

3 Ω
+

–

6 VE

+

–

V

I

R2 10 �

FIG. 6.52

Example 6.25.

 –

 +

E 6 V

R1

2 �

R3

3 �

I –

+

V

FIG. 6.53

Network of Fig. 6.52 with R2 replaced by 
a jumper.

FIG. 6.54

Voltmeter loading.

I

+ –

11 M�

DMM

10 k�

 –

 +

R1 R2

+  V  –

E 18 V

5 k� 10 k�

I

FIG. 6.50

Example 6.24.
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against the resistive elements of the network before making measure-
ments. A factor of 10 between resistance levels will usually provide
fairly accurate meter readings for a wide range of applications.

Most DMMs have internal resistance levels in excess of 10 M� on
all voltage scales, while the internal resistance of VOMs is sensitive to
the chosen scale. To determine the resistance of each scale setting of a
VOM in the voltmeter mode, simply multiply the maximum voltage of
the scale setting by the ohm/volt (�/V) rating of the meter, normally
found at the bottom of the face of the meter.

For a typical ohm/volt rating of 20,000, the 2.5-V scale would have
an internal resistance of

(2.5 V)(20,000 �/V) � 50 k�

whereas for the 100-V scale, it would be

(100 V)(20,000 �/V) � 2 M�

and for the 250-V scale,

(250 V)(20,000 �/V) � 5 M�

EXAMPLE 6.26 For the relatively simple network of Fig. 6.55:
a. What is the open-circuit voltage Vab?
b. What will a DMM indicate if it has an internal resistance of 11 M�?

Compare your answer to the results of part (a).
c. Repeat part (b) for a VOM with an �/V rating of 20,000 on the 

100-V scale.

Solutions:

a. Vab � 20 V
b. The meter will complete the circuit as shown in Fig. 6.56. Using the

voltage divider rule,

Vab � � 18.33 V

c. For the VOM, the internal resistance of the meter is

Rm � 100 V(20,000 �/V) � 2 M�

and Vab � � 13.33 V

revealing the need to consider carefully the internal resistance of the
meter in some instances.

Measurement Techniques

For components in series, the placement of ammeters and voltmeters
was quite straightforward if a few simple rules were followed. For par-
allel circuits, however, some of the measurements can require a little
extra care. For any configuration keep in mind that all voltage measure-
ments can be made without disturbing the network at all. For ammeters,
however, the branch in which the current is to be measured must be
opened and the meter inserted.

Since the voltage is the same across parallel elements, only one volt-
meter will be required as shown in Fig. 6.57. It is a two-point measure-
ment, with the negative or black lead connected to the point of lower
potential and the positive or red lead to the point of higher potential to

2 M�(20 V)
��
2 M� � 1 M�

11 M�(20 V)
��
11 M� � 1 M�

P

Vab

+

–

R

1 M�

+

–
E 20 V

a

b

FIG. 6.55

Example 6.26.
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+

–

Vab 11 M� V

R

1 M�

E

a

b

FIG. 6.56

Applying a DMM to the circuit of Fig. 6.55.
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ensure a positive reading. The current through the source can be deter-
mined by simply disconnecting the positive terminal of the suply from
the network and inserting the ammeter as shown in Fig. 6.57. Note that it
is set up to have conventional current enter the positive terminal of the
meter and leave the negative terminal. The current through R2 can also be
determined quite easily by simply disconnecting the lead from the top of
the resistor and inserting the ammeter. Again, it is set up for conventional
current to enter the positive terminal for an up-scale reading.

Measuring the current through resistor R1 requires a bit more care.
It may not initially appear to be that complicated, but the laboratory
experience is a clear indication that this measurement can cause some
difficulties. In general, it simply requires that the connection to the top
of resistor R1 be removed as shown in Fig. 6.58(a) to create an open
circuit in series with resistor R1. Then the meter is inserted as shown
in Fig. 6.58(b), and the correct current reading will be obtained.

As a check against any of the ammeter readings, keep in mind that
Is � I1 � I2, so that if I1 � Is or I1 � I2 (for a network with different
values of R1 and R2), you should check your readings. Remember also
that the ammeter reading will be higher for the smaller resistor of two
parallel resistors.

6.10 TROUBLESHOOTING TECHNIQUES

The art of troubleshooting is not limited solely to electrical or elec-
tronic systems. In the broad sense,

troubleshooting is a process by which acquired knowledge and
experience are employed to localize a problem and offer or implement
a solution.

There are many reasons why the simplest electrical circuit does not
operate correctly. A connection may be open; the measuring instruments
may need calibration; the power supply may not be on or may have been
connected incorrectly to the circuit; an element may not be performing
correctly due to earlier damage or poor manufacturing; a fuse may have
blown; and so on. Unfortunately, a defined sequence of steps does not
exist for identifying the wide range of problems that can surface in an
electrical system. It is only through experience and a clear understand-
ing of the basic laws of electric circuits that one can expect to become
proficient at quickly locating the cause of an erroneous output.

+ –
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+
–
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+
–
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E R2

R1
+

–
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 = VR2E

FIG. 6.57

Setting up meters to measure the voltage and currents of a parallel network.
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FIG. 6.58

Measuring current I1 for the network of 
Fig. 6.57.
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It should be fairly obvious, however, that the first step in checking
a network or identifying a problem area is to have some idea of the
expected voltage and current levels. For instance, the circuit of Fig.
6.59 should have a current in the low milliampere range, with the
majority of the supply voltage across the 8-k� resistor. However, as
indicated in Fig. 6.59, VR1

� VR2
� 0 V and Va � 20 V. Since V �

IR, the results immediately suggest that I � 0 A and an open circuit
exists in the circuit. The fact that Va � 20 V immediately tells us that
the connections are true from the ground of the supply to point a. The
open circuit must therefore exist between R1 and R2 or at the ground
connection of R2. An open circuit at either point will result in I � 0 A
and the readings obtained previously. Keep in mind that, even though
I � 0 A, R1 does form a connection between the supply and point a.
That is, if I � 0 A, VR1

� IR2 � (0)R2 � 0 V, as obtained for a short
circuit.

In Fig. 6.59, if VR1
� 20 V and VR2

is quite small (�0.08 V), it first
suggests that the circuit is complete, a current does exist, and a problem
surrounds the resistor R2. R2 is not shorted out since such a condition
would result in VR2

� 0 V. A careful check of the inserted resistor reveals
that an 8-� resistor was employed rather than the 8-k� resistor called
for—an incorrect reading of the color code. Perhaps in the future an
ohmmeter should be used to check a resistor to validate the color-code
reading or to ensure that its value is still in the prescribed range set by the
color code.

There will be occasions when frustration may develop. You’ve
checked all the elements, and all the connections appear tight. The
supply is on and set at the proper level; the meters appear to be
functioning correctly. In situations such as this, experience becomes a
key factor. Perhaps you can recall when a recent check of a resistor
revealed that the internal connection (not externally visible) was a
“make or break” situation or that the resistor was damaged earlier by
excessive current levels, so its actual resistance was much lower than
called for by the color code. Recheck the supply! Perhaps the termi-
nal voltage was set correctly, but the current control knob was left in
the zero or minimum position. Is the ground connection stable? The
questions that arise may seem endless. However, take heart in the
fact that with experience comes an ability to localize problems more
rapidly. Of course, the more complicated the system, the longer the
list of possibilities, but it is often possible to identify a particular
area of the system that is behaving improperly before checking indi-
vidual elements.

6.11 APPLICATIONS

Car System

In Chapter 3, we examined the role of a potentiometer in controlling the
light intensity of the panel of a typical automobile. We will now take
our analysis a step further and investigate how a number of other ele-
ments of the car are connected to the 12-V dc supply.

First, it must be understood that the entire electrical system of a car
is run as a dc system. Although the generator will produce a varying ac
signal, rectification will convert it to one having an average dc level for
charging the battery. In particular, note the filter capacitor (Chapter 10)
in the alternator branch of Fig. 6.60 to smooth out the rectified ac wave-
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  =  0 V  –
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  =  0 V  –

I

FIG. 6.59

A malfunctioning network.



APPLICATIONS  195

form and to provide an improved dc supply. The charged battery must
therefore provide the required direct current for the entire electrical sys-
tem of the car. Thus, the power demand on the battery at any instant is
the product of the terminal voltage and the current drain of the total
load of every operating system of the car. This certainly places an enor-
mous burden on the battery and its internal chemical reaction and war-
rants all the battery care we can provide.

Since the electrical system of a car is essentially a parallel system,
the total current drain on the battery is the sum of the currents to all the
parallel branches of the car connected directly to the battery. In Fig.
6.60 a few branches of the wiring diagram for a car have been sketched
to provide some background information on basic wiring, current lev-
els, and fuse configurations. Every automobile has fuse links and fuses,
and some also have circuit breakers, to protect the various components
of the car and to ensure that a dangerous fire situation does not develop.
Except for a few branches that may have series elements, the operating
voltage for most components of a car is the terminal voltage of the bat-
tery which we will designate as 12 V even though it will typically vary
between 12 V and the charging level of 14.6 V. In other words, each
component is connected to the battery at one end and to the ground or
chassis of the car at the other end.

Referring to Fig. 6.60, we find that the alternator or charging branch
of the system is connected directly across the battery to provide the
charging current as indicated. Once the car is started, the rotor of the
alternator will turn, generating an ac varying voltage which will then
pass through a rectifier network and filter to provide the dc charging
voltage for the battery. Charging will occur only when the sensor, con-
nected directly to the battery, signals that the terminal voltage of the
battery is too low. Just to the right of the battery the starter branch was
included to demonstrate that there is no fusing action between the bat-
tery and starter when the ignition switch is activated. The lack of fusing
action is provided because enormous starting currents (hundreds of
amperes) will flow through the starter to start a car that may not have

P

FIG. 6.60

Expanded view of an automobile’s electrical system.
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been used for days and/or that may have been sitting in a cold cli-
mate—and high friction occurs between components until the oil starts
flowing. The starting level can vary so much that it would be difficult to
find the right fuse level, and frequent high currents may damage the
fuse link and cause a failure at expected levels of current. When the
ignition switch is activated, the starting relay will complete the circuit
between the battery and starter, and hopefully the car will start. If a car
should fail to start, the first point of attack should be to check the con-
nections at the battery, starting relay, and starter to be sure that they are
not providing an unexpected open circuit due to vibration, corrosion, or
moisture.

Once the car has started, the starting relay will open and the battery
can turn its attention to the operating components of the car. Although
the diagram of Fig. 6.60 does not display the switching mechanism, the
entire electrical network of the car, except for the important external
lights, is usually disengaged so that the full strength of the battery can
be dedicated to the starting process. The lights are included for situa-
tions where turning the lights off, even for short periods of time, could
create a dangerous situation. If the car is in a safe environment, it is best
to leave the lights off at starting to save the battery an additional 30 A
of drain. If the lights are on at starting, a dimming of the lights can be
expected due to the starter drain which may exceed 500 A. Today, bat-
teries are typically rated in cranking (starting) current rather than
ampere-hours. Batteries rated with cold cranking ampere ratings
between 700 A and 1000 A are typical today.

Separating the alternator from the battery and the battery from the
numerous networks of the car are fuse links such as shown in Fig.
6.61(a). They are actually wires of specific gage designed to open at
fairly high current levels of 100 A or more. They are included to protect
against those situations where there is an unexpected current drawn
from the many circuits it is connected to. That heavy drain can, of
course, be from a short circuit in one of the branches, but in such cases
the fuse in that branch will probably release. The fuse link is an addi-
tional protection for the line if the total current drawn by the parallel-
connected branches begins to exceed safe levels. The fuses following
the fuse link have the appearance shown in Fig. 6.61(b), where a gap
between the legs of the fuse indicates a blown fuse. As shown in Fig.
6.60, the 60-A fuse (often called a power distribution fuse) for the
lights is a second-tier fuse sensitive to the total drain from the three
light circuits. Finally, the third fuse level is for the individual units of a

(a)

FIG. 6.61

Car fuses: (a) fuse link; (b) plug-in.

(b)

15-A fuse Open
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car such as the lights, air conditioner, and power locks. In each case, the
fuse rating exceeds the normal load (current level) of the operating
component, but the level of each fuse does give some indication of the
demand to be expected under normal operating conditions. For
instance, the headlights will typically draw more than 10 A, the tail
lights more than 5 A, the air conditioner about 10 A (when the clutch
engages), and the power windows 10 A to 20 A depending on how
many are operated at once.

Some details for only one section of the total car network are pro-
vided in Fig. 6.60. In the same figure, additional parallel paths with
their respective fuses have been provided to further reveal the parallel
arrangement of all the circuits.

In all vehicles made in the United States and in some vehicles made
in European countries, the return path to the battery through the ground
connection is actually through the chassis of the car. That is, there is
only one wire to each electrical load, with the other end simply
grounded to the chassis. The return to the battery (chassis to negative
terminal) is therefore a heavy-gage wire matching that connected to the
positive terminal. In some European cars constructed of a mixture of
materials such as metal, plastic, and rubber, the return path through the
metallic chassis is lost, and two wires must be connected to each elec-
trical load of the car.

Parallel Computer Bus Connections

The internal construction (hardware) of large mainframe computers and
full-size desk models is set up to accept a variety of adapter cards in the
slots appearing in Fig. 6.62(a). The primary board (usually the largest),
commonly called the motherboard, contains most of the functions
required for full computer operation. Adapter cards are normally added
to expand the memory, set up a network, add peripheral equipment, and
so on. For instance, if you decide to add a modem to your computer, you
can simply insert the modem card into the proper channel of Fig. 6.62(a).
The bus connectors are connected in parallel with common connections
to the power supply, address and data buses, control signals, ground, and
so on. For instance, if the bottom connection of each bus connector is a
ground connection, that ground connection carries through each bus con-
nector and is immediately connected to any adapter card installed. Each
card has a slot connector that will fit directly into the bus connector with-
out the need for any soldering or construction. The pins of the adapter
card are then designed to provide a path between the motherboard and its
components to support the desired function. Note in Fig. 6.62(b), which
is a back view of the region identified in Fig. 6.62(a), that if you follow
the path of the second pin from the top on the far left, it will be con-
nected to the same pin on the other three bus connectors.

Most small lap-top computers today have all the options already
installed, thereby bypassing the need for bus connectors. Additional
memory and other upgrades are added as direct inserts into the mother-
board.

House Wiring

In Chapter 4, the basic power levels of importance were discussed for
various services to the home. We are now ready to take the next step
and examine the actual connection of elements in the home.

P
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FIG. 6.62

(a) Motherboard for a desk-top computer; (b) showing the printed circuit board 
connections for the region indicated in part (a).
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First, it is important to realize that except for some very special cir-
cumstances, the basic wiring is done in a parallel configuration. Each
parallel branch, however, can have a combination of parallel and series
elements. Every full branch of the circuit receives the full 120 V or
208 V, with the current determined by the applied load. Figure 6.63(a)
provides the detailed wiring of a single circuit having a light bulb and
two outlets. Figure 6.63(b) shows the schematic representation. First
note that although each load is in parallel with the supply, switches are
always connected in series with the load. The power will get to the lamp
only when the switch is closed and the full 120 V appears across the
bulb. The connection point for the two outlets is in the ceiling box hold-
ing the light bulb. Since a switch is not present, both outlets are always
“hot” unless the circuit breaker in the main panel is opened. It is impor-
tant that you understand this because you may be tempted to change the
light fixture by simply turning off the wall switch. True, if you’re very



APPLICATIONS  199P
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FIG. 6.63

Single phase of house wiring: (a) physical details; (b) schematic representation.

careful, you can work with one line at a time (being sure that you don’t
touch the other line at any time), but it is standard procedure to throw
the circuit breaker on the panel whenever working on a circuit. Note in
Fig. 6.63(a) that the feed wire (black) into the fixture from the panel is
connected to the switch and both outlets at one point. It is not connected
directly to the light fixture because that would put it on all the time.
Power to the light fixture is made available through the switch. The con-
tinuous connection to the outlets from the panel ensures that the outlets
are “hot” whenever the circuit breaker in the panel is on. Note also how
the return wire (white) is connected directly to the light switch and out-
lets to provide a return for each component. There is no need for the
white wire to go through the switch since an applied voltage is a two-
point connection and the black wire is controlled by the switch.

Proper grounding of the system in total and of the individual loads is
one of the most important facets in the installation of any system. There
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is a tendency at times to be satisfied that the system is working and to pay
less attention to proper grounding technique. Always keep in mind that a
properly grounded system has a direct path to ground if an undesirable
situation should develop. The absence of a direct ground will cause the
system to determine its own path to ground, and you could be that path if
you happened to touch the wrong wire, metal box, metal pipe, and so on.
In Fig. 6.63(a), the connections for the ground wires have been included.
For the romex (plastic-coated wire) used in Fig. 6.63(a), the ground wire
is provided as a bare copper wire. Note that it is connected to the panel
which in turn is directly connected to the grounded 8-ft copper rod. In
addition, note that the ground connection is carried through the entire cir-
cuit, including the switch, light fixture, and outlets. It is one continuous
connection. If the outlet box, switch box, and housing for the light fixture
are made of a conductive material such as metal, the ground will be con-
nected to each. If each is plastic, there is no need for the ground connec-
tion. However, the switch, both outlets, and the fixture itself are con-
nected to ground. For the switch and outlets there is usually a green
screw for the ground wire which is connected to the entire framework of
the switch or outlet as shown in Fig. 6.64, including the ground connec-
tion of the outlet. For both the switch and the outlet, even the screw or
screws used to hold the outside plate in place are grounded since they are
screwed into the metal housing of the switch or outlet. When screwed
into a metal box, the ground connection can be made by the screws that
hold the switch or outlet in the box as shown in Figure 6.64. In any event,
always pay strict attention to the grounding process whenever installing
any electrical equipment. It is a facet of electrical installation that is often
treated too lightly.

On the practical side, whenever hooking up a wire to a screw-type
terminal, always wrap the wire around the screw in the clockwise man-
ner so that when you tighten the screw, it will grab the wire and turn it
in the same direction. An expanded view of a typical house-wiring
arrangement will appear in Chapter 15.

6.12 COMPUTER ANALYSIS

PSpice 

Parallel dc Networks The computer analysis coverage for parallel
dc circuits will be very similar to that of series dc circuits. However, in
this case the voltage will be the same across all the parallel elements,
and the current through each branch will change with the resistance
value. The parallel network to be analyzed will have a wide range of
resistor values to demonstarate the effect on the resulting current. The
following is a list of abbreviations for any parameter of a network when
using PSpice:

f � 10�15

p � 10�12

n � 10�9

� � 10�6

m � 10�3

k � 10�3

MEG � 10�6

G � 10�9

T � 10�12

P
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FIG. 6.64

Continuous ground connection in a 
duplex outlet.
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In particular, note that m (or M) is used for “milli,” and MEG for
“megohms.”Also, PSpice does not distinguish between upper- and lower-
case units, but certain parameters typically use either the upper- or lower-
case abbreviation as shown above.

Since the details of setting up a network and going through the sim-
ulation process were covered in detail in Sections 4.9 and 5.12 for dc
circuits, the coverage here will be limited solely to the various steps
required. These steps should make it obvious that after some exposure,
getting to the point where you can first “draw” the circuit and run the
simulation is pretty quick and direct.

After selecting the Create document key (the top left of screen), the
following sequence will bring up the Schematic window: ParallelDC-
OK-Create a blank project-OK-PAGE1 (if necessary).

The voltage source and resistors are introduced as described in detail
in earlier sections, but now the resistors need to be turned 90°. You can
accomplish this by a right click of the mouse before setting a resistor in
place. The resulting long list of options includes Rotate, which if
selected will turn the resistor counterclockwise 90°. It can also be
rotated by simultaneously selecting Ctrl-R. The resistor can then be
placed in position by a left click of the mouse. An additional benefit of
this maneuver is that the remaining resistors to be placed will already
be in the vertical position. The values selected for the voltage source
and resistors appear in Fig. 6.65.

Once the network is complete, the simulation and the results of Fig.
6.65 can be obtained through the following sequence: Select New Sim-
ulation Profile key-Bias Point-Create-Analysis-Bias Point-OK-Run
PSpice key-Exit(x).

P

FIG. 6.65

Applying PSpice to a parallel network.
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The result is Fig. 6.65 which clearly reveals that the voltage is the
same across all the parallel elements and the current increases signifi-
cantly with decrease in resistance. The range in resistor values suggests,
by inspection, that the total resistance will be just less than the smallest
resistance of 22 �. Using Ohm’s law and the source current of 2.204 A
results in a total resistance of RT � E/Is � 48 V/2.204 A � 21.78 �,
confirming the above conclusion.

Electronics Workbench

Parallel dc Network For comparison purposes the parallel network
of Fig. 6.65 will now be analyzed using Electronics Workbench. The
source and ground are selected and placed as shown in Fig. 6.66 us-
ing the procedure defined in the previous chapters. For the resistors,
VIRTUAL–RESISTOR is chosen, but it must be rotated 90° to match
the configuration of Fig. 6.65. You can accomplish this by first clicking
on the resistor symbol to place it in the active state. Be sure that the
resulting small black squares surround the symbol, label, and value;
otherwise, you may have activated only the label or value. Then right-
click the mouse. The 90 Clockwise can then be selected, and the resis-
tor will be turned automatically. Unfortunately, there is no continuum
here, so the next resistor will have to be turned using the same proce-
dure. The values of each resistor are set by double-clicking on the resis-
tor symbol to obtain the Virtual Resistor dialog box. Remember that
the unit of measurement is controlled by the scrolls at the right of the
unit of measurement. For EWB, unlike PSpice, megohm uses capital M
and milliohm uses lowercase m.

P

FIG. 6.66

Using the indicators of Electronics Workbench to display the currents of a
parallel dc network.
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This time, rather than using meters to make the measurements, we
will use indicators. The Indicators key pad is the tenth down on the left
toolbar. It has the appearance of an LCD display with the number 8.
Once it has been selected, eight possible indicators will appear. For this
example, the A indicator, representing an ammeter, will be used since
we are interested only in the curent levels. When A has been selected,
a Component Browser will appear with four choices under the Com-
ponent Name List; each option refers to a position for the ammeter.
The H means “horizontal” as shown in the picture window when the
dialog box is first opened. The HR means “horizontal,” but with the
polarity reversed. The V is for a vertical configuration with the positive
sign at the top, and the VR is the vertical position with the positive sign
at the bottom. Simply select the one you want followed by an OK, and
your choice will appear in that position on the screen. Click it into posi-
tion, and you can return for the next indicator. Once all the elements are
in place and their values set, simulation can be initiated with the
sequence Simulate-Run. The results shown in Fig. 6.66 will appear.

Note that all the results appear with the indicator boxes. All are pos-
itive results because the ammeters were all entered with a configuration
that would result in conventional current entering the positive current.
Also note that as was true for inserting the meters, the indicators are
placed in series with the branch in which the current is to be measured.

PROBLEMS

SECTION 6.2 Parallel Elements

1. For each configuration of Fig. 6.67, determine which ele-
ments are in series and which are in parallel.

(a) (b) (c)

432

1

2

1 3
4

3

2
1

FIG. 6.67

Problem 1.

FIG. 6.68

Problem 2.

R2E

R1

R5 R7

R4 R6

R3

2. For the network of Fig. 6.68:
a. Which elements are in parallel?
b. Which elements are in series?
c. Which branches are in parallel?
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SECTION 6.3 Total Conductance and Resistance

3. Find the total conductance and resistance for the net-
works of Fig. 6.69.

FIG. 6.69

Problem 3.

(Standard values)

RT
9.1 � 9.1 � 2.2 � 9.1 � 2.2 � 4.7 �

GT

(f)

RT 4 � 8 � 4 �

(d)

8 �

RT 3 k� 2 k� 6 k�

GT

(b)

RT
10 � 2 k� 40 k�

GT

(e)

(Standard
values)

RT 3.3 k� 5.6 k�

GT

(c)

RT 9 � 18 �

GT

(a)

GT

4. The total conductance of each network of Fig. 6.70 is
specified. Find the value in ohms of the unknown resis-
tances.

FIG. 6.70

Problem 4.

(a) (b)

4 � R 6 �
GT  =  0.55 S

5 k� R8 k�
GT  =  0.45 mS

5. The total resistance of each circuit of Fig. 6.71 is
specified. Find the value in ohms of the unknown
resistances.

FIG. 6.71

Problem 5.

(a) (b)

18 � R 18 �
RT  =  6 �

9 �   =  R1 18 �
RT  =  4 �

R1  R2
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*6. Determine the unknown resistors of Fig. 6.72 given the
fact that R2 � 5R1 and R3 � (1/2)R1.

*7. Determine R1 for the network of Fig. 6.73.

FIG. 6.72

Problem 6.

R1

R2

R3

RT  =  20  �

FIG. 6.73

Problem 7.

R1

24 �

RT  =  10 � 120 �

24 �

SECTION 6.4 Parallel Circuits

8. For the network of Fig. 6.74:
a. Find the total conductance and resistance.
b. Determine Is and the current through each parallel

branch.
c. Verify that the source current equals the sum of the

parallel branch currents.
d. Find the power dissipated by each resistor, and note

whether the power delivered is equal to the power dis-
sipated.

e. If the resistors are available with wattage ratings of
1/2, 1, 2, and 50 W, what is the minimum wattage rat-
ing for each resistor?

9. Repeat Problem 8 for the network of Fig. 6.75.

FIG. 6.74

Problem 8.

R1E R2

I2I1Is

48 V 8 k� 24 k�

RT, GT

R1 R2

I2I1Is

0.9 V 3 � 6 �

RT

GT

I3

R3 1.5 �

FIG. 6.75

Problem 9.

FIG. 6.76

Problem 10.

R1 R2

I2I1Is

2.2 k� 4.7 k�

RT, GT

I3

R3 6.8 k�E 12 V

10. Repeat Problem 8 for the network of Fig. 6.76 con-
structed of standard resistor values.
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FIG. 6.77

Problem 11.

FIG. 6.78

Problems 12 and 37.

Washer
400-W

TV
360-W

Ten 60-W
bulbs in parallel

breaker

Circuit
(20 A)

120 V

11. Eight holiday lights are connected in parallel as shown in
Fig. 6.77.
a. If the set is connected to a 120-V source, what is the

current through each bulb if each bulb has an internal
resistance of 1.8 k�?

b. Determine the total resistance of the network.
c. Find the power delivered to each bulb.
d.. If one bulb burns out (that is, the filament opens),

what is the effect on the remaining bulbs?
e. Compare the parallel arrangement of Fig. 6.77 to the

series arrangement of Fig. 5.87. What are the relative
advantages and disadvantages of the parallel system
compared to the series arrangement?

12. A portion of a residential service to a home is depicted in
Fig. 6.78.
a. Determine the current through each parallel branch of

the network.
b. Calculate the current drawn from the 120-V source.

Will the 20-A circuit breaker trip?
c. What is the total resistance of the network?
d. Determine the power supplied by the 120-V source.

How does it compare to the total power of the load?

FIG. 6.79

Problem 13.

I1

1 k�

Is

5 �

20 �30 V

(a) (b)

I1

10 k� 10 k�

Is

–8 V

13. Determine the currents I1 and Is for the networks of Fig.
6.79.
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FIG. 6.80

Problem 14.

12 VE R1 R2 6 �

6 A

FIG. 6.81

Problem 15.

10 �

5 �

20 �

60 V

14. Using the information provided, determine the resistance
R1 for the network of Fig. 6.80.

*15. Determine the power delivered by the dc battery in Fig.
6.81.

I1

8 �

12 �

24 V

4 �

I2

P4�

–8 V

FIG. 6.82

Problem 16.

*16. For the network of Fig. 6.82:
a. Find the current I1.
b. Calculate the power dissipated by the 4-� resistor.
c. Find the current I2.

*17. For the network of Fig. 6.83:
a. Find the current I.
b. Determine the voltage V.
c. Calculate the source current Is.

FIG. 6.83

Problem 17.

Is

10 k� 4 k�

+8 V

+24 V

I

2 k� V

–

+
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*19. Using Kirchhoff’s current law, determine the unknown
currents for the networks of Fig. 6.85.

20. Using the information provided in Fig. 6.86, find the
branch resistors R1 and R3, the total resistance RT, and the
voltage source E.

FIG. 6.84

Problems 18 and 38.

R1
9 A

I1

12 A

4 A

4 A

6 A

3 A

R2I2

I3

(a)

R1

I1

20 A 8 A5 A

R2

I2

9 A

4 A

R3 I3

I4

(b)

FIG. 6.85

Problem 19.

I2 2 mAI2

5 mA

4 mA

8 mA

I3

1.5 mA

I1

(a)

I3

I4

I1

0.5 mA

6mA

(b)

FIG. 6.86

Problem 20.

E R1 R34 k�

9 mA

R2

5 mA 2 mA

RT

SECTION 6.5 Kirchhoff’s Current Law

18. Find all unknown currents and their directions in the cir-
cuits of Fig. 6.84.
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*21. Find the unknown quantities for the circuits of Fig. 6.87
using the information provided.

SECTION 6.6 Current Divider Rule

22. Using the information provided in Fig. 6.88, determine the
current through each branch using simply the ratio of par-
allel resistor values. Then determine the total current IT.

23. Using the current divider rule, find the unknown currents
for the networks of Fig. 6.89.

FIG. 6.87

Problem 21.

R110 V

1 k�

R2

I  =  3 A 2 A

(a)

64 V R

Is  =  100 mA I1

(c)

4 k�

I3

I

30 �E R2

P  =  30 W I1

(d)

R3  =  R2

I3

PR2
2 A

6 �E

RT

I

(b)

R

I32 A I2

9 �

P  =  12 W

FIG. 6.88

Problem 22.

4 �

I1 = 6 A

I2 12 �

2 �

40 �

I3

I4

ITIT

FIG. 6.89

Problem 23.

I1

6 �

3 �

3 �

12 A

I2

(a)

6 A

8 � 8 � 6 � 6 � 6 �

I3

I1 I2

I4

(b)

2 �

1 �500 mA

I2

I3

I1

I4

(c)

4 �

I4

12 �

18 �

I3

I1  =  4 A

I2

(d)
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*24. Parts (a), (b), and (c) of this problem should be done by
inspection—that is, mentally. The intent is to obtain a
solution without a lengthy series of calculations. For the
network of Fig. 6.90:
a. What is the approximate value of I1 considering the

magnitude of the parallel elements?
b. What are the ratios I1/I2 and I3 /I4?
c. What are the ratios I2 /I3 and I1/I4?
d. Calculate the current I1, and compare it to the result of

part (a).
e. Determine the current I4 and calculate the ratio I1/I4.

How does the ratio compare to the result of part (c)?

25. Find the unknown quantities using the information pro-
vided for the networks of Fig. 6.91.

*26. For the network of Fig. 6.92, calculate the resistor R that
will ensure the current I1 � 3I2.

*27. Design the network of Fig. 6.93 such that I2 � 4I1 and 
I3 � 3I2.

FIG. 6.90

Problem 24.

100 k�

1 k�
I  =  10 A

I4

10 �

1 �

I3

I2

I1

6 �

2 �

I

I1

I21 A

(a)

9 �

I3

9 �

R

2 mA

I1

I2

I  =  6 mA

(b)

FIG. 6.91

Problem 25.

FIG. 6.92

Problem 26.

R

2.2 k�

I1

I2

60 mA

FIG. 6.93

Problem 27.

R1 R2 R3E 24 V

I1 I2 I3

68 mA

FIG. 6.94

Problem 28.

I1

8 � 56 �12 V12 V

I2

8 �R 16 V16 V

I
5 A

5 A

FIG. 6.95

Problem 29.

SECTION 6.7 Voltage Sources in Parallel

28. Assuming identical supplies, determine the currents I1

and I2 for the network of Fig. 6.94.

29. Assuming identical supplies, determine the current I and
resistance R for the parallel network of Fig. 6.95.
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SECTION 6.8 Open and Short Circuits

30. For the network of Fig. 6.96:
a. Determine Is and VL.
b. Determine Is if RL is shorted out.
c. Determine VL if RL is replaced by an open circuit.

FIG. 6.96

Problem 30.

10 k�12 V

Is

E RL VL

+

–

100 �

31. For the network of Fig. 6.97:
a. Determine the open-circuit voltage VL.
b. If the 2.2-k� resistor is short circuited, what is the

new value of VL?
c. Determine VL if the 4.7-k� resistor is replaced by an

open circuit.

FIG. 6.97

Problem 31.

4.7 k�9 V VL

+

–

2.2 k� 3.3 k�

*32. For the network of Fig. 6.98, determine
a. the short-circuit currents I1 and I2.
b. the voltages V1 and V2.
c. the source current Is.

FIG. 6.98

Problem 32.

20 V

+

–

V2

4 �

Is

I1 6 �

10 �

I2

+

–

V1

5 �

SECTION 6.9 Voltmeters: Loading Effect

33. For the network of Fig. 6.99:
a. Determine the voltage V2.
b. Determine the reading of a DMM having an internal

resistance of 11 M� when used to measure V2.
c. Repeat part (b) with a VOM having an ohm/volt rat-

ing of 20,000 using the 10-V scale. Compare the
results of parts (b) and (c). Explain any difference.

d. Repeat part (c) with R1 � 100 k� and R2 � 200 k�.
e. Based on the above, can you make any general con-

clusions about the use of a voltmeter?

SECTION 6.10 Troubleshooting Techniques

34. Based on the measurements of Fig. 6.100, determine
whether the network is operating correctly. If not, try to
determine why.

FIG. 6.99

Problems 33 and 40.

20 k�6 V V2

+

–

10 k�

R2

R1

FIG. 6.100

Problem 34.

3 k� 4 k�6 V 6 k�E

I

V 6 V

3.5 mA
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35. Referring to the network of Fig. 6.101, is Va � 8.8 V the
correct reading for the given configuration? If not, which
element has been connected incorrectly in the network?

a1 k� 4 k�

12 V 4 V

Va  =  8.8 V

FIG. 6.101

Problem 35.

36. a. The voltage Va for the network of Fig. 6.102 is �1 V.
If it suddenly jumped to 20 V, what could have hap-
pened to the circuit structure? Localize the problem
area.

b. If the voltage Va is 6 V rather than �1 V, try to explain
what is wrong about the network construction.

SECTION 6.12 Computer Analysis

PSpice or Electronics Workbench

37. Using schematics, determine all the currents for the net-
work of Fig. 6.78.

38. Using schematics, determine the unknown quantities for
the network of Fig. 6.84.

Programming Language (C��, QBASIC, Pascal, etc.)

39. Write a program to determine the total resistance and
conductance of any number of elements in parallel.

40. Write a program that will tabulate the voltage V2 of Fig.
6.99 measured by a VOM with an internal resistance of
200 k� as R2 varies from 10 k� to 200 k� in increments
of 10 k�.

FIG. 6.102

Problem 36.

3 k�

4 k�

+20 V

1 k�

–4 V

a Va  =  –1 V

GLOSSARY

Current divider rule (CDR) A method by which the current
through parallel elements can be determined without first
finding the voltage across those parallel elements.

Kirchhoff’s current law (KCL) The algebraic sum of the
currents entering and leaving a node is zero.

Node A junction of two or more branches.
Ohm/volt (�/V) rating A rating used to determine both the

current sensitivity of the movement and the internal resis-
tance of the meter.

Open circuit The absence of a direct connection between
two points in a network.

Parallel circuit A circuit configuration in which the ele-
ments have two points in common.

Short circuit A direct connection of low resistive value that
can significantly alter the behavior of an element or system.
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7.1 SERIES-PARALLEL NETWORKS

A firm understanding of the basic principles associated with series and
parallel circuits is a sufficient background to begin an investigation of
any single-source dc network having a combination of series and paral-
lel elements or branches. Multisource networks are considered in detail
in Chapters 8 and 9. In general,

series-parallel networks are networks that contain both series and
parallel circuit configurations.

One can become proficient in the analysis of series-parallel networks
only through exposure, practice, and experience. In time the path to the
desired unknown becomes more obvious as one recalls similar configu-
rations and the frustration resulting from choosing the wrong approach.
There are a few steps that can be helpful in getting started on the first
few exercises, although the value of each will become apparent only
with experience.

General Approach

1. Take a moment to study the problem “in total” and make a brief
mental sketch of the overall approach you plan to use. The result
may be time- and energy-saving shortcuts.

2. Next examine each region of the network independently before
tying them together in series-parallel combinations. This will
usually simplify the network and possibly reveal a direct ap-
proach toward obtaining one or more desired unknowns. It also
eliminates many of the errors that might result due to the lack of
a systematic approach.

3. Redraw the network as often as possible with the reduced
branches and undisturbed unknown quantities to maintain clarity
and provide the reduced networks for the trip back to unknown
quantities from the source.

Series-Parallel Networks

S   P   P
S
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4. When you have a solution, check that it is reasonable by consid-
ering the magnitudes of the energy source and the elements in the
network. If it does not seem reasonable, either solve the circuit
using another approach or check over your work very carefully.

Reduce and Return Approach

For many single-source, series-parallel networks, the analysis is one
that works back to the source, determines the source current, and then
finds its way to the desired unknown. In Fig. 7.1(a), for instance, the
voltage V4 is desired. The absence of a single series or parallel path to
V4 from the source immediately reveals that the methods introduced in
the last two chapters cannot be applied here. First, series and parallel
elements must be combined to establish the reduced circuit of Fig.
7.1(b). Then series elements are combined to form the simplest of con-
figurations in Fig. 7.1(c). The source current can now be determined
using Ohm’s law, and we can proceed back through the network as
shown in Fig. 7.1(d). The voltage V2 can be determined and then the
original network can be redrawn, as shown in Fig. 7.1(e). Since V2 is
now known, the voltage divider rule can be used to find the desired
voltage V4. Because of the similarities between the networks of Figs.
7.1(a) and 7.1(e), and between 7.1(b) and 7.1(d), the networks drawn
during the reduction phase are often used for the return path. 

Although all the details of the analysis were not described above, the
general procedure for a number of series-parallel network problems
employs the procedure described above: Work back for Is and then fol-
low the return path for the specific unknown. Not every problem will
follow this path; some will have simpler, more direct solutions. How-
ever, the reduce and return approach will handle one type of problem
that does surface over and over again.

Block Diagram Approach

The block diagram approach will be employed throughout to emphasize
the fact that combinations of elements, not simply single resistive ele-
ments, can be in series or parallel. The approach will also reveal the
number of seemingly different networks that have the same basic struc-
ture and therefore can involve similar analysis techniques.

Initially, there will be some concern about identifying series and par-
allel elements and branches and choosing the best procedure to follow
toward a solution. However, as you progress through the examples and
try a few problems, a common path toward most solutions will surface
that can actually make the analysis of such systems an interesting,
enjoyable experience.

In Fig. 7.2, blocks B and C are in parallel (points b and c in com-
mon), and the voltage source E is in series with block A (point a in
common). The parallel combination of B and C is also in series with A
and the voltage source E due to the common points b and c, respec-
tively.

To ensure that the analysis to follow is as clear and uncluttered as
possible, the following notation will be used for series and parallel
combinations of elements. For series resistors R1 and R2, a comma will
be inserted between their subscript notations, as shown here:

R1,2 � R1 � R2

S    P    P

S

(e)

R4

R1 +

–

R3

R2E
Is

V4 =
R4V2

R4 + V3

(d)

R1 +

–
E

Is

RT′

(c)

RTE
Is

(b)

RT′
R1

E
Is

(a)

R4

R1 +

–

R3
R2E

Is V4

Is =
E
RT

V2

+
V1 –

+

–
V2

FIG. 7.1

Introducing the reduce and return approach.

–

+

A

C

a b

c

E B

FIG. 7.2

Introducing the block diagram approach.
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For parallel resistors R1 and R2, the parallel symbol will be inserted
between their subscript notations, as follows:

R1��2 � R1 �� R2 �

EXAMPLE 7.1 If each block of Fig. 7.2 were a single resistive ele-
ment, the network of Fig. 7.3 might result.

The parallel combination of RB and RC results in

RB��C � RB �� RC � � 4 k�

The equivalent resistance RB��C is then in series with RA, and the total
resistance “seen” by the source is

RT � RA � RB��C
� 2 k� � 4 k� � 6 k�

The result is an equivalent network, as shown in Fig. 7.4, permitting
the determination of the source current Is.

Is � � � 9 mA

and, since the source and RA are in series,

IA � Is � 9 mA

We can then use the equivalent network of Fig. 7.5 to determine IB

and IC using the current divider rule:

IB � � Is � (9 mA) � 3 mA

IC � � Is � (9 mA) � 6 mA

or, applying Kirchhoff’s current law,

IC � Is � IB � 9 mA � 3 mA � 6 mA

Note that in this solution, we worked back to the source to obtain the
source current or total current supplied by the source. The remaining
unknowns were then determined by working back through the network
to find the other unknowns.

EXAMPLE 7.2 It is also possible that the blocks A, B, and C of Fig.
7.2 contain the elements and configurations of Fig. 7.6. Working with
each region:

A: RA � 4 �

B: RB � R2 �� R3 � R2��3 � �
N
R
� � � 2 �

C: RC � R4 � R5 � R4,5 � 0.5 � � 1.5 � � 2 �

Blocks B and C are still in parallel, and

RB��C � �
N
R
� � � 1 �

2 �
�

2

4 �
�

2

2
�
3

12
�
18

12 k�(Is)
��
12 k� � 6 k�

1
�
3

6
�
18

6 k�(Is)
��
6 k� � 12 k�

54 V
�
6 k�

E
�
RT

(12 k�)(6 k�)
��
12 k� � 6 k�

R1R2
�
R1 � R2

S    P    P

S

A

B C

b

c

2 k�
RT

54 V

a

Is

12 k� 6 k�RB�C

IB IC

FIG. 7.3

Example 7.1.

6 k�54 VE RT

IA

Is

FIG. 7.4

Reduced equivalent of Fig. 7.3.

IA

12 k� 6 k�

IB IC

FIG. 7.5

Determining IB and IC for the network of 
Fig. 7.3.
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with

RT � RA � RB��C
(Note the similarity between this equation

� 4 � � 1 � � 5 �
and that obtained for Example 7.1.)

and Is � �
R
E

T
� � � 2 A

We can find the currents IA, IB, and IC using the reduction of the net-
work of Fig. 7.6 (recall Step 3) as found in Fig. 7.7. Note that IA, IB, and
IC are the same in Figs. 7.6 and 7.7 and therefore also appear in Fig.
7.7. In other words, the currents IA, IB, and IC of Fig. 7.7 will have the
same magnitude as the same currents of Fig. 7.6.

IA � Is � 2 A

and IB � IC � � � � 1 A

Returning to the network of Fig. 7.6, we have

IR2
� IR3

� � 0.5 A

The voltages VA, VB, and VC from either figure are

VA � IARA � (2 A)(4 �) � 8 V

VB � IBRB � (1 A)(2 �) � 2 V

VC � VB � 2 V

Applying Kirchhoff’s voltage law for the loop indicated in Fig. 7.7,
we obtain

Σ V � E � VA � VB � 0

E � VA � VB � 8 V � 2 V
or 10 V � 10 V (checks)

EXAMPLE 7.3 Another possible variation of Fig. 7.2 appears in Fig.
7.8.

RA � R1��2 � � � 3.6 �
54 �
�

15
(9 �)(6 �)
��
9 � � 6 �

IB
�

2

2 A
�

2

Is
�
2

IA
�

2

10 V
�

5 �

S    P    P

S

E R2 4 �4 � R3

B

R1

4 �

A

C

0.5 �R4

1.5 �R5

10 V

RT
Is

a
IA

IB IC

b

c

FIG. 7.6

Example 7.2.

VBRB  =  2 �

+  VA  –

RA  =  4 �

10 V
+

–
VC

+

–
2 �RC

IB IC

IA

Is

FIG. 7.7

Reduced equivalent of Fig. 7.6.
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RB � R3 � R4��5 � 4 � � � 4 � � 2 � � 6 �

RC � 3 �

The network of Fig. 7.8 can then be redrawn in reduced form, as shown
in Fig. 7.9. Note the similarities between this circuit and the circuits of
Figs. 7.3 and 7.7.

RT � RA � RB��C � 3.6 � �

� 3.6 � � 2 � � 5.6 �

Is � �
R
E

T
� � � 3 A

IA � Is � 3 A

Applying the current divider rule yields

IB � �
RC

R

�
CIA

RB
� � � � 1 A

By Kirchhoff’s current law,
IC � IA � IB � 3 A � 1 A � 2 A

By Ohm’s law,

VA � IARA � (3 A)(3.6 �) � 10.8 V

VB � IBRB � VC � IC RC � (2 A)(3 �) � 6 V

Returning to the original network (Fig. 7.8) and applying the current
divider rule,

I1 � � � � 1.2 A

By Kirchhoff’s current law,

I2 � IA � I1 � 3 A � 1.2 A � 1.8 A

Figures 7.3, 7.6, and 7.8 are only a few of the infinite variety of con-
figurations that the network can assume starting with the basic arrange-
ment of Fig. 7.2. They were included in our discussion to emphasize the

18 A
�

15
(6 �)(3 A)
��
6 � � 9 �

R2IA
��
R2 � R1

9 A
�

9
(3 �)(3 A)
��
3 � � 6 �

16.8 V
�

5.6 �

(6 �)(3 �)
��
6 � � 3 �

(6 �)(3 �)
��
6 � � 3 �

S    P    P

S

FIG. 7.8

Example 7.3.

R1

9 �
R2

6 � I2

I1

A

R4 6 � R5 3 �

R3 4 �

B

R6 3 �

C

IA

E 16.8 V

a

IB IC

b

c

RB 6 �

RA

3.6 �

RC 3 �E 16.8 V
RT

+  VA  –

Is

IA

IB

VB

+

–

IC

VC

+

–

FIG. 7.9

Reduced equivalent of Fig. 7.8.
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importance of considering each region of the network independently
before finding the solution for the network as a whole.

The blocks of Fig. 7.2 can be arranged in a variety of ways. In fact,
there is no limit on the number of series-parallel configurations that can
appear within a given network. In reverse, the block diagram approach can
be used effectively to reduce the apparent complexity of a system by iden-
tifying the major series and parallel components of the network. This
approach will be demonstrated in the next few examples.

7.2 DESCRIPTIVE EXAMPLES

EXAMPLE 7.4 Find the current I4 and the voltage V2 for the network
of Fig. 7.10.

Solution: In this case, particular unknowns are requested instead of
a complete solution. It would, therefore, be a waste of time to find all
the currents and voltages of the network. The method employed should
concentrate on obtaining only the unknowns requested. With the block
diagram approach, the network has the basic structure of Fig. 7.11,
clearly indicating that the three branches are in parallel and the voltage
across A and B is the supply voltage. The current I4 is now immediately
obvious as simply the supply voltage divided by the resultant resistance
for B. If desired, block A could be broken down further, as shown in
Fig. 7.12, to identify C and D as series elements, with the voltage V2

capable of being determined using the voltage divider rule once the
resistance of C and D is reduced to a single value. This is an example
of how a mental sketch of the approach might be made before applying
laws, rules, and so on, to avoid dead ends and growing frustration.

Applying Ohm’s law,

I4 � �
R
E

B
� � � � 1.5 A

Combining the resistors R2 and R3 of Fig. 7.10 will result in

RD � R2 �� R3 � 3 � �� 6 � � � � 2 �

and, applying the voltage divider rule,

V2 � �
RD

R

�
DE

RC
� � � � 4 V

EXAMPLE 7.5 Find the indicated currents and voltages for the net-
work of Fig. 7.13.

Solution: Again, only specific unknowns are requested. When the
network is redrawn, it will be particularly important to note which
unknowns are preserved and which will have to be determined using the
original configuration. The block diagram of the network may appear as
shown in Fig. 7.14, clearly revealing that A and B are in series. Note in
this form the number of unknowns that have been preserved. The volt-
age V1 will be the same across the three parallel branches of Fig. 7.13,
and V5 will be the same across R4 and R5. The unknown currents I2 and
I4 are lost since they represent the currents through only one of the par-
allel branches. However, once V1 and V5 are known, the required cur-
rents can be found using Ohm’s law.

24 V
�

6
(2 �)(12 V)
��
2 � � 4 �

18 �
�

9
(3 �)(6 �)
��
3 � � 6 �

12 V
�

8 �
E

�
R4

S    P    P

S

+

R1 4 � I4

R4 8 �R3 6 �R2 3 �
E

–
12 V

V2

+

–

FIG. 7.10

Example 7.4.

A BE

I4

FIG. 7.11

Block diagram of Fig. 7.10.

–

E

+

–

V2

+

C

D

FIG. 7.12

Alternative block diagram for the first 
parallel branch of Fig. 7.10.
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R1��2 � � � 3 �

RA � R1��2��3 � � � 1.2 �

RB � R4��5 � � � 4.8 �

The reduced form of Fig. 7.13 will then appear as shown in Fig. 7.15, and

RT � R1��2��3 � R4��5 � 1.2 � � 4.8 � � 6 �

Is � �
R
E

T
� � � 4 A

with V1 � IsR1��2��3 � (4 A)(1.2 �) � 4.8 V

V5 � IsR4��5 � (4 A)(4.8 �) � 19.2 V

Applying Ohm’s law,

I4 � � � 2.4 A

I2 � � � � 0.8 A

The next example demonstrates that unknown voltages do not have
to be across elements but can exist between any two points in a net-
work. In addition, the importance of redrawing the network in a more
familiar form is clearly revealed by the analysis to follow.

EXAMPLE 7.6

a. Find the voltages V1, V3, and Vab for the network of Fig. 7.16.
b. Calculate the source current Is.

Solutions: This is one of those situations where it might be best to
redraw the network before beginning the analysis. Since combining
both sources will not affect the unknowns, the network is redrawn as
shown in Fig. 7.17, establishing a parallel network with the total source
voltage across each parallel branch. The net source voltage is the dif-
ference between the two with the polarity of the larger.

4.8 V
�

6 �

V1
�
R2

V2
�
R2

19.2 V
�

8 �

V5
�
R4

24 V
�

6 �

96 �
�

20
(8 �)(12 �)
��
8 � � 12 �

6 �
�

5
(3 �)(2 �)
��
3 � � 2 �

6 �
�

2
R

�
N

S    P    P

S

R1

6 �

R3

2 �

+  V1  –

R4 8 � R5 12 � V5

+

–

I4

R2

6 �

I2

RT

Is

E 24 V

FIG. 7.13

Example 7.5.

+ –V1

Is

RTE V5

Is

+

–

A

B

FIG. 7.14

Block diagram for Fig. 7.13.

+ –V1

Is

RT

E V5

+

–

4.8 �

1.2 �

R1�2�3

R4�524 V

FIG. 7.15

Reduced form of Fig. 7.13.
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a. Note the similarities with Fig. 7.12, permitting the use of the voltage
divider rule to determine V1 and V3:

V1 � � � � 7.5 V

V3 � � � � 9 V

The open-circuit voltage Vab is determined by applying Kirchhoff’s
voltage law around the indicated loop of Fig. 7.17 in the clockwise
direction starting at terminal a.

�V1 � V3 � Vab � 0

and Vab � V3 � V1 � 9 V � 7.5 V � 1.5 V

b. By Ohm’s law,

I1 � � � 1.5 A

I3 � � � 1.5 A

Applying Kirchhoff’s current law,

Is � I1 � I3 � 1.5 A � 1.5 A � 3 A

EXAMPLE 7.7 For the network of Fig. 7.18, determine the voltages V1

and V2 and the current I.

Solution: It would indeed be difficult to analyze the network in the
form of Fig. 7.18 with the symbolic notation for the sources and the ref-
erence or ground connection in the upper left-hand corner of the dia-
gram. However, when the network is redrawn as shown in Fig. 7.19, the
unknowns and the relationship between branches become significantly
clearer. Note the common connection of the grounds and the replacing
of the terminal notation by actual supplies.

It is now obvious that

V2 � �E1 � �6 V

The minus sign simply indicates that the chosen polarity for V2 in Fig.
7.18 is opposite to that of the actual voltage. Applying Kirchhoff’s volt-
age law to the loop indicated, we obtain

�E1 � V1 � E2 � 0

9 V
�
6 �

V3
�
R3

7.5 V
�

5 �

V1
�
R1

72 V
�

8
(6 �)(12 V)
��
6 � � 2 �

R3E
��
R3 � R4

60 V
�

8
(5 �)(12 V)
��
5 � � 3 �

R1E
��
R1 � R2

S    P    P

S

Is

E1

–

+

b6 �

6 V

R3

E218 V

2 �

R4

5 �

R1

3 �

R2a

V3+ –

V1+ –+

–

+

–

Vab

FIG. 7.16

Example 7.6.

a

R3 6 �

R4 2 �

R1 5 �

R2 3 �

12 VE
+

–

V1

+

–

Is

V3

+

–

I1 I3

b
Vab+ –

FIG. 7.17

Network of Fig. 7.16 redrawn.

–
V1

+

–
V2

+

R1 6 �

R4 6 �

R3

7 �

R2 5 �

a E1  =   – 6  V

E2 + 18 V

I

FIG. 7.18

Example 7.7.
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and V1 � E2 � E1 � 18 V � 6 V � 24 V

Applying Kirchhoff’s current law to node a yields

I � I1 � I2 � I3

� � �

� � �

� 4 A � 1 A � 0.5 A

I � 5.5 A

The next example is clear evidence of the fact that techniques
learned in the current chapters will have far-reaching applications and
will not be dropped for improved methods. Even though the transistor
has not been introduced in this text, the dc levels of a transistor network
can be examined using the basic rules and laws introduced in the early
chapters of this text.

EXAMPLE 7.8 For the transistor configuration of Fig. 7.20, in which
VB and VBE have been provided:
a. Determine the voltage VE and the current IE.
b. Calculate V1.
c. Determine VBC using the fact that the approximation IC � IE is often

applied to transistor networks.
d. Calculate VCE using the information obtained in parts (a) through (c).

Solutions:

a. From Fig. 7.20, we find

V2 � VB � 2 V

Writing Kirchhoff’s voltage law around the lower loop yields

V2 � VBE � VE� 0

or VE � V2 � VBE � 2 V � 0.7 V � 1.3 V

and IE � �
V

R
E

E
� � � 1.3 mA

b. Applying Kirchhoff’s voltage law to the input side (left-hand region
of the network) will result in

V2 � V1 � VCC � 0

1.3 V
�
1000 �

6 V
�
12 �

6 V
�
6 �

24 V
�

6 �

E1
��
R2 � R3

E1
�
R4

V1
�
R1

S    P    P

S

a

V1
+

–

I2

R1 6 �

R4 6 �

R3 7 �

6 VE1
+

–

18 VE2

+

–
I

R2 5 �

I3

+

I1–

V2

FIG. 7.19

Network of Fig. 7.18 redrawn.

RE 1 k�

B

+

IE

E

C

VBE = 0.7 V –

VCC  =  22 V

–

VCE

–

+

IC

RC 10 k�
R1 40 k�

R2 4 k�V2

–

+

V1

–

+

VBC

+

VB = 2 V

VE

FIG. 7.20

Example 7.8.
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and V1 � VCC � V2

but V2 � VB

and V1 � VCC � V2 � 22 V � 2 V � 20 V

c. Redrawing the section of the network of immediate interest will
result in Fig. 7.21, where Kirchhoff’s voltage law yields

VC � VRC
� VCC � 0

and VC � VCC � VRC
� VCC � ICRC

but IC � IE

and VC � VCC � IERC � 22 V � (1.3 mA)(10 k�)
� 9 V

Then VBC � VB � VC

� 2 V � 9 V
� �7 V

d. VCE � VC � VE

� 9 V � 1.3 V
� 7.7 V

EXAMPLE 7.9 Calculate the indicated currents and voltage of Fig.
7.22.

S    P    P

S

RC 10 k�

VC

+

–

C

VRC

+

–

IC

VCC  =  22 V

FIG. 7.21

Determining VC for the network of Fig. 7.20.

R2 8 k�

R1

4 k�
+

R4 24 k�

R3

12 k�

R5

12 k�

I5

Is

a
R6

12 k�
R7

9 k�

R8

3 k�
R9

6 k�

–
V7

b

72 VE

FIG. 7.22

Example 7.9.

Solution: Redrawing the network after combining series elements
yields Fig. 7.23, and

Is

+

–

I6I5

R1,2,3
24 k�

R4
24 k�

V7 9 k�
R7 R8,9 9 k�

R6 12 k�

72 VE

R5 12 k�

I6I5

FIG. 7.23

Network of Fig. 7.22 redrawn.
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I5 � � � � 3 mA

with

V7 � � � � 19.6 V

I6 � � � 4.35 mA

and Is � I5 � I6 � 3 mA � 4.35 mA � 7.35 mA

Since the potential difference between points a and b of Fig. 7.22 is
fixed at E volts, the circuit to the right or left is unaffected if the net-
work is reconstructed as shown in Fig. 7.24.

19.6 V
�
4.5 k�

V7
�
R7�(8,9)

324 V
�

16.5
(4.5 k�)(72 V)
��
4.5 k� � 12 k�

R7�(8,9)E
��
R7�(8,9) � R6

72 V
�
24 k�

72 V
��
12 k� � 12 k�

E
��
R(1,2,3)�4 � R5

S    P    P

S

R2 8 k�

R1

4 k�

+
R4 24 k�

R3

12 k�

R5

12 k�

I6

R6

12 k�

R7

9 k� R8

3 k�

R9

6 k�

–
V7

72 VE

I6I5

I5

72 VE

FIG. 7.24

An alternative approach to Example 7.9.

We can find each quantity required, except Is, by analyzing each cir-
cuit independently. To find Is, we must find the source current for each
circuit and add it as in the above solution; that is, Is � I5 � I6.

EXAMPLE 7.10 This example demonstrates the power of Kirchhoff’s
voltage law by determining the voltages V1, V2, and V3 for the network
of Fig. 7.25. For path 1 of Fig. 7.26,

E1 � V1 � E3 � 0

and V1 � E1 � E3 � 20 V � 8 V � 12 V

For path 2,

E2 � V1 � V2 � 0

and V2 � E2 � V1 � 5 V � 12 V � �7 V

indicating that V2 has a magnitude of 7 V but a polarity opposite to that
appearing in Fig. 7.25. For path 3,

V3 � V2 � E3 � 0

and V3 � E3 � V2 � 8 V � (�7 V) � 8 V � 7 V � 15 V

Note that the polarity of V2 was maintained as originally assumed,
requiring that �7 V be substituted for V2.

7.3 LADDER NETWORKS

A three-section ladder network appears in Fig. 7.27. The reason for
the terminology is quite obvious for the repetitive structure. Basically
two approaches are used to solve networks of this type.

20 V

R1
+

E1
–

5 V

E2
+

–

8 V

E3
+

–

V1

+

–

V3

+

–

R3

R2

V2 +–

FIG. 7.25

Example 7.10.

20 V

R1+
E1

–

5 V

E2
+

–

8 V

E3 +
–

V1
+

–

V3

+

–

R3
R2

V2 +–

1

2

3

FIG. 7.26

Defining the paths for Kirchhoff’s voltage law.
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Method 1

Calculate the total resistance and resulting source current, and then
work back through the ladder until the desired current or voltage is
obtained. This method is now employed to determine V6 in Fig. 7.27.

S    P    P

S

V6

+

–

RT

I6

R6 2 �240 VE R4 6 �R2 6 �
+

–

R1

5 �

R3

4 �

R5

1 �

Is

FIG. 7.27

Ladder network.

R2 6 �

R1

5 �

RT
R4 6 �

R3

4 �

3 �
(  =  1 �  +  2 �)

(3 �)(6 �)

3 �  +  6 �
=  2 �

R2 6 �

R1

5 �

RT
6 � (  =  4 �  +  2 �)

6 �

2
=  3 �

FIG. 7.28

Working back to the source to determine RT for the network of Fig. 7.27.

3 �
RT

Is R1

5 �

FIG. 7.29

Calculating RT and Is .

Combining parallel and series elements as shown in Fig. 7.28 will
result in the reduced network of Fig. 7.29, and

RT � 5 � � 3 � � 8 �

Is � �
R
E

T
� � � 30 A

Working our way back to I6 (Fig. 7.30), we find that

I1 � Is

and I3 � � � 15 A

and, finally (Fig. 7.31),

30 A
�

2

Is
�
2

240 V
�

8 �

E

I1

6 �6 �

R1

5 �

R2

Is I3

240 V

+

–

FIG. 7.30

Working back toward I6.

FIG. 7.31

Calculating I6.

I1

6 �R2

Is

+

–

R3

4 �

R1

5 �

E 240 V 3 �

I3 I4 I6

6 �R4 R5,6V4

+

–
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I6 � � (15 A) � 10 A

and V6 � I6R6 � (10 A)(2 �) � 20 V

Method 2

Assign a letter symbol to the last branch current and work back through
the network to the source, maintaining this assigned current or other
current of interest. The desired current can then be found directly. This
method can best be described through the analysis of the same network
considered above in Fig. 7.27, redrawn in Fig. 7.32.

6
�
9

(6 �)I3��
6 � � 3 �

S    P    P

S

R1

5 �

V1+ –
I1

V2  R2 6 �
+

–

I2 I3

R3

4 �

V3+ –

R4 6 �
+

–

I4 I5

R5

1 �

V5+ –

V4240 VE

Is

R6 2 �

I6

+

–
V6

FIG. 7.32

An alternative approach for ladder networks.

The assigned notation for the current through the final branch is I6:

I6 � � �

or V4 � (3 �)I6

so that I4 � � � 0.5I6

and I3 � I4 � I6 � 0.5I6 � I6 � 1.5I6

V3 � I3R3 � (1.5I6)(4 �) � (6 �)I6

Also, V2 � V3 � V4 � (6 �)I6 � (3 �)I6 � (9 �)I6

so that I2 � � � 1.5I6

and Is � I2 � I3 � 1.5I6 � 1.5I6 � 3I6

with V1 � I1R1 � IsR1 � (5 �)Is

so that E � V1 � V2 � (5 �)Is � (9 �)I6

� (5 �)(3I6) � (9 �)I6 � (24 �)I6

and I6 � � � 10 A

with V6 � I6R6 � (10 A)(2 �) � 20 V

as was obtained using method 1.

Mathcad

Mathcad will now be used to analyze the ladder network of Fig. 7.27
using method 1. It will provide an excellent opportunity to practice the
basic maneuvers introduced in earlier chapters.

First, as shown in Fig. 7.33, all the parameters of the network must
be defined. Then the same sequence is followed as included in the text

240 V
�

24 �
E

�
24 �

(9 �)I6
�
6 �

V2
�
R2

(3 �)I6
�
6 �

V4
�
R4

V4
�
3 �

V4
��
1 � � 2 �

V4
��
R5 � R6
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material. For Mathcad, however, we must be sure that the defining
sequence for each new variable flows from left to right, as shown in Fig.
7.33, until R10 is defined. We are then ready to write the equation for the
total resistance and display the result. All the remaining parameters are
then defined and displayed as shown. The results are an exact match
with the longhand solution.

The wonderful thing about Mathcad is that this sequence can be put
in memory and called for as the need arises for different networks. Sim-
ply redefine the parameters of the network, and all the new values for
the important parameters of the network will be displayed immediately.

S    P    P

S

E 20 �

30 �

10 �

a

b

c

0 V

60 V

100 V

120 V

120 V

FIG. 7.34

Voltage divider supply.

7.4 VOLTAGE DIVIDER SUPPLY 
(UNLOADED AND LOADED)

The term loaded appearing in the title of this section refers to the appli-
cation of an element, network, or system to a supply that will draw cur-
rent from the supply. As pointed out in Section 5.8, the application of a
load can affect the terminal voltage of the supply.

Through a voltage divider network such as the one in Fig. 7.34, a
number of terminal voltages can be made available from a single supply.
The voltage levels shown (with respect to ground) are determined by a
direct application of the voltage divider rule. Figure 7.34 reflects a no-
load situation due to the absence of any current-drawing elements con-
nected between terminals a, b, or c and ground.

The larger the resistance level of the applied loads compared to the
resistance level of the voltage divider network, the closer the resulting
terminal voltage to the no-load levels. In other words, the lower the
current demand from a supply, the closer the terminal characteristics
are to the no-load levels.

FIG. 7.33

Using Mathcad to analyze the ladder network of Fig. 7.27.
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To demonstrate the validity of the above statement, let us consider
the network of Fig. 7.34 with resistive loads that are the average value
of the resistive elements of the voltage divider network, as shown in
Fig. 7.35.

S    P    P

S

FIG. 7.35

Voltage divider supply with loads equal to the average value of the resistive 
elements that make up the supply.

R2 20 �

R1 10 �

E 120 V

R3 30 � RL3
20 �

RL2
20 �

RL1
20 �

Vc

Vb

Va  =  120 V

0 V

Voltage-divider supply

The voltage Va is unaffected by the load RL1
since the load is in par-

allel with the supply voltage E. The result is Va � 120 V, which is the
same as the no-load level. To determine Vb, we must first note that R3

and RL3
are in parallel and R′3 � R3 �� RL3

� 30 � �� 20 � � 12 �. The
parallel combination R′2 � (R2 � R′3) �� RL2

� (20 � � 12 �) �� 20 �
� 32 � �� 20 � � 12.31 �. Applying the voltage divider rule gives

Vb � � 66.21 V

versus 100 V under no-load conditions.
The voltage Vc is

Vc � � 24.83 V

versus 60 V under no-load conditions.
The effect of load resistors close in value to the resistor employed in

the voltage divider network is, therefore, to decrease significantly some
of the terminal voltages.

If the load resistors are changed to the 1-k� level, the terminal volt-
ages will all be relatively close to the no-load values. The analysis is
similar to the above, with the following results:

Va � 120 V Vb � 98.88 V Vc � 58.63 V

If we compare current drains established by the applied loads, we
find for the network of Fig. 7.35 that

IL 2
� �

V

R

L

L

2

2

� � � 3.31 A

and for the 1-k� level,

IL 2
� � 98.88 mA < 0.1 A

98.88 V
�

1 k�

66.21 V
�

20 �

(12 �)(66.21 V)
��

12 � � 20 �

(12.31 �)(120 V)
��
12.31 � � 10 �
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As noted above in the highlighted statement, the more the current
drain, the greater the change in terminal voltage with the application of
the load. This is certainly verified by the fact that IL 2

is about 33.5 times
larger with the 20-� loads.

The next example is a design exercise. The voltage and current rat-
ings of each load are provided, along with the terminal ratings of the
supply. The required voltage divider resistors must be found.

EXAMPLE 7.11 Determine R1, R2, and R3 for the voltage divider sup-
ply of Fig. 7.36. Can 2-W resistors be used in the design?

S    P    P

S

R2

–12 V

R1

b

R3

a

RL2
E 72 V

20 mA

10 mA

20 V

RL1
60 V

+

–
+

–

Is  =  50 mA

FIG. 7.36

Example 7.11.

Solution: R3:

R3 � �
V

IR

R

3

3� � �
V

I

R

s

3� � �
5

1

0

2

m

V

A
� � 240 �

PR3
� (IR3

)2R3 � (50 mA)2 240 � � 0.6 W < 2 W

R1: Applying Kirchhoff’s current law to node a:

Is � IR1
� IL1

� 0

and IR1
� Is � IL1

� 50 mA � 20 mA

� 30 mA

R1 � �
V

IR

R

1

1� � �
VL1

I

�

R1

VL2� � �
60 V

30

�

mA

20 V
� �

� 1.33 k�

PR1
� (IR1

)2R1 � (30 mA)2 1.33 k� � 1.197 W < 2 W

R2: Applying Kirchhoff’s current law at node b:

IR1
� IR2

� IL2
� 0

and IR2
� IR1

� IL2
� 30 mA � 10 mA

� 20 mA

R2 � � � 1 k�

PR2
� (IR2

)2R2 � (20 mA)2 1 k� � 0.4 W < 2 W

Since PR1
, PR2

, and PR3
are less than 2 W, 2-W resistors can be used for

the design.

20 V
�
20 mA

VR2
�
IR2

40 V
�
30 mA
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7.5 POTENTIOMETER LOADING

For the unloaded potentiometer of Fig. 7.37, the output voltage is deter-
mined by the voltage divider rule, with RT in the figure representing the
total resistance of the potentiometer. Too often it is assumed that the
voltage across a load connected to the wiper arm is determined solely
by the potentiometer, and the effect of the load can be ignored. This is
definitely not the case, as is demonstrated in the next few paragraphs.

When a load is applied as shown in Fig. 7.38, the output voltage VL is
now a function of the magnitude of the load applied since R1 is not as
shown in Fig. 7.37 but is instead the parallel combination of R1 and RL.

The output voltage is now

VL � with R′ � R1 �� RL (7.1)

If it is desired to have good control of the output voltage VL through
the controlling dial, knob, screw, or whatever, it is advisable to choose
a load or potentiometer that satisfies the following relationship:

(7.2)

For example, if we disregard Eq. (7.2) and choose a 1-M� poten-
tiometer with a 100-� load and set the wiper arm to 1/10 the total resis-
tance, as shown in Fig. 7.39, then

R′ � 100 k� �� 100 � � 99.9 �

and VL � � 0.001 V � 1 mV

which is extremely small compared to the expected level of 1 V.
In fact, if we move the wiper arm to the midpoint,

R′ � 500 k� �� 100 � � 99.98 �

and VL � � 0.002 V � 2 mV

which is negligible compared to the expected level of 5 V. Even at 
R1 � 900 k�, VL is simply 0.01 V, or 1/1000 of the available voltage.

Using the reverse situation of RT � 100 � and RL � 1 M� and the
wiper arm at the 1/10 position, as in Fig. 7.40, we find

R′ � 10 � � 1 M� � 10 �

and VL � � 1 V

as desired.
For the lower limit (worst-case design) of RL � RT � 100 �, as de-

fined by Eq. (7.2) and the halfway position of Fig. 7.38,

R′ � 50 � �� 100 � � 33.33 �

and VL � � 4 V

It may not be the ideal level of 5 V, but at least 40% of the voltage
E has been achieved at the halfway position rather than the 0.02%
obtained with RL � 100 � and RT � 1 M�.

In general, therefore, try to establish a situation for potentiometer
control in which Equation (7.2) is satisfied to the highest degree possible.

33.33 �(10 V)
��
33.33 � � 50 �

10 �(10 V)
��
10 � � 90 �

(99.98 �)(10 V)
��
99.98 � � 500 k�

99.9 �(10 V)
��
99.9 � � 900 k�

RL ≥ RT

R′E
�
R′ � R2

S    P    P

S

R1

E

R2

RT

VL

+

–
=

R1E
R1  +  R2

FIG. 7.37

Unloaded potentiometer.

R1

E

R2

VL

+

–

R'  =  R1 � RL

RL

RT

FIG. 7.38

Loaded potentiometer.

E

VL

+

–

10 V

1 M�  Pot.

900 k�

100 k�

100 �

FIG. 7.39

RT > RL.

E

VL

+

–

10 V

100 �  Pot.

90 �

10 �

1 M�

FIG. 7.40

RL > RT.
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Someone might suggest that we make RT as small as possible to
bring the percent result as close to the ideal as possible. Keep in mind,
however, that the potentiometer has a power rating, and for networks
such as Fig. 7.40, Pmax � E2/RT � (10 V)2/100 � � 1 W. If RT is re-
duced to 10 �, Pmax � (10 V)2/10 � � 10 W, which would require a
much larger unit.

EXAMPLE 7.12 Find the voltages V1 and V2 for the loaded poten-
tiometer of Fig. 7.41.

Solution:

Ideal (no load): V1 � � 48 V

V2 � � 72 V

Loaded: R′ � 4 k� �� 12 k� � 3 k�

R″ � 6 k� �� 30 k� � 5 k�

V1 � � 45 V

V2 � � 75 V

The ideal and loaded voltage levels are so close that the design can
be considered a good one for the applied loads. A slight variation in the
position of the wiper arm will establish the ideal voltage levels across
the two loads.

7.6 AMMETER, VOLTMETER, AND
OHMMETER DESIGN

Now that the fundamentals of series, parallel, and series-parallel net-
works have been introduced, we are prepared to investigate the funda-
mental design of an ammeter, voltmeter, and ohmmeter. Our design of
each will employ the d’Arsonval analog movement of Fig. 7.42. The
movement consists basically of an iron-core coil mounted on bearings
between a permanent magnet. The helical springs limit the turning
motion of the coil and provide a path for the current to reach the coil.
When a current is passed through the movable coil, the fluxes of the
coil and permanent magnet will interact to develop a torque on the coil
that will cause it to rotate on its bearings. The movement is adjusted to
indicate zero deflection on a meter scale when the current through the
coil is zero. The direction of current through the coil will then deter-
mine whether the pointer will display an up-scale or below-zero indica-
tion. For this reason, ammeters and voltmeters have an assigned polar-
ity on their terminals to ensure an up-scale reading.

D’Arsonval movements are usually rated by current and resistance.
The specifications of a typical movement might be 1 mA, 50 �. The 
1 mA is the current sensitivity (CS) of the movement, which is the cur-
rent required for a full-scale deflection. It will be denoted by the sym-
bol ICS. The 50 � represents the internal resistance (Rm) of the move-
ment. A common notation for the movement and its specifications is
provided in Fig. 7.43.

5 k�(120 V)
��

8 k�

3 k�(120 V)
��

8 k�

6 k�(120 V)
��

10 k�

4 k�(120 V)
��

10 k�

S    P    P

S

FIG. 7.42

d’Arsonval analog movement. (Courtesy of 
Weston Instruments, Inc.)

FIG. 7.43

Movement notation.

E

V1

+

–

120 V

10 k�  Pot.

6 k�

4 k�

12 k�

V2

+

–
30 k�

FIG. 7.41

Example 7.12.
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The Ammeter

The maximum current that the d’Arsonval movement can read indepen-
dently is equal to the current sensitivity of the movement. However,
higher currents can be measured if additional circuitry is introduced.
This additional circuitry, as shown in Fig. 7.44, results in the basic con-
struction of an ammeter.

S    P    P

S

Rshunt

1 mA, 50 �

b

d

a

c
Imax  = 1 A

Is

Im

Ammeter

FIG. 7.44

Basic ammeter.

FIG. 7.45

Multirange ammeter.

The resistance Rshunt is chosen for the ammeter of Fig. 7.44 to allow
1 mA to flow through the movement when a maximum current of 1 A
enters the ammeter. If less than 1 A should flow through the ammeter,
the movement will have less than 1 mA flowing through it and will
indicate less than full-scale deflection.

Since the voltage across parallel elements must be the same, the
potential drop across a-b in Fig. 7.44 must equal that across c-d; that is,

(1 mA)(50 �) � RshuntIs

Also, Is must equal 1 A � 1 mA � 999 mA if the current is to be limited
to 1 mA through the movement (Kirchhoff’s current law). Therefore,

(1 mA)(50 �) � Rshunt(999 mA)

Rshunt �

� 0.05 �

In general,

(7.3)

One method of constructing a multirange ammeter is shown in Fig.
7.45, where the rotary switch determines the Rshunt to be used for the

Rshunt � �
Ima

R

x

m

�

ICS

ICS
�

(1 mA)(50 �)
��

999 mA
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maximum current indicated on the face of the meter. Most meters
employ the same scale for various values of maximum current. If you
read 375 on the 0–5 mA scale with the switch on the 5 setting, the cur-
rent is 3.75 mA; on the 50 setting, the current is 37.5 mA; and so on.

The Voltmeter

A variation in the additional circuitry will permit the use of the d’Ar-
sonval movement in the design of a voltmeter. The 1-mA, 50-� move-
ment can also be rated as a 50-mV (1 mA � 50 �), 50-� movement,
indicating that the maximum voltage that the movement can measure
independently is 50 mV. The millivolt rating is sometimes referred to as
the voltage sensitivity (VS). The basic construction of the voltmeter is
shown in Fig. 7.46.

The Rseries is adjusted to limit the current through the movement to
1 mA when the maximum voltage is applied across the voltmeter. A
lesser voltage would simply reduce the current in the circuit and
thereby the deflection of the movement.

Applying Kirchhoff’s voltage law around the closed loop of Fig.
7.46, we obtain

[10 V � (1 mA)(Rseries)] � 50 mV � 0

or Rseries � � 9950 �

In general,

(7.4)

One method of constructing a multirange voltmeter is shown in
Fig. 7.47. If the rotary switch is at 10 V, Rseries � 9.950 k�; at 50 V,
Rseries � 40 k� � 9.950 k� � 49.950 k�; and at 100 V, Rseries �
50 k� � 40 k� � 9.950 k� � 99.950 k�.

The Ohmmeter

In general, ohmmeters are designed to measure resistance in the low,
mid-, or high range. The most common is the series ohmmeter, de-
signed to read resistance levels in the midrange. It employs the series
configuration of Fig. 7.48. The design is quite different from that of the

Rseries � �
Vmax

IC

�

S

VVS
�

10 V � (50 mV)
��

1 mA

S    P    P

S

1 mA, 50 �

Rs

Zero-adjust

Im

E

Runknown

FIG. 7.48

Series ohmmeter.

V  =  10  V (maximum)

Im  =  1 mA

1 mA, 50 �

Rseries

50 mV+ –

+ –

FIG. 7.46

Basic voltmeter.

40 k�

50 k�

External terminals

100 V

50 V

10 V
Rotary
switch

9.95 k�
Im  =  1 mA

1 mA, 50 �

–+

FIG. 7.47

Multirange voltmeter.
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ammeter or voltmeter because it will show a full-scale deflection for
zero ohms and no deflection for infinite resistance.

To determine the series resistance Rs, the external terminals are
shorted (a direct connection of zero ohms between the two) to simulate
zero ohms, and the zero-adjust is set to half its maximum value. The
resistance Rs is then adjusted to allow a current equal to the current sen-
sitivity of the movement (1 mA) to flow in the circuit. The zero-adjust
is set to half its value so that any variation in the components of the
meter that may produce a current more or less than the current sensitiv-
ity can be compensated for. The current Im is

Im (full scale) � ICS � (7.5)

and (7.6)

If an unknown resistance is then placed between the external terminals,
the current will be reduced, causing a deflection less than full scale. If
the terminals are left open, simulating infinite resistance, the pointer
will not deflect since the current through the circuit is zero.

An instrument designed to read very low values of resistance appears
in Fig. 7.49. Because of its low-range capability, the network design
must be a great deal more sophisticated than described above. It
employs electronic components that eliminate the inaccuracies intro-
duced by lead and contact resistances. It is similar to the above system
in the sense that it is completely portable and does require a dc battery
to establish measurement conditions. Special leads are employed to
limit any introduced resistance levels. The maximum scale setting can
be set as low as 0.00352 (3.52 m�).

Rs � �
I
E

CS
� � Rm � �

zero-
2
adjust
�

E
———
Rs � Rm � �

zero-
2
adjust
�

S    P    P

S

FIG. 7.49

Milliohmmeter. (Courtesy of Keithley Instruments, Inc.)

FIG. 7.50

Megohmmeter. (Courtesy of AEMC Corp.)

The megohmmeter (often called a megger) is an instrument for
measuring very high resistance values. Its primary function is to test the
insulation found in power transmission systems, electrical machinery,
transformers, and so on. To measure the high-resistance values, a high
dc voltage is established by a hand-driven generator. If the shaft is
rotated above some set value, the output of the generator will be fixed
at one selectable voltage, typically 250 V, 500 V, or 1000 V. A photo-
graph of a commercially available tester is shown in Fig. 7.50. For this
instrument, the range is zero to 5000 M�.
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7.7 GROUNDING

Although usually treated too lightly in most introductory electrical or
electronics texts, the impact of the ground connection and how it can
provide a measure of safety to a design are very important topics.
Ground potential is 0 V at every point in a network that has a ground
symbol. Since they are all at the same potential, they can all be con-
nected together, but for purposes of clarity most are left isolated on a
large schematic. On a schematic the voltage levels provided are always
with respect to ground. A system can therefore be checked quite rapidly
by simply connecting the black lead of the voltmeter to the ground con-
nection and placing the red lead at the various points where the typical
operating voltage is provided. A close match normally implies that that
portion of the system is operating properly. Even though a major part of
the discussion to follow includes ac systems, which will not be intro-
duced until Chapter 13, the content is such that the background estab-
lished thus far will be sufficient to understand the material to be pre-
sented. The concept of grounding is one that should be introduced at the
earliest opportunity for safety and theoretical reasons.

There are various types of grounds depending on the application. An
earth ground is one that is connected directly to the earth by a low-
impedance connection. The entire surface of the earth is defined to have
a potential of 0 V. It is the same at every point because there are suffi-
cient conductive agents in the soil such as water and electrolytes to
ensure that any difference in voltage on the surface is equalized by a
flow of charge between the two points. Every home has an earth
ground, usually established by a long conductive rod driven into the
ground and connected to the power panel. The electrical code requires
a direct connection from earth ground to the cold-water pipes of a home
for safety reasons. A “hot” wire touching a cold-water pipe draws suf-
ficient current because of the low-impedance ground connection to
throw the breaker. Otherwise, people in the bathroom could pick up the
voltage when they touch the cold-water faucet, thereby risking bodily
harm. Because water is a conductive agent, any area of the home with
water such as the bathroom or kitchen is of particular concern. Most
electrical systems are connected to earth ground primarily for safety
reasons. All the power lines in a laboratory, at industrial locations, or in
the home are connected to earth ground.

A second type is referred to as a chassis ground, which may be float-
ing or connected directly to an earth ground. A chassis ground simply
stipulates that the chassis has a reference potential for all points of the
network. If the chassis is not connected to earth potential (0 V), it is
said to be floating and can have any other reference voltage for the
other voltages to be compared to. For instance, if the chassis is sitting
at 120 V, all measured voltages of the network will be referenced to this
level. A reading of 32 V between a point in the network and the chassis
ground will therefore actually be at 152 V with respect to earth poten-
tial. Most high-voltage systems are not left floating, however, because
of loss of the safety factor. For instance, if someone should touch the
chassis and be standing on a suitable ground, the full 120 V would fall
across that individual.

Grounding can be particularly important when working with numer-
ous pieces of measuring equipment in the laboratory. For instance, the
supply and oscilloscope in Fig. 7.51(a) are each connected directly to
an earth ground through the negative terminal of each. If the oscillo-
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S



GROUNDING  235

scope is connected as shown in Fig. 7.51(a) to measure the voltage VR1
,

a dangerous situation will develop. The grounds of each piece of equip-
ment are connected together through the earth ground, and they effec-
tively short out the resistor. Since the resistor is the primary current-
controlling element in the network, the current will rise to a very high
level and possibly damage the instruments or cause dangerous side
effects. In this case the supply or scope should be used in the floating
mode, or the resistors interchanged as shown in Fig. 7.51(b). In Fig.
7.51(b) the grounds have a common point and do not affect the struc-
ture of the network.

The National Electrical Code requires that the “hot” (or feeder) line
that carries current to a load be black, and the line (called the neutral)
that carries the current back to the supply be white. Three-wire conduc-
tors have a ground wire that must be green or bare, which will ensure a
common ground but which is not designed to carry current. The com-
ponents of a three-prong extension cord and wall outlet are shown in Fig.
7.52. Note that on both fixtures the connection to the hot lead is smaller
than the return leg and that the ground connection is partially circular.

The complete wiring diagram for a household outlet is shown in Fig.
7.53. Note that the current through the ground wire is zero and that both
the return wire and the ground wire are connected to an earth ground.
The full current to the loads flows through the feeder and return lines.
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R2 100 �
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–
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1 �
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FIG. 7.51

Demonstrating the effect of the oscilloscope ground on the measurement of the 
voltage across the resistor R1.

FIG. 7.52

Three-wire conductors: (a) extension cord; (b) home outlet.
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Black

Black
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The importance of the ground wire in a three-wire system can be
demonstrated by the toaster in Fig. 7.54 rated 1200 W at 120 V. From the
power equation P � EI, the current drawn under normal operating con-
ditions is I � P/E � 1200 W/120 V � 10 A. If a two-wire line were
employed as shown in Fig. 7.54(a), the 20-A breaker would be quite
comfortable with the 10-A current, and the system would perform nor-
mally. However, if abuse to the feeder (or return line) caused it to become
frayed and to touch the metal housing of the toaster, the situation
depicted in Fig. 7.54(b) would result. The housing would become “hot,”
yet the breaker would not “pop” because the current would still be the
rated 10 A. A dangerous condition would exist because anyone touching
the toaster would feel the full 120 V to ground. If the ground wire were
attached to the chassis as shown in Fig. 7.54(c), a low-resistance path
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FIG. 7.54

Demonstrating the importance of a properly grounded appliance: 
(a) ungrounded; (b) ungrounded and undesirable contact; 

(c) grounded appliance with undesirable contact.
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FIG. 7.53

Complete wiring diagram for a household outlet with a 10-� load.
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would be created between the short-circuit point and ground, and the cur-
rent would jump to very high levels. The breaker would “pop,” and the
user would be warned that a problem exists.

Although the above discussion does not cover all possible areas of
concern with proper grounding or introduce all the nuances associated
with the effect of grounds on a system’s performance, it should provide
an awareness of the importance of understanding its impact. Additional
comment on the effects of grounding will be made in the chapters to
follow as the need arises.

7.8 APPLICATIONS

Boosting a Car Battery

Although boosting a car battery may initially appear to be a simple
application of parallel networks, it is really a series-parallel operation
that is worthy of some investigation. As indicated in Chapter 2, every dc
supply has some internal resistance. For the typical 12-V lead-acid car
battery, the resistance is quite small—in the milliohm range. In most
cases the low internal resistance will ensure that most of the voltage (or
power) is delivered to the load and not lost on the internal resistance. In
Fig. 7.55, battery #2 has discharged because the lights were left on for
three hours during a movie. Fortunately, a friend who made sure his
own lights were out has a fully charged battery #1 and a good set of
16-ft cables with #6 gage stranded wire and well-designed clips. The
investment in a good set of cables with sufficient length and heavy wire
is a wise one, particularly if you live in a cold climate. Flexibility, as
provided by stranded wire, is also a very desirable characteristic under
some conditions. Be sure to check the gage of the wire and not just the
thickness of the insulating jacket. You get what you pay for, and the
copper is the most expensive part of the cables. Too often the label says
“heavy-duty,” but the wire is too high a gage number.

The proper sequence of events in boosting a car is often a function
of whom you speak to or what information you read. For safety sake
some people recommend that the car with the good battery be turned off
when making the connections. This, however, can create an immediate
problem if the “dead” battery is in such a bad state that when it is
hooked up to the good battery, it will immediately drain it to the point
that neither car will start. With this in mind, it does make some sense to
leave the car running to ensure that the charging process continues until
the starting of the disabled car is initiated. Because accidents do hap-
pen, it is strongly recommended that the person making the connections
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FIG. 7.55

Boosting a car battery.
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wear some type of protective eye equipment even if it is just a pair of
glasses. Take sufficient time to be sure that you know which are the
positive and negative terminals for both cars. If it’s not immediately
obvious, keep in mind that the negative or ground side is usually con-
nected to the chassis of the car with a relatively short, heavy wire.
When you are sure of which are the positive and negative terminals,
first connect one of the red wire clamps of the booster cables to the pos-
itive terminal of the discharged battery—all the while being sure that
the other red clamp is not touching the battery or car. Then connect the
other end of the red wire to the positive terminal of the fully charged
battery. Next, connect one end of the black cable of the booster cables
to the negative terminal of the booster battery, and finally connect the
other end of the black cable to the engine block of the stalled vehicle
(not the negative post of the dead battery) away from the carburetor,
fuel lines, or moving parts of the car. Lastly, have someone maintain a
constant idle speed in the car with the good battery as you start the car
with the bad battery. After the vehicle starts, remove the cables in the
reverse order starting with the cable connected to the engine block.
Always be careful to ensure that clamps don’t touch the battery or chas-
sis of the car or get near any moving parts. Some people feel that the
car with the good battery should charge the bad battery for 10 to 15 min-
utes before starting the disabled car so the disabled car will be essen-
tially using its own battery in the starting process. Keep in mind that the
instant the booster cables are connected, the booster car will be making
a concerted effort to charge both its own battery and the drained battery.
At starting it will then be asked to supply a heavy current to start the
other car. It’s a pretty heavy load to put on a single battery. For the
situation of Fig. 7.55, the voltage of battery #2 is less than that of bat-
tery #1, and the charging current will flow as shown. The resistance in
series with the boosting battery is more because of the long length of
the booster cable to the other car. The current is limited only by the
series milliohm resistors of the batteries, but the voltage difference is so
small that the starting current will be in safe range for the cables
involved. The initial charging current will be I � (12 V � 11.7 V)/
(20 m� � 10 m�) � 0.3 V/30 m� � 10 A. At starting, the current lev-
els will be as shown in Fig. 7.56 for the resistance levels and battery
voltages assumed. At starting, an internal resistance for the starting cir-
cuit of 0.1 � � 100 m� is assumed. Note that the battery of the dis-
abled car has now charged up to 11.8 V with an associated increase in
its power level. The presence of two batteries requires that the analysis
wait for the methods to be introduced in the next chapter.
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FIG. 7.56

Current levels at starting.
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+

S

I1 = 43.75 A

12 V

20 mΩ 10 mΩ

I2 = 67.5 A

Istarter = I1 + I2 = 111.25 A

100-mΩ
starter
motor

11.8 V
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Note also that the current drawn from the starting circuit for the dis-
abled car is over 100 A and that the majority of the starting current is
provided by the battery being charged. In essence, therefore, the major-
ity of the starting current is coming from the disabled car. The good bat-
tery has provided an initial charge to the bad battery and has provided
the additional current necessary to start the car. But, in total, it is the
battery of the disabled car that is the primary source of the starting cur-
rent. For this very reason, it is advised to let the charging action con-
tinue for 10 or 15 minutes before starting the car. If the disabled car is
in really bad shape with a voltage level of only 11 V, the resulting lev-
els of current will reverse, with the good battery providing 68.75 A and
the bad battery only 37.5 A. Quite obviously, therefore, the worse the
condition of the dead battery, the heavier the drain on the good battery.
A point can also be reached where the bad battery is in such bad shape
that it cannot accept a good charge or provide its share of the starting
current. The result can be continuous cranking of the down car without
starting, and thus possible damage to the battery of the running car due
to the enormous current drain. Once the car is started and the booster
cables are removed, the car with the discharged battery will continue to
run because the alternator will carry the load (charging the battery and
providing the necessary dc voltage) after ignition.

The above discussion was all rather straightforward, but let’s inves-
tigate what might happen if it is a dark and rainy night, you get rushed,
and you hook up the cables incorrectly as shown in Fig. 7.57. The result
is two series-aiding batteries and a very low resistance path. The
resulting current can then theoretically be extremely high [I � (12 V �
11.7 V)/30 m� � 23.7 V/30 m� � 790 A], perhaps permanently dam-
aging the electrical system of both cars and, worst of all, causing an
explosion that might seriously injure someone. It is therefore very
important that you treat the process of boosting a car with great care.
Find that flashlight, double-check the connections, and be sure that
everyone is clear when you start that car.

Before leaving the subject, we should point out that getting a boost
from a tow truck results in a somewhat different situation: The connec-
tions to the battery in the truck are very secure; the cable from the truck
is a heavy wire with thick insulation; the clamps are also quite large and
make an excellent connection with your battery; and the battery is
heavy-duty for this type of expected load. The result is less internal
resistance on the supply side and a heavier current from the truck bat-
tery. In this case, the truck is really starting the disabled car, which sim-
ply reacts to the provided surge of power.

12 V

20 mΩ

10 mΩ

11.7 V

Booster cable

Idamage = 790 A

+

–

–

+

FIG. 7.57

Current levels if the booster battery is improperly connected.
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Electronic Circuits

The operation of most electronic systems requires a distribution of dc
voltages throughout the design. Although a full explanation of why the
dc level is required (since it is an ac signal to be amplified) will have to
wait for the introductory courses in electronic circuits, the dc analysis
will proceed in much the same manner as described in this chapter. In
other words, this chapter and the preceding chapters are sufficient back-
ground to perform the dc analysis of the majority of electronic networks
you will encounter if given the dc terminal characteristics of the elec-
tronic elements. For example, the network of Fig. 7.58 employing a
transistor will be covered in detail in any introductory electronics
course. The dc voltage between the base (B) of the transistor and the
emitter (E) is about 0.7 V under normal operating conditions, and the
collector (C) is related to the base current by IC � bIB � 50IB (b will
vary from transistor to transistor). Using these facts will enable us to
determine all the dc currents and voltages of the network using simply
the laws introduced in this chapter. In general, therefore, be encouraged
by the fact that the content of this chapter will find numerous applica-
tions in the courses to follow.

β = 50
VRC

RC

2 kΩ

+ –

220 kΩ

+ –
VRB
RB

12 VVBB
+

–
12 VVCC

+

–

IC

IB VBE

+
–

+
VCE–

C

B

E

FIG. 7.58

dc bias levels of a transistor amplifier.

For the network of Fig. 7.58, we can begin our analysis by applying
Kirchhoff’s voltage law to the base circuit:

�VBB � VRB
� VBE � 0 or VBB � VRB

� VBE

and VRB
� VBB � VBE � 12 V � 0.7 V � 11.3 V

so that VRB
� IBRB � 11.3 V

and IB � �
V

R
R

B

B� � �
2

1

2

1

0

.3

k

V

�
� � 51.4 mA

Then IC � bIB � 50IB � 50(51.4 mA) � 2.57 mA

and �VCE � VRC
� VCC � 0 or VCC � VRC

� VCE

with VCE � VCC � VRC
� VCC � ICRC � 12 V � (2.57 mA)(2 k�)

� 12 V � 5.14 V � 6.86 V

For a typical dc analysis of a transistor, all the currents and voltages
of interest are now known: IB, VBE, IC, and VCE. All the remaining volt-
age, current, and power levels for the other elements of the network can
now be found using the basic laws applied in this chapter.

The above example is typical of the type of exercise you will be asked
to perform in your first electronics course. It is now necessary for you
only to be exposed to the device and to understand the reason for the rela-
tionships between the various currents and voltages of the device.
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FIG. 7.59

Using PSpice to verify the results of Example 7.11.

7.9 COMPUTER ANALYSIS

PSpice

Voltage Divider Supply PSpice will now be used to verify the
results of Example 7.11. The calculated resistor values will be substi-
tuted and the voltage and current levels checked to see if they match the
handwritten solution. The network is drawn as described in earlier
chapters using only the tools described thus far (see Fig. 7.59)—in one
way, a practice exercise for everything learned about the Capture Lite
Edition. Note in this case how rotating the first resistor sets everything
up for the remaining resistors. Further, it is a nice advantage that you
can place one resistor after another without going to the End Mode
option. Be especially careful with the placement of the ground, and be
sure 0/SOURCE is used. Note also that resistor R1 of Fig. 7.59 was
entered as 1.333 k� rather than 1.33 k� as in the example. When run-
ning the program, we found that the computer solutions were not a per-
fect match to the longhand solution to the level of accuracy desired
unless this change was made.

Since all the voltages are to ground, the voltage across RL1
is 60 V;

across RL2
, 20 V; and across R3, �12 V. The currents are also an excel-

lent match with the hand solution with IE � 50 mA, IR1
� 30 mA, 

IR2
� 20 mA, IR3

� 50 mA, IRL2
� 10 mA, and IRL1

� 20 mA. For the
display of Fig. 7.59, the W option was disabled to permit concentrating
on the voltage and current levels.

There is again an exact match with the longhand solution.



The program begins with a heading and preprocessor directive. The
<iostream.h> header file sets up the input-output path between the pro-
gram and the disk operating system. The main ( ) part of the program,
defined by the braces { }, includes all the remaining commands and
statements. First, the network parameters and quantities to be determined
are defined as floating-point variables. Next, the cout and cin commands
are used to obtain the resistor values and source voltage from the user.
The total resistance is then determined in the order described above, fol-
lowed by a carriage return “\n” and a printout of the value. Then the cur-
rents are determined and printed out by the last three lines.

The program (Fig. 7.61) is quite straightforward and with experience
not difficult to write. In addition, consider the benefits of having a pro-
gram on file that can solve any ladder network having the configuration
of Fig. 7.60. For the parameter values of Fig. 7.27, the printout will
appear as shown in Fig. 7.62, confirming the results of Section 7.3. If
an element is missing, simply insert a short-circuit or an open-circuit
equivalent, whichever is appropriate. For instance, if R5 and R6 are
absent, leaving a two-loop network, simply plug in very large values for
R5 and R6 compared to the other elements of the network, and they will
appear as open-circuit equivalents in the analysis. This is demonstrated
in the run of Fig. 7.63 with a negative supply of 60 V. The results have
negative signs for the currents because the defined direction in the pro-
gram has the opposite direction. The current I6 is essentially zero
amperes, as it should be if R5 and R6 do not exist. If R1, R3, R5, or R6

were the only resistive element to be missing, a short-circuit equivalent
would be inserted. If R2 or R4 were the only missing element, the open-
circuit equivalent would be substituted.

242  SERIES-PARALLEL NETWORKS

C��

Ladder Network The C�� program to be introduced will perform
a detailed analysis of the network of Fig. 7.60 (appearing as Fig. 7.27
earlier in the text). Once all the parameters are introduced, the program
will print out RT , Is, I3, and I6. The order of the program is exactly the
same as that of a longhand solution. In Fig. 7.60, Ra � R5 � R6 is first
determined, followed by Rb � R4 � Ra and Rc � R3 � Rb, with Rd �
R2 � Rc and RT � R1 � Rd. Then Is � E/RT with I3 and I6 as determined
by the current divider rule.
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FIG. 7.60

Ladder network to be analyzed using C��.

RT

I6

R6240 VE R4R2

+

–
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FIG. 7.61

C�� program to analyze the ladder network of Fig. 7.60.

Request
and

obtain
network

parameters

Body
of

program

Define
variables
and data

type

Find
RT

Display
RT

Calculate
I3 and I6

Display
I3 and I6

Preprocessor
directive

Heading

FIG. 7.62

C�� response to an analysis of the ladder network of Fig. 7.60 with the
parameter values of Fig. 7.27.
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PROBLEMS

SECTION 7.2 Descriptive Examples

1. Which elements of the networks in Fig. 7.64 are in series
or parallel? In other words, which elements of the given
networks have the same current (series) or voltage (paral-
lel)? Restrict your decision to single elements, and do not
include combined elements.

(d)

E

R4

R1 R2

R3

R5

R7

R6

(a)

R1

E R4

R2

R3

(b)

E R2 R3

R1 R4

(c)

R1
R2 R3

R4R5

E

FIG. 7.64

Problem 1.

FIG. 7.63

C�� response to an analysis of the ladder network of Fig. 7.60 without the
elements R5 and R6.
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2. Determine RT for the networks of Fig. 7.65.

R1

R2

I1

I2

+  V1  –

R3

R4

I4

I5

+  V2  –

I3I

RT

E

+

–

I6

FIG. 7.66

Problem 3.

3. For the network of Fig. 7.66:
a. Does I � I3 � I6? Explain.
b. If I � 5 A and I1 � 2 A, find I2.
c. Does I1 � I2 � I4 � I5? Explain.
d. If V1 � 6 V and E � 10 V, find V2.
e. If R1 � 3 �, R2 � 2 �, R3 � 4 �, and R4 � 1 �,

what is RT?
f. If the resistors have the values given in part (e) and 

E � 10 V, what is the value of I in amperes?
g. Using values given in parts (e) and (f), find the power

delivered by the battery E and dissipated by the resis-
tors R1 and R2.

4. For the network of Fig. 7.67:
a. Calculate RT.
b. Determine I and I1.
c. Find V3.

5. For the network of Fig. 7.68:
a. Determine RT.
b. Find Is, I1, and I2.
c. Calculate Va.

R3

12 �

R1
I1

RT

6 �

R2

64 VE

I

12 � V3

+

–

FIG. 7.67

Problem 4.
FIG. 7.68

Problem 5.

R1 10 � R2 15 �E
36 V

Is
I1 I2

R3 10 �

R4 2 �

Va

RT

FIG. 7.65

Problem 2.

(a) (b)

(c) (d)

4 �

4 �

RT

4 �

4 �

RT

4 �

4 �

4 �

4 �

RT

4 �

4 � 4 �

4 �

4 �

RT

4 �

4 �
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FIG. 7.69

Problem 6.

I1

16 �

25 �

5 �+ 20 V

I2

– 7 V

6. Determine the currents I1 and I2 for the network of Fig.
7.69.

R2 2 �

R3 10 �

R1 4 �

+24 V

I

I2

I3

I1

–8 V

FIG. 7.70

Problem 7.

7. a. Find the magnitude and direction of the currents I, I1,
I2, and I3 for the network of Fig. 7.70.

b. Indicate their direction on Fig. 7.70.

*8. For the network of Fig. 7.71:
a. Determine the currents Is, I1, I3, and I4.
b. Calculate Va and Vbc.

FIG. 7.71

Problem 8.

R1 10 � R3 5 �20 V

R4

14 � R5

6 �

Va

c b

I4

I3

I1 Is

20 �

R2

9. For the network of Fig. 7.72:
a. Determine the current I1.
b. Calculate the currents I2 and I3.
c. Determine the voltage levels Va and Vb.

FIG. 7.72

Problem 9.

R3 6 �R5 6 �

R4 3 �

R2 3 �

R1 3 �

I1

I2

I3

Va

Vb

E 20 V
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*11. For the series-parallel network of Fig. 7.74:
a. Find the current I.
b. Find the currents I3 and I9.
c. Find the current I8.
d. Find the voltage Vab.

10. For the network of Fig. 7.73:
a. Find the currents I and I6.
b. Find the voltages V1 and V5.
c. Find the power delivered to the 6-k� resistor.

FIG. 7.73

Problem 10.

R1
12 k�

R4

9 k�

R2
12 k�

R3 3 k�V1

+

–

R5

6 k�

+  V5  –
R6 10.4 k�E  =  28 V

I I6

FIG. 7.74

Problem 11.

R6

6 �

R1 10 �

I

R7

6 �

R2

5 � I3

80 V

R5R4  =  4 � 8 � R8 2 �

R9 4 �

I9

I8

b

a

Vab

R3 8 �

*12. Determine the dc levels for the transistor network of Fig.
7.75 using the fact that VBE � 0.7 V, VE � 2 V, and IC �
IE. That is:
a. Determine IE and IC.
b. Calculate IB.
c. Determine VB and VC.
d. Find VCE and VBC.

FIG. 7.75

Problem 12.

RE 1 k�

RC 2.2 k�RB 220 k�

IE

IC

IB

VCC  =  8 V

C VC

E  VE  =  2 V

BVB

+

–
VBE

+
VBC

–

VCE

+

–
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*13. The network of Fig. 7.76 is the basic biasing arrangement
for the field-effect transistor (FET), a device of increas-
ing importance in electronic design. (Biasing simply
means the application of dc levels to establish a particu-
lar set of operating conditions.) Even though you may be
unfamiliar with the FET, you can perform the following
analysis using only the basic laws introduced in this
chapter and the information provided on the diagram.
a. Determine the voltages VG and VS.
b. Find the currents I1, I2, ID, and IS.
c. Determine VDS.
d. Calculate VDG.

FIG. 7.76

Problem 13.

RS 1.5 k�

R2 270 k�

I2 IG

G

+

IS

VS
S

D

VGS –

VG

R1 2 M�

I1 ID

RD 2.5 k�

VDD  =  16 V

VGS  =  –1.75 V
IG  =  0 A
ID  =  IS

*14. For the network of Fig. 7.77:
a. Determine RT.
b. Calculate Va.
c. Find V1.
d. Calculate V2.
e. Determine I (with direction).

15. For the network of Fig. 7.78:
a. Determine the current I.
b. Find V.

FIG. 7.77

Problem 14.

V2

400 �

400 �

E 32 V

220 �

100 �

600 �

+

–

V1

+

–

Va
I

220 �

*16. Determine the current I and the voltages Va, Vb, and Vab

for the network of Fig. 7.79.

FIG. 7.78

Problem 15.

R1 5 �

R2 7 �

R3 8 �

I

V1  =  +9 V

V2  =  –19 V

V

+

–

FIG. 7.79

Problem 16.

4 k�

24 V 0.5 k�R4

I

R1
Vb

2 k�R2

Va

E

1 k�

R3

1.5 k�

R5
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17. For the configuration of Fig. 7.80:
a. Find the currents I2, I6, and I8.
b. Find the voltages V4 and V8.

R2 30 �

R1

10 �

100 VE

R3

10 �I2

R4

6 �

R5

6 �

R6

6 �

R7

3 �

R8 10 �

I8

V8

+

–

I6

+  V4  –

FIG. 7.80

Problem 17.

18. Determine the voltage V and the current I for the network
of Fig. 7.81.

FIG. 7.81

Problem 18.

V

8 �

+

–

8 �
8 �30 V

I

6 �

6 �

*19. For the network of Fig. 7.82:
a. Determine RT by combining resistive elements.
b. Find V1 and V4.
c. Calculate I3 (with direction).
d. Determine Is by finding the current through each ele-

ment and then applying Kirchhoff’s current law. Then
calculate RT from RT � E/Is, and compare the answer
with the solution of part (a).

FIG. 7.82

Problem 19.

R1

16 �

R2

8 �

R4

32 �

R5

16 �

R3

4 �

32 V

E
RT

Is

I3

+  V4  –

+  V1  –

20. For the network of Fig. 7.83:
a. Determine the voltage Vab. (Hint: Just use Kirchhoff’s

voltage law.)
b. Calculate the current I.

FIG. 7.83

Problem 20.

5 �6 V

+

–

20 V3 �

2 �
a b

I
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*21. For the network of Fig. 7.84:
a. Determine the current I.
b. Calculate the open-circuit voltage V.

*22. For the network of Fig. 7.85, find the resistance R3 if the
current through it is 2 A.

V

8 �
I

3 � 6 �

18 V

20 V+

–

FIG. 7.84

Problem 21. FIG. 7.85

Problem 22.

R2 20 � R3

2 A

R1 12 �

120 V

*23. If all the resistors of the cube in Fig. 7.86 are 10 �, what
is the total resistance? (Hint: Make some basic assump-
tions about current division through the cube.)

*24. Given the voltmeter reading V � 27 V in Fig. 7.87:
a. Is the network operating properly?
b. If not, what could be the cause of the incorrect read-

ing?

FIG. 7.86

Problem 23.

RT

FIG. 7.87

Problem 24.

E 36 k�

12 k�

6 k�

6 k�

45 V

=  27 VV

SECTION 7.3 Ladder Networks

25. For the ladder network of Fig. 7.88:
a. Find the current I.
b. Find the current I7.
c. Determine the voltages V3, V5, and V7.
d. Calculate the power delivered to R7, and compare it to

the power delivered by the 240-V supply.

FIG. 7.88

Problem 25.

R3 4 �

R4

2 �

R5 6 � R7 2 �V7

+

–
V5

+

–
V3

+

–

R6

1 �

R1

3 �

R2

5 �

240 V

I

I7
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26. For the ladder network of Fig. 7.89:
a. Determine RT.
b. Calculate I.
c. Find I8.

FIG. 7.89

Problem 26.

R2 2 �

R3

4 �

R4 2 � R7 2 �

R6

4 �

R1

4 �

2 V

RT

R5

1 �

I

I8

R8

1 �

FIG. 7.90

Problem 27.

4 �

12 �

E

12 �

7 � 2 �

24 V

2 �

24 �

10 �

P

*28. For the multiple ladder configuration of Fig. 7.91:
a. Determine I.
b. Calculate I4.
c. Find I6.
d. Find I10.

SECTION 7.4 Voltage Divider Supply 

(Unloaded and Loaded)

29. Given the voltage divider supply of Fig. 7.92:
a. Determine the supply voltage E.
b. Find the load resistors RL2

and RL3
.

c. Determine the voltage divider resistors R1, R2, and R3.

FIG. 7.91

Problem 28.

R9 12 �

R8

12 �

R7

3 � I

R2 6 �

R4 10 �

R6 4 �

R5  =  6 �

R3  =  1 �

R1 3 �

12 V
E

I4

I6

R10

1 �
R11 2 �

R12 2 �
I10

R2

48 V

1.6 k�

R1

R3 RL3

RL2

RL1

E

Is = 72 mA

24 V
8 mA

12 mA

40 mA

FIG. 7.92

Problem 29.

*27. Determine the power delivered to the 10-� load of Fig.
7.90.
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*30. Determine the voltage divider supply resistors for the
configuration of Fig. 7.93. Also determine the required
wattage rating for each resistor, and compare their levels.

FIG. 7.93

Problem 30.

R3180 V

20 mA

40 mA

R2

R1

R4

R5

RL3
36 V

RL2
40 V

RL1
100 V

+

–

10 mA

+120 V

+

–

+

–

4 mA

–60 V

SECTION 7.5 Potentiometer Loading

*31. For the system of Fig. 7.94:
a. At first exposure, does the design appear to be a good

one?
b. In the absence of the 10-k� load, what are the values

of R1 and R2 to establish 3 V across R2?
c. Determine the values of R1 and R2 when the load is

applied, and compare them to the results of part (b).

FIG. 7.94

Problem 31.

10 k�

R1
E

R2 +

–
RL

12 V

1 k�  Pot.

3 V

10 k�

E

+

–
Vab

40 V

100 �  Pot.

1 k�

+

–
Vbc

b

c

a

20 �

FIG. 7.95

Problem 32.

*32. For the potentiometer of Fig. 7.95:
a. What are the voltages Vab and Vbc with no load

applied?
b. What are the voltages Vab and Vbc with the indicated

loads applied?
c. What is the power dissipated by the potentiometer

under the loaded conditions of Fig. 7.95?
d. What is the power dissipated by the potentiometer with

no loads applied? Compare it to the results of part (c).

SECTION 7.6 Ammeter, Voltmeter, and

Ohmmeter Design

33. A d’Arsonval movement is rated 1 mA, 100 �.
a. What is the current sensitivity?
b. Design a 20-A ammeter using the above movement.

Show the circuit and component values.
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34. Using a 50-mA, 1000-� d’Arsonval movement, design
a multirange milliammeter having scales of 25 mA, 50
mA, and 100 mA. Show the circuit and component
values.

35. A d’Arsonval movement is rated 50 mA, 1000 �.
a. Design a 15-V dc voltmeter. Show the circuit and

component values.
b. What is the ohm/volt rating of the voltmeter?

36. Using a 1-mA, 100-� d’Arsonval movement, design a
multirange voltmeter having scales of 5 V, 50 V, and 500
V. Show the circuit and component values.

37. A digital meter has an internal resistance of 10 M� on its
0.5-V range. If you had to build a voltmeter with a d’Ar-
sonval movement, what current sensitivity would you
need if the meter were to have the same internal resis-
tance on the same voltage scale?

*38. a. Design a series ohmmeter using a 100-mA, 1000-�
movement; a zero-adjust with a maximum value of 
2 k�; a battery of 3 V; and a series resistor whose
value is to be determined.

b. Find the resistance required for full-scale, 3/4-scale,
1/2-scale, and 1/4-scale deflection.

c. Using the results of part (b), draw the scale to be used
with the ohmmeter.

39. Describe the basic construction and operation of the
megohmmeter.

*40. Determine the reading of the ohmmeter for the configu-
ration of Fig. 7.96.

FIG. 7.96

Problem 40.

R2 12 �

R1

12 �

R3

12 �

�

(a)

R1

18 �

�

R2

18 �

R3

18 �

(b)

SECTION 7.9 Computer Analysis

PSpice or Electronics Workbench

41. Using schematics, determine V1, V3, Vab, and Is for the
network of Fig. 7.16.

42. Using schematics, determine Is, I5, and V7 for the net-
work of Fig. 7.22.
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Programming Language (C��, QBASIC, Pascal, etc.)

43. Write a program that will find the complete solution for
the network of Fig. 7.6. That is, given all the parameters
of the network, calculate the current, voltage, and power
to each element.

Series ohmmeter A resistance-measuring instrument in
which the movement is placed in series with the unknown
resistance.

Series-parallel network A network consisting of a combina-
tion of both series and parallel branches.

Transistor A three-terminal semiconductor electronic device
that can be used for amplification and switching purposes.

44. Write a program to find all the quantities of Example 7.8
given the network parameters.

GLOSSARY

d’Arsonval movement An iron-core coil mounted on bear-
ings between a permanent magnet. A pointer connected to
the movable core indicates the strength of the current pass-
ing through the coil.

Ladder network A network that consists of a cascaded set
of series-parallel combinations and has the appearance of a
ladder.

Megohmmeter An instrument for measuring very high resis-
tance levels, such as in the megohm range.



8.1 INTRODUCTION

The circuits described in the previous chapters had only one source or
two or more sources in series or parallel present. The step-by-step pro-
cedure outlined in those chapters cannot be applied if the sources are
not in series or parallel. There will be an interaction of sources that will
not permit the reduction technique used in Chapter 7 to find quantities
such as the total resistance and source current.

Methods of analysis have been developed that allow us to approach,
in a systematic manner, a network with any number of sources in any
arrangement. Fortunately, these methods can also be applied to networks
with only one source. The methods to be discussed in detail in this chap-
ter include branch-current analysis, mesh analysis, and nodal analy-
sis. Each can be applied to the same network. The “best” method cannot
be defined by a set of rules but can be determined only by acquiring a
firm understanding of the relative advantages of each. All the methods
can be applied to linear bilateral networks. The term linear indicates that
the characteristics of the network elements (such as the resistors) are
independent of the voltage across or current through them. The second
term, bilateral, refers to the fact that there is no change in the behavior or
characteristics of an element if the current through or voltage across the
element is reversed. Of the three methods listed above, the branch-
current method is the only one not restricted to bilateral devices. Before
discussing the methods in detail, we shall consider the current source
and conversions between voltage and current sources. At the end of the
chapter we shall consider bridge networks and D-Y andY-D conversions.
Chapter 9 will present the important theorems of network analysis that
can also be employed to solve networks with more than one source.

8.2 CURRENT SOURCES

The concept of the current source was introduced in Section 2.4 with
the photograph of a commercially available unit. We must now investi-

Methods of Analysis and
Selected Topics (dc)

N
A8
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gate its characteristics in greater detail so that we can properly deter-
mine its effect on the networks to be examined in this chapter.

The current source is often referred to as the dual of the voltage
source. A battery supplies a fixed voltage, and the source current can
vary; but the current source supplies a fixed current to the branch in
which it is located, while its terminal voltage may vary as determined
by the network to which it is applied. Note from the above that duality
simply implies an interchange of current and voltage to distinguish the
characteristics of one source from the other.

The interest in the current source is due primarily to semiconductor
devices such as the transistor. In the basic electronics courses, you will
find that the transistor is a current-controlled device. In the physical
model (equivalent circuit) of a transistor used in the analysis of transistor
networks, there appears a current source as indicated in Fig. 8.1. The sym-
bol for a current source appears in Fig. 8.1(a). The direction of the arrow
within the circle indicates the direction in which current is being supplied.

NA

For further comparison, the terminal characteristics of an ideal dc
voltage and current source are presented in Fig. 8.2, ideal implying per-
fect sources, or no internal losses sensitive to the demand from the
applied load. Note that for the voltage source, the terminal voltage is
fixed at E volts independent of the direction of the current I. The direc-
tion and magnitude of I will be determined by the network to which the
supply is connected.

FIG. 8.1

Current source within the transistor equivalent circuit.

(a) Transistor symbol (b) Transistor equivalent circuit

Current source

βre

C

E

B Ib

βIbB

C

E

=

FIG. 8.2

Comparing the characteristics of an ideal voltage and current source.

Voltage

E
I

E

0 I

(a)

Current

Vs

I

I

0

(b)

Vs

(+) –

(–) +

I

The characteristics of the ideal current source, shown in Fig. 8.2(b),
reveal that the magnitude of the supply current is independent of the
polarity of the voltage across the source. The polarity and magnitude of
the source voltage Vs will be determined by the network to which the
source is connected.

For all one-voltage-source networks the current will have the direc-
tion indicated to the right of the battery in Fig. 8.2(a). For all single-
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current-source networks, it will have the polarity indicated to the right
of the current source in Fig. 8.2(b).

In review:

A current source determines the current in the branch in which it is
located

and

the magnitude and polarity of the voltage across a current source are
a function of the network to which it is applied.

EXAMPLE 8.1 Find the source voltage Vs and the current I1 for the
circuit of Fig. 8.3.

Solution:

I1 � I � 10 mA

Vs � V1 � I1R1 � (10 mA)(20 k�) � 200 V

EXAMPLE 8.2 Find the voltage Vs and the currents I1 and I2 for the
network of Fig. 8.4.

Solution:

Vs � E � 12 V

I2 � �
V
R

R� � �
E
R

� � � 3 A

Applying Kirchhoff’s current law:

I � I1 � I2

and I1 � I � I2 � 7 A � 3 A � 4 A

EXAMPLE 8.3 Determine the current I1 and the voltage Vs for the net-
work of Fig. 8.5.

Solution: Using the current divider rule:

I1 � � � 2 A

The voltage V1 is

V1 � I1R1 � (2 A)(2 �) � 4 V

and, applying Kirchhoff’s voltage law,

�Vs � V1 � 20 V � 0

and Vs � V1 � 20 V � 4 V � 20 V
� 24 V

Note the polarity of Vs as determined by the multisource network.

8.3 SOURCE CONVERSIONS

The current source described in the previous section is called an ideal
source due to the absence of any internal resistance. In reality, all

(1 �)(6 A)
��
1 � � 2 �

R2I
�
R2 � R1

12 V
�
4 �

NA

–
I  =  10 mA

+
R1 20 k�

I1

Vs

–

+
V1

FIG. 8.3

Example 8.1.

E R12 V 4 �

I1

Vs 7 A

+

–
I

I2

FIG. 8.4

Example 8.2.

+  20 V
2 �

R1

6 A

–

+

Vs

R2

1 �

+  V1  –

I

I1

FIG. 8.5

Example 8.3.
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sources—whether they are voltage or current—have some internal resis-
tance in the relative positions shown in Figs. 8.6 and 8.7. For the voltage
source, if Rs � 0 � or is so small compared to any series resistor that it
can be ignored, then we have an “ideal” voltage source. For the current
source, if Rs � ∞ � or is large enough compared to other parallel ele-
ments that it can be ignored, then we have an “ideal” current source.

If the internal resistance is included with either source, then that
source can be converted to the other type using the procedure to be
described in this section. Since it is often advantageous to make such a
maneuver, this entire section is devoted to being sure that the steps are
understood. It is important to realize, however, as we proceed through
this section, that

source conversions are equivalent only at their external terminals.

The internal characteristics of each are quite different.
We want the equivalence to ensure that the applied load of Figs. 8.6

and 8.7 will receive the same current, voltage, and power from each
source and in effect not know, or care, which source is present.

In Fig. 8.6 if we solve for the load current IL, we obtain

IL � �
Rs �

E
RL

� (8.1)

If we multiply this by a factor of 1, which we can choose to be Rs /Rs,
we obtain

IL � �
Rs

(1
�

)E
RL

� � �
(
R
R

s

s

�

/Rs

R
)E

L
� � �

R
R

s

s

(
�

E/R
R

s

L

)
� � �

Rs

R
�

s I
RL

� (8.2)

If we define I � E/Rs, Equation (8.2) is the same as that obtained by
applying the current divider rule to the network of Fig. 8.7. The result
is an equivalence between the networks of Figs. 8.6 and 8.7 that simply
requires that I � E/Rs and the series resistor Rs of Fig. 8.6 be placed in
parallel, as in Fig. 8.7. The validity of this is demonstrated in Example
8.4 of this section.

For clarity, the equivalent sources, as far as terminals a and b are con-
cerned, are repeated in Fig. 8.8 with the equations for converting in
either direction. Note, as just indicated, that the resistor Rs is the same in
each source; only its position changes. The current of the current source
or the voltage of the voltage source is determined using Ohm’s law and
the parameters of the other configuration. It was pointed out in some
detail in Chapter 6 that every source of voltage has some internal series
resistance. For the current source, some internal parallel resistance will
always exist in the practical world. However, in many cases, it is an

NA

Rs

RL

IL

E

Rs
RL

IL

E RsI  =

FIG. 8.6

Practical voltage source.

FIG. 8.7

Practical current source.

a

b

a

b

E  =  IRs

Rs

Rs

I  = E
Rs

FIG. 8.8

Source conversion.
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excellent approximation to drop the internal resistance of a source due to
the magnitude of the elements of the network to which it is applied. For
this reason, in the analyses to follow, voltage sources may appear with-
out a series resistor, and current sources may appear without a parallel
resistance. Realize, however, that for us to perform a conversion from
one type of source to another, a voltage source must have a resistor in
series with it, and a current source must have a resistor in parallel.

EXAMPLE 8.4

a. Convert the voltage source of Fig. 8.9(a) to a current source, and cal-
culate the current through the 4-� load for each source.

b. Replace the 4-� load with a 1-k� load, and calculate the current IL

for the voltage source.
c. Repeat the calculation of part (b) assuming that the voltage source is

ideal (Rs � 0 �) because RL is so much larger than Rs. Is this one of
those situations where assuming that the source is ideal is an appro-
priate approximation?

Solutions:

a. See Fig. 8.9.

Fig. 8.9(a): IL � �
Rs �

E
RL

� � �
2 �

6
�

V
4 �

� � 1 A

Fig. 8.9(b): IL � �
Rs

R
�

s I
RL

� � �
2
(2

�

�

�

)(3
4
A
�

)
� � 1 A

b. IL � �
Rs �

E
RL

� � � 5.99 mA

c. IL � �
R
E

L
� � � 6 mA � 5.99 mA

Yes, RL k Rs (voltage source).

EXAMPLE 8.5

a. Convert the current source of Fig. 8.10(a) to a voltage source, and
find the load current for each source.

b. Replace the 6-k� load with a 10-� load, and calculate the current IL

for the current source.
c. Repeat the calculation of part (b) assuming that the current source is

ideal (Rs � ∞ �) because RL is so much smaller than Rs. Is this one
of those situations where assuming that the source is ideal is an
appropriate approximation?

6 V
�
1 k�

6 V
��
2 � � 1 k�

NA

(a)

Rs

RL

2 �

–

+
6 V

4 �

IL

E

a

b

(b)

Rs RL2 � 4 �

IL

a

b

I  = =  3 AE
Rs

3 A

FIG. 8.9

Example 8.4.

FIG. 8.10

Example 8.5.

(b)

Rs

RL

3 k�

–

+

6 k�

IL
E  =  IRs  =  27 V

a

b

(a)

Rs RL3 k� 6 k�

IL

a

b

9 mA I

9 mA
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Solutions:

a. See Fig. 8.10.

Fig. 8.10(a): IL � �
Rs

R
�

s I
RL

� � � 3 mA

Fig. 8.10(b): IL � �
Rs �

E
RL

� � � � 3 mA

b. IL � �
Rs

R
�

s I
RL

� � � 8.97 mA

c. IL � I � 9 mA � 8.97 mA

Yes, Rs k RL (current source).

8.4 CURRENT SOURCES IN PARALLEL

If two or more current sources are in parallel, they may all be replaced
by one current source having the magnitude and direction of the resul-
tant, which can be found by summing the currents in one direction and
subtracting the sum of the currents in the opposite direction. The new
parallel resistance is determined by methods described in the discussion
of parallel resistors in Chapter 5. Consider the following examples. 

EXAMPLE 8.6 Reduce the parallel current sources of Figs. 8.11 and
8.12 to a single current source.

(3 k�)(9 mA)
��
3 k� � 10 �

27 V
�
9 k�

27 V
��
3 k� � 6 k�

(3 k�)(9 mA)
��
3 k� � 6 k�

NA

FIG. 8.11

Example 8.6.

FIG. 8.12

Example 8.6.

Is  =  10 A  –  6 A  =  4 A
Rs  =  3 �  �  6 �  =  2 �

6 A
R1 3 �

10 A
R2 6 �

4 A
R3 2 �Is

3 A R1 4 � Rs 4 �Is7 A 4 A 8 A

Is  =  7 A  +  4 A  –  3 A  =  8 A
Rs  =  R1  =  4 �

Solution: Note the solution in each figure.
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EXAMPLE 8.7 Reduce the network of Fig. 8.13 to a single current
source, and calculate the current through RL.

Solution: In this example, the voltage source will first be converted
to a current source as shown in Fig. 8.14. Combining current sources,

NA

I2 6 A 24 �R2 RL 14 �

IL

R1 8 �

E1 32 V

FIG. 8.13

Example 8.7.I1 4 A 8 �R1 24 �R2I2 6 A RL 14 �

IL

I1  =
E1
R1

=
32 V
8 �

= 4 A

Is � I1 � I2 � 4 A � 6 A � 10 A

and Rs � R1 � R2 � 8 � � 24 � � 6 �

Applying the current divider rule to the resulting network of Fig. 8.15,

IL � �
Rs

R
�
s Is

RL
� � � � 3 A

EXAMPLE 8.8 Determine the current I2 in the network of Fig. 8.16.

Solution: Although it might appear that the network cannot be
solved using methods introduced thus far, one source conversion as
shown in Fig. 8.17 will result in a simple series circuit:

Es � I1R1 � (4 A)(3 �) � 12 V

and Rs � R1 � 3 �

and I2 � � � � 3.4 A

8.5 CURRENT SOURCES IN SERIES

The current through any branch of a network can be only single-valued.
For the situation indicated at point a in Fig. 8.18, we find by application
of Kirchhoff’s current law that the current leaving that point is greater
than that entering—an impossible situation. Therefore,

current sources of different current ratings are not connected in
series,

just as voltage sources of different voltage ratings are not connected in
parallel.

8.6 BRANCH-CURRENT ANALYSIS

We will now consider the first in a series of methods for solving net-
works with two or more sources. Once the branch-current method is

17 V
�
5 �

12 V � 5 V
��
3 � � 2 �

Es � E2
�
Rs � R2

60 A
�

20

(6 �)(10 A)
��
6 � � 14 �

FIG. 8.14

Network of Fig. 8.13 following the conversion of the voltage source to a current
source.

Is 10 A 6 �Rs RL 14 �

IL

Is

FIG. 8.15

Network of Fig. 8.14 reduced to its simplest 
form.

I1 4 A 3 �R1 R2 2 �

I2

5 V
a

b

E2

–+

FIG. 8.16

Example 8.8.

E23 �
–+

Rs

Es 12 V

2 �R2

5 V

I2+

–

a

b

FIG. 8.17

Network of Fig. 8.16 following the conversion 
of the current source to a voltage source.

a6 A 7 A

No!

FIG. 8.18

Invalid situation.
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mastered, there is no linear dc network for which a solution cannot be
found. Keep in mind that networks with two isolated voltage sources
cannot be solved using the approach of Chapter 7. For additional evi-
dence of this fact, try solving for the unknown elements of Example 8.9
using the methods introduced in Chapter 7. The network of Fig. 8.21
can be solved using the source conversions described in the last section,
but the method to be described in this section has applications far
beyond the configuration of this network. The most direct introduction
to a method of this type is to list the series of steps required for its
application. There are four steps, as indicated below. Before continuing,
understand that this method will produce the current through each
branch of the network, the branch current. Once this is known, all other
quantities, such as voltage or power, can be determined.

1. Assign a distinct current of arbitrary direction to each branch of
the network.

2. Indicate the polarities for each resistor as determined by the
assumed current direction.

3. Apply Kirchhoff’s voltage law around each closed, independent
loop of the network.

The best way to determine how many times Kirchhoff’s voltage law
will have to be applied is to determine the number of “windows” in the
network. The network of Example 8.9 has a definite similarity to the
two-window configuration of Fig. 8.19(a). The result is a need to apply
Kirchhoff’s voltage law twice. For networks with three windows, as
shown in Fig. 8.19(b), three applications of Kirchhoff’s voltage law are
required, and so on.

NA

4. Apply Kirchhoff’s current law at the minimum number of nodes
that will include all the branch currents of the network.

The minimum number is one less than the number of independent
nodes of the network. For the purposes of this analysis, a node is a
junction of two or more branches, where a branch is any combination

FIG. 8.19

Determining the number of independent closed loops.

(4 nodes)

2

3

4

1
4 – 1  =  3 eq.

(4 nodes)

2 3 4

1
4 – 1  =  3 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

(2 nodes)
2

1
2 – 1  =  1 eq.

FIG. 8.20

Determining the number of applications of Kirchhoff’s current law required.
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4 �

6 V

I1

E2

–

+

1 �

2 VE1

–

+

2 �R1

I2

I3

bd

a

c

R2

R3

FIG. 8.21

Example 8.9.Defined
by I1 I2

4 �

6 V

–

a

+

21

I1

E2

–

+

–

+1 �

2 VE1

–

+

–

+2 �

I3

Defined
by I2

Fixed
polarity

Fixed
polarity

Defined by I3

FIG. 8.22

Inserting the polarities across the resistive elements as defined by the chosen
branch currents.

Step 3: Kirchhoff’s voltage law is applied around each closed loop (1
and 2) in the clockwise direction:

and

of series elements. Figure 8.20 defines the number of applications of
Kirchhoff’s current law for each configuration of Fig. 8.19.

5. Solve the resulting simultaneous linear equations for assumed
branch currents.

It is assumed that the use of the determinants method to solve for the
currents I1, I2, and I3 is understood and is a part of the student’s mathe-
matical background. If not, a detailed explanation of the procedure is
provided in Appendix C. Calculators and computer software packages
such as Mathcad can find the solutions quickly and accurately.

EXAMPLE 8.9 Apply the branch-current method to the network of
Fig. 8.21.

Solution 1:

Step 1: Since there are three distinct branches (cda, cba, ca), three cur-
rents of arbitrary directions (I1, I2, I3) are chosen, as indicated in Fig.
8.21. The current directions for I1 and I2 were chosen to match the
“pressure” applied by sources E1 and E2, respectively. Since both I1 and
I2 enter node a, I3 is leaving.

Step 2: Polarities for each resistor are drawn to agree with assumed
current directions, as indicated in Fig. 8.22.

loop 1:  V � �E1 � VR1 � VR3 � 0

Rise in potential

Drop in potential

loop 2:  V � �VR3 � VR2 
� E2  � 0

Rise in potential

Drop in potential

loop 1:  V � �2 V �  2 � I1 �  4 � I3 � 0 

loop 2:  V �  4 � I3 �  1 � I2 � 6 V � 0 

Battery
potential

Voltage drop
across 2-�

resistor

Voltage drop
across 4-�

resistor

�

�

�

�
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Step 4: Applying Kirchhoff’s current law at node a (in a two-node net-
work, the law is applied at only one node),

I1 � I2 � I3

Step 5: There are three equations and three unknowns (units removed
for clarity):

2 � 2 I1 � 4I3 � 0 Rewritten: 2 I1 � 0 � 4 I3 � 2
4I3 � 1 I2 � 6 � 0 0 � I2 � 4 I3 � 6

I1 � I2 � I3 I1 � I2 � I3 � 0

Using third-order determinants (Appendix C), we have

Mathcad Solution: Once you understand the procedure for enter-
ing the parameters, you can use Mathcad to solve determinants such as

2        0        4       
6        1        4       

2        0        4       
0        1        4       

0        1                   �1

1        1                   �1

2        2              4
0        6              4

2        0              2
0        1              6
1        1              0

1        0     �1

I1 �

I2 �

I3 �

D �

� �1 A

� 2 A

� 1 A

D

D

A negative sign in front of a
branch current indicates only
that the actual current is
in the direction opposite to
that assumed.

NA

FIG. 8.23

Using Mathcad to verify the numerical calculations of Example 8.9.
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appearing in Solution 1 in a very short time frame. The numerator is
defined by n in the same manner described for earlier exercises. Then
the sequence View-Toolbars-Matrix is applied to obtain the Matrix
toolbar appearing in Fig. 8.23. Selecting the top left option called
Matrix will result in the Insert Matrix dialog box in which 3 � 3 is
selected. The 3 � 3 matrix will appear with a bracket to signal which
parameter should be entered. Enter that parameter, and then use the left
click of the mouse to select the next parameter you want to enter. When
you have finished, move on to define the denominator d in the same
manner. Then define the current of interest, select Determinant from
the Matrix toolbar, and insert the numerator variable n. Follow with a
division sign, and enter the Determinant of the denominator as shown
in Fig. 8.23. Retype I1 and select the equal sign; the correct result of
�1 will appear.

Once you have mastered the rather simple and direct process just
described, the availability of Mathcad as a checking tool or solving
mechanism will be deeply appreciated.

Solution 2: Instead of using third-order determinants as in Solution
1, we could reduce the three equations to two by substituting the third
equation in the first and second equations:

or �6 I1 � 4 I2 � �2
�4 I1 � 5 I2 � �6

Multiplying through by �1 in the top equation yields

6 I1 � 4 I2 � �2
4 I1 � 5 I2 � �6

and using determinants,

�2 4�
�6 5� 10 � 24 �14

I1 � ––––––– � –––––––– � ––––  � �1A
�6 4� 30 � 16 14
�4 5�

Using the TI-86 calculator:

CALC. 8.1

Note the det (determinant) obtained from a Math listing under a
MATRX menu and the fact that each determinant must be determined
individually. The first set of brackets within the overall determinant
brackets of the first determinant defines the first row of the determinant,
while the second set of brackets within the same determinant defines
the second row. A comma separates the entries for each row. Obviously,
the time to learn how to enter the parameters is minimal when you con-
sider the savings in time and the accuracy obtained.

2 � 2I1 � 4  I1 � I2  � 0 2 � 2I1 � 4I1 � 4I2  � 0

4  I1 � I2  � I2 � 6 � 0 4I1 � 4I2 � I2 � 6 � 0  

I3

I3

NA

det[[2,4][6,5]]/det[[6,4][4,5]] ENTER �1
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�6 2 �
�4 6 � 36 � 8 28

I2 � ––––––– � ––––––– � –– � 2 A
14 14 14

I3 � I1 � I2 � �1 � 2 � 1 A

It is now important that the impact of the results obtained be under-
stood. The currents I1, I2, and I3 are the actual currents in the branches
in which they were defined. A negative sign in the solution simply
reveals that the actual current has the opposite direction than initially
defined—the magnitude is correct. Once the actual current directions
and their magnitudes are inserted in the original network, the various
voltages and power levels can be determined. For this example, the
actual current directions and their magnitudes have been entered on the
original network in Fig. 8.24. Note that the current through the series
elements R1 and E1 is 1 A; the current through R3, 1 A; and the current
through the series elements R2 and E2, 2 A. Due to the minus sign in the
solution, the direction of I1 is opposite to that shown in Fig. 8.21. The
voltage across any resistor can now be found using Ohm’s law, and the
power delivered by either source or to any one of the three resistors can
be found using the appropriate power equation.

NA

Applying Kirchhoff’s voltage law around the loop indicated in Fig.
8.24,

V � �(4 �)I3 � (1 �)I2 � 6 V � 0

or (4 �)I3 � (1 �)I2 � 6 V

and (4 �)(1 A) � (1 �)(2 A) � 6 V
4 V � 2 V � 6 V

6 V � 6 V (checks)

EXAMPLE 8.10 Apply branch-current analysis to the network of Fig.
8.25.

Solution: Again, the current directions were chosen to match the
“pressure” of each battery. The polarities are then added and Kirch-
hoff’s voltage law is applied around each closed loop in the clockwise
direction. The result is as follows:

loop 1: �15 V � (4 �)I1 � (10 �)I3 � 20 V � 0

loop 2: �20 V � (10 �)I3 � (5 �)I2 � 40 V � 0

�

4 �

6 V

–

+

I1  =  1 A

E2

–

+
–

+1 �

2 VE1

–

+

–

+

2 �

R3

R1 R2

I2  =  2 A

I3  =  1 A

FIG. 8.24

Reviewing the results of the analysis of the network of Fig. 8.21.
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Applying Kirchhoff’s current law at node a,

I1 � I3 � I2

Substituting the third equation into the other two yields (with units
removed for clarity)

15 � 4 I1 � 10 I3 � 20 � 0 � Substituting for I2 (since it occurs

20 � 10 I3 � 5(I1 � I3) � 40 � 0 only once in the two equations)

or �4 I1 � 10 I3 � 5
�5 I1 � 15 I3 � �60

Multiplying the lower equation by �1, we have

�4 I1 � 10 I3 � 5
5 I1 � 15 I3 � 60

� 5 10�
� 60 15� 75 � 600 �525

I1 � –––––––– � ––––––––– � ––––– � 4.773 A
��4 10� �60 � 50 �110
� 5 15�

��4 5�
� 5 60� �240 � 25 �265

I3 � –––––––– � –––––––—–– � ––—– � 2.409 A
�110 �110 �110

I2 � I1 � I3 � 4.773 � 2.409 � 7.182 A

revealing that the assumed directions were the actual directions, with I2

equal to the sum of I1 and I3.

8.7 MESH ANALYSIS (GENERAL APPROACH)

The second method of analysis to be described is called mesh analysis.
The term mesh is derived from the similarities in appearance between the
closed loops of a network and a wire mesh fence. Although this
approach is on a more sophisticated plane than the branch-current
method, it incorporates many of the ideas just developed. Of the two
methods, mesh analysis is the one more frequently applied today.
Branch-current analysis is introduced as a stepping stone to mesh
analysis because branch currents are initially more “real” to the student
than the mesh (loop) currents employed in mesh analysis. Essentially,

NA

I1

5 �R1

I2

I3

a

R2R3 10 �

+

–+

–
4 �

40 VE2
+

–
15 VE1 –

+
20 VE3 –

+

21

–

+

FIG. 8.25

Example 8.10.
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the mesh-analysis approach simply eliminates the need to substitute the
results of Kirchhoff’s current law into the equations derived from
Kirchhoff’s voltage law. It is now accomplished in the initial writing of
the equations. The systematic approach outlined below should be fol-
lowed when applying this method.

1. Assign a distinct current in the clockwise direction to each
independent, closed loop of the network. It is not absolutely
necessary to choose the clockwise direction for each loop current.
In fact, any direction can be chosen for each loop current with no
loss in accuracy, as long as the remaining steps are followed
properly. However, by choosing the clockwise direction as a
standard, we can develop a shorthand method (Section 8.8) for
writing the required equations that will save time and possibly
prevent some common errors.

This first step is accomplished most effectively by placing a loop
current within each “window” of the network, as demonstrated in the
previous section, to ensure that they are all independent. A variety of
other loop currents can be assigned. In each case, however, be sure that
the information carried by any one loop equation is not included in a
combination of the other network equations. This is the crux of the ter-
minology: independent. No matter how you choose your loop currents,
the number of loop currents required is always equal to the number of
windows of a planar (no-crossovers) network. On occasion a network
may appear to be nonplanar. However, a redrawing of the network may
reveal that it is, in fact, planar. Such may be the case in one or two
problems at the end of the chapter.

Before continuing to the next step, let us ensure that the concept of
a loop current is clear. For the network of Fig. 8.26, the loop current I1

is the branch current of the branch containing the 2-� resistor and 2-V
battery. The current through the 4-� resistor is not I1, however, since
there is also a loop current I2 through it. Since they have opposite direc-
tions, I4� equals the difference between the two, I1 � I2 or I2 � I1,
depending on which you choose to be the defining direction. In other
words, a loop current is a branch current only when it is the only loop
current assigned to that branch.

2. Indicate the polarities within each loop for each resistor as
determined by the assumed direction of loop current for that loop.
Note the requirement that the polarities be placed within each
loop. This requires, as shown in Fig. 8.26, that the 4-� resistor
have two sets of polarities across it.

3. Apply Kirchhoff’s voltage law around each closed loop in the
clockwise direction. Again, the clockwise direction was chosen to
establish uniformity and prepare us for the method to be
introduced in the next section.
a. If a resistor has two or more assumed currents through it,

the total current through the resistor is the assumed current
of the loop in which Kirchhoff’s voltage law is being applied,
plus the assumed currents of the other loops passing through
in the same direction, minus the assumed currents through in
the opposite direction.

b. The polarity of a voltage source is unaffected by the direction of
the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the assumed
loop currents.

NA

FIG. 8.26

Defining the mesh currents for a “two-
window” network.

I1

1 �R1

I2

R2

+

–+

–
2 �

6 V E2

+

–2 VE1 –

+

21 R3 4 �

+

–

–

+

I3
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EXAMPLE 8.11 Consider the same basic network as in Example 8.9
of the preceding section, now appearing in Fig. 8.26.

Solution:

Step 1: Two loop currents (I1 and I2) are assigned in the clockwise
direction in the windows of the network. A third loop (I3) could have
been included around the entire network, but the information carried by
this loop is already included in the other two.

Step 2: Polarities are drawn within each window to agree with assumed
current directions. Note that for this case, the polarities across the 4-�
resistor are the opposite for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each loop in the
clockwise direction. Keep in mind as this step is performed that the law
is concerned only with the magnitude and polarity of the voltages
around the closed loop and not with whether a voltage rise or drop is
due to a battery or a resistive element. The voltage across each resistor
is determined by V � IR, and for a resistor with more than one current
through it, the current is the loop current of the loop being examined
plus or minus the other loop currents as determined by their directions.
If clockwise applications of Kirchhoff’s voltage law are always chosen,
the other loop currents will always be subtracted from the loop current
of the loop being analyzed.

loop 1: �E1 � V1 � V3 � 0 (clockwise starting at point a)

loop 2: �V3 � V2 � E2 � 0 (clockwise starting at point b)

�(4 �)(I2 � I1) � (1 �)I2 � 6 V � 0

Step 4: The equations are then rewritten as follows (without units for
clarity):

loop 1: �2 � 2I1 � 4I1 � 4I2 � 0
loop 2: �4I2 � 4I1 � 1I2 � 6 � 0

and loop 1: �2 � 6I1 � 4I2 � 0
loop 2: �5I2 � 4I1 � 6 � 0

or loop 1: �6I1 � 4I2 � �2
loop 2: �4I1 � 5I2 � �6

Applying determinants will result in

I1 � �1 A and I2 � �2 A

The minus signs indicate that the currents have a direction opposite to
that indicated by the assumed loop current.

The actual current through the 2-V source and 2-� resistor is there-
fore 1 A in the other direction, and the current through the 6-V source
and 1-� resistor is 2 A in the opposite direction indicated on the circuit.
The current through the 4-� resistor is determined by the following
equation from the original network:

�2 V �  2 �  I1 �  4 �   I1 � I2   � 0 

Total current
through

4-� resistor

Voltage drop across
4-� resistor

Subtracted since I
2
 is

opposite in direction to I
1
.

NA
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loop 1: I4� � I1 � I2 � �1 A � (�2 A) � �1 A � 2 A
� 1 A (in the direction of I1)

The outer loop (I3) and one inner loop (either I1 or I2) would also
have produced the correct results. This approach, however, will often
lead to errors since the loop equations may be more difficult to write.
The best method of picking these loop currents is to use the window
approach.

EXAMPLE 8.12 Find the current through each branch of the network
of Fig. 8.27.

Solution:

Steps 1 and 2 are as indicated in the circuit. Note that the polarities of
the 6-� resistor are different for each loop current.

Step 3: Kirchhoff’s voltage law is applied around each closed loop in
the clockwise direction:

loop 1: �E1 � V1 � V2 � E2 � 0 (clockwise starting at point a)

�5 V � (1 �)I1 � (6 �)(I1 � I2) � 10 V � 0

I2 flows through the 6-Q resistor
in the direction opposite to I1.

loop 2: E2 � V2 � V3 � 0 (clockwise starting at point b)

�10 V � (6 �)(I2 � I1) � (2 �)I2 � 0

The equations are rewritten as

5 � I1 � 6I1 � 6I2 � 10 � 0�� 7I1 � 6I2 � 5
10 � 6I2 � 6I1 � 2I2 � 0 � 6I1 � 8I2 � �10

Step 4: � 5 6 �
��10 �8� �40 � 60 20

I1 � –––––––––– � ––––––––– � ––– � 1 A
� �7 6� 56 � 36 20
� 6 �8�

��7 5�
� 6 �10� 70 � 30 40

I2 � –––––––––– � ––––––– � –– � 2 A
20 20 20

Since I1 and I2 are positive and flow in opposite directions through
the 6-� resistor and 10-V source, the total current in this branch is
equal to the difference of the two currents in the direction of the
larger:

I2 > I1 (2 A > 1 A)

Therefore,

IR2
� I2 � I1 � 2 A � 1 A � 1 A in the direction of I2

It is sometimes impractical to draw all the branches of a circuit at
right angles to one another. The next example demonstrates how a por-
tion of a network may appear due to various constraints. The method of
analysis does not change with this change in configuration.

NA

R1 R2 6 �
+

–
1 �

5 VE1 –

+
10 VE2 –

+

21

+

–

a

2 �

I2

+

–

–

+

b
I1

R3

FIG. 8.27

Example 8.12.



MESH ANALYSIS (GENERAL APPROACH)  271

�6 �10�
�4 �1� �6 � 40 34

I2 � ––––––– � –––––––– � –––– � �0.773 A
�44 �44 �44

The current in the 4-� resistor and 4-V source for loop 1 is

I1 � I2 � �2.182 A � (�0.773 A)
� �2.182 A � 0.773 A
� �1.409 A

revealing that it is 1.409 A in a direction opposite (due to the minus
sign) to I1 in loop 1.

Supermesh Currents

On occasion there will be current sources in the network to which mesh
analysis is to be applied. In such cases one can convert the current
source to a voltage source (if a parallel resistor is present) and proceed
as before or utilize a supermesh current and proceed as follows.

Start as before and assign a mesh current to each independent loop,
including the current sources, as if they were resistors or voltage
sources. Then mentally (redraw the network if necessary) remove the
current sources (replace with open-circuit equivalents), and apply

NA

a

R1 = 2 �

2 �
+

–

E2 4 V

R3 = 6 �
–

+

E1 = 6 V
+

– +
–

b
I1 I2

E3 = 3 V
1 2

R2 4 �

+

–

–

+

FIG. 8.28

Example 8.13.

det[[�10,�4][�1,�10]]/det[[6,�4][4,�10]] ENTER �2.182

CALC. 8.2

EXAMPLE 8.13 Find the branch currents of the network of Fig. 8.28.

Solution:

Steps 1 and 2 are as indicated in the circuit.

Step 3: Kirchhoff’s voltage law is applied around each closed loop:

loop 1: �E1 �I1R1 � E2 � V2 � 0 (clockwise from point a)

�6 V � (2 �)I1 � 4 V � (4 �)(I1 � I2) � 0

loop 2: �V2 � E2 � V3 � E3 � 0 (clockwise from point b)

�(4 �)(I2 � I1) � 4 V � (6 �)(I2) � 3 V � 0

which are rewritten as

�10 � 4I1 � 2I1 � 4I2 � 0� �6I1 � 4I2 � �10
� 1 � 4I1 � 4I2 � 6I2 � 0 �4I1 � 10I2 � �1

or, by multiplying the top equation by �1, we obtain

6I1 � 4I2 � �10
4I1 � 10I2 � �1

Step 4: ��10 �4�
�  �1 �10� 100 � 4 96I1 � ––––––––––– � ––––––––– � –––– � �2.182 A
� 6 �4� �60 � 16 �44
� 4 �10�

Using the TI-86 calculator:
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Kirchhoff’s voltage law to all the remaining independent paths of the
network using the mesh currents just defined. Any resulting path,
including two or more mesh currents, is said to be the path of a super-
mesh current. Then relate the chosen mesh currents of the network to
the independent current sources of the network, and solve for the mesh
currents. The next example will clarify the definition of a supermesh
current and the procedure.

EXAMPLE 8.14 Using mesh analysis, determine the currents of the
network of Fig. 8.29.

NA

Solution: First, the mesh currents for the network are defined, as
shown in Fig. 8.30. Then the current source is mentally removed, as
shown in Fig. 8.31, and Kirchhoff’s voltage law is applied to the result-
ing network. The single path now including the effects of two mesh cur-
rents is referred to as the path of a supermesh current.

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

FIG. 8.29

Example 8.14.

R1 6 �

E1 20 V

E2 12 V4 AI

R2

4 �

R3

2 �

I1 I2

a

FIG. 8.30

Defining the mesh currents for the network of Fig. 8.29.

E1 20 V

E2 12 VI1 I2

+ – + –

+

–

R2

4 �

R3

2 �
R1 6 �

Supermesh
current

FIG. 8.31

Defining the supermesh current.

Applying Kirchhoff’s law:

20 V � I1(6 �) � I1(4 �) � I2(2 �) � 12 V � 0

or 10I1 � 2I2 � 32



MESH ANALYSIS (GENERAL APPROACH)  273

Node a is then used to relate the mesh currents and the current
source using Kirchhoff’s current law:

I1 � I � I2

The result is two equations and two unknowns:

10I1 � 2I2 � 32
I1 � I2 � 4

Applying determinants:

�32 2 �
� 4 �1� (32)(�1) � (2)(4) 40

I1 � –––––––– � ––––––––––––––– � ––– � 3.33 A
�10 2 � (10)(�1) � (2)(1) 12
� 1 �1�

and I2 � I1 � I � 3.33 A � 4 A � �0.67 A

In the above analysis, it might appear that when the current source
was removed, I1 � I2. However, the supermesh approach requires that
we stick with the original definition of each mesh current and not alter
those definitions when current sources are removed.

EXAMPLE 8.15 Using mesh analysis, determine the currents for the
network of Fig. 8.32.

NA

I1 I3I22 � 8 �

6 �

6 A 8 A

FIG. 8.33

Defining the mesh currents for the network of Fig. 8.32.

Supermesh
current

I1 I3I22 � 8 �

6 �
+ –

+

–

–

+

FIG. 8.34

Defining the supermesh current for the
network of Fig. 8.32.

2 � 8 �

6 �

6 A 8 A

FIG. 8.32

Example 8.15.

Solution: The mesh currents are defined in Fig. 8.33. The current
sources are removed, and the single supermesh path is defined in Fig.
8.34.

Applying Kirchhoff’s voltage law around the supermesh path:

�V2� � V6� � V8� � 0
�(I2 � I1)2 � � I2(6 �) � (I2 � I3)8 � � 0
�2I2 � 2I1 � 6I2 � 8I2 � 8I3 � 0

2I1 � 16I2 � 8I3 � 0
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Introducing the relationship between the mesh currents and the cur-
rent sources:

I1 � 6 A

I3 � 8 A

results in the following solutions:

2I1 � 16I2 � 8I3 � 0

2(6 A) � 16I2 � 8(8 A) � 0

and I2 � � 4.75 A

Then I2� � I1 � I2 � 6 A � 4.75 A � 1.25 A

and I8� � I3 � I2 � 8 A � 4.75 A � 3.25 A

Again, note that you must stick with your original definitions of the
various mesh currents when applying Kirchhoff’s voltage law around
the resulting supermesh paths.

8.8 MESH ANALYSIS (FORMAT APPROACH)

Now that the basis for the mesh-analysis approach has been established,
we will now examine a technique for writing the mesh equations more
rapidly and usually with fewer errors. As an aid in introducing the pro-
cedure, the network of Example 8.12 (Fig. 8.27) has been redrawn in
Fig. 8.35 with the assigned loop currents. (Note that each loop current
has a clockwise direction.)

The equations obtained are

�7I1 � 6I2 � 5
6I1 � 8I2 � �10

which can also be written as

7I1 � 6I2 � �5
8I2 � 6I1 � 10

and expanded as

Col. 1 Col. 2 Col. 3

(1 � 6)I1 � 6I2 � (5 � 10)
(2 � 6)I2 � 6I1 � 10

Note in the above equations that column 1 is composed of a loop
current times the sum of the resistors through which that loop current
passes. Column 2 is the product of the resistors common to another
loop current times that other loop current. Note that in each equation,
this column is subtracted from column 1. Column 3 is the algebraic
sum of the voltage sources through which the loop current of interest
passes. A source is assigned a positive sign if the loop current passes
from the negative to the positive terminal, and a negative value is
assigned if the polarities are reversed. The comments above are correct
only for a standard direction of loop current in each window, the one
chosen being the clockwise direction.

The above statements can be extended to develop the following for-
mat approach to mesh analysis:

76 A
�

16

I1 I2

21 2 �R3

+

–

–
R1

+
1 � R2 6 �

+

–

–

+

5 VE1 –

+
10 VE2 –

+

FIG. 8.35

Network of Fig. 8.27 redrawn with assigned
loop currents.



MESH ANALYSIS (FORMAT APPROACH)  275

1. Assign a loop current to each independent, closed loop (as in the
previous section) in a clockwise direction.

2. The number of required equations is equal to the number of
chosen independent, closed loops. Column 1 of each equation is
formed by summing the resistance values of those resistors
through which the loop current of interest passes and multiplying
the result by that loop current.

3. We must now consider the mutual terms, which, as noted in the
examples above, are always subtracted from the first column. A
mutual term is simply any resistive element having an additional
loop current passing through it. It is possible to have more than one
mutual term if the loop current of interest has an element in common
with more than one other loop current. This will be demonstrated in
an example to follow. Each term is the product of the mutual resistor
and the other loop current passing through the same element.

4. The column to the right of the equality sign is the algebraic sum of
the voltage sources through which the loop current of interest
passes. Positive signs are assigned to those sources of voltage
having a polarity such that the loop current passes from the
negative to the positive terminal. A negative sign is assigned to
those potentials for which the reverse is true.

5. Solve the resulting simultaneous equations for the desired loop
currents.

Before considering a few examples, be aware that since the column
to the right of the equals sign is the algebraic sum of the voltage sources
in that loop, the format approach can be applied only to networks in
which all current sources have been converted to their equivalent volt-
age source.

EXAMPLE 8.16 Write the mesh equations for the network of Fig.
8.36, and find the current through the 7-� resistor.

Solution:

Step 1: As indicated in Fig. 8.36, each assigned loop current has a
clockwise direction.

Steps 2 to 4:

I1: (8 � � 6 � � 2 �)I1 � (2 �)I2 � 4 V
I2: (7 � � 2 �)I2 � (2 �)I1 � �9 V

and 16I1 � 2I2 � 4
9I2 � 2I1 � �9

which, for determinants, are

16I1 � 2I2 � 4
�2I1 � 9I2 � �9

� 16 4�
��2 �9� �144 � 8 �136

and I2 � I7� � ––––––––– � ––––––––– � –––––
� 16 �2� 144 � 4 140
��2 9�

� �0.971 A

NA

I1 I2

21

4 V
–+

6 �

–+

–

+
8 � 7 �

+

–
2 �

+

–

–

+

9 V
+–

FIG. 8.36

Example 8.16.
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Solution:

Step 1: Each window is assigned a loop current in the clockwise direc-
tion:

Summing terms yields

2I1 � I2 � 0 � �2
6I2 � I1 � 3I3 � 4
7I3 � 3I2 � 0 � 2

which are rewritten for determinants as

Note that the coefficients of the a and b diagonals are equal. This
symmetry about the c-axis will always be true for equations written
using the format approach. It is a check on whether the equations were
obtained correctly.

We will now consider a network with only one source of voltage to
point out that mesh analysis can be used to advantage in other than multi-
source networks.

   2I1   �     I2    �   0         � �2

       0      �     3I2 �     7I3     � 2

     �I1   �      6I2  �     3I3     � 4

c b a

b

a

1 � � 1 �  I1 �  1 �  I2 � 0 � 2 V � 4 V 

3 � � 4 �  I3 �  3 �  I2 � 0 � 2 V
1 � � 2 � � 3 �  I2 �   1 �  I1 �   3 �  I3 � 4 V    

I1 :
I2 :
I3 :

I
1
 does not pass through an element

mutual with I
3
.

I
3
 does not pass through an element

mutual with I
1
.

NA

I1 I2

21

1 �

+

–

–

+

4 V
–

+

–

+

+

–

–
2 V

+

+

–
1 �

+
2 V

–

–

+
4 �

3 � 3

2 �+ –

I3

FIG. 8.37

Example 8.17.

EXAMPLE 8.17 Write the mesh equations for the network of Fig.
8.37.
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Solution 1:

I1: (8 � � 3 �)I1 � (8 �)I3 � (3 �)I2 � 15 V
I2: (3 � � 5 � � 2 �)I2 � (3 �)I1 � (5 �)I3 � 0
I3: (8 � � 10 � � 5 �)I3 � (8 �)I1 � (5 �)I2 � 0

11I1 � 8I3 � 3I2 � 15
10I2 � 3I1 � 5I3 � 0
23I3 � 8I1 � 5I2 � 0

or 11I1 � 3I2 � 8I3 � 15
�3I1 � 10I2 � 5I3 � 0
�8I1 � 5I2 � 23I3 � 0

� 11 �3 15�
��3 10 0�
��8 �5 0�

and I3 � I10� � ––––––––––––– � 1.220 A
� 11 �3 �8�
��3 10 �5�
��8 �5 23�

Mathcad Solution: For this example, rather than take the time to
develop the determinant form for each variable, we will apply Mathcad
directly to the resulting equations. As shown in Fig. 8.39, a Guess value
for each variable must first be defined. Such guessing helps the com-
puter begin its iteration process as it searches for the solution. By pro-
viding a rough estimate of 1, the computer recognizes that the result
will probably be a number with a magnitude less than 100 rather than
have to worry about solutions that extend into the thousands or tens of
thousands—the search has been narrowed considerably.

Next, as shown, the word Given must be entered to tell the computer
that the defining equations will follow. Finally, each equation must be
carefully entered and set equal to the constant on the right using the
Ctrl� operation.

The results are then obtained with the Find(I1,I2,I3) expression and
an equal sign. As shown, the results are available with an acceptable
degree of accuracy even though entering the equations and performing
the analysis took only a minute or two (with practice).

NA

I1 I2

21 2 �

+

–
3 �

+

–

–

+

–+
+–

+

–
15 V

–+
+–

10 �

–+

3
I3

I10� = I3

8 � 5 �

FIG. 8.38

Example 8.18.

EXAMPLE 8.18 Find the current through the 10-� resistor of the net-
work of Fig. 8.38.
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NA

det[[11,�3,15][�3,10,0][�8,�5,0]]/det[[11,�3,�8][�3,10,�5][�8,�5,23]] ENTER 1.220

CALC. 8.3

Solution 2: Using the TI-86 calculator:

FIG. 8.39

Using Mathcad to verify the numerical calculations of Example 8.18.

This display certainly requires some care in entering the correct
sequence of brackets in the required format, but it is still a rather neat,
compact format.

8.9 NODAL ANALYSIS (GENERAL APPROACH)

Recall from the development of loop analysis that the general network
equations were obtained by applying Kirchhoff’s voltage law around
each closed loop. We will now employ Kirchhoff’s current law to
develop a method referred to as nodal analysis.

A node is defined as a junction of two or more branches. If we now
define one node of any network as a reference (that is, a point of zero
potential or ground), the remaining nodes of the network will all have a
fixed potential relative to this reference. For a network of N nodes,
therefore, there will exist (N �1) nodes with a fixed potential relative to
the assigned reference node. Equations relating these nodal voltages can
be written by applying Kirchhoff’s current law at each of the (N �1)
nodes. To obtain the complete solution of a network, these nodal volt-
ages are then evaluated in the same manner in which loop currents were
found in loop analysis.
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NA

The nodal analysis method is applied as follows:

1. Determine the number of nodes within the network.
2. Pick a reference node, and label each remaining node with a

subscripted value of voltage: V1, V2, and so on.
3. Apply Kirchhoff’s current law at each node except the reference.

Assume that all unknown currents leave the node for each
application of Kirchhoff’s current law. In other words, for each
node, don’t be influenced by the direction that an unknown
current for another node may have had. Each node is to be treated
as a separate entity, independent of the application of Kirchhoff’s
current law to the other nodes.

4. Solve the resulting equations for the nodal voltages.

A few examples will clarify the procedure defined by step 3. It will
initially take some practice writing the equations for Kirchhoff’s cur-
rent law correctly, but in time the advantage of assuming that all the
currents leave a node rather than identifying a specific direction for
each branch will become obvious. (The same type of advantage is asso-
ciated with assuming that all the mesh currents are clockwise when
applying mesh analysis.)

EXAMPLE 8.19 Apply nodal analysis to the network of Fig. 8.40.

Solution:

Steps 1 and 2: The network has two nodes, as shown in Fig. 8.41. The
lower node is defined as the reference node at ground potential (zero
volts), and the other node as V1, the voltage from node 1 to ground.

Step 3: I1 and I2 are defined as leaving the node in Fig. 8.42, and Kirch-
hoff’s current law is applied as follows:

I � I1 � I2

The current I2 is related to the nodal voltage V1 by Ohm’s law:

I2 � �

The current I1 is also determined by Ohm’s law as follows:

I1 �

with VR1
� V1 � E

Substituting into the Kirchhoff’s current law equation:

I � �

and rearranging, we have

I � � � � V1� � � �

or V1� � � � � I
E
�
R1

1
�
R2

1
�
R1

E
�
R1

1
�
R2

1
�
R1

V1
�
R2

E
�
R1

V1
�
R1

V1
�
R2

V1 � E
�

R1

VR1�
R1

V1
�
R2

VR2�
R2

I 1 A12 �R2

R1 6 �

E 24 V
–

+

FIG. 8.40

Example 8.19.

I 1 A12 �R2

R1 6 �

E 24 V

V1

(0 V)

FIG. 8.41

Network of Fig. 8.40 with assigned nodes.

+

–
I 1 A12 �R2

R1 6 �

E 24 V

V1

(0 V)

I1

–

+

I2

FIG. 8.42

Applying Kirchhoff’s current law to the 
node V1.
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Substituting numerical values, we obtain

V1� � � � � 1 A � 4 A � 1 A
24 V
�
6 �

1
�
12 �

1
�
6 �

NA

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

FIG. 8.43

Example 8.20.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+

–

V2V1

FIG. 8.44

Defining the nodes for the network of Fig. 8.43.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+ –

+

–

V2V1

I1

I2

FIG. 8.45

Applying Kirchhoff’s current law to node V1.

R2

R1

4 �

R3

E 64 V

8 �
2 A

I

10 �

+–

+

–

V2V1

I3

I2

FIG. 8.46

Applying Kirchhoff’s current law to node V2.

V1� � � 5 A

V1 � 20 V

The currents I1 and I2 can then be determined using the preceding equa-
tions:

I1 � � �

� �0.667 A

The minus sign indicates simply that the current I1 has a direction oppo-
site to that appearing in Fig. 8.42.

I2 � � � 1.667 A

EXAMPLE 8.20 Apply nodal analysis to the network of Fig. 8.43.

Solution 1:

Steps 1 and 2: The network has three nodes, as defined in Fig. 8.44,
with the bottom node again defined as the reference node (at ground
potential, or zero volts), and the other nodes as V1 and V2.

Step 3: For node V1 the currents are defined as shown in Fig. 8.45, and
Kirchhoff’s current law is applied:

0 � I1 � I2 � I

with I1 �

and I2 � �

so that � � I � 0

or � � � � I � 0

and V1� � � � V2� � � �I �

Substituting values:

V1� � � � V2� � � �2 A � � 6 A

For node V2 the currents are defined as shown in Fig. 8.46, and
Kirchhoff’s current law is applied:

I � I2 � I3

with I � �
V2
�
R3

V2 � V1
�

R2

64 V
�
8 �

1
�
4 �

1
�
4 �

1
�
8 �

E
�
R1

1
�
R2

1
�
R2

1
�
R1

V2
�
R2

V1
�
R2

E
�
R1

V1
�
R1

V1 � V2
�

R2

V1 � E
�

R1

V1 � V2
�

R2

VR2�
R2

V1 � E
�

R1

20 V
�
12 �

V1
�
R2

�4 V
�

6 �

20 V � 24 V
��

6 �

V1 � E
�

R1

1
�
4 �
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or I � � �

and V2� � � � V1� � � I

Substituting values:

V2� � � � V1� � � 2 A

Step 4: The result is two equations and two unknowns:

V1� � � � V2� � � 6 A

�V1� � � V2� � � � 2 A

which become

0.375V1 � 0.25V2 � 6
�0.25V1 � 0.35V2 � 2

Using determinants,

V1 � 37.818 V

V2 � 32.727 V

Since E is greater than V1, the current I1 flows from ground to V1 and is
equal to

IR1
� � � 3.273 A

The positive value for V2 results in a current IR3
from node V2 to ground

equal to

IR3
� � � � 3.273 A

Since V1 is greater than V2, the current IR2
flows from V1 to V2 and is

equal to

IR2
� � � 1.273 A

Mathcad Solution: For this example, we will use Mathcad to work
directly with the Kirchhoff’s current law equations rather than taking
the mathematical process down the line to more familiar forms. Simply
define everything correctly, provide the Guess values, and insert Given
where required. The process should be quite straightforward.

Note in Fig. 8.47 that the first equation comes from the fact that 
I1 � I2 � I � 0 while the second equation comes from I2 � I3 � I. Pay
particular attention to the fact that the first equation is defined by 
Fig. 8.45 and the second by Fig. 8.46 because the direction of I2 is dif-
ferent for each.

The results of V1 � 37.82 V and V2 � 32.73 V confirm the theoret-
ical solution.

37.818 V � 32.727 V
���

4 �

V1 � V2
�

R2

32.727 V
�

10 �

V2
�
R3

VR3�
R3

64 V � 37.818 V
��

8 �

E � V1
�

R1

1
�
10 �

1
�
4 �

1
�
4 �

1
�
4 �

1
�
4 �

1
�
8 �

1
�
4 �

1
�
10 �

1
�
4 �

1
�
R2

1
�
R3

1
�
R2

V2
�
R3

V1
�
R2

V2
�
R2

NA
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EXAMPLE 8.21 Determine the nodal voltages for the network of Fig.
8.48.

NA

4 A 2 �R1 R2 6 �

R3

2 A

12 �

FIG. 8.48

Example 8.21.

4 A
R1 2 A

2 �

I3

Reference

V1 V2

R2 6 �

R3  =  12 �

I1

FIG. 8.49

Defining the nodes and applying Kirchhoff’s current law to the node V1.

Solution:

Steps 1 and 2: As indicated in Fig. 8.49.

FIG. 8.47

Using Mathcad to verify the mathematical calculations of Example 8.20.
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NA

4 A R1 2 A2 �

I3

Reference

V1 V2

R2
6 �

R3  =  12 �

I2

FIG. 8.50

Applying Kirchhoff’s current law to the node V2.

Step 3: Included in Fig. 8.49 for the node V1. Applying Kirchhoff’s
current law:

4 A � I1 � I3

and 4 A � � � �

Expanding and rearranging:

V1� � � � V2� � � 4 A

For node V2 the currents are defined as in Fig. 8.50.

1
�
12 �

1
�
12 �

1
�
2 �

V1 � V2
�

12 �

V1
�
2 �

V1 � V2
�

R3

V1
�
R1

Applying Kirchhoff’s current law:

0 � I3 � I2 � 2 A

and � � 2 A � 0 � � 2 A � 0

Expanding and rearranging:

V2� � � � V1� � � �2 A

resulting in two equations and two unknowns (numbered for later refer-
ence):

V1� � � � V2� � � �4 A

V2� � � � V1� � � �2 A

(8.3)

producing

V1 � V2 � �4 7V1 � V2 � 48

� V1 � V2 � �2 �1V1 � 3V2 � �24

��48 �1�
��24 �3�

and V1 � –––––––––– � � �6 V
��7 �1�
��1 03�

��7 48�
��1 �24�

V2 � –––––––––– � � �6 V
20

�120
�

20

120
�
20

3
�
12

1
�
12

1
�
12

7
�
12

1
�
12 �

1
�
6 �

1
�
12 �

1
�
12 �

1
�
12 �

1
�
2 �

1
�
12 �

1
�
6 �

1
�
12 �

V2
�
6 �

V2 � V1
�

12 �

V2
�
R2

V2 � V1
�

R3












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Since V1 is greater than V2, the current through R3 passes from V1 to V2.
Its value is

IR3
� � � � 1 A

The fact that V1 is positive results in a current IR1
from V1 to ground

equal to

IR1
� � � � 3 A

Finally, since V2 is negative, the current IR2
flows from ground to V2 and

is equal to

IR2
� � � � 1 A

Supernode

On occasion there will be independent voltage sources in the network to
which nodal analysis is to be applied. In such cases we can convert the
voltage source to a current source (if a series resistor is present) and pro-
ceed as before, or we can introduce the concept of a supernode and pro-
ceed as follows.

Start as before and assign a nodal voltage to each independent node of
the network, including each independent voltage source as if it were a
resistor or current source. Then mentally replace the independent voltage
sources with short-circuit equivalents, and apply Kirchhoff’s current law
to the defined nodes of the network. Any node including the effect of ele-
ments tied only to other nodes is referred to as a supernode (since it has
an additional number of terms). Finally, relate the defined nodes to the
independent voltage sources of the network, and solve for the nodal volt-
ages. The next example will clarify the definition of supernode.

EXAMPLE 8.22 Determine the nodal voltages V1 and V2 of Fig. 8.51
using the concept of a supernode.

6 V
�
6 �

V2
�
R2

VR2�
R2

6 V
�
2 �

V1
�
R1

VR1�
R1

12 V
�
12 �

6 V � (�6 V)
��

12 �

V1 � V2
�

R3

NA

R1 4 �

R3

10 �
E

12 V

R2 2 �6 A 4 A

V2V1

FIG. 8.51

Example 8.22.

Solution: Replacing the independent voltage source of 12 V with a
short-circuit equivalent will result in the network of Fig. 8.52. Even
though the mental application of a short-circuit equivalent is discussed
above, it would be wise in the early stage of development to redraw the
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NA

R1 4 �

R3

10 �

R2 2 �6 A 4 A

V2V1

I1 I2

I3 I3
Supernode

FIG. 8.52

Defining the supernode for the network of Fig. 8.51.

network as shown in Fig. 8.52. The result is a single supernode for which
Kirchhoff’s current law must be applied. Be sure to leave the other defined
nodes in place and use them to define the currents from that region of the
network. In particular, note that the current I3 will leave the supernode at
V1 and then enter the same supernode at V2. It must therefore appear twice
when applying Kirchhoff’s current law, as shown below:

Σ Ii � Σ Io

6 A � I3 � I1 � I2 � 4 A � I3

or I1 � I2 � 6 A � 4 A � 2 A

Then � � 2 A

and � � 2 A

Relating the defined nodal voltages to the independent voltage source,
we have

V1 � V2 � E � 12 V

which results in two equations and two unknowns:

0.25V1 � 0.5V2 � 2
V1 � 1V2 � 12

Substituting:

V1 � V2 � 12

0.25(V2 � 12) � 0.5V2 � 2

and 0.75V2 � 2 � 3 � �1

so that V2 � � �1.333 V

and V1 � V2 � 12 V � �1.333 V � 12 V � �10.667 V

The current of the network can then be determined as follows:

I1 � � � 2.667 A

I2 � � � 0.667 A

I3 � � � � 1.2 A
12 V
�
10 �

10.667 V � (�1.333 V)
���

10 �

V1 � V2
�

10 �

1.333 V
�

2 �

V2
�
R2

10.667 V
�

4 �

V
�
R1

�1
�
0.75

V2
�
2 �

V1
�
4 �

V2
�
R2

V1
�
R1
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A careful examination of the network at the beginning of the analy-
sis would have revealed that the voltage across the resistor R3 must be
12 V and I3 must be equal to 1.2 A.

8.10 NODAL ANALYSIS (FORMAT APPROACH)

A close examination of Eq. (8.3) appearing in Example 8.21 reveals
that the subscripted voltage at the node in which Kirchhoff’s current
law is applied is multiplied by the sum of the conductances attached to
that node. Note also that the other nodal voltages within the same equa-
tion are multiplied by the negative of the conductance between the two
nodes. The current sources are represented to the right of the equals
sign with a positive sign if they supply current to the node and with a
negative sign if they draw current from the node.

These conclusions can be expanded to include networks with any
number of nodes. This will allow us to write nodal equations rapidly
and in a form that is convenient for the use of determinants. A major
requirement, however, is that all voltage sources must first be converted
to current sources before the procedure is applied. Note the parallelism
between the following four steps of application and those required for
mesh analysis in Section 8.8:

1. Choose a reference node and assign a subscripted voltage label to
the (N � 1) remaining nodes of the network.

2. The number of equations required for a complete solution is equal
to the number of subscripted voltages (N � 1). Column 1 of each
equation is formed by summing the conductances tied to the node of
interest and multiplying the result by that subscripted nodal voltage.

3. We must now consider the mutual terms that, as noted in the
preceding example, are always subtracted from the first column.
It is possible to have more than one mutual term if the nodal
voltage of current interest has an element in common with more
than one other nodal voltage. This will be demonstrated in an
example to follow. Each mutual term is the product of the mutual
conductance and the other nodal voltage tied to that conductance.

4. The column to the right of the equality sign is the algebraic sum of
the current sources tied to the node of interest. A current source is
assigned a positive sign if it supplies current to a node and a
negative sign if it draws current from the node.

5. Solve the resulting simultaneous equations for the desired
voltages.

Let us now consider a few examples.
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Steps 2 to 4:

and V1 � V2 � �2

� V1 � V2 � 3
7

�
12

1
�
3

1
�
3

1
�
2

V2: V2 V1
1

4 �
1

3 �
1

3 �
� � � �3 A

Supplying current
to node 2

Sum of
conductances

connected
to node 2

Mutual
conductance

V1: V1 V2
1

6 �
1

3 �
1

3 �
� � � �2 A

Drawing current
from node 1

Sum of
conductances

connected
to node 1

Mutual
conductance

NA

2 A 6 �R1 R2 4 �

R3

3 A

3 �

I2I1

FIG. 8.53

Example 8.23.

Reference

R1 6 �

R3

3 �

I2 3 A R2 4 �I1 2 A

V1 V2

FIG. 8.54

Defining the nodes for the network of Fig. 8.53.

EXAMPLE 8.23 Write the nodal equations for the network of Fig.
8.53.

Solution:

Step 1: The figure is redrawn with assigned subscripted voltages in Fig.
8.54.
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EXAMPLE 8.24 Find the voltage across the 3-� resistor of Fig. 8.55
by nodal analysis.

NA

2 �

V3�8 V
–

+

6 � 10 �

4 � 3 � 1 V–

+

–

+

FIG. 8.55

Example 8.24.

FIG. 8.56

Defining the nodes for the network of Fig. 8.55.

V3�2 �

V1

4 A

–

+
4 � 3 �

10 �
0.1 A

V2

Reference

6 �

� � � �V1 � � �V2 � �4 A
1

�
6 �

1
�
6 �

1
�
4 �

1
�
2 �









� � � �V2 � � �V1 � �0.1 A

V1 � V2 � 4

� V1 � V2 � �0.1

resulting in

11V1 � 2V2 � �48
�5V1 � 18V2 � �3

and

� 11 48�
��5 �3� �33 � 240 207

V2 � V3� � ––––––––– � –––––––––– � –––– � 1.101 V
� 11 �2� 198 � 10 188
��5 18�

As demonstrated for mesh analysis, nodal analysis can also be a very
useful technique for solving networks with only one source.

3
�
5

1
�
6

1
�
6

11
�
12

1
�
6 �

1
�
6 �

1
�
3 �

1
�
10 �

Solution: Converting sources and choosing nodes (Fig. 8.56), we
have



NODAL ANALYSIS (FORMAT APPROACH)  289

EXAMPLE 8.25 Using nodal analysis, determine the potential across
the 4-� resistor in Fig. 8.57.

Solution 1: The reference and four subscripted voltage levels were
chosen as shown in Fig. 8.58. A moment of reflection should reveal that
for any difference in potential between V1 and V3, the current through
and the potential drop across each 5-� resistor will be the same. There-
fore, V4 is simply a midvoltage level between V1 and V3 and is known
if V1 and V3 are available. We will therefore not include it in a nodal
voltage and will redraw the network as shown in Fig. 8.59. Understand,
however, that V4 can be included if desired, although four nodal volt-
ages will result rather than the three to be obtained in the solution of
this problem.

V1: � � � �V1 � � �V2 � � �V3 � 0
1

�
10 �

1
�
2 �

1
�
10 �

1
�
2 �

1
�
2 �

NA

2 �

3 A

2 �

4 �2 �

5 � 5 �

FIG. 8.57

Example 8.25.

2 �

3 A

2 �

4 �2 �

5 � 5 �

V1

V4

V3V2

(0 V)

FIG. 8.58

Defining the nodes for the network of Fig.
8.57.

2 �

3 A

2 �

4 �2 �

V1

10 �

(0 V)

V2 V3

FIG. 8.59

Reducing the number of nodes for the network
of Fig. 8.57 by combining the two 5-�

resistors.

V2: � � �V2 � � �V1 � � �V3 � 3 A
1

�
2 �

1
�
2 �

1
�
2 �

1
�
2 �

V3: � � � �V3 � � �V2 � � �V1 � 0

which are rewritten as

1.1V1 � 0.5V2 � 0.1V3 � 0
V2 � 0.5V1 � 0.5V3 � 3

0.85V3 � 0.5V2 � 0.1V1 � 0

For determinants,

Before continuing, note the symmetry about the major diagonal in
the equation above. Recall a similar result for mesh analysis. Exam-
ples 8.23 and 8.24 also exhibit this property in the resulting equations.
Keep this thought in mind as a check on future applications of nodal
analysis.

��1.1 �0.5 0 �
��0.5 �1 3 �
��0.1 �0.5 0 �

V3 � V4� � ––––––––––––––––––– � 4.645 V
��1.1 �0.5 �0.1 �
��0.5 �1 �0.5 �
��0.1 �0.5 �0.85�

Mathcad Solution: By now the sequence of steps necessary to
solve a series of equations using Mathcad should be quite familiar and
less threatening than the first encounter. For this example, all the param-
eters were entered in the three simultaneous equations, avoiding the

1.1V1 � 0.5V2 � 0.1V3 � 0

�0.1V1 � 0.5V2 � 0.85V3 � 0

�0.5V1 � 1V2 � 0.5V3 � 3

c b a

b

a

1
�
10 �

1
�
2 �

1
�
4 �

1
�
2 �

1
�
10 �
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need to define each parameter of the network. Simply provide a Guess
at the three nodal voltages, apply the word Given, and enter the three
equations properly as shown in Fig. 8.60. It does take some practice to
ensure that the bracket is moved to the proper location before making
an entry, but this is simply part of the rules set up to maintain control of
the operations to be performed. Finally, request the desired nodal volt-
ages using the correct format. The numerical results will appear, again
confirming our theoretical solutions.

NA

3 � 4 � 1 �

9 �

240 V 6 � 6 � 2 �–

+

FIG. 8.61

Example 8.26.

FIG. 8.60

Using Mathcad to verify the mathematical calculations of Example 8.25.

The next example has only one source applied to a ladder network.

EXAMPLE 8.26 Write the nodal equations and find the voltage across
the 2-� resistor for the network of Fig. 8.61.
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V1: � � � �V1 � � �V2 � 0 � 20 V
1

�
4 �

1
�
4 �

1
�
6 �

1
�
12 �

NA

FIG. 8.62

Converting the voltage source to a current source and defining the nodes for the
network of Fig. 8.61.

12 �

V1

2 �20 A 6 � 6 �

(0 V)

1 �4 �

V2 V3

Solution: The nodal voltages are chosen as shown in Fig. 8.62.

V2: � � � �V2 � � �V1 � � �V3 � 0
1

�
1 �

1
�
4 �

1
�
1 �

1
�
6 �

1
�
4 �

V3: � � �V3 � � �V2 � 0 � 0

and

0.5V1 � 0.25V2 � 0 � 20

�0.25V1 � V2 � 1V3 � 0

0 � 1V2 � 1.5V3 � 0

Note the symmetry present about the major axis. Application of
determinants reveals that

V3 � V2� � 10.667 V

8.11 BRIDGE NETWORKS

This section introduces the bridge network, a configuration that has a
multitude of applications. In the chapters to follow, it will be employed
in both dc and ac meters. In the electronics courses it will be encoun-
tered early in the discussion of rectifying circuits employed in convert-
ing a varying signal to one of a steady nature (such as dc). A number of
other areas of application also require some knowledge of ac networks;
these areas will be discussed later.

The bridge network may appear in one of the three forms as indi-
cated in Fig. 8.63. The network of Fig. 8.63(c) is also called a symmet-
rical lattice network if R2 � R3 and R1 � R4. Figure 8.63(c) is an excel-
lent example of how a planar network can be made to appear nonplanar.
For the purposes of investigation, let us examine the network of Fig.
8.64 using mesh and nodal analysis.

17
�
12

1
�
1 �

1
�
2 �

1
�
1 �
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Mesh analysis (Fig. 8.65) yields

(3 � � 4 � � 2 �)I1 � (4 �)I2 � (2 �)I3 � 20 V
(4 � � 5 � � 2 �)I2 � (4 �)I1 � (5 �)I3 � 0
(2 � � 5 � � 1 �)I3 � (2 �)I1 � (5 �)I2 � 0

and 009I1 � 4I2 � 2I3 � 20
�4I1 � 11I2 � 5I3 � 0
�2I1 � 5I2 � 8I3 � 0

with the result that

I1 � 4 A

I2 � 2.667 A

I3 � 2.667 A

The net current through the 5-� resistor is

I5� � I2 � I3 � 2.667 A � 2.667 A � 0 A

Nodal analysis (Fig. 8.66) yields

� � � �V1 � � �V2 � � �V3 � A
20
�
3

1
�
2 �

1
�
4 �

1
�
2 �

1
�
4 �

1
�
3 �

NA

(b)

R2R1

R3 R4

R5

R1 R2

R5

R3 R4

(a) (c)

R2

R1

R3

R4

R5

FIG. 8.63

Various formats for a bridge network.

FIG. 8.64

Standard bridge configuration.

Rs 3 � R2

2 �

R3

2 �
5 �

R5

1 �

R4

4 �

R1

E 20 V

Rs 3 � R2
2 �

R3 1 �

R1

E 20 V

I1

4 �
R5 I2

I35 �
2 � R4

FIG. 8.65

Assigning the mesh currents to the network of 
Fig. 8.64.

R1

R2R5

R3

R4

2 �

3 �I Rs

V2

V1

V3

4 �

5 �
2 �

1 �

20
3 A

(0 V)

FIG. 8.66

Defining the nodal voltages for the network of 
Fig. 8.64.

det[[20/3,�1/4,�1/2][0,(1/4�1/2�1/5),�1/5][0,�1/5,(1/5�1/2�1/1)]] ENTER 10.5

CALC. 8.4

� � � �V2 � � �V1 � � �V3 � 0
1

�
5 �

1
�
4 �

1
�
5 �

1
�
2 �

1
�
4 �

� � � �V3 � � �V1 � � �V2 � 0

and

� � � �V1 � � �V2 � � �V3 � A
20
�
3

1
�
2 �

1
�
4 �

1
�
2 �

1
�
4 �

1
�
3 �

1
�
5 �

1
�
2 �

1
�
1 �

1
�
2 �

1
�
5 �

�� �V1 � � � � �V2 � � �V3 � 0
1

�
5 �

1
�
5 �

1
�
2 �

1
�
4 �

1
�
4 �

�� �V1 � � �V2 � � � � �V3 � 0

Note the symmetry of the solution.
With the TI-86 calculator, the top part of the determinant is determined

by the following (take note of the calculations within parentheses):

1
�
1 �

1
�
2 �

1
�
5 �

1
�
5 �

1
�
2 �
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with the bottom of the determinant determined by:

det[[(1/3�1/4�1/2),�1/4,�1/2][�1/4,(1/4�1/2�1/5),�1/5][�1/2,�1/5,(1/5�1/2�1/1)]] ENTER 1.312

CALC. 8.5

Finally, 10.5/1.312 ENTER 8

CALC. 8.6

and V1 � 8 V

Similarly, V2 � 2.667 V and V3 � 2.667 V

and the voltage across the 5-� resistor is

V5� � V2 � V3 � 2.667 V � 2.667 V � 0 V

Since V5� � 0 V, we can insert a short in place of the bridge arm with-
out affecting the network behavior. (Certainly V � IR � I·(0) �
0 V.) In Fig. 8.67, a short circuit has replaced the resistor R5, and the volt-
age across R4 is to be determined. The network is redrawn in Fig. 8.68, and

V1� � (voltage divider rule)

� � 

� � � 2.667 V

as obtained earlier.
We found through mesh analysis that I5� � 0 A, which has as its

equivalent an open circuit as shown in Fig. 8.69(a). (Certainly I �
V/R � 0/(∞ �) � 0 A.) The voltage across the resistor R4 will again
be determined and compared with the result above.

The network is redrawn after combining series elements, as shown in
Fig. 8.69(b), and

V3� � � � 8 V

and V1� � � � 2.667 V

as above.
The condition V5� � 0 V or I5� � 0 A exists only for a particular

relationship between the resistors of the network. Let us now derive this
relationship using the network of Fig. 8.70, in which it is indicated that
I � 0 A and V � 0 V. Note that resistor Rs of the network of Fig. 8.69
will not appear in the following analysis.

The bridge network is said to be balanced when the condition of
I � 0 A or V � 0 V exists.

If V � 0 V (short circuit between a and b), then

V1 � V2

8 V
�

3
1 �(8 V)
��
1 � � 2 �

2 �(20 V)
��
2 � � 3 �

(6 � � 3 �)(20 V)
��
6 � � 3 � � 3 �

40 V
�

15
2(20 V)

��
2 � 4 � 9

�
2
3

�(20 V)
��
�
2
3

� � �
4
3

� � �
9
3

�

�
2
3

�(20 V)
��
�
2
3

� � �
8
6

� � 3

(2 � � 1 �)20 V
����
(2 � � 1 �) � (4 � � 2 �) � 3 �

R1

R2

R3

R4

2 �

E

4 �

2 �

1 �

V  =  0

Rs 3 �

20 V

–

+
V1�

FIG. 8.67

Substituting the short-circuit equivalent for
the balance arm of a balanced bridge.

R1 2 �

–

+

4 � R2

R3 1 �2 � R4

Rs 3 �

E 20 V V1�–

+

FIG. 8.68

Redrawing the network of Fig. 8.67.
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and I1R1 � I2 R2

or I1 �

In addition, when V � 0 V,

V3 � V4

and I3 R3 � I4 R4

If we set I � 0 A, then I3 � I1 and I4 � I2, with the result that the
above equation becomes

I1R3 � I2 R4

Substituting for I1 from above yields

� �R3 � I2 R4

or, rearranging, we have

(8.4)

This conclusion states that if the ratio of R1 to R3 is equal to that of
R2 to R4, the bridge will be balanced, and I � 0 A or V � 0 V. A method
of memorizing this form is indicated in Fig. 8.71.

For the example above, R1 � 4 �, R2 � 2 �, R3 � 2 �, R4 � 1 �,
and

� � � 2

The emphasis in this section has been on the balanced situation.
Understand that if the ratio is not satisfied, there will be a potential drop
across the balance arm and a current through it. The methods just
described (mesh and nodal analysis) will yield any and all potentials or
currents desired, just as they did for the balanced situation.

8.12 Y-D (T-p) AND D-Y (p-T) CONVERSIONS

Circuit configurations are often encountered in which the resistors do
not appear to be in series or parallel. Under these conditions, it may be
necessary to convert the circuit from one form to another to solve for

2 �
�
1 �

4 �
�
2 �

R2
�
R4

R1
�
R3

�
R

R
1

3
� � �

R

R
2

4
�

I2 R2
�

R1

I2 R2
�

R1

NA

R1

R2

R3

R4

2 �

E

4 �

2 �

1 �

Rs 3 �

20 V
–

+

–

+

I  =  0

(a)

V1�

6 �

3 �Rs

3 �

E 20 V
–

+

(b)

FIG. 8.69

Substituting the open-circuit equivalent for the balance arm of a balanced 
bridge.

R1

R3E

V  =  0
Rs

–

+
I  =  0

R4
V4

I4

I1V1–
+ I2

V2
–

+
R2

V3 –

+

I3

–+

FIG. 8.70

Establishing the balance criteria for a bridge 
network.

R1

R3

R2

R4

R1

R3

R2

R4
=

FIG. 8.71

A visual approach to remembering the
balance condition.
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any unknown quantities if mesh or nodal analysis is not applied. Two
circuit configurations that often account for these difficulties are the
wye (Y) and delta (�) configurations, depicted in Fig. 8.72(a). They
are also referred to as the tee (T) and pi (�), respectively, as indicated
in Fig. 8.72(b). Note that the pi is actually an inverted delta.

RB

RC

RA

“ ”

R1 R2

R3

“ ”

RB RA

RC

“ ”

(a) (b)

R1 R2

R3

“ ”

FIG. 8.72

The Y (T) and D (p) configurations.

The purpose of this section is to develop the equations for convert-
ing from D to Y, or vice versa. This type of conversion will normally
lead to a network that can be solved using techniques such as those
described in Chapter 7. In other words, in Fig. 8.73, with terminals a,
b, and c held fast, if the wye (Y) configuration were desired instead of
the inverted delta (D) configuration, all that would be necessary is a
direct application of the equations to be derived. The phrase instead of
is emphasized to ensure that it is understood that only one of these con-
figurations is to appear at one time between the indicated terminals.

It is our purpose (referring to Fig. 8.73) to find some expression for
R1, R2, and R3 in terms of RA, RB, and RC, and vice versa, that will
ensure that the resistance between any two terminals of the Y configu-
ration will be the same with the D configuration inserted in place of the
Y configuration (and vice versa). If the two circuits are to be equivalent,
the total resistance between any two terminals must be the same. Con-
sider terminals a-c in the D-Y configurations of Fig. 8.74.

a

RARB
R3

R2R1

RC
b

c

“ ”

FIG. 8.73

Introducing the concept of D-Y or Y-D
conversions.

R1 R2

R3

a b

c

Ra-c RB RA

RC

a b

c

Ra-c

RB RA

RC

a

b

c

Ra-c

External to path
of measurement

FIG. 8.74

Finding the resistance Ra-c for the Y and D configurations.
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Let us first assume that we want to convert the D (RA, RB, RC) to the Y
(R1, R2, R3). This requires that we have a relationship for R1, R2, and R3

in terms of RA, RB, and RC. If the resistance is to be the same between ter-
minals a-c for both the D and the Y, the following must be true:

Ra-c (Y) � Ra-c (D)

so that (8.5a)

Using the same approach for a-b and b-c, we obtain the following rela-
tionships:

(8.5b)

and (8.5c)

Subtracting Eq. (8.5a) from Eq. (8.5b), we have

(R1 � R2) � (R1 � R3) � � � � � �

so that (8.5d)

Subtracting Eq. (8.5d) from Eq. (8.5c) yields

(R2 � R3) � (R2 � R3) � � � � � �
so that 2R3 ��

RA �

2R
R
B

B

R
�
A

RC
�

resulting in the following expression for R3 in terms of RA, RB, and RC:

(8.6a)

Following the same procedure for R1 and R2, we have

(8.6b)

and (8.6c)

Note that each resistor of the Y is equal to the product of the resistors
in the two closest branches of the D divided by the sum of the resistors
in the D.

R2 � �
RA �

R

R
A R

B

C

� RC
�

R1 � �
RA �

R

R
B R

B

C

� RC
�

R3 � �
RA �

R

R
A

B

RB

� RC
�

RA RC � RB RA
��
RA � RB � RC

RA RB � RA RC
��
RA � RB � RC

R2 � R3 � �
R

R

A

A R

�
C

R

�

B

R

�
B R

R
A

C
�

RB RA � RB RC
��
RA � RB � RC

RC RB � RC RA
��
RA � RB � RC

Rb-c � R2 � R3 � �
RA

RA

�

(R

(
B

RB

�

�

RC

R

)

C)
�

Ra-b � R1 � R2 � �
RC

RC

�

(R

(
A

RA

�

�

RB

R

)

B)
�

Ra-c � R1 � R3 � �
RB

R

�
B(R

(
A

RA

�

�

RC

R

)

C)
�

NA
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To obtain the relationships necessary to convert from a Y to a D, first
divide Eq. (8.6a) by Eq. (8.6b):

� � �
R
R

C

A�

or RA �

Then divide Eq. (8.6a) by Eq. (8.6c):

� � �
R
R

C

B�

or RB �

Substituting for RA and RB in Eq. (8.6c) yields

R2 �

�

Placing these over a common denominator, we obtain

R2 �

�

and RC � (8.7a)

We follow the same procedure for RB and RA:

RA � (8.7b)

and RB � (8.7c)

Note that the value of each resistor of the D is equal to the sum of the
possible product combinations of the resistances of the Y divided by
the resistance of the Y farthest from the resistor to be determined.

Let us consider what would occur if all the values of a D or Y
were the same. If RA � RB � RC, Equation (8.6a) would become
(using RA only) the following:

R3 � �
RA �

R
R
AR

B

B

� RC
� � �

RA �

R
R
AR

A

A

� RA
� � �

3
R
R

2
A

A
� �

and, following the same procedure,

R1 � R2 �
RA
�
3

RA
�
3

RA
�
3

R1R2 � R1R3 � R2R3
���

R2

R1R2 � R1R3 � R2R3
���

R1

R1R2 � R1R3 � R2R3
���

R3

R2R3RC
���
R1R2 � R1R3 � R2R3

(R3RC /R1)
����
(R1R2 � R1R3 � R2R3)/(R1R2)

(R3 /R1)RC
���
(R3 /R2) � (R3 /R1) � 1

(RC R3 /R1)RC
����
(R3 RC /R2) � (RC R3 /R1) � RC

R3 RC
�

R2

(RARB)/(RA � RB � RC)
���
(RARC)/(RA � RB � RC)

R3
�
R2

RC R3
�

R1

(RA RB) /(RA � RB � RC)
���
(RB RC) /(RA � RB � RC)

R3
�
R1

NA
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In general, therefore,

(8.8a)

or (8.8b)

which indicates that for a Y of three equal resistors, the value of each
resistor of the D is equal to three times the value of any resistor of the
Y. If only two elements of a Y or a D are the same, the corresponding
D or Y of each will also have two equal elements. The converting of
equations will be left as an exercise for the reader.

The Y and the D will often appear as shown in Fig. 8.75. They are
then referred to as a tee (T) and a pi (�) network, respectively. The
equations used to convert from one form to the other are exactly the
same as those developed for the Y and D transformation.

RD � 3RY

RY � �
R

3
D
�

NA

(a)

R1

1

2

3

4

R2

R3

“ ” “ ” “ ”

RC

1

2

3

4

RB RA

“ ”

(b)

FIG. 8.75

The relationship between the Y and T configurations and the D and p
configurations.

EXAMPLE 8.27 Convert the D of Fig. 8.76 to a Y.

RB

RA

RCa
b

c

a

b

c

20 �
30 �

10 �

FIG. 8.76

Example 8.27.

R3 10 �

R1

31/3 � R2

5 �

a
ba

b

c
c

FIG. 8.77

The Y equivalent for the D of Fig. 8.76.



Solution:

R1 � � � � 3 �

R2 � � � � 5 �

R3 � � � � 10 �

The equivalent network is shown in Fig. 8.77 (page 298).

EXAMPLE 8.28 Convert the Y of Fig. 8.78 to a D.

Solution:

RA �

�

� �

RA � 180 �

However, the three resistors for the Y are equal, permitting the use of
Eq. (8.8) and yielding

RD � 3RY � 3(60 �) � 180 �

and RB � RC � 180 �

The equivalent network is shown in Fig. 8.79.

EXAMPLE 8.29 Find the total resistance of the network of Fig. 8.80,
where RA � 3 �, RB � 3 �, and RC � 6 �.

Solution:

Two resistors of the D were equal;
therefore, two resistors of the Y will
be equal.

R1 � � � � 1.5 �

R2 � � � � 1.5 �

R3 � � � � 0.75 �

Replacing the D by the Y, as shown in Fig. 8.81, yields

RT � 0.75 � �

� 0.75 � �

� 0.75 � � 2.139 �

RT � 2.889 �

(5.5 �)(3.5 �)
��
5.5 � � 3.5 �

(4 � � 1.5 �)(2 � � 1.5 �)
����
(4 � � 1.5 �) � (2 � � 1.5 �)

9 �
�
12

(3 �)(3 �)
��

12 �

RARB��
RA � RB � RC

18 �
�

12

(3 �)(6 �)
��

12 �

RARC��
RA � RB � RC
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���
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�����
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���

R1
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�
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RARB��
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�
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��
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RARC��
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1
�
3

200 �
�
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���
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RB RC��
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R3 60 �

R1

60 � R2

60 �

a
ba

b

c
c

FIG. 8.78

Example 8.28.

RC

RB

180 � RA

a
ba

b

c
c

180 �

180 �

FIG. 8.79

The D equivalent for the Y of Fig. 8.78.
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3 �
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ba

c

4 � 2 �

6 � “    ”RT

RC

FIG. 8.80

Example 8.29.
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0.75 �

R1

ba

c

4 � 2 �

1.5 � 1.5 �

R3

R2

FIG. 8.81

Substituting the Y equivalent for the bottom D
of Fig. 8.80.

← 
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EXAMPLE 8.30 Find the total resistance of the network of Fig. 8.82.

Solutions: Since all the resistors of the D or Y are the same, Equa-
tions (8.8a) and (8.8b) can be used to convert either form to the other.
a. Converting the D to a Y. Note: When this is done, the resulting d ′ of

the new Y will be the same as the point d shown in the original fig-
ure, only because both systems are “balanced.” That is, the resis-
tance in each branch of each system has the same value:

RY � � � 2 � (Fig. 8.83)
6 �
�

3

RD
�
3

NA

FIG. 8.82

Example 8.30.

RT

6 �

a

bc

9 �
6
�

9 � 9 �

6 �

d

d*

2 �

2 � 2 �

a

bc

6 �

a

bc

6 �

6 �

FIG. 8.83

Converting the D configuration of Fig. 8.82 to a Y configuration.

RT

9 �

a

2 �

d, d�

c b

9 � 9 �

2 �2 �

FIG. 8.84

Substituting the Y configuration for the con-
verted D into the network of Fig. 8.82.

RT
6 �

a

bc

27 �
6 �

6 �

27 �
27 �

FIG. 8.85

Substituting the converted Y configuration into
the network of Fig. 8.82.

The network then appears as shown in Fig. 8.84.

RT � 2� � � 3.2727 �

b. Converting the Y to a D:

RD � 3RY � (3)(9 �) � 27 � (Fig. 8.85)

R′T � � � 4.9091 �

RT � � �

� � 3.2727 �

which checks with the previous solution.

2(4.9091 �)
��

3

2R′T�
3

R′T2R′T�
3R′T

R′T (R′T � R′T)
��
R′T � (R′T � R′T)

162 �
�

33
(6 �)(27 �)
��
6 � � 27 �

(2 �)(9 �)
��
2 � � 9 �
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8.13 APPLICATIONS

The Applications section of this chapter will discuss the constant cur-
rent characteristic in the design of security systems, the bridge circuit in
a common residential smoke detector, and the nodal voltages of a digi-
tal logic probe.

Constant Current Alarm Systems

The basic components of an alarm system employing a constant current
supply are provided in Fig. 8.86. This design is improved over that pro-
vided in Chapter 5 in the sense that it is less sensitive to changes in
resistance in the circuit due to heating, humidity, changes in the length
of the line to the sensors, and so on. The 1.5-k� rheostat (total resis-
tance between points a and b) is adjusted to ensure a current of 5 mA
through the single-series security circuit. The adjustable rheostat is nec-
essary to compensate for variations in the total resistance of the circuit
introduced by the resistance of the wire, sensors, sensing relay, and mil-
liammeter. The milliammeter is included to set the rheostat and ensure
a current of 5 mA.

Magnetic
switch

Window
foil

Door
switch

Sensing relay

1 kΩ

≅ 5 mA

E 10 V
+

–

Rheostat
0     1.5 kΩ

10-mA
movement

N/C

N/O 5 V @ 5 mA

To bell circuit

1 kΩ

a

b

FIG. 8.86

Constant current alarm system.

If any of the sensors should open, the current through the entire cir-
cuit will drop to zero, the coil of the relay will release the plunger, and
contact will be made with the N/C position of the relay. This action will
complete the circuit for the bell circuit, and the alarm will sound. For
the future, keep in mind that switch positions for a relay are always
shown with no power to the network, resulting in the N/C position of
Fig. 8.86. When power is applied, the switch will have the position indi-
cated by the dashed line. That is, various factors, such as a change in
resistance of any of the elements due to heating, humidity, and so on,
would cause the applied voltage to redistribute itself and create a sensi-
tive situation. With an adjusted 5 mA, the loading can change, but the
current will always be 5 mA and the chance of tripping reduced. Take
note of the fact that the relay is rated as 5 V at 5 mA, indicating that in
the on state the voltage across the relay is 5 V and the current through
the relay 5 mA. Its internal resistance is therefore 5 V/5 mA � 1 k� in
this state.

A more advanced alarm system using a constant current is provided
in Fig. 8.87. In this case an electronic system employing a single tran-
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sistor, biasing resistors, and a dc battery are establishing a current of
4 mA through the series sensor circuit connected to the positive side of
an operational amplifier (op-amp). Although the transistor and op-amp
devices may be new to you, they will be discussed in detail in your
electronics courses—you do not need to be aware of the details of their
operation for now. Suffice it to say for the moment that the transistor in
this application is being used not as an amplifier but as part of a design
to establish a constant current through the circuit. The op-amp is a very
useful component of numerous electronic systems, and it has important
terminal characteristics established by a variety of components internal
to its design. The LM2900 operational amplifier of Fig. 8.87 is one of
four found in the dual-in-line integrated circuit package appearing in
Fig. 8.88(a). Pins 2, 3, 4, 7, and 14 were used for the design of Fig.
8.87. Note in Fig. 8.88(b) the number of elements required to establish
the desired terminal characteristics—the details of which will be inves-
tigated in your electronics courses.

In Fig. 8.87, the designed 15-V dc supply, biasing resistors, and tran-
sistor in the upper right-hand corner of the schematic establish a con-
stant 4-mA current through the circuit. It is referred to as a constant
current source because the current will remain fairly constant at 4 mA
even though there may be moderate variations in the total resistance of
the series sensor circuit connected to the transistor. Following the 4 mA
through the circuit, we find that it enters terminal 2 (positive side of the
input) of the op-amp. A second current of 2 mA, called the reference
current, is established by the 15-V source and resistance R and enters
terminal 3 (negative side of the input) of the op-amp. The reference cur-
rent of 2 mA is necessary to establish a current for the 4-mA current of
the network to be compared against. So long as the 4-mA current exists,
the operational amplifier will provide a “high” output voltage that
exceeds 13.5 V, with a typical level of 14.2 V (according to the specifi-
cation sheet for the op-amp). However, if the sensor current drops from
4 mA to a level below the reference level of 2 mA, the op-amp will
respond with a “low” output voltage that is typically about 0.1 V. The
output of the operational amplifier will then signal the alarm circuit
about the disturbance. Note from the above that it is not necessary for
the sensor current to drop to 0 mA to signal the alarm circuit—just a
variation around the reference level that appears unusual.

One very important characteristic of this particular op-amp is that the
input impedance to the op-amp is relatively low. This feature is important
because you don’t want alarm circuits reacting to every voltage spike or
turbulence that comes down the line because of external switching action

NA
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switch

2 mA

4 mA

+15 V
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source
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R1

Op-Amp

FIG. 8.87

Constant current alarm system with electronic components.

(a)

V+

14

200 µA

4
Output

–Input

+Input

3

2

7

(b)

+ Vhigh –

+

–

Rseries
V

+

–
0

Vlow
Rlow Op-Amp

(c)

7

INPUT 3+

On package
to identify
pin numbers

Dual-in-line package

V+ INPUT 4+ INPUT 4– OUTPUT 4 OUTPUT 3 INPUT 3–

14 13 12 11 10 9 8

4
–

+

2
–

+

–

+

–

+

3

1

1 2 3 4 5 6 7

INPUT 1+ INPUT 2+ INPUT 2– OUTPUT 2 GNDOUTPUT 1 INPUT 1–

TOP VIEW

FIG. 8.88

LM2900 operational amplifier: (a) dual-in-
line package (DIP); (b) components; 
(c) impact of low-input impedance.
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or outside forces such as lightning. In Fig. 8.88(c), for instance, if a high
voltage should appear at the input to the series configuration, most of the
voltage will be absorbed by the series resistance of the sensor circuit
rather than traveling across the input terminals of the operational ampli-
fier—thus preventing a false output and an activation of the alarm.

Wheatstone Bridge Smoke Detector

TheWheatstonebridgeisapopularnetworkconfigurationwheneverdetec-
tion of small changes in a quantity is required. In Fig. 8.89(a), the dc bridge
configuration is employing a photoelectric device to detect the presence of
smoke and to sound the alarm. A photograph of an actual photoelectric
smoke detector appears in Fig. 8.89(b), and the internal construction of the
unit is shown in Fig. 8.89(c). First note that air vents are provided to permit
thesmoketoenter thechamberbelowtheclearplastic.Theclearplasticwill
prevent thesmokefromentering theupperchamberbutwillpermit the light

NA
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FIG. 8.89(a)(b)

Wheatstone bridge detector: (a) dc bridge configuration; 
(b) outside appearance.
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from the bulb in the upper chamber to bounce off the lower reflector to the
semiconductor light sensor (a cadmium photocell) at the left side of the
chamber. The clear plastic separation ensures that the light hitting the light
sensor in the upper chamber is not affected by the entering smoke. It estab-
lishes a reference level to compare against the chamber with the entering
smoke. If no smoke is present, the difference in response between the sen-
sor cells will be registered as the normal situation. Of course, if both cells
were exactly identical, and if the clear plastic did not cut down on the light,
both sensors would establish the same reference level, and their difference
would be zero. However, this is seldom the case, so a reference difference is
recognized as the sign that smoke is not present. However, once smoke is
present, there will be a sharp difference in the sensor reaction from the
norm, and the alarm should be sounded.

In Fig. 8.89(a), we find that the two sensors are located on opposite
arms of the bridge. With no smoke present the balance-adjust rheostat will
be used to ensure that the voltage V between points a and b is zero volts and
the resulting current through the primary of the sensitive relay will be zero
amperes. Taking a look at the relay, we find that the absence of a voltage
from a to b will leave the relay coil unenergized and the switch in the N/O
position (recall that the position of a relay switch is always drawn in the
unenergized state). An unbalanced situation will result in a voltage across
the coil and activation of the relay, and the switch will move to the N/C
position to complete the alarm circuit and activate the alarm. Relays with
two contacts and one movable arm are called single-pole–double-throw
(SPDT) relays. The dc power is required to set up the balance situation,
energize the parallel bulb so we know that the system is on, and provide the
voltage from a to b if an unbalanced situation should develop.

One may ask why only one sensor isn’t used since its resistance
would be sensitive to the presence of smoke. The answer lies in the fact
that the smoke detector might generate a false readout if the supply
voltage or output light intensity of the bulb should vary. Smoke detec-
tors of the type just described must be used in gas stations, kitchens,
dentist offices, etc., where the range of gas fumes present may set off an
ionizing type smoke detector.

Ceiling Reflector

Reference cell

Sealed chamber

Solid barrier

Light
source

Clear
plastic

Reflector

Vents for the
passage of air or smoke

Room

Smoke
detector

Photoconductive
cells

(Resistance a function
of applied light)

(c)

FIG. 8.89(c)

Wheatstone bridge smoke detector: (c) internal construction.
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Schematic with Nodal Voltages

When an investigator is presented with a system that is down or not
operating properly, one of the first options is to check the system’s
specified voltages on the schematic. These specified voltage levels are
actually the nodal voltages determined in this chapter. Nodal voltage is
simply a special term for a voltage measured from that point to ground.
The technician will attach the negative or lower-potential lead to the
ground of the network (often the chassis) and then place the positive or
higher-potential lead on the specified points of the network to check the
nodal voltages. If they match, it is a good sign that that section of the
system is operating properly. If one or more fail to match the given val-
ues, the problem area can usually be identified. Be aware that a reading
of �15.87 V is significantly different from an expected reading of
�16 V if the leads have been properly attached. Although the actual
numbers seem close, the difference is actually more than 30 V. One
must expect some deviation from the given value as shown, but always
be very sensitive to the resulting sign of the reading.

The schematic of Fig. 8.90(a) includes the nodal voltages for a logic
probe used to measure the input and output states of integrated circuit
logic chips. In other words, the probe determines whether the measured
voltage is one of two states: high or low (often referred to as “on” or
“off” or 1 or 0). If the LOGIC IN terminal of the probe is placed on a
chip at a location where the voltage is between 0 and 1.2 V, the voltage
is considered a low level, and the green LED will light. (LEDs are light-
emitting semiconductor diodes that will emit light when current is
passed through them.) If the measured voltage is between 1.8 V and
5 V, the reading is considered high, and the red LED will light. Any
voltage between 1.2 V and 1.8 V is considered a “floating level” and is
an indication that the system being measured is not operating correctly.
Note that the reference levels mentioned above are established by the
voltage divider network to the right of the schematic. The op-amps
employed are of such high input impedance that their loading on the
voltage divider network can be ignored and the voltage divider network
considered a network unto itself. Even though three 5.5-V dc supply
voltages are indicated on the diagram, be aware that all three points are
connected to the same supply. The other voltages provided (the nodal
voltages) are the voltage levels that should be present from that point to
ground if the system is working properly.

The op-amps are used to sense the difference between the reference
at points 3 and 6 and the voltage picked up in LOGIC IN. Any differ-
ence will result in an output that will light either the green or the red
LED. Be aware, because of the direct connection, that the voltage at
point 3 is the same as shown by the nodal voltage to the left, or 1.8 V.
Likewise, the voltage at point 6 is 1.2 V for comparison with the volt-
ages at points 5 and 2, which reflect the measured voltage. If the input
voltage happened to be 1.0 V, the difference between the voltages at
points 5 and 6 would be 0.2 V, which ideally would appear at point 7.
This low potential at point 7 would result in a current flowing from the
much higher 5.5-V dc supply through the green LED, causing it to light
and indicating a low condition. By the way, LEDs, like diodes, permit
current through them only in the direction of the arrow in the symbol.
Also note that the voltage at point 6 must be higher than that at point 5
for the output to turn on the LED. The same is true for point 2 over
point 3, which reveals why the red LED does not light when the 1.0-V
level is measured.

NA
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Oftentimes it is impractical to draw the full network as shown in Fig.
8.90(b) because there are space limitations or because the same voltage
divider network is used to supply other parts of the system. In such
cases one must recognize that points having the same shape are con-
nected, and the number in the figure reveals how many connections are
made to that point.

NA

FIG. 8.90

Logic probe: (a) schematic with nodal voltages; (b) network with global
connections; (c) photograph of commercially available unit.
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A photograph of the outside and inside of a commercially avail-
able logic probe is provided in Fig. 8.90(c). Note the increased
complexity of system because of the variety of functions that the probe
can perform.

8.14 COMPUTER ANALYSIS

PSpice

The bridge network of Fig. 8.70 will now be analyzed using PSpice to
ensure that it is in the balanced state. The only component that has not
been introduced in earlier chapters is the dc current source. It can be
obtained by first selecting the Place a part key and then the SOURCE
library. Scrolling the Part List will result in the option IDC. A left
click of IDC followed by OK will result in a dc current source whose
direction is toward the bottom of the screen. One left click of the mouse
(to make it red—active) followed by a right click of the mouse will
result in a listing having a Mirror Vertically option. Selecting that
option will flip the source and give it the direction of Fig. 8.70.

The remaining parts of the PSpice analysis are pretty straightfor-
ward, with the results of Fig. 8.91 matching those obtained in the analy-
sis of Fig. 8.70. The voltage across the current source is 8 V positive to
ground, and the voltage at either end of the bridge arm is 2.667 V. The
voltage across R5 is obviously 0 V for the level of accuracy displayed,
and the current is of such a small magnitude compared to the other cur-
rent levels of the network that it can essentially be considered 0 A. Note
also for the balanced bridge that the current through R1 equals that of
R3, and the current through R2 equals that of R4.
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FIG. 8.91

Applying PSpice to the bridge network of Fig. 8.70.



For the analysis, both indicators and a meter will be used to display
the desired results. An A indicator in the H position was used for the
current through R5, and a V indicator in the V position was used for the
voltage across R2. A multimeter in the voltmeter mode was placed to
read the voltage across R4. The ammeter is reading the mesh or loop
current for that branch, and the two voltmeters are displaying the nodal
voltages of the network.

After simulation, the results displayed are an exact match with those
of Example 8.18.
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Electronics Workbench

Electronics Workbench will now be used to verify the results of Exam-
ple 8.18. All the elements of creating the schematic of Fig. 8.92 have
been presented in earlier chapters; they will not be repeated here in
order to demonstrate how little documentation is now necessary to carry
you through a fairly complex network.

NA

FIG. 8.92

Using Electronics Workbench to verify the results of Example 8.18.
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FIG. 8.93

Problem 1.

Rs 10 k�

2 �

4 AI 6 � V
+

–

(a)

2 �

4 AI 6 � V
+

–

(b)

FIG. 8.94

Problem 2.

2. a. Determine V for the current source of Fig. 8.94(a)
with an internal resistance of 10 k�.

b. The source of part (a) is approximated by an ideal cur-
rent source in Fig. 8.94(b) since the source resistance
is much larger than the applied load. Determine the
resulting voltage V for Fig. 8.94(b), and compare it to
that obtained in part (a). Is the use of the ideal current
source a good approximation?

PROBLEMS

SECTION 8.2 Current Sources

1. Find the voltage Vab (with polarity) across the ideal cur-
rent source of Fig. 8.93.

3. For the network of Fig. 8.95:
a. Find the currents I1 and Is.
b. Find the voltages Vs and V3.

4. Find the voltage V3 and the current I2 for the network of
Fig. 8.96.

FIG. 8.95

Problem 3.
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Problem 4.
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SECTION 8.3 Source Conversions

5. Convert the voltage sources of Fig. 8.97 to current
sources.
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E 18 V

(a)
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FIG. 8.97

Problem 5.

6. Convert the current sources of Fig. 8.98 to voltage
sources.

Rs3 �

1.5 A

(a)
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(b)

II

FIG. 8.98

Problem 6.

FIG. 8.99

Problem 7.

Rs 4 �
12 A

I RL 2 �

FIG. 8.100

Problem 8.

R1

10 �

R2

6.8 �

R3 39 �E 12 V

I1

Vab

a

b

I  =  2 A

7. For the network of Fig. 8.99:
a. Find the current through the 2-� resistor.
b. Convert the current source and 4-� resistor to a volt-

age source, and again solve for the current in the 2-�
resistor. Compare the results.

8. For the configuration of Fig. 8.100:
a. Convert the current source and 6.8-� resistor to a

voltage source.
b. Find the magnitude and direction of the current I1.
c. Find the voltage Vab and the polarity of points a and b.
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SECTION 8.4 Current Sources in Parallel

9. Find the voltage V2 and the current I1 for the network of
Fig. 8.101.

10. a. Convert the voltage sources of Fig. 8.102 to current
sources.

b. Find the voltage Vab and the polarity of points a and b.
c. Find the magnitude and direction of the current I.

FIG. 8.101

Problem 9.

7 A
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V2R1 4 � R2 6 � 3 A

+

–

FIG. 8.102

Problem 10.
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FIG. 8.103

Problem 11.
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+ –
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FIG. 8.104

Problems 12, 17, 25, and 54.
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E2

R1
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4 V E1

R2 3 �

10 VE1

R1 4 �

12 VE2

R3 12 �

(a) (b)

11. For the network of Fig. 8.103:
a. Convert the voltage source to a current source.
b. Reduce the network to a single current source, and

determine the voltage V1.
c. Using the results of part (b), determine V2.
d. Calculate the current I2.

SECTION 8.6 Branch-Current Analysis

12. Using branch-current analysis, find the magnitude and
direction of the current through each resistor for the net-
works of Fig. 8.104.
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*13. Using branch-current analysis, find the current through
each resistor for the networks of Fig. 8.105. The resistors
are all standard values.

*14. For the networks of Fig. 8.106, determine the current I2

using branch-current analysis, and then find the voltage
Vab.

FIG. 8.105

Problems 13, 18, and 26.

R1 5.6 k�

30 V

R2

3.3 k�

E2

10 VE1

9 V

E1

6 V

E2

(I) (II)

20 VE3

R3 2.2 k� R2

8.2 k�

R3 9.1 k�

R4

1.1 k�

R1

1.2 k�

FIG. 8.106

Problems 14, 19, and 27.

R12 � R3 3 �

R2

5 �

25 V E1 E3 60 V

6 V

E4

E2

I2

Vab

20 V

a

b

R1 3 �

R2

4 �

3 A

6 V

E2

E3I2

Vab

4 V

a

R4 6 �

R3 8 �

I1

b

(I) (II)

*15. For the network of Fig. 8.107:
a. Write the equations necessary to solve for the branch

currents.
b. By substitution of Kirchhoff’s current law, reduce the

set to three equations.
c. Rewrite the equations in a format that can be solved

using third-order determinants.
d. Solve for the branch current through the resistor R3.

FIG. 8.107

Problems 15, 20, and 28.

I3

E2 6 VE1 10 V R4 5 �R2 1 �

R1

2 �

R3

4 �

R5

3 �



PROBLEMS  313
NA

IE

VCC 20 V

RB

270 k�

RC

2.2 k�

RE 510 �

IC

8 V

E

C

0.7 V

B

+

–

+ –

–

+

–
VCC 20 V

+

IB

*16. For the transistor configuration of Fig. 8.108:
a. Solve for the currents IB, IC, and IE using the fact that

VBE � 0.7 V and VCE � 8 V.
b. Find the voltages VB, VC, and VE with respect to

ground.
c. What is the ratio of output current IC to input current

IB? [Note: In transistor analysis this ratio is referred to
as the dc beta of the transistor (bdc).]

SECTION 8.7 Mesh Analysis (General Approach)

17. Find the current through each resistor for the networks of
Fig. 8.104.

18. Find the current through each resistor for the networks of
Fig. 8.105.

19. Find the mesh currents and the voltage Vab for each net-
work of Fig. 8.106. Use clockwise mesh currents.

20. a. Find the current I3 for the network of Fig. 8.107 using
mesh analysis.

b. Based on the results of part (a), how would you com-
pare the application of mesh analysis to the branch-
current method?

*21. Using mesh analysis, determine the current through the
5-� resistor for each network of Fig. 8.109. Then deter-
mine the voltage Va.

FIG. 8.108

Problem 16.

FIG. 8.109

Problems 21 and 29.

R1  =  4 � 3 �

6 �

R3  =  5 �

R5

R2  =  2 �

E2 16 V
12 V

E1

R4

Va

R1

1 �

5 �

R5

3 �

R2
15 V

E1
R4

V
a

R3

6 V
E2

1 �

E3

4 V

(a) (b)

10 �
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*23. Write the mesh equations for each of the networks of Fig.
8.111, and, using determinants, solve for the loop cur-
rents in each network.

R2 3.3 k�

E2 3 V

R5 6.8 k�

E1 18 V

R1 9.1 k�

7.5 k�

R4

R3 2.2 k�

(I) (II)

R5

4 �

R4

4 �

E1

16 V
4 �

R1
7 �

R6

E2

12 V

3 �

R2R3

E3

15 V

10 �

FIG. 8.110

Problems 22, 30, and 34.

R1

2 �

1 �

R3

8 �

9 V

6 V

E2

R4

(b)

4 �

6 V

E1

R2

6.8 k� 2.7 k�

4.7 k�

6 V

1.1 k�
22 k�

8.2 k�2.2 k�

5 V1.2 k�

(a)

FIG. 8.111

Problems 23, 31, and 55.

*24. Using the supermesh approach, find the current through
each element of the networks of Fig. 8.112.

FIG. 8.112

Problem 24.

(b)

1 �

6 �

20 V

3 A
4 �

8 �

8 A

(a)

4 �

24 V

6 �

10 �

6 A
12 V

*22. Write the mesh equations for each of the networks of Fig.
8.110, and, using determinants, solve for the loop cur-
rents in each network. Use clockwise mesh currents.
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SECTION 8.8 Mesh Analysis (Format Approach)

25. Using the format approach, write the mesh equations for
the networks of Fig. 8.104. Is symmetry present? Using
determinants, solve for the mesh currents.

26. a. Using the format approach, write the mesh equations
for the networks of Fig. 8.105.

b. Using determinants, solve for the mesh currents.
c. Determine the magnitude and direction of the current

through each resistor.

27. a. Using the format approach, write the mesh equations
for the networks of Fig. 8.106.

b. Using determinants, solve for the mesh currents.
c. Determine the magnitude and direction of the current

through each resistor.

28. Using mesh analysis, determine the current I3 for the net-
work of Fig. 8.107, and compare your answer to the solu-
tion of Problem 15.

29. Using mesh analysis, determine I5� and Va for the net-
work of Fig. 8.109(b).

30. Using mesh analysis, determine the mesh currents for the
networks of Fig. 8.110.

31. Using mesh analysis, determine the mesh currents for the
networks of Fig. 8.111.

SECTION 8.9 Nodal Analysis (General Approach)

32. Write the nodal equations for the networks of Fig. 8.113,
and, using determinants, solve for the nodal voltages. Is
symmetry present?

FIG. 8.113

Problems 32 and 38.

R2 4 �

R4

2 �

3 A

I2R3
5 �

R1
2 �

5 A
I1

(a)

R4
5 �

I2

R3
20 �R1 2 �

4 A
I1

(b)

R2

4 �

2 A
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34. a. Write the nodal equations for the networks of Fig.
8.110.

b. Using determinants, solve for the nodal voltages.
c. Determine the magnitude and polarity of the voltage

across each resistor.

*35. For the networks of Fig. 8.115, write the nodal equations
and solve for the nodal voltages.

R28 �

R3

4 �

4 A I2
R4 6 �R13 �

5 A I1

(I)

E

12 V

R2
4 �

I26 AI1

(II)

R4

2 �

R1 5 � 7 A

R3

3 �

R5 8 �

FIG. 8.114

Problems 33 and 39.

I1
15 V 3 AE1

(I)

R1 3 �

R24 �

R5
6 �

R3 7 �
R4

5 �

6 �
R6

2 A

I1

(II)

R1 9 �

R6

20 �

R4

20 �

R5

20 �

R3 18 �
R24 �

E116 V

FIG. 8.115

Problems 35 and 40.

36. a. Determine the nodal voltages for the networks of Fig.
8.116.

b. Find the voltage across each current source.

(I) (II)

4 �6 �

2 A

5 A

2 �

5 �

2 �
5 A

9 �

20 V

2 �

2 �

4 �
2 �

7 �

FIG. 8.116

Problems 36 and 41.

33. a. Write the nodal equations for the networks of Fig.
8.114.

b. Using determinants, solve for the nodal voltages.
c. Determine the magnitude and polarity of the voltage

across each resistor.
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40 �3 A

16 V

4 A

10 �

6 �2 A 12 �

(I) (II)

4 �

24 V

20 �

FIG. 8.117

Problems 37 and 56.

Rs 6 �
R5

5 �

R1

5 �

10 �

R3

R4

R2

5 �

20 �
6 VE

FIG. 8.118

Problems 42 and 43.

Rs 2 k�

R5

36 k�

R1

33 k�

R4

R2

56 k�

5.6 k�
24 VE

R3

3.3 k�

FIG. 8.119

Problems 44 and 45.

*37. Using the supernode approach, determine the nodal volt-
ages for the networks of Fig. 8.117.

SECTION 8.10 Nodal Analysis (Format Approach)

38. Using the format approach, write the nodal equations for
the networks of Fig. 8.113. Is symmetry present? Using
determinants, solve for the nodal voltages.

39. a. Write the nodal equations for the networks of Fig.
8.114.

b. Solve for the nodal voltages.
c. Find the magnitude and polarity of the voltage across

each resistor.

40. a. Write the nodal equations for the networks of Fig.
8.115.

b. Solve for the nodal voltages.
c. Find the magnitude and polarity of the voltage across

each resistor.

41. Determine the nodal voltages for the networks of Fig.
8.116. Then determine the voltage across each current
source.

SECTION 8.11 Bridge Networks

42. For the bridge network of Fig. 8.118:
a. Write the mesh equations using the format approach.
b. Determine the current through R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

43. For the network of Fig. 8.118:
a. Write the nodal equations using the format approach.
b. Determine the voltage across R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

44. For the bridge of Fig. 8.119:
a. Write the mesh equations using the format approach.
b. Determine the current through R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?
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45. For the bridge network of Fig. 8.119:
a. Write the nodal equations using the format approach.
b. Determine the current across R5.
c. Is the bridge balanced?
d. Is Equation (8.4) satisfied?

46. Write the nodal equations for the bridge configuration of
Fig. 8.120. Use the format approach.

SECTION 8.12 Y-D (T-p) and D-Y (p-T) Conversions

48. Using a D-Y or Y-D conversion, find the current I in each
of the networks of Fig. 8.122.

*47. Determine the current through the source resistor Rs of
each network of Fig. 8.121 using either mesh or nodal
analysis. Discuss why you chose one method over the
other.

FIG. 8.120

Problem 46.

9 V
R1

100 k�

R4

100 k�

R2

200 k�

1 k�

R34 mA

Rs 1 k�I

200 k�

FIG. 8.121

Problem 47.

20 �
10 �

R2

R5
2 A

Rs
R4

(b)

20 �
R1

R3

20 �

10 �
10 �I

R1 2 k�

E

(a)

Rs 1 k� 2 k� R2

10 V R3 2 k� 2 k�R4

R5

2 k�

FIG. 8.122

Problem 48.

20 V

I
2 �

4 �

1 �

(a)

2 �

3 �

8 V

I

4.7 k�

6.8 k�

(b)

1.1 k�

6.8 k� 6.8 k�
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*50. Determine the current I for the network of Fig. 8.124.

*51. a. Replace the T configuration of Fig. 8.125 (composed
of 6-k� resistors) with a p configuration.

b. Solve for the source current Is1.

5 A

I

3 k�

3 k� 6 k�

3 k�2 k�

3 k�

3 k�

FIG. 8.124

Problem 50.

*52. a. Replace the p configuration of Fig. 8.126 (composed
of 3-k� resistors) with a T configuration.

b. Solve for the source current Is.

E1 10 V
+

–
E2 5 V

+

–R3 6 k�

R2

6 k�

R1

6 k�Is1

FIG. 8.125

Problem 51.

E 20 V
R5

Rs 1 k�

Is

R4 3 k�

R3

3 k�

R1 2 k� R2 2 k�

3 k�

FIG. 8.126

Problem 52.

*49. Repeat Problem 48 for the networks of Fig. 8.123.

(a) (b)

400 V

I

4 k�
42 V

I

4 k�

6 k�

4 k�

18 �

6 � 6 �

6 �
18 �18 �

FIG. 8.123

Problem 49.
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RT

9 � 9 �

9 �

9 �
9 �

9 �9 �

9 �

a b

c
d

h g

fe

FIG. 8.127

Problem 53.

*53. Using Y-D or D-Y conversions, determine the total resis-
tance of the network of Fig. 8.127.

SECTION 8.14 Computer Analysis

PSpice or Electronics Workbench

54. Using schematics, find the current through each element
of Fig. 8.104.

*55. Using schematics, find the mesh currents for the network
of Fig. 8.111(a).

*56. Using schematics, determine the nodal voltages for the
network of Fig. 8.117(II).

Programming Language (C��, QBASIC, Pascal, etc.)

57. Given two simultaneous equations, write a program to
solve for the unknown variables.

*58. Using mesh analysis and determinants, write a program
to solve for both mesh currents of the network of Fig.
8.26 (for any component values).

*59. Using nodal analysis and determinants, write a program
to solve for the nodal voltages of the network of Fig. 8.44
(for any component values).

GLOSSARY

Branch-current method A technique for determining the
branch currents of a multiloop network.

Bridge network A network configuration typically having a
diamond appearance in which no two elements are in series
or parallel.

Current sources Sources that supply a fixed current to a net-
work and have a terminal voltage dependent on the network
to which they are applied.

Delta (D), pi (p) configuration A network structure that
consists of three branches and has the appearance of the
Greek letter delta (D) or pi (p).

Determinants method A mathematical technique for finding
the unknown variables of two or more simultaneous linear
equations.

Mesh analysis A technique for determining the mesh (loop)
currents of a network that results in a reduced set of equa-
tions compared to the branch-current method.

Mesh (loop) current A labeled current assigned to each dis-
tinct closed loop of a network that can, individually or in
combination with other mesh currents, define all of the
branch currents of a network.

Nodal analysis A technique for determining the nodal volt-
ages of a network.

Node A junction of two or more branches in a network.
Wye (Y), tee (T) configuration A network structure that

consists of three branches and has the appearance of the
capital letter Y or T.
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9.1 INTRODUCTION

This chapter will introduce the important fundamental theorems of net-
work analysis. Included are the superposition, Thévenin’s, Norton’s,
maximum power transfer, substitution, Millman’s, and reciprocity
theorems. We will consider a number of areas of application for each.
A thorough understanding of each theorem is important because a
number of the theorems will be applied repeatedly in the material to
follow.

9.2 SUPERPOSITION THEOREM

The superposition theorem, like the methods of the last chapter, can
be used to find the solution to networks with two or more sources that
are not in series or parallel. The most obvious advantage of this method
is that it does not require the use of a mathematical technique such as
determinants to find the required voltages or currents. Instead, each
source is treated independently, and the algebraic sum is found to deter-
mine a particular unknown quantity of the network.

The superposition theorem states the following:

The current through, or voltage across, an element in a linear
bilateral network is equal to the algebraic sum of the currents or
voltages produced independently by each source.

When one is applying the theorem, it is possible to consider the
effects of two sources at the same time and reduce the number of net-
works that have to be analyzed, but, in general,

(9.1)

To consider the effects of each source independently requires that
sources be removed and replaced without affecting the final result. To

Number of networks Number of
to be analyzed

�
independent sources

Th

Network Theorems
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E I

FIG. 9.1

Removing the effects of ideal sources. RintRintI
Rint

E

Rint

FIG. 9.2

Removing the effects of practical sources.

remove a voltage source when applying this theorem, the difference in
potential between the terminals of the voltage source must be set to zero
(short circuit); removing a current source requires that its terminals be
opened (open circuit). Any internal resistance or conductance associ-
ated with the displaced sources is not eliminated but must still be con-
sidered.

Figure 9.1 reviews the various substitutions required when removing
an ideal source, and Figure 9.2 reviews the substitutions with practical
sources that have an internal resistance.

(b)

P2 = I2
2R

R

I2

(c)

PT = IT
2R

R

IT

(a)

P1 = I1
2R

R

I1

FIG. 9.3

Demonstration of the fact that superposition is
not applicable to power effects.

The total current through any portion of the network is equal to the
algebraic sum of the currents produced independently by each source.
That is, for a two-source network, if the current produced by one source
is in one direction, while that produced by the other is in the opposite
direction through the same resistor, the resulting current is the differ-
ence of the two and has the direction of the larger. If the individual cur-
rents are in the same direction, the resulting current is the sum of two
in the direction of either current. This rule holds true for the voltage
across a portion of a network as determined by polarities, and it can be
extended to networks with any number of sources.

The superposition principle is not applicable to power effects since
the power loss in a resistor varies as the square (nonlinear) of the
current or voltage. For instance, the current through the resistor R of
Fig. 9.3(a) is I1 due to one source of a two-source network. The cur-
rent through the same resistor due to the other source is I2 as shown
in Fig. 9.3(b). Applying the superposition theorem, the total current
through the resistor due to both sources is IT, as shown in Fig. 9.3(c)
with

IT � I1 � I2

The power delivered to the resistor in Fig. 9.3(a) is

P1 � I2
1R

while the power delivered to the same resistor in Fig. 9.3(b) is

P2 � I2
2R

If we assume that the total power delivered in Fig. 9.3(c) can be
obtained by simply adding the power delivered due to each source, we
find that

PT � P1 � P2 � I2
1R � I2

2R � I2
T R

or I2
T � I2

1 � I2
2
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R1 6 �E
+

–
30 V I 3 A

I1

FIG. 9.4

Example 9.1.
R1 6 �

I
I

I

3 A

(a) (b)

E 30 V
+

–

I′1 I″1

R1 6 �

FIG. 9.5

(a) The contribution of I to I1; (b) the contribution of E to I1.

As shown in Fig. 9.5(a), the source current will choose the short-
circuit path, and I′1 � 0 A. If we applied the current divider rule,

I′1 � � � 0 A

Setting I to zero amperes will result in the network of Fig. 9.5(b), with
the current source replaced by an open circuit. Applying Ohm’s law,

I″1 � � � 5 A

Since I′1 and I″1 have the same defined direction in Fig. 9.5(a) and (b),
the current I1 is the sum of the two, and

I1 � I′1 � I″1 � 0 A � 5 A � 5 A

Note in this case that the current source has no effect on the current
through the 6-� resistor. The voltage across the resistor must be fixed
at 30 V because they are parallel elements.

30 V
�
6 �

E
�
R1

(0 �)I
��
0 � � 6 �

RscI
�
Rsc � R1

This final relationship between current levels is incorrect, however,
as can be demonstrated by taking the total current determined by the
superposition theorem and squaring it as follows:

I2
T � (I1 � I2)

2 � I2
1 � I2

2 � 2 I1I2

which is certainly different from the expression obtained from the addi-
tion of power levels.

In general, therefore,

the total power delivered to a resistive element must be determined
using the total current through or the total voltage across the element
and cannot be determined by a simple sum of the power levels
established by each source.

EXAMPLE 9.1 Determine I1 for the network of Fig. 9.4.

Solution: Setting E � 0 V for the network of Fig. 9.4 results in the
network of Fig. 9.5(a), where a short-circuit equivalent has replaced the
30-V source.



FIG. 9.8

The effect of E2 on the current I3.

R1

24 �

R2 12 �
+

–
E2 48 V

4 �

I″3

R3

54-V battery replaced
by short circuit

R2 12 �
+

–
E2 48 V

4 �

I″3

R3

R1 24 �

8 �

RT
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Solution: Considering the effects of a 54-V source (Fig. 9.7):

RT � R1 � R2 �� R3 � 24 � � 12 � �� 4 � � 24 � � 3 � � 27 �

I � � � 2 A
54 V
�
27 �

E1
�
RT

Th

E1
–

+
54 V R2 12 �

R3  =  4 �

48-V battery
replaced by short

circuit

R1

24 �

R1

24 �

R3 4 �R2 12 �

3 �

RT

E1

+

–

I�3

I

I�3

54 V

FIG. 9.7

The effect of E1 on the current I3.

EXAMPLE 9.2 Using superposition, determine the current through
the 4-� resistor of Fig. 9.6. Note that this is a two-source network of
the type considered in Chapter 8.

R1

24 �

+

–
E1 54 V R2 12 �

+

–
E2 48 V

R3

4 �

I3

FIG. 9.6

Example 9.2.

Using the current divider rule,

I′3 � � � � 1.5 A

Considering the effects of the 48-V source (Fig. 9.8):

RT � R3 � R1 �� R2 � 4 � � 24 � �� 12 � � 4 � � 8 � � 12 �

I″3 � � � 4 A
48 V
�
12 �

E2
�
RT

24 A
�

16

(12 �)(2 A)
��
12 � � 4 �

R2I
�
R2 � R3
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4 �

I"3  =  4 A

I'3  =  1.5 A

FIG. 9.9

The resultant current for I3.

R2 6 �

R1

12 �

E 36 V
+

–
I

I2

9 A

FIG. 9.10

Example 9.3.

Current source replaced
by open circuit

36 VE

I�2

R1

12 �

+

–
R2 6 �

FIG. 9.11

The contribution of E to I2.

R2 6 �

R1

12 �

I = 9 A

I″2

FIG. 9.12

The contribution of I to I2.

I′2 =  2 A I″2 =  6 A I2 =  8 AR2 6 � R2 6 �

Same direction

FIG. 9.13

The resultant current for I2.

The total current through the 4-� resistor (Fig. 9.9) is

I3 � I″3 � I′3 � 4 A � 1.5 A � 2.5 A (direction of I″3)

EXAMPLE 9.3

a. Using superposition, find the current through the 6-� resistor of the
network of Fig. 9.10.

b. Demonstrate that superposition is not applicable to power levels.

Solutions:

a. Considering the effect of the 36-V source (Fig. 9.11):

I′2 � � � � 2 A

Considering the effect of the 9-A source (Fig. 9.12):
Applying the current divider rule,

I″2 � � � � 6 A

The total current through the 6-� resistor (Fig. 9.13) is

I2 � I′2 � I″2 � 2 A � 6 A � 8 A

108 A
�

18

(12 �)(9 A)
��
12 � � 6 �

R1I
�
R1 � R2

36 V
��
12 � � 6 �

E
�
R1 � R2

E
�
RT

b. The power to the 6-� resistor is

Power � I2R � (8 A)2(6 �) � 384 W

The calculated power to the 6-� resistor due to each source, misus-
ing the principle of superposition, is

P1 � (I′2)2R � (2 A)2(6 �) � 24 W

P2 � (I″2)
2R � (6 A)2(6 �) � 216 W

P1 � P2 � 240 W � 384 W
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Obviously, x � y � z, or 24 W � 216 W � 384 W, and superposi-
tion does not hold. However, for a linear relationship, such as that
between the voltage and current of the fixed-type 6-� resistor, super-
position can be applied, as demonstrated by the graph of Fig. 9.15,
where a � b � c, or 2 A � 6 A � 8 A.

Th

4

3

2

1

0
12 24 36 48 V6Ω (V)

I (A)

a

c

Linear curveb

8

7

6

5

9
10

FIG. 9.15

Plotting I versus V for the 6-� resistor.

R1

6 k�

R3

14 k�

35 k�

12 k�

9 V R2

R4E

6 mAI

I2

FIG. 9.16

Example 9.4.

This results because 2 A � 6 A � 8 A, but

(2 A)2 � (6 A)2 � (8 A)2

As mentioned previously, the superposition principle is not applica-
ble to power effects since power is proportional to the square of the cur-
rent or voltage (I2R or V2/R).

Figure 9.14 is a plot of the power delivered to the 6-� resistor ver-
sus current.

EXAMPLE 9.4 Using the principle of superposition, find the current
I2 through the 12-k� resistor of Fig. 9.16.

Solution: Considering the effect of the 6-mA current source (Fig.
9.17):

FIG. 9.14

Plotting the power delivered to the 6-� resistor versus current through the
resistor.
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Current divider rule:

I′2 � � � 2 mA

Considering the effect of the 9-V voltage source (Fig. 9.18):

I″2 � � � 0.5 mA
9 V

��
6 k� � 12 k�

E
�
R1 � R2

(6 k�)(6 mA)
��
6 k� � 12 k�

R1I
�
R1 � R2

Th

R1 6 k�

R3 14 k�

R2 12 k�

R4 35 k�

6 mAI

I ′2

6 mA

6 mA

I ′2

I

R4 35 k�R3 14 k�

R2 12 k�R1 6 k�

6 mA

FIG. 9.17

The effect of the current source I on the current I2.

R1

6 k�

R2

12 k�

R3

14 k�

R4

35 k�

9 V

E

R1 6 k�

R3 14 k�

R2 12 k�

R4 35 k�

+ –9 V

+ –9 V

9 V

E

I	2

I	2

FIG. 9.18

The effect of the voltage source E on the current I2.

R24 �

R1 2 �

I1

I 3 A

6 V12 V
+ –

E1

+

–
E2

FIG. 9.19

Example 9.5.

Since I′2 and I″2 have the same direction through R2, the desired cur-
rent is the sum of the two:

I2 � I′2 � I″2

� 2 mA � 0.5 mA
� 2.5 mA

EXAMPLE 9.5 Find the current through the 2-� resistor of the net-
work of Fig. 9.19. The presence of three sources will result in three dif-
ferent networks to be analyzed.
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Solution: Considering the effect of the 12-V source (Fig. 9.20):

I ′1 � � � � 2 A

Considering the effect of the 6-V source (Fig. 9.21):

I″1 � � � � 1 A

Considering the effect of the 3-A source (Fig. 9.22):
Applying the current divider rule,

I
1 � � � � 2 A

The total current through the 2-� resistor appears in Fig. 9.23, and

I1 I 1I"1 I"1�

�

�

�

�

� �

' '

1A 1A2A 2A

Same direction
as I1 in Fig. 9.19

Opposite direction
to I1 in Fig. 9.19

12 A
�

6

(4 �)(3 A)
��
2 � � 4 �

R2 I
�
R1 � R2

6 V
�
6 �

6 V
��
2 � � 4 �

E2
�
R1 � R2

12 V
�
6 �

12 V
��
2 � � 4 �

E1
�
R1 � R2

Th

ETh

+

–

a

b

RTh

FIG. 9.24

Thévenin equivalent circuit.

9.3 THE′VENIN’S THEOREM

Thévenin’s theorem states the following:

Any two-terminal, linear bilateral dc network can be replaced by an
equivalent circuit consisting of a voltage source and a series resistor,
as shown in Fig. 9.24.

In Fig. 9.25(a), for example, the network within the container has only
two terminals available to the outside world, labeled a and b. It is possi-
ble using Thévenin’s theorem to replace everything in the container with
one source and one resistor, as shown in Fig. 9.25(b), and maintain the
same terminal characteristics at terminals a and b. That is, any load con-
nected to terminals a and b will not know whether it is hooked up to the
network of Fig. 9.25(a) or Fig. 9.25(b). The load will receive the same
current, voltage, and power from either configuration of Fig. 9.25.
Throughout the discussion to follow, however, always keep in mind that

the Thévenin equivalent circuit provides an equivalence at the
terminals only—the internal construction and characteristics of the
original network and the Thévenin equivalent are usually quite
different.

R24 �

R12 �

E1

12 V
+ –

I�1I�1

I�1

FIG. 9.20

The effect of E1 on the current I.

R1 2 � R1 2 �I�1  =  2  A I 	1  =  1  A I
1  =  2  A I1  =  1  A

I1

FIG. 9.23

The resultant current I1.

R24 �
R12 �

6 V
+

–
E2

I	1 I	1

I  	1

FIG. 9.21

The effect of E2 on the current I1.

R24 �
R12 � 3 AI

I
1

FIG. 9.22

The effect of I on the current I1.
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12 V

4 V

E2

8 V

a

b

+

–

a

b

E1

6 �

10 �

4 �

(a) (b)

FIG. 9.25

The effect of applying Thévenin’s theorem.

R2

R3R1

a

b

(a) (b)

+

–
RLE

a

IL IL

RLETh

RTh

b

+

–

FIG. 9.26

Substituting the Thévenin equivalent circuit for a complex network.

Although active in the study and design of tele-
graphic systems (including underground transmis-
sion), cylindrical condensers (capacitors), and elec-
tromagnetism, he is best known for a theorem first
presented in the French Journal of Physics—Theory
and Applications in 1883. It appeared under the
heading of “Sur un nouveau théorème d’électricité
dynamique” (“On a new theorem of dynamic elec-
tricity”) and was originally referred to as the equiv-
alent generator theorem. There is some evidence
that a similar theorem was introduced by Hermann
von Helmholtz in 1853. However, Professor
Helmholtz applied the theorem to animal physiol-
ogy and not to communication or generator systems,
and therefore he has not received the credit in this
field that he might deserve. In the early 1920s
AT&T did some pioneering work using the equiva-
lent circuit and may have initiated the reference to
the theorem as simply Thévenin’s theorem. In fact,
Edward L. Norton, an engineer at AT&T at the time,
introduced a current source equivalent of the
Thévenin equivalent currently referred to as the
Norton equivalent circuit. As an aside, Commandant
Thévenin was an avid skier and in fact was commis-
sioner of an international ski competition in Cha-
monix, France, in 1912.

LEON-CHARLES THÉVENIN

French (Meaux,
Paris)
(1857–1927)

Telegraph Engineer,

Commandant and

Educator

École Polytech-
nique and École
Supérieure de 
Télégraphie

Courtesy of the Bibliothèque
École Polytechnique, Paris, France

For the network of Fig. 9.25(a), the Thévenin equivalent circuit can
be found quite directly by simply combining the series batteries and
resistors. Note the exact similarity of the network of Fig. 9.25(b) to the
Thévenin configuration of Fig. 9.24. The method described below will
allow us to extend the procedure just applied to more complex configu-
rations and still end up with the relatively simple network of Fig. 9.24.

In most cases, other elements will be connected to the right of ter-
minals a and b in Fig. 9.25. To apply the theorem, however, the network
to be reduced to the Thévenin equivalent form must be isolated as
shown in Fig. 9.25, and the two “holding” terminals identified. Once
the proper Thévenin equivalent circuit has been determined, the voltage,
current, or resistance readings between the two “holding” terminals will
be the same whether the original or the Thévenin equivalent circuit is
connected to the left of terminals a and b in Fig. 9.25. Any load con-
nected to the right of terminals a and b of Fig. 9.25 will receive the
same voltage or current with either network.

This theorem achieves two important objectives. First, as was true
for all the methods previously described, it allows us to find any par-
ticular voltage or current in a linear network with one, two, or any
other number of sources. Second, we can concentrate on a specific
portion of a network by replacing the remaining network with an
equivalent circuit. In Fig. 9.26, for example, by finding the Thévenin
equivalent circuit for the network in the shaded area, we can quickly
calculate the change in current through or voltage across the variable
resistor RL for the various values that it may assume. This is demon-
strated in Example 9.6.
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Before we examine the steps involved in applying this theorem, it
is important that an additional word be included here to ensure that the
implications of the Thévenin equivalent circuit are clear. In Fig. 9.26,
the entire network, except RL, is to be replaced by a single series resis-
tor and battery as shown in Fig. 9.24. The values of these two ele-
ments of the Thévenin equivalent circuit must be chosen to ensure that
the resistor RL will react to the network of Fig. 9.26(a) in the same
manner as to the network of Fig. 9.26(b). In other words, the current
through or voltage across RL must be the same for either network for
any value of RL.

The following sequence of steps will lead to the proper value of RTh

and ETh.

Preliminary:

1. Remove that portion of the network across which the Thévenin
equivalent circuit is to be found. In Fig. 9.26(a), this requires that
the load resistor RL be temporarily removed from the network.

2. Mark the terminals of the remaining two-terminal network. (The
importance of this step will become obvious as we progress
through some complex networks.)

RTh:

3. Calculate RTh by first setting all sources to zero (voltage sources
are replaced by short circuits, and current sources by open
circuits) and then finding the resultant resistance between the two
marked terminals. (If the internal resistance of the voltage and/or
current sources is included in the original network, it must remain
when the sources are set to zero.)

ETh:

4. Calculate ETh by first returning all sources to their original
position and finding the open-circuit voltage between the marked
terminals. (This step is invariably the one that will lead to the most
confusion and errors. In all cases, keep in mind that it is the 
open-circuit potential between the two terminals marked in step 2.)

Conclusion:

5. Draw the Thévenin equivalent circuit with the portion of the
circuit previously removed replaced between the terminals of the
equivalent circuit. This step is indicated by the placement of the
resistor RL between the terminals of the Thévenin equivalent
circuit as shown in Fig. 9.26(b).

EXAMPLE 9.6 Find the Thévenin equivalent circuit for the network in
the shaded area of the network of Fig. 9.27. Then find the current
through RL for values of 2 �, 10 �, and 100 �.

Solution:

Steps 1 and 2 produce the network of Fig. 9.28. Note that the load resis-
tor RL has been removed and the two “holding” terminals have been
defined as a and b.
Step 3: Replacing the voltage source E1 with a short-circuit equivalent
yields the network of Fig. 9.29(a), where

RTh � R1 �� R2 � � 2 �
(3 �)(6 �)
��
3 � � 6 �

Th

R2 6 �

R1

3 �

E1 9 V

a

b

+

–

R1

3 �

R2 6 �

b

E1 9 V RL

a

+

–

FIG. 9.27

Example 9.6.

FIG. 9.28

Identifying the terminals of particular
importance when applying Thévenin’s

theorem.
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The importance of the two marked terminals now begins to surface.
They are the two terminals across which the Thévenin resistance is
measured. It is no longer the total resistance as seen by the source, as
determined in the majority of problems of Chapter 7. If some difficulty
develops when determining RTh with regard to whether the resistive ele-
ments are in series or parallel, consider recalling that the ohmmeter
sends out a trickle current into a resistive combination and senses the
level of the resulting voltage to establish the measured resistance level.
In Fig. 9.29(b), the trickle current of the ohmmeter approaches the net-
work through terminal a, and when it reaches the junction of R1 and R2,
it splits as shown. The fact that the trickle current splits and then recom-
bines at the lower node reveals that the resistors are in parallel as far as
the ohmmeter reading is concerned. In essence, the path of the sensing
current of the ohmmeter has revealed how the resistors are connected to
the two terminals of interest and how the Thévenin resistance should be
determined. Keep the above in mind as you work through the various
examples of this section.
Step 4: Replace the voltage source (Fig. 9.30). For this case, the open-
circuit voltage ETh is the same as the voltage drop across the 6-� resis-
tor. Applying the voltage divider rule,

ETh � � � � 6 V

It is particularly important to recognize that ETh is the open-circuit
potential between points a and b. Remember that an open circuit can
have any voltage across it, but the current must be zero. In fact, the cur-
rent through any element in series with the open circuit must be zero
also. The use of a voltmeter to measure ETh appears in Fig. 9.31. Note
that it is placed directly across the resistor R2 since ETh and VR2

are in
parallel.
Step 5 (Fig. 9.32):

IL �

RL � 2 �: IL � � 1.5 A

RL � 10 �: IL � � 0.5 A

RL � 100 �: IL � � 0.059 A
6 V

��
2 � � 100 �

6 V
��
2 � � 10 �

6 V
��
2 � � 2 �

ETh
�
RTh � RL

54 V
�

9

(6 �)(9 V)
��
6 � � 3 �

R2E1
�
R2 � R1

Th

FIG. 9.29

Determining RTh for the network of Fig. 9.28.

R2 6 �

(a) (b)

R1

3 �

RTh
R2

b b

a a

I�

R1

+ –
�

R2 6 �9 VE1 ETh

+

–

+

–

a

b

R1

3 �

FIG. 9.30

Determining ETh for the network of Fig. 9.28.

+ –

R2 6 �

R1

3 �

9 VE1

+

–

ETh

FIG. 9.31

Measuring ETh for the network of Fig. 9.28.

RL

a
RTh  =  2 �

ETh  =  6 V

b

IL

+

–

FIG. 9.32

Substituting the Thévenin equivalent circuit
for the network external to RL in Fig. 9.27.
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If Thévenin’s theorem were unavailable, each change in RL would
require that the entire network of Fig. 9.27 be reexamined to find the
new value of RL.

EXAMPLE 9.7 Find the Thévenin equivalent circuit for the network in
the shaded area of the network of Fig. 9.33.

Solution:

Steps 1 and 2 are shown in Fig. 9.34.

Step 3 is shown in Fig. 9.35. The current source has been replaced with
an open-circuit equivalent, and the resistance determined between ter-
minals a and b.

In this case an ohmmeter connected between terminals a and b
would send out a sensing current that would flow directly through R1

and R2 (at the same level). The result is that R1 and R2 are in series and
the Thévenin resistance is the sum of the two.

RTh � R1 � R2 � 4 � � 2 � � 6 �

Step 4 (Fig. 9.36): In this case, since an open circuit exists between the
two marked terminals, the current is zero between these terminals and
through the 2-� resistor. The voltage drop across R2 is, therefore,

V2 � I2R2 � (0)R2 � 0 V

and ETh � V1 � I1R1 � IR1 � (12 A)(4 �) � 48 V

Th

R3 7 �

a

b

RTh  =  6 �

ETh  =  48 V
+

–

FIG. 9.37

Substituting the Thévenin equivalent circuit in the network external to the
resistor R3 of Fig. 9.33.

Step 5 is shown in Fig. 9.37.

EXAMPLE 9.8 Find the Thévenin equivalent circuit for the network in
the shaded area of the network of Fig. 9.38. Note in this example that

R2

2 �

R1 4 �I12 A

a

b

FIG. 9.34

Establishing the terminals of particular
interest for the network of Fig. 9.33.

R1 4 �

a

b

RTh

R2

2 �

FIG. 9.35

Determining RTh for the network of Fig. 9.34. R1 4 �

R2  =  2 �I

I  =  12 A

+

–

I  =  0 +

–

+ V2  =  0 V  – a

b

ETh

FIG. 9.36

Determining ETh for the network of Fig. 9.34.

R3 7 �

R2

2 �

R1 4 �

a

b

12 A
I  =

FIG. 9.33

Example 9.7.



R2

4 �

R1 6 � R2 4 �R1 6 �

a

b

RTh

“Short circuited”

R3 2 �

Circuit redrawn:

RTh

a

b

RT  =  0 � �� 2 �  =  0 �

FIG. 9.40

Determining RTh for the network of Fig. 9.39.
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R3 2 �8 VE1

–

+
R4 3 �R1 6 �

R2

4 �a

b

FIG. 9.38

Example 9.8.

R1 6 �

R2

4 �

R3 2 �E1 8 V

a

b

–

+

FIG. 9.39

Identifying the terminals of particular interest for the network of Fig. 9.38.

there is no need for the section of the network to be preserved to be at
the “end” of the configuration.

Solution:

Steps 1 and 2: See Fig. 9.39.

Step 3: See Fig. 9.40. Steps 1 and 2 are relatively easy to apply, but
now we must be careful to “hold” onto the terminals a and b as the
Thévenin resistance and voltage are determined. In Fig. 9.40, all the
remaining elements turn out to be in parallel, and the network can be
redrawn as shown.

RTh � R1 �� R2 � � � 2.4 �
24 �
�

10
(6 �)(4 �)
��
6 � � 4 �
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Solution:

Steps 1 and 2 are shown in Fig. 9.45.

Step 3: See Fig. 9.46. In this case, the short-circuit replacement of the
voltage source E provides a direct connection between c and c′ of Fig.
9.46(a), permitting a “folding” of the network around the horizontal
line of a-b to produce the configuration of Fig. 9.46(b).

RTh � Ra-b � R1 �� R3 � R2 �� R4

� 6 � �� 3 � � 4 � �� 12 �
� 2 � � 3 � � 5 �

R1

6 �

R2

12 �

4 �

R4R3

3 �

b a72 VE

+

–

FIG. 9.45

Identifying the terminals of particular interest 
for the network of Fig. 9.44.

Step 4: See Fig. 9.41. In this case, the network can be redrawn as
shown in Fig. 9.42, and since the voltage is the same across parallel ele-
ments, the voltage across the series resistors R1 and R2 is E1, or 8 V.
Applying the voltage divider rule,

ETh � � � � 4.8 V

Step 5: See Fig. 9.43.

The importance of marking the terminals should be obvious from
Example 9.8. Note that there is no requirement that the Thévenin volt-
age have the same polarity as the equivalent circuit originally intro-
duced.

EXAMPLE 9.9 Find the Thévenin equivalent circuit for the network in
the shaded area of the bridge network of Fig. 9.44.

48 V
�

10

(6 �)(8 V)
��
6 � � 4 �

R1E1
�
R1 � R2

R1

6 � 12 �

4 �

R2

RLR3 R4

3 �

b aE 72 V
+

–

FIG. 9.44

Example 9.9.

ETh  R1 6 �

R2

4 �

R3 2 �ETh E1 8 V
–

+

–

+

–

+

a

b

FIG. 9.41

Determining ETh for the network of Fig. 9.39.

R4 3 �

RTh  =  2.4 �
a

b

ETh  =  4.8 V
–

+

FIG. 9.43

Substituting the Thévenin equivalent circuit 
for the network external to the resistor R4 of 

Fig. 9.38.

R2 4 �

ETh  R1 6 �

R3 2 �–

+

–

+
E1 8 V

FIG. 9.42

Network of Fig. 9.41 redrawn.
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R1

3 �R1

6 �

R2

R3 R4

12 �

3 � 4 �

R2

R4

4 �

RTh

b a

R3

12 �6 �

(b)(a)

ab
RTh

c,c′c′

c

FIG. 9.46

Solving for RTh for the network of Fig. 9.45.

Step 4: The circuit is redrawn in Fig. 9.47. The absence of a direct con-
nection between a and b results in a network with three parallel
branches. The voltages V1 and V2 can therefore be determined using the
voltage divider rule:

V1 � � � � 48 V

V2 � � � � 54 V
864 V
�

16

(12 �)(72 V)
��
12 � � 4 �

R2E
�
R2 � R4

432 V
�

9

(6 �)(72 V)
��
6 � � 3 �

R1E
�
R1 � R3

V1 R1 6 �

R3 3 �

R2 12 �

R4 4 �

KVL
+

–
72 V

+

– +
V2

b a

ETh
–

+

E E
–

Assuming the polarity shown for ETh and applying Kirchhoff’s volt-
age law to the top loop in the clockwise direction will result in

V � �ETh � V1 � V2 � 0

and ETh � V2 � V1 � 54 V � 48 V � 6 V

Step 5 is shown in Fig. 9.48.

Thévenin’s theorem is not restricted to a single passive element, as
shown in the preceding examples, but can be applied across sources,
whole branches, portions of networks, or any circuit configuration, as
shown in the following example. It is also possible that one of the meth-
ods previously described, such as mesh analysis or superposition, may
have to be used to find the Thévenin equivalent circuit.

EXAMPLE 9.10 (Two sources) Find the Thévenin circuit for the net-
work within the shaded area of Fig. 9.49.

�

FIG. 9.47

Determining ETh for the network of Fig. 9.45.

R4

1.4 k�

R3 6 k� RLR1 0.8 k�

R2 4 k�

E2 + 10 V

E1 – 6 V

RL

RTh  =  5 �

ETh  =  6 V
–

+

a

b

FIG. 9.48

Substituting the Thévenin equivalent circuit 
for the network external to the resistor RL of 

Fig. 9.44.

FIG. 9.49

Example 9.10.
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Solution: The network is redrawn and steps 1 and 2 are applied as
shown in Fig. 9.50.

Th

RTh

2 k�

RL3 VETh

FIG. 9.54

Substituting the Thévenin equivalent circuit
for the network external to the resistor RL of

Fig. 9.49.

R1 0.8 k�

R4

1.4 k�R2 4 k�

R3 6 k�

E1 6 V E2 10 V
+

–

–

+

a

b

FIG. 9.50

Identifying the terminals of particular interest 
for the network of Fig. 9.49.

R2 4 k�

R3 6 k�

E2 10 V

I4  =  0

E	ThV3

R4

1.4 k�

V4+ –

+

–

+

–

R1 0.8 k�

FIG. 9.53

Determining the contribution to ETh from the 
source E2 for the network of Fig. 9.50.

R2 4 k�

R3 6 k�

R1 0.8 k�

RTh

2.4 k�

a

b

R4

1.4 k�

FIG. 9.51

Determining RTh for the network of Fig. 9.50.

R3 6 k�

V4

1.4 k�

E1

0.8 k�
R2 4 k�R1

R4

6 V

I4  =  0

–

+

– +

V3

+

–
E�Th

FIG. 9.52

Determining the contribution to ETh from the 
source E1 for the network of Fig. 9.50.

Step 3: See Fig. 9.51.

RTh � R4 � R1 �� R2 �� R3

� 1.4 k� � 0.8 k� �� 4 k� �� 6 k�
� 1.4 k� � 0.8 k� �� 2.4 k�
� 1.4 k� � 0.6 k�
� 2 k�

Step 4: Applying superposition, we will consider the effects of the
voltage source E1 first. Note Fig. 9.52. The open circuit requires that
V4 � I4R4 � (0)R4 � 0 V, and

E′Th � V3

R′T � R2 �� R3 � 4 k� �� 6 k� � 2.4 k�

Applying the voltage divider rule,

V3 � �
R

R

′T
′
E

T

1
� � R1 � � � 4.5 V

E′Th � V3 � 4.5 V

For the source E2, the network of Fig. 9.53 will result. Again, V4 �
I4R4 � (0)R4 � 0 V, and

E″Th � V3

R′T � R1 �� R3 � 0.8 k� �� 6 k� � 0.706 k�

and V3 � �
R

R
′T

′T
�

E
R
2

2
� � � � 1.5 V

E″Th � V3 � 1.5 V

Since E′Th and E″Th have opposite polarities,

ETh � E′Th � E″Th

� 4.5 V � 1.5 V
� 3 V (polarity of E′Th)

Step 5: See Fig. 9.54.

Experimental Procedures

There are two popular experimental procedures for determining the
parameters of a Thévenin equivalent network. The procedure for mea-
suring the Thévenin voltage is the same for each, but the approach for
determining the Thévenin resistance is quite different for each.

7.06 V
�
4.706

(0.706 k�)(10 V)
��
0.706 k� � 4 k�

14.4 V
�

3.2

(2.4 k�)(6 V)
��
2.4 k� � 0.8 k�



FIG. 9.56

Determining RTh experimentally.
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RL = RTh

RTh
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a
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2 ETh

2
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–

(a) (b)

b

a

+

–

Network

ETh
2

V

�

RTh

(c)
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Direct Measurement of ETh and RTh For any physical network,
the value of ETh can be determined experimentally by measuring the
open-circuit voltage across the load terminals, as shown in Fig. 9.55;
ETh � Voc � Vab. The value of RTh can then be determined by com-
pleting the network with a variable RL such as the potentiometer of Fig.
9.56(b). RL can then be varied until the voltage appearing across the
load is one-half the open-circuit value, or VL � ETh /2. For the series
circuit of Fig. 9.56(a), when the load voltage is reduced to one-half the
open-circuit level, the voltage across RTh and RL must be the same. If
we read the value of RL [as shown in Fig. 9.56(c)] that resulted in the
preceding calculations, we will also have the value of RTh, since RL �
RTh if VL equals the voltage across RTh.

Th

+ –Network

RTh

+ V  =  0 V –

ETh

I  =  0

a

b

(a)

ETh

+

–

Open circuit

a

b

+

–

(b)

ETh

V

FIG. 9.55

Determining ETh experimentally.

Measuring Voc and Isc The Thévenin voltage is again determined
by measuring the open-circuit voltage across the terminals of interest;
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that is, ETh � Voc. To determine RTh, a short-circuit condition is estab-
lished across the terminals of interest, as shown in Fig. 9.57, and the
current through the short circuit is measured with an ammeter. Using
Ohm’s law, we find that the short-circuit current is determined by

Isc �

and the Thévenin resistance by

RTh �

However, ETh � Voc resulting in the following equation for RTh:

(9.2)

9.4 NORTON’S THEOREM

It was demonstrated in Section 8.3 that every voltage source with a
series internal resistance has a current source equivalent. The current
source equivalent of the Thévenin network (which, you will note, satis-
fies the above conditions), as shown in Fig. 9.58, can be determined by
Norton’s theorem. It can also be found through the conversions of Sec-
tion 8.3.

The theorem states the following:

Any two-terminal linear bilateral dc network can be replaced by an
equivalent circuit consisting of a current source and a parallel
resistor, as shown in Fig. 9.58.

The discussion of Thévenin’s theorem with respect to the equivalent
circuit can also be applied to the Norton equivalent circuit. The steps
leading to the proper values of IN and RN are now listed.

Preliminary:

1. Remove that portion of the network across which the Norton
equivalent circuit is found.

2. Mark the terminals of the remaining two-terminal network.

RN:

3. Calculate RN by first setting all sources to zero (voltage sources are
replaced with short circuits, and current sources with open
circuits) and then finding the resultant resistance between the two
marked terminals. (If the internal resistance of the voltage and/or
current sources is included in the original network, it must remain
when the sources are set to zero.) Since RN � RTh, the procedure
and value obtained using the approach described for Thévenin’s
theorem will determine the proper value of RN.

IN:

4. Calculate IN by first returning all sources to their original position
and then finding the short-circuit current between the marked
terminals. It is the same current that would be measured by an
ammeter placed between the marked terminals.

RTh � �
V

Is

o

c

c
�

ETh
�
Isc

ETh
�
RTh

Th

+ –

RTh

ETh

a

b

I

Isc

FIG. 9.57

Measuring Isc.

RNIN

a

b

FIG. 9.58

Norton equivalent circuit.

Courtesy of AT&T Archives
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RTh  =  RN

ETh

RTh
RN  =  RTh

ETh  =  INRN

+

–
IN

FIG. 9.59

Converting between Thévenin and Norton equivalent circuits.

R2 6 �

R1

3 �

RL9 VE
+

–

a

b

FIG. 9.60

Example 9.11.

R1

3 �

R2 6 �9 VE
+

–

a

b

FIG. 9.61

Identifying the terminals of particular interest for the network of Fig. 9.60.

R2 6 �

R1

3 �

RN

a

b

FIG. 9.62

Determining RN for the network of Fig. 9.61.

Conclusion:

5. Draw the Norton equivalent circuit with the portion of the circuit
previously removed replaced between the terminals of the
equivalent circuit.

The Norton and Thévenin equivalent circuits can also be found from
each other by using the source transformation discussed earlier in this
chapter and reproduced in Fig. 9.59.

V2 R2 6 �

R1

3 �

Short circuited

E 9 V

Short

+

–

+

–

a

b

I1 IN IN

IN

I2  =  0

FIG. 9.63

Determining IN for the network of Fig. 9.61.

EXAMPLE 9.11 Find the Norton equivalent circuit for the network in
the shaded area of Fig. 9.60.

Solution:

Steps 1 and 2 are shown in Fig. 9.61.

Step 3 is shown in Fig. 9.62, and

RN � R1 �� R2 � 3 � �� 6 � � � � 2 �

Step 4 is shown in Fig. 9.63, clearly indicating that the short-circuit
connection between terminals a and b is in parallel with R2 and elimi-
nates its effect. IN is therefore the same as through R1, and the full bat-
tery voltage appears across R1 since

V2 � I2R2 � (0)6 � � 0 V

Therefore,

IN � � � 3 A
9 V
�
3 �

E
�
R1

18 �
�

9

(3 �)(6 �)
��
3 � � 6 �
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EXAMPLE 9.12 Find the Norton equivalent circuit for the network
external to the 9-� resistor in Fig. 9.66.

Solution:

Steps 1 and 2: See Fig. 9.67.

Step 5: See Fig. 9.64. This circuit is the same as the first one consid-
ered in the development of Thévenin’s theorem. A simple conversion
indicates that the Thévenin circuits are, in fact, the same (Fig. 9.65).

FIG. 9.69

Determining IN for the network of Fig. 9.67.

10 A
R2 4 �

R1

5 �
a

b

IN
R1 5 �

b a

IR2 4 �

I

IN

10 A

RTh  =  RN  =  2 �

IN RN  =  2 �

3 A

a

b

ETh  =  INRN  =  (3 A)(2 �)  =  6 V

a

b

FIG. 9.65

Converting the Norton equivalent circuit of Fig. 9.64 to a Thévenin 
equivalent circuit.

R1

5 �

10 A

a

b

RL 9 �R2 4 �

I

R2 4 �

R1

5 �

10 A

a

b

I

FIG. 9.66

Example 9.12.

FIG. 9.67

Identifying the terminals of particular interest for the network of Fig. 9.66.

R2 4 �

R1

5 �
a

b

RN

FIG. 9.68

Determining RN for the network of Fig. 9.67.

RLRN  =  2 �IN =  3 A

a

b

FIG. 9.64

Substituting the Norton equivalent circuit for 
the network external to the resistor RL of 

Fig. 9.60.

Step 3: See Fig. 9.68, and

RN � R1 � R2 � 5 � � 4 � � 9 �

Step 4: As shown in Fig. 9.69, the Norton current is the same as the
current through the 4-� resistor. Applying the current divider rule,

IN � � � � 5.556 A
50 A
�

9

(5 �)(10 A)
��
5 � � 4 �

R1I
�
R1 � R2
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Step 5: See Fig. 9.70.

9 � RL 9 �IN 5.556 A   RN

a

b

EXAMPLE 9.13 (Two sources) Find the Norton equivalent circuit for
the portion of the network to the left of a-b in Fig. 9.71.

FIG. 9.70

Substituting the Norton equivalent circuit for 
the network external to the resistor RL of 

Fig. 9.66.

R3 9 �

R4 10 �R2 6 �
R1 4 �

E1 7 V

I 8 A

E2 12 V

b

a

FIG. 9.71

Example 9.13.

R1 4 �
R2 6 �

E1 7 V

I 8 A

a

b

FIG. 9.72

Identifying the terminals of particular interest
for the network of Fig. 9.71.

R1 4 �

R2 6 �

a

b

RN

FIG. 9.73

Determining RN for the network of Fig. 9.72.

R2 6 �
R1 4 �

Short circuited

E1 7 V

I�N

a

b

I�N I�N

FIG. 9.74

Determining the contribution to IN from the 
voltage source E1.

Solution:

Steps 1 and 2: See Fig. 9.72.

Step 3 is shown in Fig. 9.73, and

RN � R1 �� R2 � 4 � �� 6 � � � � 2.4 �
24 �
�

10
(4 �)(6 �)
��
4 � � 6 �

Step 4: (Using superposition) For the 7-V battery (Fig. 9.74),
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I′N � � � 1.75 A

For the 8-A source (Fig. 9.75), we find that both R1 and R2 have been
“short circuited” by the direct connection between a and b, and

I″N � I � 8 A

The result is

IN � I″N � I′N � 8 A � 1.75 A � 6.25 A

Step 5: See Fig. 9.76.

7 V
�
4 �

E1
�
R1

Th

Experimental Procedure

The Norton current is measured in the same way as described for the
short-circuit current for the Thévenin network. Since the Norton and
Thévenin resistances are the same, the same procedures can be
employed as described for the Thévenin network.

9.5 MAXIMUM POWER TRANSFER THEOREM

The maximum power transfer theorem states the following:

A load will receive maximum power from a linear bilateral dc
network when its total resistive value is exactly equal to the Thévenin
resistance of the network as “seen” by the load.

For the network of Fig. 9.77, maximum power will be delivered to
the load when

(9.3)

From past discussions, we realize that a Thévenin equivalent circuit
can be found across any element or group of elements in a linear bilat-
eral dc network. Therefore, if we consider the case of the Thévenin
equivalent circuit with respect to the maximum power transfer theorem,
we are, in essence, considering the total effects of any network across a
resistor RL, such as in Fig. 9.77.

For the Norton equivalent circuit of Fig. 9.78, maximum power will
be delivered to the load when

RL � RTh

R1 4 �

R2 6 �I 8 A

I 	N

a

b

I 	N I 	N

I 	N

Short circuited

FIG. 9.75

Determining the contribution to IN from the
current source I.

IN 6.25 A
R3 9 �

RN  =  2.4 �

E2 12 V

R4 10 �

a

b

FIG. 9.76

Substituting the Norton equivalent circuit for the network to the left of
terminals a-b in Fig. 9.71.

RL

IRTh

ETh

+

–

FIG. 9.77

Defining the conditions for maximum power to 
a load using the Thévenin equivalent circuit.
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RL

IL

RTh

ETh

+

–

9 �

60 V VL

PL

FIG. 9.79

Thévenin equivalent network to be used to validate the maximum power
transfer theorem.

RL

I

RNIN

FIG. 9.78

Defining the conditions for maximum power to a load using the Norton 
equivalent circuit.

(9.4)

This result [Eq. (9.4)] will be used to its fullest advantage in the analy-
sis of transistor networks, where the most frequently applied transistor
circuit model employs a current source rather than a voltage source.

For the network of Fig. 9.77,

I �

and PL � I2RL � � �
2

RL

so that PL �

Let us now consider an example where ETh � 60 V and RTh � 9 �,
as shown in Fig. 9.79.

E2
ThRL

��
(RTh � RL)2

ETh
�
RTh � RL

ETh
�
RTh � RL

RL � RN

The power to the load is determined by

PL � �

with IL � �

and VL � �

A tabulation of PL for a range of values of RL yields Table 9.1. A plot
of PL versus RL using the data of Table 9.1 will result in the plot of Fig.
9.80 for the range RL � 0.1 � to 30 �.

RL(60 V)
��
9 � � RL

RL(60 V)
�
RTh � RL

60 V
��
9 � � RL

ETh
�
RTh � RL

3600RL
��
(9 � � RL)2

E2
ThRL

��
(RTh � RL)2
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TABLE 9.1

RL (�) PL (W) IL (A) VL (V)

0.1 4.35 6.59 0.66
0.2 8.51 6.52 1.30
0.5 19.94 6.32 3.16
1 36.00 6.00 6.00
2 59.50 5.46 10.91
3 75.00 5.00 15.00
4 85.21 4.62 18.46
5 91.84 Increase 4.29 Decrease 21.43 Increase
6 96.00 4.00 24.00
7 98.44 3.75 26.25
8 99.65 3.53 28.23
9 (RTh) 100.00 (Maximum) 3.33 (Imax/2) 30.00 (ETh /2)

10 99.72 3.16 31.58
11 99.00 3.00 33.00
12 97.96 2.86 34.29
13 96.69 2.73 35.46
14 95.27 2.61 36.52
15 93.75 2.50 37.50
16 92.16 2.40 38.40
17 90.53 Decrease 2.31 Decrease 39.23 Increase
18 88.89 2.22 40.00
19 87.24 2.14 40.71
20 85.61 2.07 41.38
25 77.86 1.77 44.12
30 71.00 1.54 46.15
40 59.98 1.22 48.98

100 30.30 0.55 55.05
500 6.95 0.12 58.94

1000 3.54 0.06 59.47

5 5 5

5 5 5

PL

PL (W)

0 5 9 10 15 20 25 30 RL (�)

10

20

30

40

50

60

70

80

90

100

RL  =  RTh  =  9 �

FIG. 9.80

PL versus RL for the network of Fig. 9.79.
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Note, in particular, that PL is, in fact, a maximum when RL � RTh �
9 �. The power curve increases more rapidly toward its maximum value
than it decreases after the maximum point, clearly revealing that a small
change in load resistance for levels of RL below RTh will have a more
dramatic effect on the power delivered than similar changes in RL above
the RTh level.

If we plot VL and IL versus the same resistance scale (Fig. 9.81), we
find that both change nonlinearly, with the terminal voltage increasing
with an increase in load resistance as the current decreases. Note again
that the most dramatic changes in VL and IL occur for levels of RL less
than RTh. As pointed out on the plot, when RL � RTh, VL � ETh/2 and 
IL � Imax/2, with Imax � ETh/RTh.

Th

FIG. 9.81

VL and IL versus RL for the network of Fig. 9.79.

50

IL

40

30

20

10

0 0 5 10 15 20 25 309 RL (�)

1

2

3

4

5

6

7

8

VL (V) IL (A)

Imax  =  ETh /RL  =  6.67 A

ETh /2

Imax /2

VL

RL  =  RTh  =  9 �

The dc operating efficiency of a system is defined by the ratio of the
power delivered to the load to the power supplied by the source; that is,

(9.5)

For the situation defined by Fig. 9.77,

h% � � 100% � � 100%
I2

LRL
�
I2

LRT

PL
�
Ps

h% � �
P

P
L

s
� � 100%
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and h% � � 100%

For RL that is small compared to RTh, RTh k RL and RTh � RL � RTh,
with

RL
�
RTh � RL

Th

FIG. 9.82

Efficiency of operation versus increasing values of RL.

100

Approaches 100%

75

50

25

0 20 40 60 80 100 RL (�)

RL  =  RTh

h%  ≅   kRL  �  100%

h%

10

h% �        � 100% �  RL � 100% � kRL � 100%
RL

RTh

1
RTh

�

Constant

The resulting percentage efficiency, therefore, will be relatively low
(since k is small) and will increase almost linearly as RL increases.

For situations where the load resistance RL is much larger than RTh,
RL k RTh and RTh � RL � RL.

h% � � 100% � 100%

The efficiency therefore increases linearly and dramatically for small
levels of RL and then begins to level off as it approaches the 100% level
for very large values of RL, as shown in Fig. 9.82. Keep in mind, how-
ever, that the efficiency criterion is sensitive only to the ratio of PL to Ps

and not to their actual levels. At efficiency levels approaching 100%, the
power delivered to the load may be so small as to have little practical
value. Note the low level of power to the load in Table 9.1 when RL �
1000 �, even though the efficiency level will be

h% � � 100% � � 100% � 99.11%
1000
�
1009

RL
�
RTh � RL

RL
�
RL
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When RL � RTh,

h% � � 100% � � 100% � 50%

Under maximum power transfer conditions, therefore, PL is a maxi-
mum, but the dc efficiency is only 50%; that is, only half the power
delivered by the source is getting to the load.

A relatively low efficiency of 50% can be tolerated in situations
where power levels are relatively low, such as in a wide variety of elec-
tronic systems. However, when large power levels are involved, such as
at generating stations, efficiencies of 50% would not be acceptable. In
fact, a great deal of expense and research is dedicated to raising power-
generating and transmission efficiencies a few percentage points. Rais-
ing an efficiency level of a 10-mega-kW power plant from 94% to 95%
(a 1% increase) can save 0.1 mega-kW, or 100 million watts, of
power—an enormous saving!

Consider a change in load levels from 9 � to 20 �. In Fig. 9.80, the
power level has dropped from 100 W to 85.61 W (a 14.4% drop), but
the efficiency has increased substantially to 69% (a 38% increase), as
shown in Fig. 9.82. For each application, therefore, a balance point
must be identified where the efficiency is sufficiently high without
reducing the power to the load to insignificant levels.

Figure 9.83 is a semilog plot of PL and the power delivered by the
source Ps � EThIL versus RL for ETh � 60 V and RTh � 9 �. A semilog
graph employs one log scale and one linear scale, as implied by the pre-
fix semi, meaning half. Log scales are discussed in detail in Chapter 23.
For the moment, note the wide range of RL permitted using the log scale
compared to Figs. 9.80 through 9.82.

It is now quite clear that the PL curve has only one maximum (at RL �
RTh), whereas Ps decreases for every increase in RL. In particular, note
that for low levels of RL, only a small portion of the power delivered by
the source makes it to the load. In fact, even when RL � RTh, the source
is generating twice the power absorbed by the load. For values of RL

greater than RTh, the two curves approach each other until eventually
they are essentially the same at high levels of RL. For the range RL �
RTh � 9 � to RL � 100 �, PL and Ps are relatively close in magnitude,
suggesting that this would be an appropriate range of operation, since a
majority of the power delivered by the source is getting to the load and
the power levels are still significant.

The power delivered to RL under maximum power conditions (RL �
RTh) is

I � �
ETh
�
2RTh

ETh
�
RTh � RL

RL
�
2RL

RL
�
RTh � RL

PL � I2RL � � �
2

RTh �

and (watts, W) (9.6)

For the Norton circuit of Fig. 9.78,

(W) (9.7)PLmax
� �

I2
N

4

RN
�

PLmax
� �

4

E

R

2
T

T

h

h
�

E2
ThRTh

�
4R2

Th

ETh
�
2RTh
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FIG. 9.83

Ps and PL versus RL for the network of Fig. 9.79.
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EXAMPLE 9.14 A dc generator, battery, and laboratory supply are
connected to a resistive load RL in Fig. 9.84(a), (b), and (c), respec-
tively.

RL

2.5 �Rint

–

+
E

RL

0.5 �Rint

–

+
E

RL

40 �Rint

–

+
E

(a)  dc generator (b)  Battery (c)  Laboratory supply

FIG. 9.84

Example 9.14.

a. For each, determine the value of RL for maximum power transfer to
RL.

b. Determine RL for 75% efficiency.

Solutions:

a. For the dc generator,

RL � RTh � Rint � 2.5 �

For the battery,

RL � RTh � Rint � 0.5 �

For the laboratory supply,

RL � RTh � Rint � 40 �

b. For the dc generator,

h � (h in decimal form)

h �

h(RTh � RL) � RL

hRTh � hRL � RL

RL(1 � h) � hRTh

and (9.8)

RL � � 7.5 �

For the battery,

RL � � 1.5 �
0.75(0.5 �)
��

1 � 0.75

0.75(2.5 �)
��

1 � 0.75

RL � �
1

hR

�
Th

h
�

RL
�
RTh � RL

Po
�
Ps
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For the laboratory supply,

RL � � 120 �

The results of Example 9.14 reveal that the following modified form
of the maximum power transfer theorem is valid:

For loads connected directly to a dc voltage supply, maximum power
will be delivered to the load when the load resistance is equal to the
internal resistance of the source; that is, when

(9.9)

EXAMPLE 9.15 Analysis of a transistor network resulted in the
reduced configuration of Fig. 9.85. Determine the RL necessary to trans-
fer maximum power to RL, and calculate the power of RL under these
conditions.

Solution: Eq. (9.4):

RL � Rs � 40 k�

Eq. (9.7):

PLmax
� � � 1 W

EXAMPLE 9.16 For the network of Fig. 9.86, determine the value of
R for maximum power to R, and calculate the power delivered under
these conditions.

Solution: See Fig. 9.87.

RTh � R3 � R1 � R2 � 8 � � � 8 � � 2 �

and R � RTh � 10 �

See Fig. 9.88.

ETh � � � � 4 V

and, by Eq. (9.6),

PLmax
� � � 0.4 W

EXAMPLE 9.17 Find the value of RL in Fig. 9.89 for maximum power
to RL, and determine the maximum power.

Solution: See Fig. 9.90.

RTh � R1 � R2 � R3 � 3 � � 10 � � 2 � � 15 �

and RL � RTh � 15 �

(4 V)2

�
4(10 �)

E2
Th

�
4RTh

36 V
�

9

(3 �)(12 V)
��
3 � � 6 �

R2E
�
R2 � R1

(6 �)(3 �)
��
6 � � 3 �

(10 mA)2(40 k�)
��

4

I2
NRN
�

4

RL � Rint

0.75(40 �)
��

1 � 0.75

Th

I 10 mA Rs 40 k� RL

FIG. 9.85

Example 9.15.

R1

6 �

R2 3 �

R3

8 �

RE 12 V
+

–

FIG. 9.86

Example 9.16.

R2 3 �

R3

8 �

R1

6 �

RTh

FIG. 9.87

Determining RTh for the network external to 
the resistor R of Fig. 9.86.

R2
3 �

R3

8 �

R1

6 �

ETh EThE 12 V
+

–

+

–

+

–

+  V3  =  0 V  –

FIG. 9.88

Determining ETh for the network external to 
the resistor R of Fig. 9.86.

R2 10 �

R1

3 �

6 AI RL

E1

68 V
–+

R3

2 �

FIG. 9.89

Example 9.17.
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R1

E1

R2

E2

R3

E3

RL

Req

Eeq

RL

FIG. 9.92

Demonstrating the effect of applying Millman’s theorem.

Note Fig. 9.91, where

V1 � V3 � 0 V

and V2 � I2R2 � IR2 � (6 A)(10 �) � 60 V

Applying Kirchhoff’s voltage law,

V � �V2 � E1 � ETh � 0

and ETh � V2 � E1 � 60 V � 68 V � 128 V

Thus, PLmax
� � � 273.07 W

9.6 MILLMAN’S THEOREM

Through the application of Millman’s theorem, any number of parallel
voltage sources can be reduced to one. In Fig. 9.92, for example, the
three voltage sources can be reduced to one. This would permit finding
the current through or voltage across RL without having to apply a
method such as mesh analysis, nodal analysis, superposition, and so on.
The theorem can best be described by applying it to the network of Fig.
9.92. Basically, three steps are included in its application.

(128 V)2

�
4(15 �)

E2
Th

�
4RTh

�

I1 E1G1 G1 I2 E2G2 I3G2 E3G3 G3 RL

( )E3
R3( )E2

R2( )E1
R1

FIG. 9.93

Converting all the sources of Fig. 9.92 to current sources.

FIG. 9.90

Determining RTh for the network external to 
the resistor RL of Fig. 9.89.

R2 10 �

R1

3 �

R3

2 �

RTh

V2 R2  =  10 �

E1

68 V
–+R1  =  3 �

I  =  0

I  =  6 A I  =  0

R3  =  2 �
+  V3  =  0 V  –

ETh

–

+

–  V1  =  0 V  +

–

+
6 A

I  =

6 A

FIG. 9.91

Determining ETh for the network external to
the resistor RL of Fig. 9.89.

Step 1: Convert all voltage sources to current sources as outlined in
Section 8.3. This is performed in Fig. 9.93 for the network of Fig.
9.92.
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Step 2: Combine parallel current sources as described in Section 8.4.
The resulting network is shown in Fig. 9.94, where

IT � I1 � I2 � I3 and GT � G1 � G2 � G3

Step 3: Convert the resulting current source to a voltage source, and the
desired single-source network is obtained, as shown in Fig. 9.95.

In general, Millman’s theorem states that for any number of parallel
voltage sources,

Eeq � �

or Eeq � (9.10)

The plus-and-minus signs appear in Eq. (9.10) to include those cases
where the sources may not be supplying energy in the same direction.
(Note Example 9.18.)

The equivalent resistance is

Req � � (9.11)

In terms of the resistance values,

Eeq � (9.12)

and Req � (9.13)

The relatively few direct steps required may result in the student’s
applying each step rather than memorizing and employing Eqs. (9.10)
through (9.13).

EXAMPLE 9.18 Using Millman’s theorem, find the current through
and voltage across the resistor RL of Fig. 9.96.

Solution: By Eq. (9.12),

Eeq �

The minus sign is used for E2 /R2 because that supply has the opposite
polarity of the other two. The chosen reference direction is therefore 

� �
E
R

1

1
� � �

E
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� � �

E
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3
�

——
�
R
1
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� � �
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1
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� � �

R
1
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�

1
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�
R

1

1

� � �
R

1
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� � �
R

1

3

� � • • • � �
R

1

N

�


 �
E

R
1

1
� 
 �

E

R
2

2
� 
 �

E

R
3

3
� 
 • • • 
 �

E

R
N

N
�

————
�
R

1

1
� � �

R

1

2
� � �

R

1

3
� � • • • � �

R

1

N
�

1
���
G1 � G2 � G3 � • • • � GN

1
�
GT


E1G1 
 E2G2 
 E3G3 
 • • • 
 ENGN
�����

G1 � G2 � G3 � • • • � GN


I1 
 I2 
 I3 
 • • • 
 IN
���
G1 � G2 � G3 � • • • � GN

IT
�
GT

Th

GTIT RL

FIG. 9.94

Reducing all the current sources of Fig. 9.93 
to a single current source.

–

+

Req
1

GT

Eeq
IT
GT

RL

FIG. 9.95

Converting the current source of Fig. 9.94 to 
a voltage source.

R1 5 � R2 4 � R3 2 �

E1
10 V

E2
16 V

E3
8 V

RL 3 �

IL

VL

+

–

FIG. 9.96

Example 9.18.
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that of E1 and E3. The total conductance is unaffected by the direction,
and

Eeq � �

� � 2.105 V

with Req � � � 1.053 �

The resultant source is shown in Fig. 9.97, and

IL � � � 0.519 A

with VL � ILRL � (0.519 A)(3 �) � 1.557 V

EXAMPLE 9.19 Let us now consider the type of problem encountered
in the introduction to mesh and nodal analysis in Chapter 8. Mesh
analysis was applied to the network of Fig. 9.98 (Example 8.12). Let us
now use Millman’s theorem to find the current through the 2-� resistor
and compare the results.

Solutions:

a. Let us first apply each step and, in the (b) solution, Eq. (9.12). Con-
verting sources yields Fig. 9.99. Combining sources and parallel
conductance branches (Fig. 9.100) yields

IT � I1 � I2 � 5 A � A � A � A � A

GT � G1 � G2 � 1 S � S � S � S � S
7
�
6

1
�
6

6
�
6

1
�
6

20
�
3

5
�
3

15
�
3

5
�
3

2.105 V
�
4.053 �

2.105 V
��
1.053 � � 3 �

1
�
0.95 S

1
———
�
5
1
�
� � �

4
1
�
� � �

2
1
�
�

2 A
�
0.95 S

2 A � 4 A � 4 A
———
0.2 S � 0.25 S � 0.5 S

� �
1
5
0
�

V
� � �

1
4
6
�

V
� � �

2
8

�

V
�

———
�
5
1
�
� � �

4
1
�
� � �

2
1
�
�

Req 1.053 �

Eeq

RL 3 � VL
–

+

2.105 V

IL

FIG. 9.97

The result of applying Millman’s theorem to 
the network of Fig. 9.96.

R1 1 � R2 6 �

E1 5 V E2 10 V

R3 2 �

FIG. 9.98

Example 9.19.

I1

R1

5 A

1 � R2 6 �

I2
5
3

R3 2 �

A

FIG. 9.99

Converting the sources of Fig. 9.98 to current
sources.

R3 2 �

6
7

Req �

Eeq
40
7 V

FIG. 9.101

Converting the current source of Fig. 9.100 to 
a voltage source.

IT
20
3

7
6

R3 2 �SA GT

FIG. 9.100

Reducing the current sources of Fig. 9.99 to a single source.

Converting the current source to a voltage source (Fig. 9.101), we
obtain

Eeq � � � V � V
40
—
7

(6)(20)
�
(3)(7)

�
2
3
0
� A

—
�
7
6

� S

IT
�
GT
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and Req � � � �

so that

I2� � � � � � 2 A

which agrees with the result obtained in Example 8.18.
b. Let us now simply apply the proper equation, Eq. (9.12):

Eeq � � � V

and

Req � � � � �

which are the same values obtained above.

The dual of Millman’s theorem (Fig. 9.92) appears in Fig. 9.102. It
can be shown that Ieq and Req, as in Fig. 9.102, are given by
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�
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�
4
7
0
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�
6
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�  � � �
1
7
4
� �

�
4
7
0
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�
6
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�  � � 2 �

Eeq
�
Req � R3

6
—
7

1—
�
7
6

� S

1
�
GT

Ieq � (9.14)

and (9.15)

The derivation will appear as a problem at the end of the chapter.

9.7 SUBSTITUTION THEOREM

The substitution theorem states the following:

If the voltage across and the current through any branch of a dc
bilateral network are known, this branch can be replaced by any

Req � R1 � R2 � R3

�I1R1 � I2R2 � I3R3
���

R1 � R2 � R3

FIG. 9.102

The dual effect of Millman’s theorem.

R1

I2

R2

I3

R3

I1

RL Req

Ieq

RL



FIG. 9.103

Demonstrating the effect of the substitution 
theorem.

R2 4 �

R1

6 �

a

b

12 V

–

+

3 A

E 30  V
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combination of elements that will maintain the same voltage across
and current through the chosen branch.

More simply, the theorem states that for branch equivalence, the ter-
minal voltage and current must be the same. Consider the circuit of Fig.
9.103, in which the voltage across and current through the branch a-b
are determined. Through the use of the substitution theorem, a number
of equivalent a-a′ branches are shown in Fig. 9.104.

Note that for each equivalent, the terminal voltage and current are
the same. Also consider that the response of the remainder of the circuit
of Fig. 9.103 is unchanged by substituting any one of the equivalent
branches. As demonstrated by the single-source equivalents of Fig.
9.104, a known potential difference and current in a network can be
replaced by an ideal voltage source and current source, respectively.

Understand that this theorem cannot be used to solve networks with
two or more sources that are not in series or parallel. For it to be
applied, a potential difference or current value must be known or found
using one of the techniques discussed earlier. One application of the
theorem is shown in Fig. 9.105. Note that in the figure the known
potential difference V was replaced by a voltage source, permitting the
isolation of the portion of the network including R3, R4, and R5. Recall
that this was basically the approach employed in the analysis of the 
ladder network as we worked our way back toward the terminal resis-
tance R5.

R2

R3a

b

E V

–

+

R1

R4 R5

R3

b

E′  =  V

+
R5

–
R4

a

FIG. 9.105

Demonstrating the effect of knowing a voltage at some point in a complex
network.

The current source equivalence of the above is shown in Fig. 9.106,
where a known current is replaced by an ideal current source, permit-
ting the isolation of R4 and R5.

FIG. 9.104

Equivalent branches for the branch a-b of Fig. 9.103.

2 A 12 � 12 V

b

3 A
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+
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b
–

+

2 �

 6 V
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b
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3 A 12 V

a

b

12 V
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+
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You will also recall from the discussion of bridge networks that V � 0
and I � 0 were replaced by a short circuit and an open circuit, respec-
tively. This substitution is a very specific application of the substitution
theorem.

9.8 RECIPROCITY THEOREM

The reciprocity theorem is applicable only to single-source networks.
It is, therefore, not a theorem employed in the analysis of multisource
networks described thus far. The theorem states the following:

The current I in any branch of a network, due to a single voltage
source E anywhere else in the network, will equal the current
through the branch in which the source was originally located if the
source is placed in the branch in which the current I was originally
measured.

In other words, the location of the voltage source and the resulting
current may be interchanged without a change in current. The theorem
requires that the polarity of the voltage source have the same corre-
spondence with the direction of the branch current in each position.

In the representative network of Fig. 9.107(a), the current I due to
the voltage source E was determined. If the position of each is inter-
changed as shown in Fig. 9.107(b), the current I will be the same value
as indicated. To demonstrate the validity of this statement and the theo-
rem, consider the network of Fig. 9.108, in which values for the ele-
ments of Fig. 9.107(a) have been assigned.

The total resistance is

FIG. 9.107

Demonstrating the impact of the reciprocity theorem.

I

E

a

b

c

d

I

E

a

b

c

d

(a) (b)

R1

E

R2 R4

R3

R5

ba

I

R4 R5

ba

I

FIG. 9.106

Demonstrating the effect of knowing a current at some point in a 
complex network.
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RT � R1 � R2 � (R3 � R4) � 12 � � 6 � � (2 � � 4 �)

� 12 � � 6 � � 6 � � 12 � � 3 � � 15 �

and Is � � � 3 A

with I � � 1.5 A

For the network of Fig. 9.109, which corresponds to that of Fig.
9.107(b), we find

RT � R4 � R3 � R1 � R2

� 4 � � 2 � � 12 � � 6 � � 10 �

and Is � � � 4.5 A

so that I � � � 1.5 A

which agrees with the above.
The uniqueness and power of such a theorem can best be demon-

strated by considering a complex, single-source network such as the
one shown in Fig. 9.110.

4.5 A
�

3
(6 �)(4.5 A)
��
12 � � 6 �

45 V
�
10 �

E
�
RT

3 A
�

2

45 V
�
15 �

E
�
RT

c

d

a

b

I
c

d

a

b

I

E

E

FIG. 9.110

Demonstrating the power and uniqueness of the reciprocity theorem.

FIG. 9.108

Finding the current I due to a source E.

R1

12 �

R3

2 �

R2 6 � R4 4 �E 45 V

Is

I

R1

12 �

R3

2 �

R2 6 �
R4 4 �

E 45 V

I RT

Is

FIG. 9.109

Interchanging the location of E and I of 
Fig. 9.108 to demonstrate the validity of the 

reciprocity theorem.

9.9 APPLICATION

Speaker System

One of the most common applications of the maximum power transfer
theorem introduced in this chapter is to speaker systems. An audio
amplifier (amplifier with a frequency range matching the typical range



4" Woofer
8 Ω

5 W(rms)
10 W (max)(c)

Audio amplifier

Ri

Speaker
a

b

a

b

8 Ω
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b
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+

–

(a)

a

b

(b)

Ri

Ro
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FIG. 9.111

Components of a speaker system: (a) amplifier; (b) speaker; (c) commercially
available unit.
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of the human ear) with an output impedance of 8 � is shown in Fig.
9.111(a). Impedance is a term applied to opposition in ac networks—
for the moment think of it as a resistance level. We can also think of
impedance as the internal resistance of the source which is normally
shown in series with the source voltage as shown in the same figure.
Every speaker has an internal resistance that can be represented as
shown in Fig. 9.111(b) for a standard 8-� speaker. Figure 9.111(c) is a
photograph of a commercially available 8-� woofer (for very low fre-
quencies). The primary purpose of the following discussion is to shed
some light on how the audio power can be distributed and which
approach would be the most effective.

Since the maximum power theorem states that the load impedance
should match the source impedance for maximum power transfer, let us
first consider the case of a single 8-� speaker as shown in Fig. 9.112(a)
with an applied amplifier voltage of 12 V. Since the applied voltage will
split equally, the speaker voltage is 6 V, and the power to the speaker is
a maximum value of P � V2/R � (6 V)2/8 � � 4.5 W.

If we have two 8-� speakers that we would like to hook up, we have
the choice of hooking them up in series or parallel. For the series
configuration of Fig. 9.112(b), the resulting current would be I � E/R �
12 V/24 � � 500 mA, and the power to each speaker would be P �
I2R � (500 mA)2(8 �) � 2 W, which is a drop of over 50% from the
maximum output level of 4.5 W. If the speakers are hooked up in par-
allel as shown in Fig. 9.112(c), the total resistance of the parallel com-
bination is 4 �, and the voltage across each speaker as determined by
the voltage divider rule will be 4 V. The power to each speaker is P �
V2/R � (4 V)2/8 � � 2 W which, interestingly enough, is the same
power delivered to each speaker whether in series or parallel. However,
the parallel arrangement is normally chosen for a variety of reasons.
First, when the speakers are connected in parallel, if a wire should
become disconnected from one of the speakers due simply to the vibra-
tion caused by the emitted sound, the other speakers will still be oper-
ating—perhaps not at maximum efficiency, but they will still be operat-
ing. If in series they would all fail to operate. A second reason relates to
the general wiring procedure. When all of the speakers are in parallel,
from various parts of a room all the red wires can be connected together
and all the black wires together. If the speakers are in series, and if you

(a)

8 Ω

Ro

Amplifier

+

–

12 V

+

–

6 V Ri 8-Ω
speaker

8 Ω 8 Ω

Ro Rspeaker 1

I = 500 mA

Amplifier Series speakers

+

–

12 V Rspeaker 28 Ω

(b)

Ro Rspeaker 1

8 Ω

Rspeaker 2

+

–

12 V
+

–

4 V 8 Ω 8 Ω

Amplifier Parallel speakers

(c)

FIG. 9.112

Speaker connections: (a) single unit; (b) in
series; (c) in parallel.
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In any case, always try to match the total resistance of the speaker
load to the output resistance of the supply. Yes, a 4-� speaker can be
placed in series with a parallel combination of 8-� speakers for maxi-
mum power transfer from the supply since the total resistance will be
8 �. However, the power distribution will not be equal, with the 4-�
speaker receiving 2.25 W and the 8-� speakers each 1.125 W for a total
of 4.5 W. The 4-� speaker is therefore receiving twice the audio power
of the 8-� speakers, and this difference may cause distortion or imbal-
ance in the listening area.

All speakers have maximum and minimum levels. A 50-W speaker
is rated for a maximum output power of 50 W and will provide that
level on demand. However, in order to function properly, it will proba-
bly need to be operating at least at the 1- to 5-W level. A 100-W
speaker typically needs between 5 W and 10 W of power to operate
properly. It is also important to realize that power levels less than the
rated value (such as 40 W for the 50-W speaker) will not result in an
increase in distortion, but simply in a loss of volume. However, distor-
tion will result if you exceed the rated power level. For example, if we
apply 2.5 W to a 2-W speaker, we will definitely have distortion. How-
ever, applying 1.5 W will simply result in less volume. A rule of thumb
regarding audio levels states that the human ear can sense changes in
audio level only if you double the applied power [a 3-dB increase; deci-
bels (dB) will be introduced in Chapter 23]. The doubling effect is
always with respect to the initial level. For instance, if the original level
were 2 W, you would have to go to 4 W to notice the change. If start-
ing at 10 W, you would have to go to 20 W to appreciate the increase in
volume. An exception to the above is at very low power levels or very
high power levels. For instance, a change from 1 W to 1.5 W may be
discernible, just as a change from 50 W to 80 W may be noticeable.

9.10 COMPUTER ANALYSIS

Once the mechanics of applying a software package or language are
understood, the opportunity to be creative and innovative presents itself.
Through years of exposure and trial-and-error experiences, professional

8 Ω 4 Ω

Series 4-Ω speakers

+

–

Vs Rspeaker 24 Ω
Ri = 8 Ω

Ro Rspeaker 1 Ro Rspeaker 1

8 Ω

Rspeaker 2

+

–

Vs 16 Ω 16 Ω

Parallel 16-Ω speakers

Ri = 8 Ω

FIG. 9.113

Applying 4-� and 16-� speakers to an amplifier 
with an output impedance of 8 �.

are presented with a bundle of red and black wires in the basement, you
would first have to determine which wires go with which speakers.

Speakers are also available with input impedances of 4 � and 16 �.
If you know that the output impedance is 8 �, purchasing either two
4-� speakers or two 16-� speakers would result in maximum power to
the speakers as shown in Fig. 9.113. The 16-� speakers would be con-
nected in parallel and the 4-� speakers in series to establish a total load
impedance of 8 �.
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programmers develop a catalog of innovative techniques that are not only
functional but very interesting and truly artistic in nature. Now that some
of the basic operations associated with PSpice have been introduced, a few
innovative maneuvers will be made in the examples to follow.

PSpice

Superposition Let us now apply superposition to the network of
Fig 9.114, which appeared earlier as Fig. 9.10 in Example 9.3, to per-
mit a comparison of resulting solutions. The current through R2 is to be
determined. Using methods described in earlier chapters for the appli-
cation of PSpice, the network of Fig. 9.115 will result to determine the
effect of the 36-V voltage source. Note that both VDC and IDC
(flipped vertically) appear in the network. The current source, however,
was set to zero simply by selecting the source and changing its value to
0 A in the Display Properties dialog box.

R2 6 �

R1

12 � I2

I 9 A
E 36 V

FIG. 9.114

Applying PSpice to determine the current I2

using superposition.

FIG. 9.115

Using PSpice to determine the contribution of the 36-V voltage source to the
current through R2.

Following simulation, the results appearing in Fig. 9.115 will result.
The current through the 6-� resistor is 2 A due solely to the 36-V volt-
age source. Although direction is not indicated, it is fairly obvious in
this case. For those cases where it is not obvious, the voltage levels can
be displayed, and the direction would be from the point of high poten-
tial to the point of lower potential.

For the effects of the current source, the voltage source is set to 0 V
as shown in Fig. 9.116. The resulting current is then 6 A through R2,
with the same direction as the contribution due to the voltage source.
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The resulting current for the resistor R2 is the sum of the two cur-
rents: IT � 2 A � 6 A � 8 A, as determined in Example 9.3.

Thévenin’s Theorem The application of Thévenin’s theorem
requires an interesting maneuver to determine the Thévenin resistance.
It is a maneuver, however, that has application beyond Thévenin’s the-
orem whenever a resistance level is required. The network to be ana-
lyzed appears in Fig. 9.117 and is the same one analyzed in Example
9.10 (Fig. 9.49).

FIG. 9.116

Using PSpice to determine the contribution of the 9-A current source to the
current through R2.

R1 0.8 k�

R4

1.4 k�

R2 4 k�

R3 6 k�

+

–

E2 10 V
+
–E1 6 V

–
+

RTh

ETh

FIG. 9.117

Network to which PSpice is to be applied to determine ETh and RTh.

Since PSpice is not set up to measure resistance levels directly, a
1-A current source can be applied as shown in Fig. 9.118, and Ohm’s law
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can be used to determine the magnitude of the Thévenin resistance in
the following manner:

�RTh� � � �
V
Is

s� � � � �1
V
A
s� � � �Vs�

In Eq. (9.16), since Is � 1 A, the magnitude of RTh in ohms is the same
as the magnitude of the voltage Vs (in volts) across the current source.
The result is that when the voltage across the current source is dis-
played, it can be read as ohms rather than volts.

When PSpice is applied, the network will appear as shown in Fig.
9.118. The voltage source E1 and the current source are flipped using a
right click on the source and using the Mirror Vertically option. Both
voltage sources are set to zero through the Display Properties dialog
box obtained by double-clicking on the source symbol. The result of the
Bias Point simulation is 2 kV across the current source. The Thévenin
resistance is therefore 2 k� between the two terminals of the network
to the left of the current source (to match the results of Example 9.10).
In total, by setting the voltage sources to 0 V, we have dictated that the
voltage is the same at both ends of the voltage source, replicating the
effect of a short-circuit connection between the two points.

For the open-circuit Thévenin voltage between the terminals of inter-
est, the network must be constructed as shown in Fig. 9.119. The resis-
tance of 1 T (�1million M�) is considered large enough to represent an
open circuit to permit an analysis of the network using PSpice. PSpice
does not recognize floating nodes and would generate an error signal if a
connection were not made from the top right node to ground. Both volt-
age sources are now set on their prescribed values, and a simulation will

FIG. 9.118

Using PSpice to determine the Thévenin resistance of a network through the
application of a 1-A current source.
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result in 3 V across the 1-T resistor. The open-circuit Thévenin voltage is
therefore 3 V which agrees with the solution of Example 9.10.

Maximum Power Transfer The procedure for plotting a quantity
versus a parameter of the network will now be introduced. In this case
it will be the output power versus values of load resistance to verify the
fact that maximum power will be delivered to the load when its value
equals the series Thévenin resistance. A number of new steps will be
introduced, but keep in mind that the method has broad application
beyond Thévenin’s theorem and is therefore well worth the learning
process.

The circuit to be analyzed appears in Fig. 9.120. The circuit is con-
structed in exactly the same manner as described earlier except for the
value of the load resistance. Begin the process by starting a New Project
called MaxPower, and build the circuit of Fig. 9.120. For the moment
hold off on setting the value of the load resistance.

The first step will be to establish the value of the load resistance as
a variable since it will not be assigned a fixed value. Double-click on
the value of RL to obtain the Display Properties dialog box. For
Value, type in {Rval} and click in place. The brackets (not parenthe-
ses) are required, but the variable does not have to be called Rval—it
is the choice of the user. Next select the Place part key to obtain the
Place Part dialog box. If you are not already in the Libraries list,
choose Add Library and add SPECIAL to the list. Select the SPE-
CIAL library and scroll the Part List until PARAM appears. Select
it; then click OK to obtain a rectangular box next to the cursor on the

FIG. 9.119

Using PSpice to determine the Thévenin voltage for a network using a very
large resistance value to represent the open-circuit condition between the

terminals of interest.
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screen. Select a spot near Rval, and deposit the rectangle. The result
is PARAMETERS: as shown in Fig. 9.120.

Next double-click on PARAMETERS: to obtain a Property Edi-
tor dialog box which should have SCHEMATIC1:PAGE1 in the sec-
ond column from the left. Now select the New Column option from
the top list of choices to obtain the Add New Column dialog box.
Enter the Name:Rval and Value:1 followed by an OK to leave the
dialog box. The result is a return to the Property Editor dialog box
but with Rval and its value (below Rval) added to the horizontal list.
Now select Rval/1 by clicking on Rval to surround Rval by a dashed
line and add a black background around the 1. Choose Display to
produce the Display Properties dialog box, and select Name and
Value followed by OK. Then exit the Property Editor dialog box (X)
to obtain the screen of Fig. 9.120. Note that now the first value (1 �)
of Rval is displayed.

We are now ready to set up the simulation process. Select the New
Simulation Profile key to obtain the New Simulation dialog box.
Enter DC Sweep under Name followed by Create. The Simulation
Settings-DC Sweep dialog box will appear. After selecting Analysis,
select DC Sweep under the Analysis type heading. Then leave the Pri-
mary Sweep under the Options heading, and select Global parameter
under the Sweep variable. The Parameter name should then be
entered as Rval. For the Sweep type, the Start value should be 1 �;
but if we use 1 �, the curve to be generated will start at 1 �, leaving a
blank from 0 to 1 �. The curve will look incomplete. To solve this
problem, we will select 0.001 � as the Start value (very close to 0 �)
and the End value 30.001 � with an Increment of 1 �. The values of
RL will therefore be 0.001 �, 1.001 �, 2.001 �, etc., although the plot

FIG. 9.120

Using PSpice to plot the power to RL for a range of values for RL.
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will look as if the values were 0 �, 1 �, 2 �, etc.  Click OK, and select
the Run PSpice key to obtain the display of Fig. 9.121.

First note that there are no plots on the graph and that the graph
extends to 35 � rather than 30 � as desired. It did not respond with a plot
of power versus RL because we have not defined the plot of interest for
the computer. This is done by selecting the Add Trace key (the key in the
middle of the lower toolbar that looks like a red sawtooth waveform)
or Trace-Add Trace from the top menu bar. Either choice will result
in the Add Traces dialog box. The most important region of this dialog
box is the Trace Expression listing at the bottom. The desired trace can
be typed in directly, or the quantities of interest can be chosen from the
list of Simulation Output Variables and deposited in the Trace Expres-
sion listing. Since we are interested in the power to RL for the chosen
range of values for RL, W(RL) is selected in the listing; it will then
appear as the Trace Expression. Click OK, and the plot of Fig. 9.122
will appear. Originally, the plot extended from 0 � to 35 �. We reduced
the range to 0 � to 30 � by selecting Plot-Axis Settings-X Axis-User
Defined 0 to 30-OK.

Select the Toggle cursor key (which looks like a red curve passing
through the origin of a graph), and then left-click the mouse. A vertical
line and a horizonal line will appear, with the vertical line controlled by
the position of the cursor. Moving the cursor to the peak value will
result in A1 � 9.0010 as the x value and 100.000 W as the y value as
shown in the Probe Cursor box at the right of the screen. A second
cursor can be generated by a right click of the mouse, which was set at
RL � 30.001 � to result in a power of 71.005 W. Notice also that the

Th

FIG. 9.121

Plot resulting from the dc sweep of RL for the network of Fig. 9.120 before
defining the parameters to be displayed.
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plot generated appears as a listing at the bottom left of the screen as
W(RL).

Before leaving the subject, we should mention that the power to RL
can be determined in more ways than one from the Add Traces dialog
box. For example, first enter a minus sign because of the resulting cur-
rent direction through the resistor, and then select V2(RL) followed by
the multiplication of I(RL). The following expression will appear in the
Trace Expression box: V2(RL)*I(RL), which is an expression having
the basic power format of P � V * I. Click OK, and the same power
curve of Fig. 9.122 will appear. Other quantities, such as the voltage
across the load and the current through the load, can be plotted against
RL by simply following the sequence Trace-Delete All Traces-Trace-
Add Trace-V1(RL) or I(RL).

FIG. 9.122

A plot of the power delivered to RL in Fig. 9.120 for a range of values for RL

extending from 0 � to 30 �.

PROBLEMS

SECTION 9.2 Superposition Theorem

1. a. Using superposition, find the current through each
resistor of the network of Fig. 9.123.

b. Find the power delivered to R1 for each source.
c. Find the power delivered to R1 using the total current

through R1.
d. Does superposition apply to power effects? Explain.

R1

12 �
R3

R2 6 �

6 �

E1 10 V

5 V E2

FIG. 9.123

Problem 1.
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2. Using superposition, find the current I through the 10-�
resistor for each of the networks of Fig. 9.124.

R2 8 �
R1 10 �I  =  9 A

E 18 V

I

(a)

R1 18 �

R2 9 � R3 15 � R4 10 �

24 V

I
E2

E1  =  + 42 V

(b)

FIG. 9.124

Problems 2 and 41.

R2

3.3 k�

R1 2.2 k�

5 mA

I R3 4.7 k�
8 V

(a)

R1 6 �
6 A

I

R4 12 �

8 V

(b)

E1 12 V

R3 30 �

E2

R2 4 �

R5

4 �

IR1

IR1

FIG. 9.125

Problem 3.

* 3. Using superposition, find the current through R1 for
each network of Fig. 9.125.

4. Using superposition, find the voltage V2 for the network
of Fig. 9.126.

R1 12 k�

I 9 mA

36 VE

V2

+

–
R2

6.8 k�

FIG. 9.126

Problems 4 and 37.
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7. Find the Thévenin equivalent circuit for the network
external to the resistor R in each of the networks of Fig.
9.129.

SECTION 9.3 The′venin’s Theorem

5. a. Find the Thévenin equivalent circuit for the network
external to the resistor R of Fig. 9.127.

b. Find the current through R when R is 2 �, 30 �, and
100 �.

6. a. Find the Thévenin equivalent circuit for the network
external to the resistor R in each of the networks of
Fig. 9.128.

b. Find the power delivered to R when R is 2 � and 
100 �.

R1

6 �

R2 3 �E R18 V

R3

4 �

FIG. 9.127

Problem 5.

(II)

5 �

E 20 V

R2 R

5 �R1
5 �

R3

(I)

R1

12 �

2 �

3 AR2 IR

FIG. 9.128

Problems 6, 13, and 19.

R

E1 E2 18 V72 V

3 �

6 � 5.6 k� R

2.2 k�

16 V8 mA

(b)(a)

FIG. 9.129

Problems 7, 14, and 20.
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* 9. Find the Thévenin equivalent circuit for the portions of
the networks of Fig. 9.131 external to points a and b.

* 8. Find the Thévenin equivalent circuit for the network
external to the resistor R in each of the networks of Fig.
9.130.

*10. Determine the Thévenin equivalent circuit for the net-
work external to the resistor R in both networks of Fig.
9.132.

FIG. 9.130

Problems 8, 15, 21, 38, 39, and 42.

R

20 V

10 �

3 A 25 � 6 � 72 V

6 �

3 �

2 �

R

4 �

(b)(a)

15 V

25 �

30 �

(I)

10 V

60 �
a

b

4.7 k�

2.7 k�

(II)

R1

180 V

a

b
E

47 k�R

I 18 mA

R2

3.9 k�R3

10 V

FIG. 9.131

Problems 9 and 16.

20 V 5 �

(a)

R

20 � 1.1 k�

2.2 k�

(b)

R2

– 4 V

R2E

R1

16 �R4

12 �

R3

2 �

R5 R1

4.7 k�R

E2

E1  =  +12 V

3.3 k�

R3

FIG. 9.132

Problems 10 and 17.
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*11. For the network of Fig. 9.133, find the Thévenin equivalent
circuit for the network external to the load resistor RL.

*12. For the transistor network of Fig. 9.134:
a. Find the Thévenin equivalent circuit for that portion of

the network to the left of the base (B) terminal.
b. Using the fact that IC � IE and VCE � 8 V, determine

the magnitude of IE.
c. Using the results of parts (a) and (b), calculate the

base current IB if VBE � 0.7 V.
d. What is the voltage VC?

SECTION 9.4 Norton’s Theorem

13. Find the Norton equivalent circuit for the network external
to the resistor R in each network of Fig. 9.128.

14. a. Find the Norton equivalent circuit for the network
external to the resistor R for each network of Fig.
9.129.

b. Convert to the Thévenin equivalent circuit, and com-
pare your solution for ETh and RTh to that appearing in
the solutions for Problem 7.

15. Find the Norton equivalent circuit for the network external
to the resistor R for each network of Fig. 9.130.

16. a. Find the Norton equivalent circuit for the network
external to the resistor R for each network of Fig.
9.131.

b. Convert to the Thévenin equivalent circuit, and com-
pare your solution for ETh and RTh to that appearing in
the solutions for Problem 9.

17. Find the Norton equivalent circuit for the network external
to the resistor R for each network of Fig. 9.132.

18. Find the Norton equivalent circuit for the portions of the
networks of Fig. 9.135 external to branch a-b.

SECTION 9.5 Maximum Power Transfer Theorem

19. a. For each network of Fig. 9.128, find the value of R for
maximum power to R.

b. Determine the maximum power to R for each network.

20. a. For each network of Fig. 9.129, find the value of R for
maximum power to R.

b. Determine the maximum power to R for each network.

3.3 k�

6.8 k�

+ 6 V

RL

+ 22 V

5.6 k�

– 12 V

2.2 k�

1.2 k�

FIG. 9.133

Problem 11.

R1 51 k�

R2 10 k�

RC 2.2 k�

RE 0.5 k�

IE

IC

20 V20 V

B

C

E

VCE  =  8 V

+

–

VC

IB

FIG. 9.134

Problem 12.

a

12 V

6 �

12 �

(b)(a)

2 A

72 V
b

100 �

12 �

6 V

2 �

4 �

4 �

a

2 V

300 �

b
4 �

FIG. 9.135

Problems 18 and 40.
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*23. Find the resistance R1 of Fig. 9.137 such that the resistor
R4 will receive maximum power. Think!

*24. a. For the network of Fig. 9.138, determine the value of
R2 for maximum power to R4.

b. Is there a general statement that can be made about
situations such as those presented here and in Prob-
lem 23?

*25. For the network of Fig. 9.139, determine the level of R
that will ensure maximum power to the 100-� resistor.

21. For each network of Fig. 9.130, find the value of R for
maximum power to R, and determine the maximum
power to R for each network.

22. a. For the network of Fig. 9.136, determine the value of
R for maximum power to R.

b. Determine the maximum power to R.
c. Plot a curve of power to R versus R for R equal to , 

, , 1, 1 , 1 , 1 , and 2 times the value obtained in
part (a).

3
�
4

1
�
2

1
�
4

3
�
4

1
�
2

1
�
4

SECTION 9.6 Millman’s Theorem

26. Using Millman’s theorem, find the current through and
voltage across the resistor RL of Fig. 9.140.

27. Repeat Problem 26 for the network of Fig. 9.141.

24 V

4 �5 A RR2

4 �R1

E

I

FIG. 9.136

Problems 22 and 43.

100 V 50 �R4

R1

50 �R2

50 �

R3

FIG. 9.137

Problem 23.

100 V R4R2

25 �

R3

25 �

R1

E

FIG. 9.138

Problem 24.

12 V

RL

500 �  Pot.

R

100 �

FIG. 9.139

Problem 25.

40 V

6 �R2

E1

RL 3 �

42 VE2

+

–

+

–

10 �R1 5 V 8.2 k�R2E1

RL 5.6 k�

20 VE2

+

–

+

–

2.2 k�R1

FIG. 9.140

Problem 26.
FIG. 9.141

Problem 27.
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28. Repeat Problem 26 for the network of Fig. 9.142.

29. Using the dual of Millman’s theorem, find the current
through and voltage across the resistor RL of Fig. 9.143.

*30. Repeat Problem 29 for the network of Fig. 9.144.

SECTION 9.7 Substitution Theorem

31. Using the substitution theorem, draw three equivalent
branches for the branch a-b of the network of Fig. 9.145.

32. Repeat Problem 31 for the network of Fig. 9.146.

*33. Repeat Problem 31 for the network of Fig. 9.147. Be
careful!

FIG. 9.142

Problem 28.

FIG. 9.143

Problem 29.

400 V 100 �R2E1

20 VE2

+

–

+

–

200 �R1

RL 200 � 10 VE3

+

–

R3

10 k�

R1

4.7 � RL 2.7 �

I1  =  4 A

R2

3.3 �

I2  =  1.6 A

FIG. 9.144

Problem 30.

R2

4.7 �

8 mA

I2

I1

10 mA

R1 2 k� I3

4 mA

R3 8.2 k�

6.8 k�

RL

FIG. 9.145

Problem 31.

FIG. 9.146

Problem 32.

2 k� 1.5 k�

R2

0.51 k�

4 mA

I

10 V

E
ba

R1

7 k�15 k�60 VE

8 k�2.5 k� a

b

FIG. 9.147

Problem 33.

R2 12 �20 VE1

8 �4 � a

b

40 VE2

R3R1
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SECTION 9.8 Reciprocity Theorem

34. a. For the network of Fig. 9.148(a), determine the cur-
rent I.

b. Repeat part (a) for the network of Fig. 9.148(b).
c. Is the reciprocity theorem satisfied?

35. Repeat Problem 34 for the networks of Fig. 9.149.

36. a. Determine the voltage V for the network of Fig.
9.150(a).

b. Repeat part (a) for the network of Fig. 9.150(b).
c. Is the dual of the reciprocity theorem satisfied?

SECTION 9.10 Computer Analysis

PSpice or Electronics Workbench

37. Using schematics, determine the voltage V2 and its com-
ponents for the network of Fig. 9.126.

FIG. 9.148

Problem 34.

FIG. 9.149

Problem 35.

FIG. 9.150

Problem 36.

24 VE

4 k�8 k�

24 k�
20 k�

24 k�

I

(a)

24 V

E

4 k�8 k�

24 k� 20 k�

24 k�

I

(b)

4 k� 4 k�

4 k� 8 k�

E

10 V

I

(a)

4 k� 4 k�

4 k� 8 k�

E 10 V
I

(b)

R1 3 �

R2

2 �

R3 4 �I

6 A

+  V  –

(a)

R1 3 �

R2

2 �

R3 4 �

I  =  6 A

V

(b)

+

–
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38. Using schematics, determine the Thévenin equivalent cir-
cuit for the network of Fig. 9.130(b).

*39. a. Using schematics, plot the power delivered to the
resistor R of Fig. 9.130(a) for R having values from
1 � to 50 �.

b. From the plot, determine the value of R resulting in
maximum power to R and the maximum power to R.

c. Compare the results of part (a) to the numerical solu-
tion.

d. Plot VR and IR versus R, and find the value of each
under maximum power conditions.

*40. Change the 300-� resistor of Fig. 9.135(b) to a variable
resistor, and plot the power delivered to the resistor ver-
sus values of the resistor. Determine the range of resis-

GLOSSARY

Maximum power transfer theorem A theorem used to
determine the load resistance necessary to ensure maximum
power transfer to the load.

Millman’s theorem A method employing source conver-
sions that will permit the determination of unknown vari-
ables in a multiloop network.

Norton’s theorem A theorem that permits the reduction of
any two-terminal linear dc network to one having a single
current source and parallel resistor.

Reciprocity theorem A theorem that states that for single-
source networks, the current in any branch of a network,
due to a single voltage source in the network, will equal the
current through the branch in which the source was origi-
nally located if the source is placed in the branch in which
the current was originally measured.

tance by trial and error rather than first performing a
longhand calculation. Determine the Norton equivalent
circuit from the results. The Norton current can be deter-
mined from the maximum power level.

Programming Language (C��, QBASIC, Pascal, etc.)

41. Write a program to determine the current through the
10-� resistor of Fig. 9.124(a) (for any component values)
using superposition.

42. Write a program to perform the analysis required for
Problem 8, Fig. 9.130(b), for any component values.

*43. Write a program to perform the analysis of Problem 
22, and tabulate the power to R for the values listed in
part (c).

Substitution theorem A theorem that states that if the volt-
age across and current through any branch of a dc bilateral
network are known, the branch can be replaced by any
combination of elements that will maintain the same volt-
age across and current through the chosen branch.

Superposition theorem A network theorem that permits
considering the effects of each source independently. The
resulting current and/or voltage is the algebraic sum of the
currents and/or voltages developed by each source indepen-
dently.

Thévenin’s theorem A theorem that permits the reduction of
any two-terminal, linear dc network to one having a single
voltage source and series resistor.
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10.1 INTRODUCTION

Thus far, the only passive device appearing in the text has been the
resistor. We will now consider two additional passive devices called the
capacitor and the inductor (the inductor is discussed in detail in Chap-
ter 12), which are quite different from the resistor in purpose, operation,
and construction.

Unlike the resistor, both elements display their total characteristics
only when a change in voltage or current is made in the circuit in which
they exist. In addition, if we consider the ideal situation, they do not
dissipate energy as does the resistor but store it in a form that can be
returned to the circuit whenever required by the circuit design.

Proper treatment of each requires that we devote this entire chapter
to the capacitor and, as mentioned above, Chapter 12 to the inductor.
Since electromagnetic effects are a major consideration in the design of
inductors, this topic will be covered in Chapter 11.

10.2 THE ELECTRIC FIELD

Recall from Chapter 2 that a force of attraction or repulsion exists
between two charged bodies. We shall now examine this phenomenon
in greater detail by considering the electric field that exists in the region
around any charged body. This electric field is represented by electric
flux lines, which are drawn to indicate the strength of the electric field
at any point around the charged body; that is, the denser the lines of
flux, the stronger the electric field. In Fig. 10.1, the electric field
strength is stronger at position a than at position b because the flux lines
are denser at a than at b. The symbol for electric flux is the Greek let-
ter w (psi). The flux per unit area (flux density) is represented by the
capital letter D and is determined by

(flux/unit area) (10.1)D � �
w

A
�

Capacitors



376  CAPACITORS

The larger the charge Q in coulombs, the greater the number of flux
lines extending or terminating per unit area, independent of the sur-
rounding medium. Twice the charge will produce twice the flux per unit
area. The two can therefore be equated:

(coulombs, C) (10.2)

By definition, the electric field strength at a point is the force act-
ing on a unit positive charge at that point; that is,

(newtons/coulomb, N/C) (10.3)

The force exerted on a unit positive charge (Q2 � 1 C), by a charge
Q1, r meters away, as determined by Coulomb’s law is

F � �
kQ

r
1
2
Q2� � �

kQ
r
1
2
(1)
� � �

k
r
Q
2

1� (k � 9 � 109 N.m2/C2)

Substituting this force F into Eq. (10.3) yields

� � �

(N/C) (10.4)

We can therefore conclude that the electric field strength at any point
distance r from a point charge of Q coulombs is directly proportional to
the magnitude of the charge and inversely proportional to the distance
squared from the charge. The squared term in the denominator will
result in a rapid decrease in the strength of the electric field with dis-
tance from the point charge. In Fig. 10.1, substituting distances r1 and
r2 into Eq. (10.4) will verify our previous conclusion that the electric
field strength is greater at a than at b.

Electric flux lines always extend from a positively charged body to a
negatively charged body, always extend or terminate perpendicular to
the charged surfaces, and never intersect.

For two charges of similar and opposite polarities, the flux distribution
would appear as shown in Fig. 10.2.

� � �
k

r

Q
2

1
�

kQ1/r
2

�
1

F
�
Q2

� � �
Q
F

�

w � Q

r1 +
r2

a b

Positive charge
Electric
flux lines

Flux lines radiate
outward for positive
charges and inward
for negative charges.

FIG. 10.1

Flux distribution from an isolated positive charge.

(b)

(a)

+ +

+ –

FIG. 10.2

Electric flux distribution: (a) like charges; 
(b) opposite charges.
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The attraction and repulsion between charges can now be explained
in terms of the electric field and its flux lines. In Fig. 10.2(a), the flux
lines are not interlocked but tend to act as a buffer, preventing attraction
and causing repulsion. Since the electric field strength is stronger (flux
lines denser) for each charge the closer we are to the charge, the more
we try to bring the two charges together, the stronger will be the force
of repulsion between them. In Fig. 10.2(b), the flux lines extending
from the positive charge are terminated at the negative charge. A basic
law of physics states that electric flux lines always tend to be as short
as possible. The two charges will therefore be drawn to each other.
Again, the closer the two charges, the stronger the attraction between
the two charges due to the increased field strengths.

10.3 CAPACITANCE

Up to this point we have considered only isolated positive and negative
spherical charges, but the analysis can be extended to charged surfaces
of any shape and size. In Fig. 10.3, for example, two parallel plates of
a conducting material separated by an air gap have been connected
through a switch and a resistor to a battery. If the parallel plates are ini-
tially uncharged and the switch is left open, no net positive or negative
charge will exist on either plate. The instant the switch is closed, how-
ever, electrons are drawn from the upper plate through the resistor to
the positive terminal of the battery. There will be a surge of current at
first, limited in magnitude by the resistance present. The level of flow
will then decline, as will be demonstrated in the sections to follow. This
action creates a net positive charge on the top plate. Electrons are being
repelled by the negative terminal through the lower conductor to the
bottom plate at the same rate they are being drawn to the positive ter-
minal. This transfer of electrons continues until the potential difference
across the parallel plates is exactly equal to the battery voltage. The
final result is a net positive charge on the top plate and a negative
charge on the bottom plate, very similar in many respects to the two
isolated charges of Fig. 10.2(b).

This element, constructed simply of two parallel conducting plates
separated by an insulating material (in this case, air), is called a capac-
itor. Capacitance is a measure of a capacitor’s ability to store charge
on its plates—in other words, its storage capacity.

A capacitor has a capacitance of 1 farad if 1 coulomb of charge is
deposited on the plates by a potential difference of 1 volt across the
plates.

The farad is named after Michael Faraday (Fig. 10.4), a nineteenth-
century English chemist and physicist. The farad, however, is gener-
ally too large a measure of capacitance for most practical applications,
so the microfarad (10�6) or picofarad (10�12) is more commonly used.
Expressed as an equation, the capacitance is determined by

C � farads (F)
Q � coulombs (C) (10.5)
V � volts (V)

Different capacitors for the same voltage across their plates will
acquire greater or lesser amounts of charge on their plates. Hence the
capacitors have a greater or lesser capacitance, respectively.

A cross-sectional view of the parallel plates is shown with the distri-
bution of electric flux lines in Fig. 10.5(a). The number of flux lines per

C � �
Q
V

�

R
e

e
e e

E

e

e

e

+ ++
– ––

V  =  E

+

–

FIG. 10.3

Fundamental charging network.
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Fringing

+ + + + + + + + +

– – – – – – – – –
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+ + + + + + + + +

(b)

– – – – – – – – –

FIG. 10.5

Electric flux distribution between the plates of
a capacitor: (a) including fringing; (b) ideal.

FIG. 10.4

Michael Faraday.

Courtesy of the 
Smithsonian Institution

Photo No. 51,147

English (London)
(1791–1867)

Chemist and

Electrical

Experimenter

Honory Doctorate,

Oxford University,
1832

An experimenter with no formal education, he began
his research career at the Royal Institute in London
as a laboratory assistant. Intrigued by the interaction
between electrical and magnetic effects, he discov-
ered electromagnetic induction, demonstrating that
electrical effects can be generated from a magnetic
field (the birth of the generator as we know it today).
He also discovered self-induced currents and intro-
duced the concept of lines and fields of magnetic
force. Having received over one hundred academic
and scientific honors, he became a Fellow of the
Royal Society in 1824 at the young age of 32.



unit area (D) between the two plates is quite uniform. At the edges, the
flux lines extend outside the common surface area of the plates, pro-
ducing an effect known as fringing. This effect, which reduces the
capacitance somewhat, can be neglected for most practical applications.
For the analysis to follow, we will assume that all the flux lines leaving
the positive plate will pass directly to the negative plate within the com-
mon surface area of the plates [Fig. 10.5(b)].

If a potential difference of V volts is applied across the two plates
separated by a distance of d, the electric field strength between the
plates is determined by

(volts/meter, V/m) (10.6)

The uniformity of the flux distribution in Fig. 10.5(b) also indicates
that the electric field strength is the same at any point between the two
plates.

Many values of capacitance can be obtained for the same set of par-
allel plates by the addition of certain insulating materials between the
plates. In Fig. 10.6(a), an insulating material has been placed between a
set of parallel plates having a potential difference of V volts across
them.

Since the material is an insulator, the electrons within the insulator
are unable to leave the parent atom and travel to the positive plate. The
positive components (protons) and negative components (electrons) of
each atom do shift, however [as shown in Fig. 10.6(a)], to form dipoles.

When the dipoles align themselves as shown in Fig. 10.6(a), the mate-
rial is polarized. A close examination within this polarized material will
indicate that the positive and negative components of adjoining dipoles
are neutralizing the effects of each other [note the dashed area in Fig.
10.6(a)]. The layer of positive charge on one surface and the negative
charge on the other are not neutralized, however, resulting in the estab-
lishment of an electric field within the insulator [�dielectric; Fig. 10.6(b)].
The net electric field between the plates (�resultant � �air � �dielectric)
would therefore be reduced due to the insertion of the dielectric.

The purpose of the dielectric, therefore, is to create an electric field
to oppose the electric field set up by free charges on the parallel plates.
For this reason, the insulating material is referred to as a dielectric, di
for “opposing” and electric for “electric field.”

In either case—with or without the dielectric—if the potential across
the plates is kept constant and the distance between the plates is fixed,
the net electric field within the plates must remain the same, as deter-
mined by the equation � � V/d. We just ascertained, however, that the
net electric field between the plates would decrease with insertion of the
dielectric for a fixed amount of free charge on the plates. To compensate
and keep the net electric field equal to the value determined by V and d,
more charge must be deposited on the plates. [Look ahead to Eq.
(10.11).] This additional charge for the same potential across the plates
increases the capacitance, as determined by the following equation:

C D �

For different dielectric materials between the same two parallel
plates, different amounts of charge will be deposited on the plates. But

QD�
V

� � �
V
d

�

378  CAPACITORS

(a)

�

(b)

+
+

+
+

+
+

+ –
–

–
–

–
–
–

+–

+–
+–

+–
+–

+–

+–

+–
+–

+–

+–
+–

+–

+–

+–

+–

+–

+–

+–

+–

+–

+
+

+
+

+
+

+ –
–

–
–

–
–
–

+–
V (volts)+ –

Dielectricd

V (volts)+ –

(Dielectric  =  air)

+
+

+
+

+
+

+–
–

–
–

–
–
–

�

�

(Dielectric)

(Resultant)

d

FIG. 10.6

Effect of a dielectric on the field distribution
between the plates of a capacitor: 

(a) alignment of dipoles in the dielectric; 
(b) electric field components between the

plates of a capacitor with a dielectric present.



CAPACITANCE  379

w � Q, so the dielectric is also determining the number of flux lines
between the two plates and consequently the flux density (D � w/A)
since A is fixed.

The ratio of the flux density to the electric field intensity in the
dielectric is called the permittivity of the dielectric:

e � (farads/meter, F/m) (10.7)

It is a measure of how easily the dielectric will “permit” the establish-
ment of flux lines within the dielectric. The greater its value, the greater
the amount of charge deposited on the plates, and, consequently, the
greater the flux density for a fixed area.

For a vacuum, the value of e (denoted by eo) is 8.85 � 10�12 F/m.
The ratio of the permittivity of any dielectric to that of a vacuum is
called the relative permittivity, er. It simply compares the permittivity
of the dielectric to that of air. In equation form,

er � (10.8)

The value of e for any material, therefore, is

e � ereo

Note that er is a dimensionless quantity. The relative permittivity, or
dielectric constant, as it is often called, is provided in Table 10.1 for
various dielectric materials.

Substituting for D and � in Eq. (10.7), we have

e � � � �

But C �

and, therefore, e �
Cd
�
A

Q
�
V

Qd
�
VA

Q/A
�
V/d

w/A
�
V/d

D
�
�

e
�
eo

D
�
�

TABLE 10.1

Relative permittivity (dielectric constant) of various dielectrics.

Dielectric er (Average Values)

Vacuum 1.0
Air 1.0006
Teflon 2.0
Paper, paraffined 2.5
Rubber 3.0
Transformer oil 4.0
Mica 5.0
Porcelain 6.0
Bakelite 7.0
Glass 7.5
Distilled water 80.0
Barium-strontium

titanite (ceramic) 7500.0



and C � e (F) (10.9)

or C � eoer � 8.85 � 10�12er (F) (10.10)

where A is the area in square meters of the plates, d is the distance in
meters between the plates, and er is the relative permittivity. The capac-
itance, therefore, will be greater if the area of the plates is increased, or
the distance between the plates is decreased, or the dielectric is changed
so that er is increased.

Solving for the distance d in Eq. (10.9), we have

D �

and substituting into Eq. (10.6) yields

� � �
V
d

� � �

But Q � CV, and therefore

� � (V/m) (10.11)

which gives the electric field intensity between the plates in terms of the
permittivity e, the charge Q, and the surface area A of the plates. Thus,
we have the ratio

� � er

or (10.12)

which, in words, states that for the same set of parallel plates, the
capacitance using a dielectric (of relative permittivity er) is er times that
obtained for a vacuum (or air, approximately) between the plates. This
relationship between er and the capacitances provides an excellent
experimental method for finding the value of er for various dielectrics.

EXAMPLE 10.1 Determine the capacitance of each capacitor on the
right side of Fig. 10.7.

Solutions:

a. C � 3(5 mF) � 15 mF

b. C � (0.1 mF) � 0.05 mF

c. C � 2.5(20 mF) � 50 mF

d. C � (5) (1000 pF) � (160)(1000 pF) � 0.16 mF
4

�
(1/8)

1
�
2

C � erCo

e
�
eo

C � eA/d
��
Co � eoA/d

Q
�
eA

CV
�
eA

V
�
eA/C

eA
�
C

A
�
d

A
�
d

A
�
d
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EXAMPLE 10.2 For the capacitor of Fig. 10.8:
a. Determine the capacitance.
b. Determine the electric field strength between the plates if 450 V are

applied across the plates.
c. Find the resulting charge on each plate.

Solutions:

a. Co � � � 59.0 � 10�12 F

� 59 pF

b. � � �

� 300 � 103 V/m

c. C � or

Q � CV � (59.0 � 10�12 F)(450 V)
� 26.550 � 10�9 C
� 26.55 nC

EXAMPLE 10.3 A sheet of mica 1.5 mm thick having the same area
as the plates is inserted between the plates of Example 10.2.
a. Find the electric field strength between the plates.
b. Find the charge on each plate.
c. Find the capacitance.

Q
�
V

450 V
��
1.5 � 10�3 m

V
�
d

(8.85 � 10�12 F/m)(0.01 m2)
���

1.5 � 10�3 m
eo A�

d

d

C  =  5 µF

d

3A

C  =  ?

C  =  0.1 µF

(a)

2dd

C  =  ?

(b)

C  =  20 µF C  =  ?

�r  =  2.5
(paraffined
paper)

�o

(c)

C  =  1000 pF C  =  ?

A
d

(d)

�o

1
8 d

4A

�r  =  5 (mica)

A

FIG. 10.7

Example 10.1.

FIG. 10.8

Example 10.2.

d  =  1.5 mmQ(+)

A  =  0.01 m2

Q(–) ��o
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Solutions:

a. � is fixed by

� � �

� 300 � 103 V/m

b. � � or

Q � e�A � ereo�A
� (5)(8.85 � 10�12 F/m)(300 � 103 V/m)(0.01 m2)
� 132.75 � 10�9 C � 132.75 nC

(five times the amount for
air between the plates)

c. C � erCo

� (5)(59 � 10�12 F) � 295 pF

10.4 DIELECTRIC STRENGTH

For every dielectric there is a potential that, if applied across the dielec-
tric, will break the bonds within the dielectric and cause current to flow.
The voltage required per unit length (electric field intensity) to establish
conduction in a dielectric is an indication of its dielectric strength and
is called the breakdown voltage. When breakdown occurs, the capaci-
tor has characteristics very similar to those of a conductor. A typical
example of breakdown is lightning, which occurs when the potential
between the clouds and the earth is so high that charge can pass from
one to the other through the atmosphere, which acts as the dielectric.

The average dielectric strengths for various dielectrics are tabulated
in volts/mil in Table 10.2 (1 mil � 0.001 in.). The relative permittivity
appears in parentheses to emphasize the importance of considering both
factors in the design of capacitors. Take particular note of barium-
strontium titanite and mica.

Q
�
eA

450 V
��
1.5 � 103 m

V
�
d

TABLE 10.2

Dielectric strength of some dielectric materials.

Dielectric Strength
(Average Value), in

Dielectric Volts /Mil (er)

Air 75 (1.0006)
Barium-strontium
titanite (ceramic) 75 (7500)

Porcelain 200 (6.0)
Transformer oil 400 (4.0)
Bakelite 400 (7.0)
Rubber 700 (3.0)
Paper, paraffined 1300 (2.5)
Teflon 1500 (2.0)
Glass 3000 (7.5)
Mica 5000 (5.0)
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EXAMPLE 10.4 Find the maximum voltage that can be applied across
a 0.2-mF capacitor having a plate area of 0.3 m2. The dielectric is porce-
lain. Assume a linear relationship between the dielectric strength and
the thickness of the dielectric.

Solution:

C � 8.85 � 10�12er

or d � � � 7.965 � 10�5 m

� 79.65 mm

Converting micrometers to mils, we have

79.65 mm� �� �� � � 3.136 mils

Dielectric strength � 200 V/mil

Therefore, � �(3.136 mils) � 627.20 V

10.5 LEAKAGE CURRENT

Up to this point, we have assumed that the flow of electrons will occur
in a dielectric only when the breakdown voltage is reached. This is the
ideal case. In actuality, there are free electrons in every dielectric due in
part to impurities in the dielectric and forces within the material itself.

When a voltage is applied across the plates of a capacitor, a leakage
current due to the free electrons flows from one plate to the other. The
current is usually so small, however, that it can be neglected for most
practical applications. This effect is represented by a resistor in parallel
with the capacitor, as shown in Fig. 10.9(a), whose value is typically
more than 100 megohms (M�). Some capacitors, however, such as the
electrolytic type, have high leakage currents. When charged and then
disconnected from the charging circuit, these capacitors lose their
charge in a matter of seconds because of the flow of charge (leakage
current) from one plate to the other [Fig. 10.9(b)].

10.6 TYPES OF CAPACITORS

Like resistors, all capacitors can be included under either of two general
headings: fixed or variable. The symbol for a fixed capacitor is , and

200 V
�

mil

1000 mils
��

1 in.
39.371 in.
��

m

10�6 m
�

mm

(8.85)(6)(0.3 m2)
���
(1012)(0.2 � 10�6 F)

8.85erA
�

1012C

A
�
d

FIG. 10.9

Demonstrating the effect of the leakage
current.

FIG. 10.10

Basic structure of a stacked mica capacitor.

(a)

(b)

Rleakage

C

+ –

Foil

Foil

Foil

Foil

Mica

Mica

Mica

for a variable capacitor, . The curved line represents the plate that
is usually connected to the point of lower potential.

Fixed Capacitors

Many types of fixed capacitors are available today. Some of the most
common are the mica, ceramic, electrolytic, tantalum, and polyester-
film capacitors. The typical flat mica capacitor consists basically of
mica sheets separated by sheets of metal foil. The plates are connected
to two electrodes, as shown in Fig. 10.10. The total area is the area of
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one sheet times the number of dielectric sheets. The entire system is
encased in a plastic insulating material as shown for the two central
units of Fig. 10.11. The mica capacitor exhibits excellent characteristics
under stress of temperature variations and high voltage applications (its
dielectric strength is 5000 V/mil). Its leakage current is also very small
(Rleakage about 1000 M�). Mica capacitors are typically between a few
picofarads and 0.2 mF, with voltages of 100 V or more.

The ability to “roll” the mica to form the cylindrical shapes of Fig.
10.11 is due to a process whereby the soluble contaminants in natural
mica are removed, leaving a paperlike structure resulting from the cohe-
sive forces in natural mica. It is commonly referred to as reconstituted
mica, although the terminology does not mean “recycled” or “second-
hand” mica. For some of the units in the photograph, different levels of
capacitance are available between different sets of terminals.

The ceramic capacitor is made in many shapes and sizes, two of
which are shown in Fig. 10.12. The basic construction, however, is
about the same for each, as shown in Fig. 10.13. A ceramic base is
coated on two sides with a metal, such as copper or silver, to act as the
two plates. The leads are then attached through electrodes to the plates.
An insulating coating of ceramic or plastic is then applied over the
plates and dielectric. Ceramic capacitors also have a very low leakage
current (Rleakage about 1000 M�) and can be used in both dc and ac net-
works. They can be found in values ranging from a few picofarads to
perhaps 2 mF, with very high working voltages such as 5000 V or more.

In recent years there has been increasing interest in monolithic
(single-structure) chip capacitors such as those appearing in Fig.
10.14(a) due to their application on hybrid circuitry [networks using
both discrete and integrated circuit (IC) components]. There has also
been increasing use of microstrip (strip-line) circuitry such as the one in
Fig. 10.14(b). Note the small chips in this cutaway section. The L and
H of Fig. 10.14(a) indicate the level of capacitance. For example, if in
black ink, the letter H represents 16 units of capacitance (in picofarads),
or 16 pF. If blue ink is used, a multiplier of 100 is applied, resulting in
1600 pF. Although the size is similar, the type of ceramic material con-
trols the capacitance level.

The electrolytic capacitor is used most commonly in situations
where capacitances of the order of one to several thousand microfarads

FIG. 10.11

Mica capacitors. (Courtesy of Custom
Electronics Inc.)

FIG. 10.12

Ceramic disc capacitors: (a) photograph; (b) construction.

Lead wire soldered
to silver electrode

Solder

Ceramic dielectric

Dipped phenolic coating

Silver electrodes deposited on
top and bottom of ceramic disc

(b)(a)
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are required. They are designed primarily for use in networks where
only dc voltages will be applied across the capacitor because they have
good insulating characteristics (high leakage current) between the
plates in one direction but take on the characteristics of a conductor in
the other direction. Electrolytic capacitors are available that can be used
in ac circuits (for starting motors) and in cases where the polarity of the
dc voltage will reverse across the capacitor for short periods of time.

The basic construction of the electrolytic capacitor consists of a roll
of aluminum foil coated on one side with an aluminum oxide, the alu-
minum being the positive plate and the oxide the dielectric. A layer of
paper or gauze saturated with an electrolyte is placed over the alu-
minum oxide on the positive plate. Another layer of aluminum without
the oxide coating is then placed over this layer to assume the role of
the negative plate. In most cases the negative plate is connected
directly to the aluminum container, which then serves as the negative
terminal for external connections. Because of the size of the roll of
aluminum foil, the overall area of this capacitor is large; and due to
the use of an oxide as the dielectric, the distance between the plates is
extremely small. The negative terminal of the electrolytic capacitor is
usually the one with no visible identification on the casing. The posi-
tive is usually indicated by such designs as �, �, �, and so on. Due
to the polarity requirement, the symbol for an electrolytic capacitor
will normally appear as .

Associated with each electrolytic capacitor are the dc working volt-
age and the surge voltage. The working voltage is the voltage that can
be applied across the capacitor for long periods of time without break-
down. The surge voltage is the maximum dc voltage that can be ap-
plied for a short period of time. Electrolytic capacitors are characterized
as having low breakdown voltages and high leakage currents (Rleakage

about 1 M�). Various types of electrolytic capacitors are shown in Fig.
10.15. They can be found in values extending from a few microfarads
to several thousand microfarads and working voltages as high as 500 V.
However, increased levels of voltage are normally associated with
lower values of available capacitance.

�

FIG. 10.13

Multilayer, radial-lead ceramic capacitor.

FIG. 10.14

Monolithic chip capacitors. (Courtesy of
Vitramon, Inc.)

Dipped
phenolic coating

Lead wire
soldered to
electrode pickup

Solder

Electrode
pickupMetal

electrodes
Ceramic
dielectric

(Alternately deposited layers of
ceramic dielectric material and
metal electrodes fired into a
single homogeneous block)
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There are fundamentally two types of tantalum capacitors: the solid
and the wet-slug. In each case, tantalum powder of high purity is
pressed into a rectangular or cylindrical shape, as shown in Fig. 10.16.
Next the anode (�) connection is simply pressed into the resulting
structures, as shown in the figure. The resulting unit is then sintered
(baked) in a vacuum at very high temperatures to establish a very
porous material. The result is a structure with a very large surface area
in a limited volume. Through immersion in an acid solution, a very thin
manganese dioxide (MnO2) coating is established on the large, porous
surface area. An electrolyte is then added to establish contact between
the surface area and the cathode, producing a solid tantalum capacitor.
If an appropriate “wet” acid is introduced, it is called a wet-slug tanta-
lum capacitor.

FIG. 10.15

Electrolytic capacitors: (a) Radial lead with
extended endurance rating of 2000 h at 85°C.

Capacitance range: 0.1–15,000 mF with a
voltage range of 6.3 to 250 WV dc (Courtesy

of Illinois Capacitor, Inc.). (b) Solid aluminum
electrolytic capacitors available in axial,

resin-dipped, and surface-mount con-
figurations to withstand harsh environmental
conditions (Courtesy of Philips Components,

Inc.).

FIG. 10.16

Tantalum capacitor. (Courtesy of Union Carbide Corp.)

FIG. 10.17

Polyester-film capacitor.

The last type of fixed capacitor to be introduced is the polyester-film
capacitor, the basic construction of which is shown in Fig. 10.17. It
consists simply of two metal foils separated by a strip of polyester
material such as Mylar®. The outside layer of polyester is applied to act
as an insulating jacket. Each metal foil is connected to a lead that
extends either axially or radially from the capacitor. The rolled con-
struction results in a large surface area, and the use of the plastic dielec-
tric results in a very thin layer between the conducting surfaces.

���

���

Solder

Cathode ( – )
MnO2 coat

Carbon

Solder

Lead wire

Anode ( + )

Tantalum

Tantalum wire

Metal foils

Polyester (plastic) film

Data such as capacitance and working voltage are printed on the
outer wrapping if the polyester capacitor is large enough. Color coding
is used on smaller devices (see Appendix D). A band (usually black) is
sometimes printed near the lead that is connected to the outer metal foil.
The lead nearest this band should always be connected to the point of
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lower potential. This capacitor can be used for both dc and ac networks.
Its leakage resistance is of the order of 100 M�. An axial lead and
radial lead polyester-film capacitor appear in Fig. 10.18. The axial lead
variety is available with capacitance levels of 0.1 mF to 18 mF, with
working voltages extending to 630 V. The radial lead variety has a
capacitance range of 0.01 mF to 10 mF, with working voltages extend-
ing to 1000 V.

FIG. 10.18

Polyester-film capacitors: (a) axial lead; (b) radial lead. (Courtesy of Illinois
Capacitor, Inc.)

FIG. 10.19

Variable air capacitors. [Part (a) courtesy of James Millen Manufacturing Co.;
part (b) courtesy of Johnson Manufacturing Co.]

(a) (b)

Variable Capacitors

The most common of the variable-type capacitors is shown in Fig.
10.19. The dielectric for each capacitor is air. The capacitance in Fig.
10.19(a) is changed by turning the shaft at one end to vary the common
area of the movable and fixed plates. The greater the common area, the
larger the capacitance, as determined by Eq. (10.10). The capacitance of
the trimmer capacitor in Fig. 10.19(b) is changed by turning the screw,
which will vary the distance between the plates (the common area is
fixed) and thereby the capacitance.

(a) (b)
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Measurement and Testing

A digital reading capacitance meter appears in Fig. 10.20. Simply place
the capacitor between the provided clips with the proper polarity, and
the meter will display the level of capacitance.

The best check of a capacitor is to use a meter designed to perform
the necessary tests. However, an ohmmeter can identify those in which
the dielectric has deteriorated (especially in paper and electrolytic
capacitors). As the dielectric breaks down, the insulating qualities
decrease to a point where the resistance between the plates drops to a
relatively low level. After ensuring that the capacitor is fully dis-
charged, place an ohmmeter across the capacitor, as shown in Fig.
10.21. In a polarized capacitor, the polarities of the meter should match
those of the capacitor. A low-resistance reading (zero ohms to a few
hundred ohms) normally indicates a defective capacitor.

The above test of leakage is not all-inclusive, since some capacitors
will break down only when higher voltages are applied. The test, how-
ever, does identify those capacitors that have lost the insulating quality
of the dielectric between the plates.

Standard Values and Recognition Factor

The standard values for capacitors employ the same numerical multi-
pliers encountered for resistors. The most common have the same
numerical multipliers as the most common resistors, that is, those avail-
able with the full range of tolerances (5%, 10%, and 20%) as shown in
Table 3.8. They include 0.1 mF, 0.15 mF, 0.22 mF, 0.33 mF, 0.47 mF, and
0.68 mF, and then 1 mF, 1.5 mF, 2.2 mF, 3.3 mF, 4.7 mF, and so on.

Figure 10.22 was developed to establish a recognition factor when it
comes to the various types of capacitors. In other words, it will help
you to develop the skills to identify types of capacitors, their typical
range of values, and some of the most common applications. The figure
is certainly not all-inclusive, but it does offer a first step in establishing
a sense for what to expect for various applications.

Marking Schemes

Due to the small size of some capacitors, various marking schemes
have been adopted to provide the capacitance level, the tolerance, and,
if possible, the maximum working voltage. In general, however, the size
of the capacitor is the first indicator of its value. The smaller units are
typically in picofarads (pF) and the larger units in microfarads (mF).
Keeping this simple fact in mind will usually provide an immediate
indication of the expected capacitance level. On larger mF units, the
value can usually be printed on the jacket with the tolerance and maxi-
mum working voltage. However, smaller units need to use some form
of abbreviation as shown in Fig. 10.23. For very small units such as
appearing in Fig. 10.23(a), the value is recognized immediately as in
pF, with the K an indicator of a �10% tolerance level. Too often the K
is read as a multiplier of 10�3, and the capacitance read as 20,000 pF or
20 nF. For the unit of Fig. 10.23(b), there was room for a lowercase “n”
to represent a multiplier of 10�9. The presence of the lowercase “n” in
combination with the small size is clear indication that this is a 200-nF
capacitor. To avoid unnecessary confusion, the letters used for tolerance
do not include N or U or P, so any form of these letters will usually sug-

FIG. 10.20

Digital reading capacitance meter. (Courtesy
of BK PRECISION, Maxtec International

Corp.)

FIG. 10.21

Checking the dielectric of an electrolytic
capacitor.
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Type:  Miniature Axial Electrolytic
Typical Values: 0.1   F to 15,000   F
Typical Voltage Range:  5 V to 450 V
Capacitor tolerance:  ±20%
Applications:  Polarized, used in DC
power supplies, bypass filters, DC
blocking.

µ µ

Type:  Miniature Radial Electrolyte
Typical Values: 0.1   F to 15,000   F
Typical Voltage Range:  5 V to 450 V
Capacitor tolerance:  ±20%
Applications:  Polarized, used in DC
power supplies, bypass filters, DC
blocking.

µ µ

Type:  Ceramic Disc
Typical Values: 10 pF to 0.047   F
Typical Voltage Range:  100 V to 6 kV
Capacitor tolerance:  ±5%, ±10%
Applications:  Non-polarized, NPO
type, stable for a wide range of
temperatures.  Used in oscillators, noise
filters, circuit coupling, tank circuits.

µ

Type:  Surface Mount Type (SMT)
Typical Values: 10 pF to 10   F
Typical Voltage Range:  6.3 V to 16 V
Capacitor tolerance:  ±10%
Applications:  Polarized and non-
polarized, used in all types of circuits,
requires a minimum amount of PC
board real estate.

µ

Type:  Silver Mica
Typical Value: 10 pF to 0.001   F
Typical Voltage Range:  50 V to 500 V
Capacitor tolerance:  ±5%
Applications:  Non-polarized, used in
oscillators, in circuits that require a
stable component over a range of
temperatures and voltages.

µ

Type:  Mylar Paper
Typical Value: 0.001   F to 0.68   F
Typical Voltage Range:  50 V to 600 V
Capacitor tolerance:  ±22%
Applications:  Non-polarized, used in
all types of circuits, moisture resistant.

µ µ

Type:  Tuning variable
Typical Value: 10 pF to 600 pF
Typical Voltage Range:  5 V to 100 V
Capacitor tolerance:  ±10%
Applications:  Non-polarized, used in
oscillators, radio tuning circuit.

Type:  Trimmer Variable
Typical Value: 1.5 pF to 600 pF
Typical Voltage Range:  5 V to 100 V
Capacitor tolerance:  ±10%
Applications:  Non-polarized, used in
oscillators, tuning circuits, AC filters.

Type:  AC/DC Motor Run
Typical Value: 0.25    F to 1200    F
Typical Voltage Range:  240 V to 660 V
Capacitor tolerance:  ±10%
Applications:  Non-polarized, used in
motor run-start, high-intensity lighting
supplies, AC noise filtering.

µµ

+
+

+
22   F50 V

µ

RMC.05 Z100 VZ5V

470KY
5P

20
0  

 F
10

 V

µ

+
+

+

84-44          640

      DIELEKTROL
      No PCB'S

      CAPACITOR
      MADE IN USA

61L1019
10   f 90C
400VAC 60HZ
PROTECTED P922
B 10000AFC
16-10000

µ

.1 ± 10%
600WV EM

100VERIE8107

.33

35+
+

Type:  Dipped Tantalum (solid and wet)
Typical Values: 0.047   F to 470   F
Typical Voltage Range:  6.3 V to 50 V
Capacitor tolerance:  ±10%, ±20%
Applications:  Polarized, low leakage
current, used in power supplies, high
frequency noise filters, bypass filter.

µ µ

FIG. 10.22

Summary of capacitive elements.

(a)

20
K

(b)

200n
J

(d)

339M

(c)

223F

FIG. 10.23

Various marking schemes for small capacitors.
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gest the multiplier level. The J represents a �5% tolerance level. For
capacitors such as appearing in Fig. 10.23(c), the first two numbers are
actual digits of the value, while the third number is the power of a mul-
tiplier (or number of zeros to be added). The F represents a �1% toler-
ance level. Multipliers of 0.01 use an 8, while 9 is used for 0.1 as shown
for the capacitor of Fig. 10.23(d) where the M represents a �20% tol-
erance level.

10.7 TRANSIENTS IN CAPACITIVE NETWORKS:
CHARGING PHASE

Section 10.3 described how a capacitor acquires its charge. Let us now
extend this discussion to include the potentials and current developed
within the network of Fig. 10.24 following the closing of the switch (to
position 1).

You will recall that the instant the switch is closed, electrons are
drawn from the top plate and deposited on the bottom plate by the bat-
tery, resulting in a net positive charge on the top plate and a negative
charge on the bottom plate. The transfer of electrons is very rapid at
first, slowing down as the potential across the capacitor approaches the
applied voltage of the battery. When the voltage across the capacitor
equals the battery voltage, the transfer of electrons will cease and the
plates will have a net charge determined by Q � CVC � CE.

Plots of the changing current and voltage appear in Figs. 10.25 and
10.26, respectively. When the switch is closed at t � 0 s, the current
jumps to a value limited only by the resistance of the network and then
decays to zero as the plates are charged. Note the rapid decay in current
level, revealing that the amount of charge deposited on the plates per
unit time is rapidly decaying also. Since the voltage across the plates is
directly related to the charge on the plates by vC � q/C, the rapid rate
with which charge is initially deposited on the plates will result in a
rapid increase in vC. Obviously, as the rate of flow of charge (I)
decreases, the rate of change in voltage will follow suit. Eventually, the
flow of charge will stop, the current I will be zero, and the voltage will
cease to change in magnitude—the charging phase has passed. At this
point the capacitor takes on the characteristics of an open circuit: a volt-
age drop across the plates without a flow of charge “between” the
plates. As demonstrated in Fig. 10.27, the voltage across the capacitor
is the source voltage since i � iC � iR � 0 A and vR � iRR � (0)R �
0 V. For all future analysis:

A capacitor can be replaced by an open-circuit equivalent once the
charging phase in a dc network has passed.

Looking back at the instant the switch is closed, we can also surmise
that a capacitor behaves as a short circuit the moment the switch is
closed in a dc charging network, as shown in Fig. 10.28. The current
i � iC � iR � E/R, and the voltage vC � E � vR � E � iRR �
E � (E/R)R � E � E � 0 V at t � 0 s.

Through the use of calculus, the following mathematical equation
for the charging current iC can be obtained:

(10.13)iC � �
E
R

�e�t/RC

R

+
E

–

+ –
vR  =  0 V

VC  =  E

+

–

iC  =  0 A

FIG. 10.27

Open-circuit equivalent for a capacitor
following the charging phase.

R

+
E

–

+ –vR  =  E

vC  =  0 V

+

–

iC  =  iR  = E
R

FIG. 10.28

Short-circuit equivalent for a capacitor
(switch closed, t � 0).

FIG. 10.24

Basic charging network.
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FIG. 10.25

iC during the charging phase.

Small increase in vC

E
vC

0 t

Rapid increase

FIG. 10.26

vC during the charging phase.
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The factor e�t/RC is an exponential function of the form e�x, where
x � �t/RC and e � 2.71828 . . . . A plot of e�x for x ≥ 0 appears in
Fig. 10.29. Exponentials are mathematical functions that all students
of electrical, electronic, or computer systems must become very famil-
iar with. They will appear throughout the analysis to follow in this
course, and in succeeding courses.

Our current interest in the function e�x is limited to values of x
greater than zero, as noted by the curve of Fig. 10.25. All modern-day
scientific calculators have the function ex. To obtain e�x, the sign of x
must be changed using the sign key before the exponential function is
keyed in. The magnitude of e�x has been listed in Table 10.3 for a range
of values of x. Note the rapidly decreasing magnitude of e�x with
increasing value of x.

TABLE 10.3

Selected values of e�x.

x � 0 e�x � e�0 � � � 1

x � 1 e�1 � � � 0.3679

x � 2 e�2 � � 0.1353

x � 5 e�5 � � 0.00674

x � 10 e�10 � � 0.0000454

x � 100 e�100 � � 3.72 � 10�441
�
e100

1
�
e10

1
�
e5

1
�
e2

1
��
2.71828 . . .

1
�
e

1
�
1

1
�
e0

0.3679

0.1353
0.0497

0.0067

1

0 1 2 3 4 5 x

e–x

0.0183

FIG. 10.29

The e�x function (x ≥ 0).

TABLE 10.4

iC versus t (charging phase).

t Magnitude

0 100%
1t 36.8%
2t 13.5%
3t 5.0%
4t 1.8%
5t 0.67%

Less than

6t 0.24%
1% of maximum






←

TABLE 10.5

Change in iC between time constants.

(0 → 1)t 63.2%
(1 → 2)t 23.3%
(2 → 3)t 8.6%
(3 → 4)t 3.0%
(4 5)t 1.2%
(5 → 6)t 0.4% ← Less than 1%

The factor RC in Eq. (10.13) is called the time constant of the sys-
tem and has the units of time as follows:

RC � � �� � � � �� � � t

Its symbol is the Greek letter t (tau), and its unit of measure is the sec-
ond. Thus,

(seconds, s) (10.14)

If we substitute t � RC into the exponential function e�t/RC, we
obtain e�t/t. In one time constant, e�t/t � e�t/t � e�1 � 0.3679, or the
function equals 36.79% of its maximum value of 1. At t � 2t, e�t/t �
e�2t/t � e�2 � 0.1353, and the function has decayed to only 13.53% of
its maximum value.

The magnitude of e�t/t and the percentage change between time con-
stants have been tabulated in Tables 10.4 and 10.5, respectively. Note
that the current has dropped 63.2% (100% � 36.8%) in the first time
constant but only 0.4% between the fifth and sixth time constants. The
rate of change of iC is therefore quite sensitive to the time constant
determined by the network parameters R and C. For this reason, the uni-
versal time constant chart of Fig. 10.30 is provided to permit a more
accurate estimate of the value of the function e�x for specific time inter-
vals related to the time constant. The term universal is used because the
axes are not scaled to specific values.

t � RC

Q
�
V

V
�
Q/t

Q
�
V

V
�
I
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Returning to Eq. (10.13), we find that the multiplying factor E/R is
the maximum value that the current iC can attain, as shown in Fig.
10.25. Substituting t � 0 s into Eq. (10.13) yields

iC � e�t/RC � �
E
R

�e�0 � �
E
R

�

verifying our earlier conclusion.
For increasing values of t, the magnitude of e�t/t, and therefore the

value of iC, will decrease, as shown in Fig. 10.31. Since the magnitude
of iC is less than 1% of its maximum after five time constants, we will
assume the following for future analysis:

The current iC of a capacitive network is essentially zero after five
time constants of the charging phase have passed in a dc network.

Since C is usually found in microfarads or picofarads, the time con-
stant t � RC will never be greater than a few seconds unless R is very
large.

Let us now turn our attention to the charging voltage across the
capacitor. Through further mathematical analysis, the following equa-
tion for the voltage across the capacitor can be determined:

(10.15)

Note the presence of the same factor e�t/RC and the function (1 �
e�t/RC) appearing in Fig. 10.30. Since e�t/t is a decaying function, the
factor (1 � e�t/t) will grow toward a maximum value of 1 with time, as
shown in Fig. 10.30. In addition, since E is the multiplying factor, we
can conclude that, for all practical purposes, the voltage vC is E volts

vC � E(1 � e�t/RC)

E
�
R

36.8%

13.5%
5% 1.8%

0 1 2 3 4 5 t

iC  =

0.67%

E
R

e–t/

E
R

iC

� � � � �

�

FIG. 10.31

iC versus t during the charging phase.
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FIG. 10.30

Universal time constant chart.
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after five time constants of the charging phase. A plot of vC versus t is
provided in Fig. 10.32.

If we keep R constant and reduce C, the product RC will decrease,
and the rise time of five time constants will decrease. The change in
transient behavior of the voltage vC is plotted in Fig. 10.33 for various
values of C. The product RC will always have some numerical value,
even though it may be very small in some cases. For this reason:

The voltage across a capacitor cannot change instantaneously.

In fact, the capacitance of a network is also a measure of how much it
will oppose a change in voltage across the network. The larger the
capacitance, the larger the time constant, and the longer it takes to
charge up to its final value (curve of C3 in Fig. 10.33). A lesser capaci-
tance would permit the voltage to build up more quickly since the time
constant is less (curve of C1 in Fig. 10.33).

The rate at which charge is deposited on the plates during the charg-
ing phase can be found by substituting the following for vC in Eq.
(10.15):

vC �

and charging (10.16)

indicating that the charging rate is very high during the first few time
constants and less than 1% after five time constants.

The voltage across the resistor is determined by Ohm’s law:

vR � iRR � RiC � R�
E
R

�e�t/t

or (10.17)

A plot of vR appears in Fig. 10.34.
Applying Kirchhoff’s voltage law to the circuit of Fig. 10.24 will

result in

vC � E � vR

Substituting Eq. (10.17):

vC � E � Ee�t/t

Factoring gives vC � E(1 � e�t/t), as obtained earlier.

EXAMPLE 10.5

a. Find the mathematical expressions for the transient behavior of vC,
iC, and vR for the circuit of Fig. 10.35 when the switch is moved to
position 1. Plot the curves of vC, iC, and vR.

b. How much time must pass before it can be assumed, for all practical
purposes, that iC � 0 A and vC � E volts?

Solutions:

a. t � RC � (8 � 103 �)(4 � 10�6 F) � 32 � 10�3 s � 32 ms
By Eq. (10.15),

vC � E(1 � e�t/t) � 40(1 � e�t/(32�10�3))

vR � Ee�t/t

q � CvC � CE(1 � e�t/t)

q
�
C

vC  =  E(1 – e–t/

E
vC

0 t1 2 3 4 5

63.2%

86.5%
95% 98.2% 99.3%

� � � � �

�)

FIG. 10.32

vC versus t during the charging phase.

FIG. 10.33

Effect of C on the charging phase.

E
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vR  =  Ee–t/t

E
vR
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36.8%

13.5%
5% 1.8% 0.67%

FIG. 10.34

vR versus t during the charging phase.
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FIG. 10.35

Example 10.5.



394  CAPACITORS

By Eq. (10.13),

iC � �
E
R

� e�t/t � e�t/(32�10�3)

� (5 � 10�3)e�t/(32�10�3)

By Eq. (10.17),

vR � Ee�t/t � 40e�t/(32�10�3)

The curves appear in Fig. 10.36.
b. 5t � 5(32 ms) � 160 ms

Once the voltage across the capacitor has reached the input voltage
E, the capacitor is fully charged and will remain in this state if no fur-
ther changes are made in the circuit.

If the switch of Fig. 10.24 is opened, as shown in Fig. 10.37(a), the
capacitor will retain its charge for a period of time determined by its
leakage current. For capacitors such as the mica and ceramic, the leak-
age current (ileakage � vC /Rleakage) is very small, enabling the capacitor
to retain its charge, and hence the potential difference across its plates,
for a long time. For electrolytic capacitors, which have very high leak-
age currents, the capacitor will discharge more rapidly, as shown in Fig.
10.37(b). In any event, to ensure that they are completely discharged,
capacitors should be shorted by a lead or a screwdriver before they are
handled.

40 V
�
8 k�

R

+

–

 vR  =  0 V
1

2

E

i  =  0

 vC E

(a)

2

 vR  =  0 V
i  =  0

+

–
 vC Rleakage

ileakage

(b)

2

–   vR  +

+

–
 vC

R

=  E

iC  =  iR  =  idischarge

FIG. 10.37

Effect of the leakage current on the steady-state behavior of a capacitor.

FIG. 10.38

Demonstrating the discharge behavior of a
capacitive network.

40
vC (V)

0 t1t 2t 3t 4t 5t

t  =  32 ms

5.0
iC (mA)

0 t1t 2t 3t 4t 5t

t  =  32 ms

40
vR (V)

0 t1t 2t 3t 4t 5t

t  =  32 ms

FIG. 10.36

Waveforms for the network of Fig. 10.35.

10.8 DISCHARGE PHASE

The network of Fig. 10.24 is designed to both charge and discharge the
capacitor. When the switch is placed in position 1, the capacitor will
charge toward the supply voltage, as described in the last section. At
any point in the charging process, if the switch is moved to position 2,
the capacitor will begin to discharge at a rate sensitive to the same time
constant t � RC. The established voltage across the capacitor will cre-
ate a flow of charge in the closed path that will eventually discharge the
capacitor completely. In essence, the capacitor functions like a battery
with a decreasing terminal voltage. Note in particular that the current iC
has reversed direction, changing the polarity of the voltage across R.

If the capacitor had charged to the full battery voltage as indicated in
Fig. 10.38, the equation for the decaying voltage across the capacitor
would be the following:

discharging
(10.18)vC � Ee�t/RC
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which employs the function e�x and the same time constant used above.
The resulting curve will have the same shape as the curve for iC and vR

in the last section. During the discharge phase, the current iC will also
decrease with time, as defined by the following equation:

discharging
(10.19)

The voltage vR � vC, and

discharging
(10.20)

The complete discharge will occur, for all practical purposes, in five
time constants. If the switch is moved between terminals 1 and 2 every
five time constants, the wave shapes of Fig. 10.39 will result for vC, iC,
and vR. For each curve, the current direction and voltage polarities were
defined by Fig. 10.24. Since the polarity of vC is the same for both the
charging and the discharging phases, the entire curve lies above the
axis. The current iC reverses direction during the charging and dis-
charging phases, producing a negative pulse for both the current and the
voltage vR. Note that the voltage vC never changes magnitude instanta-
neously but that the current iC has the ability to change instantaneously,
as demonstrated by its vertical rises and drops to maximum values.

vR � Ee�t/RC

iC � �
E
R

�e�t/RC

E
vC

0 tPos. 1 15tPos. 2 Pos. 1 Pos. 2

E iC

0 tPos. 1

Pos. 2

Pos. 1

Pos. 2

R

E
vR

0 tPos. 1

Pos. 2

Pos. 1

Pos. 2

E
R

10t5t

Charging  Discharging

5t 15t

5t 15t

– E

–

10t

10t

FIG. 10.39

The charging and discharging cycles for the
network of Fig. 10.24.
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Example 10.6.

EXAMPLE 10.6 After vC in Example 10.5 has reached its final value
of 40 V, the switch is thrown into position 2, as shown in Fig. 10.40.
Find the mathematical expressions for the transient behavior of vC, iC,
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and vR after the closing of the switch. Plot the curves for vC, iC, and vR

using the defined directions and polarities of Fig. 10.35. Assume that
t � 0 when the switch is moved to position 2.

Solution:

t � 32 ms

By Eq. (10.18),

vC � Ee�t/t � 40e�t/(32�10�3)

By Eq. (10.19),

iC � ��
E
R

�e�t/t � �(5 � 10�3)e�t/(32�10�3)

By Eq. (10.20),

vR � �Ee�t/t � �40e�t/(32�10�3)

The curves appear in Fig. 10.41.

The preceding discussion and examples apply to situations in which
the capacitor charges to the battery voltage. If the charging phase is dis-
rupted before reaching the supply voltage, the capacitive voltage will be
less, and the equation for the discharging voltage vC will take on the
form

(10.21)

where Vi is the starting or initial voltage for the discharge phase. The
equation for the decaying current is also modified by simply substitut-
ing Vi for E; that is,

(10.22)

Use of the above equations will be demonstrated in Examples 10.7 and
10.8.

EXAMPLE 10.7

a. Find the mathematical expression for the transient behavior of the
voltage across the capacitor of Fig. 10.42 if the switch is thrown into
position 1 at t � 0 s.

b. Repeat part (a) for iC.
c. Find the mathematical expressions for the response of vC and iC if

the switch is thrown into position 2 at 30 ms (assuming that the
leakage resistance of the capacitor is infinite ohms).

d. Find the mathematical expressions for the voltage vC and current iC
if the switch is thrown into position 3 at t � 48 ms.

e. Plot the waveforms obtained in parts (a) through (d) on the same
time axis for the voltage vC and the current iC using the defined
polarity and current direction of Fig. 10.42.

iC � �
V

R
i

�e�t/t � Iie
�t/t

vC � Vie
�t/RC

R2 200 k�

R1

100 k�

E 10 V
C 0.05 mF

21 3

iC

vC

+

–

FIG. 10.42

Example 10.7.
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FIG. 10.41

The waveforms for the network of Fig. 10.40.
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Solutions:

a. Charging phase:

vC � E(1 � e�t/t)

t � R1C � (100 � 103 �)(0.05 � 10�6 F) � 5 � 10�3 s
� 5 ms

vC � 10(1 � e�t/(5�10�3))

b. iC � e�t/t

� e�t/(5�10�3)

iC � (0.1 � 10�3)e�t/(5�10�3)

c. Storage phase:

vC � E � 10 V

iC � 0 A

d. Discharge phase (starting at 48 ms with t � 0 s for the following
equations):

vC � Ee�t/t′

t′ � R2C � (200 � 103 �)(0.05 � 10�6 F) � 10 � 10�3 s
� 10 ms

vC � 10e�t/(10�10�3)

iC � � e�t/t′

� � e�t/(10�10�3)

iC � �(0.05 � 10�3)e�t/(10�10�3)

e. See Fig. 10.43.

10 V
��
200 � 103 �

E
�
R2

10 V
��
100 � 103 �

E
�
R1

FIG. 10.43

The waveforms for the network of Fig. 10.42.

10 V

vC (V)

0 t (ms)10 20 25 30 40 50 60 70 80 90 100
5t 5t'

(t'  =  2t)

48 98

0.1

iC (mA)

0 t (ms)10 20 25 30 40

50 60 70 80 90 100

5t
(t'  =  2t)

48 98

–0.05

5t'
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EXAMPLE 10.8

a. Find the mathematical expression for the transient behavior of the
voltage across the capacitor of Fig. 10.44 if the switch is thrown into
position 1 at t � 0 s.

R2 1 k�
20 VE C 10 mF

2

1 iC

vC

+

–

R1

5 k�

R3

3 k�

FIG. 10.45

The charging phase for the network of Fig. 10.44.

10 mF

3 k�

+

–

iC

CvC

+

–

R3

1 k�R2

2

12.64 V�

b. Repeat part (a) for iC.
c. Find the mathematical expression for the response of vC and iC if the

switch is thrown into position 2 at t � 1t of the charging phase.
d. Plot the waveforms obtained in parts (a) through (c) on the same

time axis for the voltage vC and the current iC using the defined
polarity and current direction of Fig. 10.44.

Solutions:

a. Charging phase: Converting the current source to a voltage source
will result in the network of Fig. 10.45.

FIG. 10.46

Network of Fig. 10.45 when the switch is
moved to position 2 at t � 1t1.

vC � E(1 � e�t/t1)

t1 � (R1 � R3)C � (5 k� � 3 k�)(10 � 10�6 F)

� 80 ms

vC � 20(1 � e�t/(80�10�3))

b. iC � e�t/t1

� e�t/(80�10�3)

iC � (2.5 � 10�3)e�t/(80�10�3)

c. At t � 1t1, vC � 0.632E � 0.632(20 V) � 12.64 V, resulting in the
network of Fig. 10.46. Then vC � Vie

�t/t2 with

20 V
�
8 k�

E
�
R1 � R3

R2 1 k�

4 mA

I C 10 mF

2

1 iC

vC

+

–
R1 5 k�

R3

3 k�

FIG. 10.44

Example 10.8.
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t2 � (R2 � R3)C � (1 k� � 3 k�)(10 � 10�6 F) 
� 40 ms

and vC � 12.64e�t/(40�10�3)

At t � 1t1, iC drops to (0.368)(2.5 mA) � 0.92 mA. Then it
switches to

iC � �Iie
�t/t2

� � e�t/t2 � � e�t/(40�10�3)

iC � �3.16 � 10�3e�t/(40�10�3)

d. See Fig. 10.47.

12.64 V
��
1 k� � 3 k�

Vi
�
R2 � R3

vC (V)

0 t (ms)80 160 240 320 400

1 5

12.64 V

20 V

iC (mA)

0 t (ms)320 400

5 2

0.92

2.5

� �2

�1�

240

–3.16

10.9 INITIAL VALUES

In all the examples examined in the previous sections, the capacitor was
uncharged before the switch was thrown. We will now examine the
effect of a charge, and therefore a voltage (V � Q/C), on the plates at
the instant the switching action takes place. The voltage across the
capacitor at this instant is called the initial value, as shown for the gen-
eral waveform of Fig. 10.48. Once the switch is thrown, the transient

FIG. 10.47

The waveforms for the network of Fig. 10.44.
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Initial
conditions

Vi Transient
response

Steady-state
region

Vf

0 t

vC

FIG. 10.48

Defining the regions associated with a transient response.

phase will commence until a leveling off occurs after five time constants.
This region of relatively fixed value that follows the transient response
is called the steady-state region, and the resulting value is called the
steady-state or final value. The steady-state value is found by simply
substituting the open-circuit equivalent for the capacitor and finding the
voltage across the plates. Using the transient equation developed in the
previous section, an equation for the voltage vC can be written for the
entire time interval of Fig. 10.48; that is,

vC � Vi � (Vf � Vi)(1 � e�t/t)

However, by multiplying through and rearranging terms:

vC � Vi � Vf � Vf e
�t/t � Vi � Vi e

�t/t

� Vf � Vf e
�t/t � Vi e

�t/t

we find

(10.23)

If you are required to draw the waveform for the voltage vC from the
initial value to the final value, start by drawing a line at the initial and
steady-state levels, and then add the transient response (sensitive to the
time constant) between the two levels. The example to follow will clar-
ify the procedure.

EXAMPLE 10.9 The capacitor of Fig. 10.49 has an initial voltage
of 4 V.

vC � Vf � (Vi � Vf)e
�t/t

iC

R2

1.2 k�

R1

2.2 k�

E C24 V 3.3    F�
+

–
4 VvC

+

–

FIG. 10.49

Example 10.9.
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a. Find the mathematical expression for the voltage across the capa-
citor once the switch is closed.

b. Find the mathematical expression for the current during the transient
period.

c. Sketch the waveform for each from initial value to final value.

Solutions:

a. Substituting the open-circuit equivalent for the capacitor will result
in a final or steady-state voltage vC of 24 V.

The time constant is determined by

t � (R1 � R2)C
� (2.2 k� � 1.2 k�)(3.3 mF)
� 11.22 ms

with 5t � 56.1 ms

Applying Eq. (10.23):

vC � Vf � (Vi � Vf)e
�t/t

� 24 V � (4 V � 24 V)e�t/11.22ms

and vC � 24 V � 20 Ve�t/11.22ms

b. Since the voltage across the capacitor is constant at 4 V prior to the
closing of the switch, the current (whose level is sensitive only to
changes in voltage across the capacitor) must have an initial value of
0 mA. At the instant the switch is closed, the voltage across the
capacitor cannot change instantaneously, so the voltage across the
resistive elements at this instant is the applied voltage less the initial
voltage across the capacitor. The resulting peak current is

Im � � � � 5.88 mA

The current will then decay (with the same time constant as the
voltage vC) to zero because the capacitor is approaching its open-
circuit equivalence.

The equation for iC is therefore:

iC � 5.88 mAe�t/11.22ms

c. See Fig. 10.50.

20 V
�
3.4 k�

24 V � 4 V
��
2.2 k� � 1.2 k�

E � VC�
R1 � R2

4 V

24 V

vC

0
iC
5.88 mA

56.1 ms

56.1 ms

t

t0

5�

FIG. 10.50

vC and iC for the network of Fig. 10.49.
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The initial and final values of the voltage were drawn first, and
then the transient response was included between these levels. For
the current, the waveform begins and ends at zero, with the peak
value having a sign sensitive to the defined direction of iC in Fig.
10.49.

Let us now test the validity of the equation for vC by substituting
t � 0 s to reflect the instant the switch is closed.

e�t/t � e�0 � 1

and vC � 24 V � 20 Ve�t/t � 24 V � 20 V � 4 V

When t � 5t, 

e�t/t � 0

and vC � 24 V � 20 Ve�t/t � 24 V � 0 V � 24 V

10.10 INSTANTANEOUS VALUES

On occasion it will be necessary to determine the voltage or current at
a particular instant of time that is not an integral multiple of t, as in the
previous sections. For example, if

vC � 20(1 � e�t/(2�10�3))

the voltage vC may be required at t � 5 ms, which does not correspond
to a particular value of t. Figure 10.30 reveals that (1 � e�t/t) is
approximately 0.93 at t � 5 ms � 2.5t, resulting in vC � 20(0.93) �
18.6 V. Additional accuracy can be obtained simply by substituting t �
5 ms into the equation and solving for vC using a calculator or table to
determine e�2.5. Thus,

vC � 20(1 � e�5ms/2ms)
� 20(1 � e�2.5)
� 20(1 � 0.082)
� 20(0.918)
� 18.36 V

The results are close, but accuracy beyond the tenths place is suspect
using Fig. 10.30. The above procedure can also be applied to any other
equation introduced in this chapter for currents or other voltages.

There are also occasions when the time to reach a particular voltage
or current is required. The procedure is complicated somewhat by the
use of natural logs (loge, or ln), but today’s calculators are equipped to
handle the operation with ease. There are two forms that require some
development. First, consider the following sequence:

vC � E(1 � e�t/t)

�
v
E
C� � 1 � e�t/t

1 � �
v
E
C� � e�t/t

loge�1 � �
v
E
C�� � logee

�t/t

loge�1 � �
v
E
C�� � �

t
�
t
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and t � �t loge�1 � �
v
E
C��

but �loge�
x
y

� � �loge�
y
x

�

Therefore, t � t loge��E �

E
vC

�� (10.24)

The second form is as follows:

vC � Ee�t/t

�
v
E
C� � e�t/t

loge�
v
E
C� � logee

�t/t

loge�
v
E
C� � �

and t � �t loge�
v
E
C�

or t � t loge�
v
E

C
� (10.25)

For iC � (E/R)e�t/t:

t � t loge�
iC

E
R
� (10.26)

For example, suppose that

vC � 20(1 � e�t/(2�10�3))

and the time to reach 10 V is required. Substituting into Eq. (10.24), we
have

t � (2 ms)loge� �
� (2 ms)loge2

� (2 ms)(0.693)

� 1.386 ms

Using Fig. 10.30, we find at (1 � e�t/t) � vC /E � 0.5 that t � 0.7t �
0.7(2 ms) � 1.4 ms, which is relatively close to the above.

Mathcad

It is time to see how Mathcad can be applied to the transient analysis
described in this chapter. For the first equation described in Section
10.10,

vC � 20(1 � e�t/(2�10�3))

the value of t must be defined before the expression is written, or the
value can simply be inserted in the equation. The former approach is

20 V
��
20 V � 10 V

t
�
t

key on calculatorINF
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often better because changing the defined value of t will result in an
immediate change in the result. In other words, the value can be used
for further calculations. In Fig. 10.51 the value of t was defined as 5 ms.
The equation was then entered using the e function from the Calcula-
tor palette obtained from View-Toolbars-Calculator. Be sure to insert
a multiplication operator between the initial 20 and the main left
bracket. Also, be careful that the control bracket is in the correct place
before placing the right bracket to enclose the equation. It will take
some practice to ensure that the insertion bracket is in the correct place
before entering a parameter, but in time you will find that it is a fairly
direct procedure. The �3 is placed using the shift operator over the
number 6 on the standard keyboard. The result is displayed by simply
entering v again, followed by an equal sign. The result for t � 1 ms can
now be obtained by simply changing the defined value for t. The result
of 7.869 V will appear immediately.

FIG. 10.51

Applying Mathcad to the transient R-C equations.

For the second equation of Section 10.10,

vC � 20(1 � e�5ms/2ms)

the equation for t can be entered directly as shown in the bottom of Fig.
10.51. The ln from the Calculator is for a base e calculation, while log
is for a base 10 calculation. The result will appear the instant the equal
sign is placed after the t on the bottom line.

The text you see on the screen to define each operation is obtained
by clicking on Insert-Text Region and then simply typing in the text
material. The boldface was obtained by simply clicking on the text
material and swiping the text to establish a black background. Then
select B from the toolbar, and the boldface will appear.
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10.11 THÉVENIN EQUIVALENT: t � RThC

Occasions will arise in which the network does not have the simple
series form of Fig. 10.24. It will then be necessary first to find the
Thévenin equivalent circuit for the network external to the capacitive
element. ETh will then be the source voltage E of Eqs. (10.15) through
(10.20), and RTh will be the resistance R. The time constant is then t �
RThC.

EXAMPLE 10.10 For the network of Fig. 10.52:

R230 k�

R1

60 k�

E 21 V
+

–

R3

10 k�

vC

+

–

iC1 2

C  =  0.2 mF R4 10 k�

FIG. 10.52

Example 10.10.

FIG. 10.53

Applying Thévenin’s theorem to the network of
Fig. 10.52.

vC

RTh  =  30 k�

ETh  =  7 V C  =  0.2 mF

iC

+

–

FIG. 10.54

Substituting the Thévenin equivalent for the 
network of Fig. 10.52.

a. Find the mathematical expression for the transient behavior of the
voltage vC and the current iC following the closing of the switch
(position 1 at t � 0 s).

b. Find the mathematical expression for the voltage vC and current iC
as a function of time if the switch is thrown into position 2 at t �
9 ms.

c. Draw the resultant waveforms of parts (a) and (b) on the same time
axis.

Solutions:

a. Applying Thévenin’s theorem to the 0.2-mF capacitor, we obtain
Fig. 10.53:

RTh � R1 � R2 � R3 � � 10 k�

� 20 k� � 10 k�

RTh � 30 k�

ETh � � � (21 V) � 7 V

The resultant Thévenin equivalent circuit with the capacitor
replaced is shown in Fig. 10.54. Using Eq. (10.23) with Vf � ETh

and Vi � 0 V, we find that

vC � Vf � (Vi � Vf)e
�t/t

becomes vC � ETh � (0 V � ETh)e
�t/t

or vC � ETh(1 � e�t/t)

with t � RC � (30 k�)(0.2 mF) � 6 ms

so that vC � 7(1 � e�t/6ms)

For the current: iC � �
E
R
Th�e�t/RC

� e�t/6ms

iC � (0.233 � 10�3)e�t/6ms

7 V
�
30 k�

1
�
3

(30 k�)(21 V)
��
30 k� � 60 k�

R2E�
R2 � R1

(60 k�)(30 k�)
��

90 k�

ETh:

R1

60 k�

R3

10 k�

R2 30 k� EThE
–

+
21 V

RTh

RTh:

R1

60 k�

R3

10 k�

R2 30 k�



EXAMPLE 10.11 The capacitor of Fig. 10.56 is initially charged to
40 V. Find the mathematical expression for vC after the closing of the
switch.
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b. At t � 9 ms,

vC � ETh(1 � e�t/t) � 7(1 � e�(9�10�3)/(6�10�3))
� 7(1 � e�1.5) � 7(1 � 0.223)

vC � 7(0.777) � 5.44 V

and iC � �
E
R
Th�e�t/t � (0.233 � 10�3)e�1.5

� (0.233 � 10�3)(0.223)
iC � 0.052 � 10�3 � 0.052 mA

Using Eq. (10.23) with Vf � 0 V and Vi � 5.44 V, we find that

vC � Vf � (Vi � Vf)e
�t/t ′

becomes vC � 0 V � (5.44 V � 0 V)e�t/t ′

� 5.44e�t/t ′

with t′ � R4C � (10 k�)(0.2 mF) � 2 ms

and vC � 5.44e�t/2ms

By Eq. (10.22),

Ii � � 0.054 mA

and iC � Iie
�t/t � �(0.54 � 10�3)e�t/2ms

c. See Fig. 10.55.

5.44 V
�
10 k�

vC (V)

0 t (ms)15 25 30 35

5�

ETh  =  7

20105

Vi  =  5.44 V

iC (mA)

0 t (ms)25 30 3520

10

5

0.052

– 0.54

5 '

15

0.233

�

5�

5 '�

FIG. 10.55

The resulting waveforms for the network of Fig. 10.52.

R1 7 k�

R4 2 k�

C

40 �F
+  40 V  –

+  vC  –

R2

5 k� R3

18 k�

E 120 V
�

FIG. 10.56

Example 10.11.
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Solution: The network is redrawn in Fig. 10.57.

40 mF40 V

+

–

Thévenin

C

R2

5 k�

R1

7 k�

R3 18 k�

R4 2 k�

E 120 V

FIG. 10.57

Network of Fig. 10.56 redrawn.

ETh:

ETh � �

� 80 V

RTh:

RTh � 5 k� � 18 k� � (7 k� � 2 k�)
� 5 k� � 6 k�
� 11 k�

Therefore, Vi � 40 V and Vf � 80 V

and t � RThC � (11 k�)(40 mF) � 0.44 s

Eq. (10.23): vC � Vf � (Vi � Vf)e
�t/t

� 80 V � (40 V � 80 V)e�t/0.44s

and vC � 80 V � 40 Ve�t/0.44s

EXAMPLE 10.12 For the network of Fig. 10.58, find the mathematical
expression for the voltage vC after the closing of the switch (at t � 0).

18 k�(120 V)
���
18 k� � 7 k� � 2 k�

R3E��
R3 � R1 � R4

I R1  =  6 �

R2

10 �

20 mA
C 500 mF vC

+

–

FIG. 10.58

Example 10.12.

Solution:

RTh � R1 � R2 � 6 � � 10 � � 16 �

ETh � V1 � V2 � IR1 � 0

� (20 � 10�3 A)(6 �) � 120 � 10�3 V � 0.12 V

and t � RThC � (16 �)(500 � 10�6 F) � 8 ms

so that vC � 0.12(1 � e�t/8ms)
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10.12 THE CURRENT iC

The current iC associated with a capacitance C is related to the voltage
across the capacitor by

(10.27)

where dvC /dt is a measure of the change in vC in a vanishingly small
period of time. The function dvC /dt is called the derivative of the volt-
age vC with respect to time t.

If the voltage fails to change at a particular instant, then

dvC � 0

and iC � C�
d

d

v
t
C

� � 0

In other words, if the voltage across a capacitor fails to change with
time, the current iC associated with the capacitor is zero. To take this a
step further, the equation also states that the more rapid the change in
voltage across the capacitor, the greater the resulting current.

In an effort to develop a clearer understanding of Eq. (10.27), let us
calculate the average current associated with a capacitor for various
voltages impressed across the capacitor. The average current is defined
by the equation

(10.28)

where � indicates a finite (measurable) change in charge, voltage, or
time. The instantaneous current can be derived from Eq. (10.28) by let-
ting �t become vanishingly small; that is,

iCinst � lim
∆t→0

C�
�

�

v
t
C

� � C�
d

d

v
t
C

�

In the following example, the change in voltage �vC will be consid-
ered for each slope of the voltage waveform. If the voltage increases
with time, the average current is the change in voltage divided by the
change in time, with a positive sign. If the voltage decreases with time,
the average current is again the change in voltage divided by the change
in time, but with a negative sign.

EXAMPLE 10.13 Find the waveform for the average current if the
voltage across a 2-mF capacitor is as shown in Fig. 10.59.

Solutions:

a. From 0 ms to 2 ms, the voltage increases linearly from 0 V to 4 V,
the change in voltage �v � 4 V � 0 � 4 V (with a positive sign
since the voltage increases with time). The change in time �t �
2 ms � 0 � 2 ms, and

iCav � C�
�

�

v
t
C� � (2 � 10�6 F)� �

� 4 � 10�3 A � 4 mA

4 V
��
2 � 10�3 s

iCav � C �
�

�

v
t
C

�

iC � C�
d

d

v
t
C

�
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vC (V)

0
t (ms)

9 10 11 12
t1

4

5 6 7 8

1

2 3 4t3t2

�t

v3
v2

�v

FIG. 10.59

Example 10.13.

b. From 2 ms to 5 ms, the voltage remains constant at 4 V; the change
in voltage �v � 0. The change in time �t � 3 ms, and

iCav � C�
�

�

v
t
C� � C �

�

0
t

� � 0

c. From 5 ms to 11 ms, the voltage decreases from 4 V to 0 V. The change
in voltage �v is, therefore, 4 V � 0 � 4 V (with a negative sign since
the voltage is decreasing with time). The change in time �t �
11 ms � 5 ms � 6 ms, and

iCav � C�
�

�

v
t
C

� � �(2 � 10�6 F)� �
� �1.33 � 10�3 A � �1.33 mA

d. From 11 ms on, the voltage remains constant at 0 and �v � 0, so
iCav � 0. The waveform for the average current for the impressed
voltage is as shown in Fig. 10.60.

4 V
��
6 � 10�3 s

Note in Example 10.13 that, in general, the steeper the slope, the
greater the current, and when the voltage fails to change, the current is
zero. In addition, the average value is the same as the instantaneous
value at any point along the slope over which the average value was
found. For example, if the interval �t is reduced from 0 → t1 to t2 � t3,
as noted in Fig. 10.59, �v/�t is still the same. In fact, no matter how
small the interval �t, the slope will be the same, and therefore the cur-
rent iCav will be the same. If we consider the limit as �t → 0, the slope
will still remain the same, and therefore iCav � iCinst at any instant of

iC (mA)

0

t (ms)9 10 11 12

4

5 6 7 81 2 3 4

–1.33

FIG. 10.60

The resulting current iC for the applied voltage of Fig. 10.59.
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time between 0 and t1. The same can be said about any portion of the
voltage waveform that has a constant slope.

An important point to be gained from this discussion is that it is not
the magnitude of the voltage across a capacitor that determines the cur-
rent but rather how quickly the voltage changes across the capacitor. An
applied steady dc voltage of 10,000 V would (ideally) not create any
flow of charge (current), but a change in voltage of 1 V in a very brief
period of time could create a significant current.

The method described above is only for waveforms with straight-line
(linear) segments. For nonlinear (curved) waveforms, a method of cal-
culus (differentiation) must be employed.

10.13 CAPACITORS IN SERIES AND PARALLEL

Capacitors, like resistors, can be placed in series and in parallel.
Increasing levels of capacitance can be obtained by placing capacitors
in parallel, while decreasing levels can be obtained by placing capaci-
tors in series.

For capacitors in series, the charge is the same on each capacitor
(Fig. 10.61):

(10.29)

Applying Kirchhoff’s voltage law around the closed loop gives

E � V1 � V2 � V3

However, V � �
Q
C

�

so that � � �

Using Eq. (10.29) and dividing both sides by Q yields

(10.30)

which is similar to the manner in which we found the total resistance of
a parallel resistive circuit. The total capacitance of two capacitors in
series is

(10.31)

The voltage across each capacitor of Fig. 10.61 can be found by first
recognizing that

QT � Q1

or CT E � C1V1

Solving for V1:

V1 �
CTE
�
C1

CT � �
C1

C
�
1C2

C2
�

�
C
1

T
� � �

C
1

1
� � �

C
1

2
� � �

C
1

3
�

Q3�
C3

Q2�
C2

Q1�
C1

QT�
CT

QT � Q1 � Q2 � Q3

V2

E

+

–

QT

V3V1

+ – + – + –
Q2 Q3Q1

FIG. 10.61

Series capacitors.
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and substituting for CT:

V1 � � �E (10.32)

A similar equation will result for each capacitor of the network.
For capacitors in parallel, as shown in Fig. 10.62, the voltage is the

same across each capacitor, and the total charge is the sum of that on
each capacitor:

(10.33)

However, Q � CV

Therefore, CT E � C1V1 � C2V2 � C3V3

but E � V1 � V2 � V3

Thus, (10.34)

which is similar to the manner in which the total resistance of a series
circuit is found.

EXAMPLE 10.14 For the circuit of Fig. 10.63:
a. Find the total capacitance.
b. Determine the charge on each plate.
c. Find the voltage across each capacitor.

Solutions:

a. � � �

� � �

� 0.005 � 106 � 0.02 � 106 � 0.1 � 106

� 0.125 � 106

and CT � � 8 mF

b. QT � Q1 � Q2 � Q3

QT � CTE � (8 � 10�6 F)(60 V) � 480 mC

c. V1 � � � 2.4 V

V2 � � � 9.6 V

V3 � � � 48.0 V

and E � V1 � V2 � V3 � 2.4 V � 9.6 V � 48 V
� 60 V (checks)

480 � 10�6 C
��
10 � 10�6 F

Q3�
C3

480 � 10�6 C
��
50 � 10�6 F

Q2�
C2

480 � 10�6 C
��
200 � 10�6 F

Q1�
C1

1
��
0.125 � 106

1
��
10 � 10�6 F

1
��
50 � 10�6 F

1
��
200 � 10�6 F

1
�
C3

1
�
C2

1
�
C1

1
�
CT

CT � C1 � C2 � C3

QT � Q1 � Q2 � Q3

1/C1���
1/C1 � 1/C2 � 1/C3

FIG. 10.62

Parallel capacitors.

E

+

–

QT

V1

Q1+

–
V2

Q2+

–
V3

Q3+

–

E

+

–

CT

C2 C3C1

200 mF 50 mF 10 mF

60 V

FIG. 10.63

Example 10.14.
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EXAMPLE 10.15 For the network of Fig. 10.64:
a. Find the total capacitance.
b. Determine the charge on each plate.
c. Find the total charge.

Solutions:

a. CT � C1 � C2 � C3 � 800 mF � 60 mF � 1200 mF
� 2060 mF

b. Q1 � C1E � (800 � 10�6 F)(48 V) � 38.4 mC
Q2 � C2E � (60 � 10�6 F)(48 V) � 2.88 mC
Q3 � C3E � (1200 � 10�6 F)(48 V) � 57.6 mC

c. QT � Q1 � Q2 � Q3 � 38.4 mC � 2.88 mC � 57.6 mC
� 98.88 mC

EXAMPLE 10.16 Find the voltage across and charge on each capaci-
tor for the network of Fig. 10.65.

Solution:

C′T � C2 � C3 � 4 mF � 2 mF � 6 mF

CT � � � 2 mF

QT � CT E � (2 � 10�6 F)(120 V)
� 240 mC

An equivalent circuit (Fig. 10.66) has

QT � Q1 � Q′T
and, therefore, Q1 � 240 mC

and V1 � � � 80 V

Q′T � 240 mC

and, therefore,

V′T � � � 40 V

and Q2 � C2V′T � (4 � 10�6 F)(40 V) � 160 mC

Q3 � C3V′T � (2 � 10�6 F)(40 V) � 80 mC

EXAMPLE 10.17 Find the voltage across and charge on capacitor C1

of Fig. 10.67 after it has charged up to its final value.

240 � 10�6 C
��

6 � 10�6 F
Q′T�
C′T

240 � 10�6 C
��

3 � 10�6 F
Q1�
C1

(3 mF)(6 mF)
��
3 mF � 6 mF

C1C′T
�
C1 � C′T

E

CT
C1 C2 C3

800 mF 60 mF 1200 mF

QT

48 V

FIG. 10.64

Example 10.15.

E  =  120 V

C1

C2 C3

3 mF

4 mF 2 mF

+

–

FIG. 10.65

Example 10.16.

E  =  120 V

C1

C'T

3 mF

6 mF

+

–

Q1+ –V1

V'T

+

–Q'T

Q3
V'T

+

–C3

Q2

C2

FIG. 10.66

Reduced equivalent for the network of 
Fig. 10.65.

R1

4 �

E  =  24 V C1  =  20  mF
+

–

Q1
R2 8 � VC

+

–

FIG. 10.67

Example 10.17.
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Solution: As previously discussed, the capacitor is effectively an
open circuit for dc after charging up to its final value (Fig. 10.68).
Therefore,

VC � � 16 V

Q1 � C1VC � (20 � 10�6 F)(16 V)
� 320 mC

EXAMPLE 10.18 Find the voltage across and charge on each capaci-
tor of the network of Fig. 10.69 after each has charged up to its final
value.

(8 �)(24 V)
��
4 � � 8 �

Solution:

VC2
� � 56 V

VC1
� � 16 V

Q1 � C1VC1
� (2 � 10�6 F)(16 V) � 32 mC

Q2 � C2VC2
� (3 � 10�6 F)(56 V) � 168 mC

10.14 ENERGY STORED BY A CAPACITOR

The ideal capacitor does not dissipate any of the energy supplied to it.
It stores the energy in the form of an electric field between the con-
ducting surfaces. A plot of the voltage, current, and power to a capaci-
tor during the charging phase is shown in Fig. 10.70. The power curve
can be obtained by finding the product of the voltage and current at
selected instants of time and connecting the points obtained. The energy
stored is represented by the shaded area under the power curve. Using
calculus, we can determine the area under the curve:

WC � CE2

In general, (J) (10.35)WC � �
1
2

�CV2

1
�
2

(2 �)(72 V)
��
2 � � 7 �

(7 �)(72 V)
��
7 � � 2 �

FIG. 10.68

Determining the final (steady-state) value 
for vC.

4 �

E  =  24 V 8 � VC

+

–

FIG. 10.69

Example 10.18.

E  =  72 V R2 7 �

R1

2 �

R3 8 �

C2  =  3 mF

C1  =  2 mF

+

–
R2 7 �

R1

2 �

R3 8 �
+

–

+  VC1  
–

E  =  72 V

+  VC2  
–

I  =  0

0 t

E

R
E

v, i, p

vC

p  =  vC iC

iC

FIG. 10.70

Plotting the power to a capacitive element
during the transient phase.
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where V is the steady-state voltage across the capacitor. In terms of Q
and C,

WC � C� �
2

or (J) (10.36)

EXAMPLE 10.19 For the network of Fig. 10.69, determine the energy
stored by each capacitor.

Solution:

For C1,

WC � �
1
2

�CV2

� �
1
2

�(2 � 10�6 F)(16 V)2 � (1 � 10�6)(256)

� 256 mJ

For C2,

WC � �
1
2

�CV2

� �
1
2

�(3 � 10�6 F)(56 V)2 � (1.5 � 10�6)(3136)

� 4704 mJ
Due to the squared term, note the difference in energy stored

because of a higher voltage.

10.15 STRAY CAPACITANCES

In addition to the capacitors discussed so far in this chapter, there are
stray capacitances that exist not through design but simply because
two conducting surfaces are relatively close to each other. Two con-
ducting wires in the same network will have a capacitive effect between
them, as shown in Fig. 10.71(a). In electronic circuits, capacitance lev-
els exist between conducting surfaces of the transistor, as shown in Fig.
10.71(b). As mentioned earlier, in Chapter 12 we will discuss another
element called the inductor, which will have capacitive effects between
the windings [Fig. 10.71(c)]. Stray capacitances can often lead to seri-
ous errors in system design if they are not considered carefully.

10.16 APPLICATIONS

This Applications section for capacitors includes both a description of
the operation of one of the less expensive, throwaway cameras that have
become so popular today and a discussion of the use of capacitors in the
line conditioners (surge protectors) that have found their way into most
homes and throughout the business world. Additional examples of the
use of capacitors will appear throughout the chapter to follow.

WC � �
2

Q

C

2

�

Q
�
C

1
�
2

(a)

P P
E C

B Cce

N

(b)

Cbe Cbc

(c)

Conductors

FIG. 10.71

Examples of stray capacitance.
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Flash Lamp

The basic circuitry for the flash lamp of the popular, inexpensive,
throwaway camera of Fig. 10.72(a) is provided in Fig. 10.72(b), with
the physical circuitry appearing in Fig. 10.72(c). The labels added to
Fig. 10.72(c) identify broad areas of the design and some individual
components. The major components of the electronic circuitry include
a large 160-mF, 330-V, polarized electrolytic capacitor to store the nec-
essary charge for the flash lamp, a flash lamp to generate the required
light, a dc battery of 1.5 V, a chopper network to generate a dc voltage
in excess of 300 V, and a trigger network to establish a few thousand
volts for a very short period of time to fire the flash lamp. There are
both a 22-nF capacitor in the trigger network as shown in Fig. 10.72(b)
and (c) and a third capacitor of 470 pF in the high-frequency oscillator
of the chopper network. In particular, note that the size of each capaci-
tor is directly related to its capacitance level. It should certainly be of
some interest that a single source of energy of only 1.5 V dc can be con-
verted to one of a few thousand volts (albeit for a very short period of
time) to fire the flash lamp. In fact, that single, small battery has suffi-
cient power for the entire run of film through the camera. Always keep
in mind that energy is related to power and time by W � Pt � (VI)t.

���

FIG. 10.72(a)

Flash camera: general appearance.

FIG. 10.72(b)

Flash camera: basic circuitry.
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FIG. 10.72(c)

Flash camera: internal construction.

That is, a high level of voltage can be generated for a defined energy
level so long as the factors I and t are sufficiently small.

When you first use the camera, you are directed to press the flash
button on the face of the camera and wait for the flash-ready light to
come on. As soon as the flash button is depressed, the full 1.5 V of the
dc battery are applied to an electronic network (a variety of networks
can perform the same function) that will generate an oscillating wave-
form of very high frequency (with a high repetitive rate) as shown in
Fig. 10.72(b). The high-frequency transformer will then significantly
increase the magnitude of the generated voltage and will pass it on to a
half-wave rectification system (introduced in earlier chapters), resulting
in a dc voltage of about 300 V across the 160-mF capacitor to charge the
capacitor (as determined by Q � CV). Once the 300-V level is reached,
the lead marked “sense” in Fig. 10.72(b) will feed the information back
to the oscillator and will turn it off until the output dc voltage drops to
a low threshold level. When the capacitor is fully charged, the neon



light in parallel with the capacitor will turn on (labeled “flash-ready
lamp” on the camera) to let you know that the camera is ready to use.
The entire network from the 1.5-V dc level to the final 300-V level is
called a dc-dc converter. The terminology chopper network comes from
the fact that the applied dc voltage of 1.5 V was chopped up into one
that changes level at a very high frequency so that the transformer can
perform its function.

Even though the camera may use a 60-V neon light, the neon light
and series resistor Rn must have a full 300 V across the branch before
the neon light will turn on. Neon lights are simply bulbs with a neon
gas that will support conduction when the voltage across the terminals
reaches a sufficiently high level. There is no filament, or hot wire as in
a light bulb, but simply conduction through the gaseous medium. For
new cameras the first charging sequence may take 12 s to 15 s. Suc-
ceeding charging cycles may only take some 7 s or 8 s because the
capacitor will still have some residual charge on its plates. If the flash
unit is not used, the neon light will begin to drain the 300-V dc supply
with a drain current in microamperes. As the terminal voltage drops,
there will come a point where the neon light will turn off. For the unit
of Fig. 10.72, it takes about 15 min before the light turns off. Once off,
the neon light will no longer drain the capacitor, and the terminal volt-
age of the capacitor will remain fairly constant. Eventually, however,
the capacitor will discharge due to its own leakage current, and the ter-
minal voltage will drop to very low levels. The discharge process is
very rapid when the flash unit is used, causing the terminal voltage to
drop very quickly (V � Q/C) and, through the feedback-sense connec-
tion signal, causing the oscillator to start up again and recharge the
capacitor. You may have noticed when using a camera of this type that
once the camera has its initial charge, there is no need to press the
charge button between pictures—it is done automatically. However, if
the camera sits for a long period of time, the charge button will have to
be depressed again; but you will find that the charge time is only 3 s or
4 s due to the residual charge on the plates of the capacitor.

The 300 V across the capacitor are insufficient to fire the flash lamp.
Additional circuitry, called the trigger network, must be incorporated to
generate the few thousand volts necessary to fire the flash lamp. The
resulting high voltage is one reason that there is a CAUTION note on
each camera regarding the high internal voltages generated and the pos-
sibility of electrical shock if the camera is opened.

The thousands of volts required to fire the flash lamp require a dis-
cussion that introduces elements and concepts beyond the current level
of the text. However, this description is sensitive to this fact and should
be looked upon as simply a first exposure to some of the interesting
possibilities available from the right mix of elements. When the flash
switch at the bottom left of Fig. 10.72(a) is closed, it will establish a
connection between the resistors R1 and R2. Through a voltage divider
action, a dc voltage will appear at the gate (G) terminal of the SCR
(silicon-controlled rectifier—a device whose state is controlled by the
voltage at the gate terminal). This dc voltage will turn the SCR “on”
and will establish a very low resistance path (like a short circuit)
between its anode (A) and cathode (K) terminals. At this point the trig-
ger capacitor, which is connected directly to the 300 V sitting across the
capacitor, will rapidly charge to 300 V because it now has a direct, low-
resistance path to ground through the SCR. Once it reaches 300 V, the
charging current in this part of the network will drop to 0 A, and the
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SCR will open up again since it is a device that needs a steady current
in the anode circuit to stay on. The capacitor then sits across the paral-
lel coil (with no connection to ground through the SCR) with its full
300 V and begins to quickly discharge through the coil because the only
resistance in the circuit affecting the time constant is the resistance of
the parallel coil. As a result, a rapidly changing current through the coil
will generate a high voltage across the coil for reasons to be introduced
in Chapter 12.

When the capacitor decays to zero volts, the current through the coil
will be zero amperes, but a strong magnetic field has been established
around the coil. This strong magnetic field will then quickly collapse,
establishing a current in the parallel network that will recharge the
capacitor again. This continual exchange between the two storage ele-
ments will continue for a period of time, depending on the resistance in
the ciruit. The more the resistance, the shorter the “ringing” of the volt-
age at the output. This action of the energy “flying back” to the other
element is the basis for the “flyback” effect that is frequently used to
generate high dc voltages such as needed in TVs. In Fig. 10.72(b), you
will find that the trigger coil is connected directly to a second coil to
form an autotransformer (a transformer with one end connected).
Through transformer action the high voltage generated across the trig-
ger coil will be increased further, resulting in the 4000 V necessary to
fire the flash lamp. Note in Fig. 10.72(c) that the 4000 V are applied to
a grid that actually lies on the surface of the glass tube of the flash lamp
(not internally connected or in contact with the gases). When the trig-
ger voltage is applied, it will excite the gases in the lamp, causing a
very high current to develop in the bulb for a very short period of time
and producing the desired bright light. The current in the lamp is sup-
ported by the charge on the 160-mF capacitor which will be dissipated
very quickly. The capacitor voltage will drop very quickly, the photo
lamp will shut down, and the charging process will begin again. If the
entire process didn’t occur as quickly as it does, the lamp would burn
out after a single use.

Line Conditioner (Surge Protector)

In recent years we have all become familiar with the line conditioner as
a safety measure for our computers, TVs, CD players, and other sensi-
tive instrumentation. In addition to protecting equipment from unex-
pected surges in voltage and current, most quality units will also filter
out (remove) electromagnetic interference (EMI) and radio-frequency
interference (RFI). EMI encompasses any unwanted disturbances down
the power line established by any combination of electromagnetic
effects such as those generated by motors on the line, power equipment
in the area emitting signals picked up by the power line acting as an
antenna, and so on.  RFI includes all signals in the air in the audio range
and beyond which may also be picked up by power lines inside or out-
side the house.

The unit of Fig. 10.73 has all the design features expected in a good
line conditioner. Figure 10.73(a) reveals that it can handle the power
drawn by six outlets and that it is set up for FAX/MODEM protection.
Also note that it has both LED (light-emitting diode) displays which
reveal whether there is fault on the line or whether the line is OK and
an external circuit breaker to reset the system. In addition, when the
surge protector is on, a red light will be visible at the power switch.

���

FIG. 10.73(a)

Line conditioner: general appearance.
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FIG. 10.73 (cont.)

Line conditioner: (b) electrical schematic; (c) internal construction.



The schematic of Fig. 10.73(b) does not include all the details of the
design, but it does include the major components that appear in most
good line conditioners. First note in the photograph of Fig. 10.73(c) that
the outlets are all connected in parallel, with a ground bar used to estab-
lish a ground connection for each outlet. The circuit board had to be
flipped over to show the components, so it will take some adjustment to
relate the position of the elements on the board to the casing. The feed
line or hot lead wire (black in the actual unit) is connected directly from
the line to the circuit breaker. The other end of the circuit breaker is con-
nected to the other side of the circuit board. All the large discs that you
see are 2-nF/73 capacitors [not all have been included in Fig 10.73(b) for
clarity]. There are quite a few capacitors to handle all the possibilities.
For instance, there are capacitors from line to return (black wire to white
wire), from line to ground (black to green), and from return to ground
(white to ground). Each has two functions. The first and most obvious
function is to prevent any spikes in voltage that may come down the line
because of external effects such as lightning from reaching the equip-
ment plugged into the unit. Recall from this chapter that the voltage
across capacitors cannot change instantaneously and in fact will act to
squelch any rapid change in voltage across its terminals. The capacitor,
therefore, will prevent the line to neutral voltage from changing too
quickly, and any spike that tries to come down the line will have to find
another point in the feed circuit to fall across. In this way the appliances
to the surge protector are well protected.

The second function requires some knowledge of the reaction of
capacitors to different frequencies and will be discussed in more detail
in later chapters. For the moment, let it suffice to say that the capaci-
tor will have a different impedance to different frequencies, thereby
preventing undesired frequencies, such as those associated with EMI
and RFI disturbances, from affecting the operation of units connected to
the line conditioner. The rectangular-shaped capacitor of 1 mF near the
center of the board is connected directly across the line to take the brunt
of a strong voltage spike down the line. Its larger size is clear evidence
that it is designed to absorb a fairly high energy level that may be estab-
lished by a large voltage—significant current over a period of time that
might exceed a few milliseconds.

The large, toroidal-shaped structure in the center of the circuit board
of Fig. 10.73(c) has two coils (Chapter 12) of 228 mH that appear in the
line and neutral of Fig. 10.73(b). Their purpose, like that of the capaci-
tors, is twofold: to block spikes in current from coming down the line
and to block unwanted EMI and RFI frequencies from getting to the
connected systems. In the next chapter you will find that coils act as
“chokes” to quick changes in current; that is, the current through a coil
cannot change instantaneously. For increasing frequencies, such as
those associated with EMI and RFI disturbances, the reactance of a coil
increases and will absorb the undesired signal rather than let it pass
down the line. Using a choke in both the line and the neutral makes the
conditioner network balanced to ground. In total, capacitors in a line
conditioner have the effect of bypassing the disturbances, whereas
inductors block the disturbance.

The smaller disc (blue) between two capacitors and near the circuit
breaker is an MOV (metal-oxide varistor) which is the heart of most
line conditioners. It is an electronic device whose terminal characteris-
tics will change with the voltage applied across its terminals. For the
normal range of voltages down the line, its terminal resistance will be
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sufficiently large to be considered an open circuit, and its presence can
be ignored. However, if the voltage is too large, its terminal character-
istics will change from a very large resistance to a very small resistance
that can essentially be considered a short circuit. This variation in resis-
tance with applied voltage is the reason for the name varistor. For
MOVs in North America where the line voltage is 120 V, the MOVs are
180 V or more. The reason for the 60-V difference is that the 120-V rat-
ing is an effective value related to dc voltage levels, whereas the wave-
form for the voltage at any 120-V outlet has a peak value of about
170 V. A great deal more will be said about this topic in Chapter 13.

Taking a look at the symbol for an MOV in Fig. 10.73(b), you will
note that it has an arrow in each direction, revealing that the MOV is
bidirectional and will block voltages with either polarity. In general,
therefore, for normal operating conditions, the presence of the MOV
can be ignored; but, if a large spike should appear down the line,
exceeding the MOV rating, it will act as a short across the line to pro-
tect the connected circuitry. It is a significant improvement to simply
putting a fuse in the line because it is voltage sensitive, can react much
quicker than a fuse, and will display its low-resistance characteristics
for only a short period of time. When the spike has passed, it will return
to its normal open-circuit characteristic. If you’re wondering where the
spike will go if the load is protected by a short circuit, remember that
all sources of disturbance, such as lightning, generators, inductive
motors (such as in air conditioners, dishwashers, power saws, and so
on), have their own “source resistance,” and there is always some resis-
tance down the line to absorb the disturbance.

Most line conditioners, as part of their advertising, like to mention
their energy absorption level. The rating of the unit of Fig. 10.73 is
1200 J which is actually higher than most. Remembering that W �
Pt � EIt from the earlier discussion of cameras, we now realize that if
a 5000-V spike came down the line, we would be left with the product
It � W/E � 1200 J/5000 V � 240 mAs. Assuming a linear relationship
between all quantities, the rated energy level is revealing that a current
of 100 A could be sustained for t � 240 mAs/100 A � 2.4 ms, a cur-
rent of 1000 A for 240 ms, and a current of 10,000 A for 24 ms. Obvi-
ously, the higher the power product of E and I, the less the time ele-
ment.

The technical specifications of the unit of Fig. 10.73 include an
instantaneous response time of 0 ns (questionable), with a phone line
protection of 5 ns. The unit is rated to dissipate surges up to 6000 V and
current spikes up to 96,000 A. It has a very high noise suppression ratio
(80 dB; see Chapter 23) at frequencies from 50 kHz to 1000 MHz, and
(a credit to the company) it has a lifetime warranty.

10.17 COMPUTER ANALYSIS

PSpice

Transient RC Response PSpice will now investigate the transient
response for the voltage across the capacitor of Fig. 10.74. In all the
examples in the text involving a transient response, a switch appeared
in series with the source as shown in Fig. 10.75(a). When applying
PSpice, we establish this instantaneous change in voltage level by

R

5 k�

20 VE C

iC

8 µF

+

–

vC

FIG. 10.74

Circuit to be analyzed using PSpice.
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applying a pulse waveform as shown in Fig. 10.75(b) with a pulse
width (PW) longer than the period (5t) of interest for the network.

A pulse source is obtained through the sequence Place part key-
Libraries-SOURCE-VPULSE-OK. Once in place, the label and all
the parameters can be set by simply double-clicking on each to obtain
the Display Properties dialog box. As you scroll down the list of attri-
butes, you will see the following parameters defined by Fig. 10.76:

V1 is the initial value.
V2 is the pulse level.
TD is the delay time.
TR is the rise time.
TF is the fall time.
PW is the pulse width at the V2 level.
PER is the period of the waveform.

All the parameters have been set as shown on the schematic of Fig.
10.77 for the network of Fig. 10.74. Since a rise and fall time of 0 s is
unrealistic from a practical standpoint, 0.1 ms was chosen for each in
this example. Further, since t � RC � (5 k�) � (8 mF) � 20 ms and
5t � 200 ms, a pulse width of 500 ms was selected. The period was
simply chosen as twice the pulse width.

Now for the simulation process. First the New Simulation Profile
key is selected to obtain the New Simulation dialog box in which
TransientRC is inserted for the Name and Create is chosen to leave
the dialog box. The Simulation Settings-Transient RC dialog box will
result, and under Analysis, the Time Domain (Transient) option is
chosen under Analysis type. The Run to time is set at 200 ms so that
only the first five time constants will be plotted. The Start saving data
after option will be 0 s to ensure that the data are collected immedi-
ately. The Maximum step size is 1 ms to provide sufficient data points
for a good plot. Click OK, and we are ready to select the Run PSpice
key. The result will be a graph without a plot (since it has not been
defined yet) and an x-axis that extends from 0 s to 200 ms as defined
above. To obtain a plot of the voltage across the capacitor versus time,
the following sequence is applied: Add Trace key-Add Traces dialog
box-V1(C)-OK, and the plot of Fig. 10.78 will result. The color and
thickness of the plot and the axis can be changed by placing the cursor
on the plot line and performing a right click. A list will appear in which
Properties should be selected; then a Trace Properties dialog box will
appear in which the color and thickness of the line can be changed.
Since the plot is against a black background, a better printout occurred
when yellow was selected and the line was made thicker as shown in
Fig. 10.78. Next, the cursor can be put on the axis, and another right
click will allow you to make the axis yellow and thicker for a better
printout. For comparison it seemed appropriate to plot the applied pulse
signal also. This is accomplished by going back to Trace and selecting
Add Trace followed by V(Vpulse:�) and OK. Now both waveforms
appear on the same screen as shown in Fig. 10.78. In this case, the plot
was left a greenish tint so it could be distinguished from the axis and
the other plot. Note that it follows the left axis to the top and travels
across the screen at 20 V.

If you want the magnitude of either plot at any instant, simply select
the Toggle cursor key. Then click on V1(C) at the bottom left of the
screen. A box will appear around V1(C) that will reveal the spacing
between the dots of the cursor on the screen. This is important when

(a)

(b)

b

a

+

–

e

0 t

20 V

b

a

+

–

20 VE
t0

20 V

e

FIG. 10.75

Establishing a switching dc voltage level: 
(a) series dc voltage-switch combination; 

(b) PSpice pulse option.

V1

TR

V2

PW

TF

TD
t0

PER

FIG. 10.76

The defining parameters of PSpice VPULSE.
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FIG. 10.77

Using PSpice to investigate the transient response of the series R-C circuit 
of Fig. 10.74.

FIG. 10.78

Transient response for the voltage across the capacitor of Fig. 10.74 when
VPulse is applied.
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more than one cursor is used. By moving the cursor to 200 ms, we find
that the magnitude (A1) is 19.865 V (in the Probe Cursor dialog box),
clearly showing how close it is to the final value of 20 V. A second cur-
sor can be placed on the screen with a right click and then a click on the
same V1(C) on the bottom of the screen. The box around V1(C) cannot
show two boxes, but the spacing and the width of the lines of the box
have definitely changed. There is no box around the Pulse symbol since
it was not selected—although it could have been selected by either cur-
sor. If we now move the second cursor to one time constant of 40 ms,
we find that the voltage is 12.633 V as shown in the Probe Cursor dia-
log box. This confirms the fact that the voltage should be 63.2% of its
final value of 20 V in one time constant (0.632 � 20 V � 12.4 V). Two
separate plots could have been obtained by going to Plot-Add Plot to
Window and then using the trace sequence again.

Average Capacitive Current As an exercise in using the pulse
source and to verify our analysis of the average current for a purely
capacitive network, the description to follow will verify the results of
Example 10.13. For the pulse waveform of Fig. 10.59, the parameters
of the pulse supply appear in Fig. 10.79. Note that the rise time is now
2 ms, starting at 0 s, and the fall time is 6 ms. The period was set at
15 ms to permit monitoring the current after the pulse had passed.

Simulation is initiated by first selecting the New Simulation Profile
key to obtain the New Simulation dialog box in which AverageIC is
entered as the Name. Create is then chosen to obtain the Simulation

FIG. 10.79

Using PSpice to verify the results of Example 10.13.
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Settings-AverageIC dialog box. Analysis is selected, and Time
Domain(Transient) is chosen under the Analysis type options. The
Run to time is set to 15 ms to encompass the period of interest, and the
Start saving data after is set at 0 s to ensure data points starting at t �
0 s. The Maximum step size is selected from 15 ms/1000 � 15 ms to
ensure 1000 data points for the plot. Click OK, and the Run PSpice
key is selected. A window will appear with a horizontal scale that
extends from 0 to 15 ms as defined above. Then the Add Trace key is
selected, and I(C) is chosen to appear in the Trace Expression below.
Click OK, and the plot of I(C) appears in the bottom of Fig. 10.80. This
time it would be nice to see the pulse waveform in the same window but
as a separate plot. Therefore, continue with Plot-Add Plot to Window-
Trace-Add Trade-V(Vpulse:�)-OK, and both plots appear as shown
in Fig. 10.80.

FIG. 10.80

The applied pulse and resulting current for the 2-mF capacitor of Fig. 10.79.

The cursors can now be used to measure the resulting average cur-
rent levels. First, select the I(C) plot to move the SEL>> notation to the
lower plot. The SEL>> defines which plot for multiplot screens is
active. Then select the Toggle cursor key, and left-click on the I(C)
plot to establish the crosshairs of the cursor. Set the value at 1 ms, and
the magnitude A1 is displayed as 4 mA. Right-click on the same plot,
and a second cursor will result that can be placed at 6 ms to get a
response of �1.33 mA (A2) as expected from Example 10.13. Both
plots were again placed in the yellow color with a wider line by right-
clicking on the curve and choosing Properties.
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PROBLEMS

SECTION 10.2 The Electric Field

1. Find the electric field strength at a point 2 m from a
charge of 4 mC.

2. The electric field strength is 36 newtons/coulomb (N/C)
at a point r meters from a charge of 0.064 mC. Find the
distance r.

SECTION 10.3 Capacitance

3. Find the capacitance of a parallel plate capacitor if
1400 mC of charge are deposited on its plates when 20 V
are applied across the plates.

4. How much charge is deposited on the plates of a 0.05-mF
capacitor if 45 V are applied across the capacitor?

5. Find the electric field strength between the plates of a
parallel plate capacitor if 100 mV are applied across the
plates and the plates are 2 mm apart.

6. Repeat Problem 5 if the plates are separated by 4 mils.

7. A 4-mF parallel plate capacitor has 160 mC of charge on
its plates. If the plates are 5 mm apart, find the electric
field strength between the plates.

8. Find the capacitance of a parallel plate capacitor if the
area of each plate is 0.075 m2 and the distance between
the plates is 1.77 mm. The dielectric is air.

9. Repeat Problem 8 if the dielectric is paraffin-coated paper.

10. Find the distance in mils between the plates of a 2-mF
capacitor if the area of each plate is 0.09 m2 and the
dielectric is transformer oil.

11. The capacitance of a capacitor with a dielectric of air is
1200 pF. When a dielectric is inserted between the plates,
the capacitance increases to 0.006 mF. Of what material
is the dielectric made?

12. The plates of a parallel plate air capacitor are 0.2 mm
apart and have an area of 0.08 m2, and 200 V are applied
across the plates.
a. Determine the capacitance.
b. Find the electric field intensity between the plates.
c. Find the charge on each plate if the dielectric is air.

13. A sheet of Bakelite 0.2 mm thick having an area of
0.08 m2 is inserted between the plates of Problem 12.
a. Find the electric field strength between the plates.
b. Determine the charge on each plate.
c. Determine the capacitance.

SECTION 10.4 Dielectric Strength

14. Find the maximum voltage ratings of the capacitors of
Problems 12 and 13 assuming a linear relationship
between the breakdown voltage and the thickness of the
dielectric.

15. Find the maximum voltage that can be applied across a
parallel plate capacitor of 0.006 mF. The area of one plate
is 0.02 m2 and the dielectric is mica. Assume a linear
relationship between the dielectric strength and the thick-
ness of the dielectric.
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16. Find the distance in millimeters between the plates of a
parallel plate capacitor if the maximum voltage that can
be applied across the capacitor is 1250 V. The dielectric
is mica. Assume a linear relationship between the break-
down strength and the thickness of the dielectric.

FIG. 10.83

Problem 20.
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FIG. 10.81

Problems 17 and 18.
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FIG. 10.82

Problem 19.
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FIG. 10.84

Problems 21 and 22.

SECTION 10.7 Transients in Capacitive Networks:

Charging Phase

17. For the circuit of Fig. 10.81:
a. Determine the time constant of the circuit.
b. Write the mathematical equation for the voltage vC

following the closing of the switch.
c. Determine the voltage vC after one, three, and five

time constants.
d. Write the equations for the current iC and the voltage vR.
e. Sketch the waveforms for vC and iC.

18. Repeat Problem 17 for R � 1 M�, and compare the
results.

19. For the circuit of Fig. 10.82:
a. Determine the time constant of the circuit.
b. Write the mathematical equation for the voltage vC

following the closing of the switch.
c. Determine vC after one, three, and five time constants.
d. Write the equations for the current iC and the voltage vR.
e. Sketch the waveforms for vC and iC.

20. For the circuit of Fig. 10.83:
a. Determine the time constant of the circuit.
b. Write the mathematical equation for the voltage vC

following the closing of the switch.
c. Write the mathematical expression for the current iC

following the closing of the switch.
d. Sketch the waveforms of vC and iC.

SECTION 10.8 Discharge Phase

21. For the circuit of Fig. 10.84:
a. Determine the time constant of the circuit when the

switch is thrown into position 1.
b. Find the mathematical expression for the voltage

across the capacitor after the switch is thrown into
position 1.

c. Determine the mathematical expression for the cur-
rent following the closing of the switch (position 1).

d. Determine the voltage vC and the current iC if the
switch is thrown into position 2 at t � 100 ms.

e. Determine the mathematical expressions for the volt-
age vC and the current iC if the switch is thrown into
position 3 at t � 200 ms.

f. Plot the waveforms of vC and iC for a period of time
extending from t � 0 to t � 300 ms.
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FIG. 10.85

Problem 23.
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FIG. 10.86

Problem 24.

FIG. 10.87

Problems 25 and 29.
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Problem 26.
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FIG. 10.89

Problem 27.

6 V
+ –

C  = 1000  µFµ

22. Repeat Problem 21 for a capacitance of 20 mF.

*23. For the network of Fig. 10.85:
a. Find the mathematical expression for the voltage

across the capacitor after the switch is thrown into
position 1.

b. Repeat part (a) for the current iC.
c. Find the mathematical expressions for the voltage vC

and current iC if the switch is thrown into position 2
at a time equal to five time constants of the charging
circuit.

d. Plot the waveforms of vC and iC for a period of time
extending from t � 0 to t � 30 ms.

24. The capacitor of Fig. 10.86 is initially charged to 40 V
before the switch is closed. Write the expressions for the
voltages vC and vR and the current iC for the decay phase.

25. The 1000-mF capacitor of Fig. 10.87 is charged to 6 V. To
discharge the capacitor before further use, a wire with a
resistance of 0.002 � is placed across the capacitor.
a. How long will it take to discharge the capacitor?
b. What is the peak value of the current?
c. Based on the answer to part (b), is a spark expected

when contact is made with both ends of the capacitor?

SECTION 10.9 Initial Values

26. The capacitor in Fig. 10.88 is initially charged to 3 V
with the polarity shown.
a. Find the mathematical expressions for the voltage vC

and the current iC when the switch is closed.
b. Sketch the waveforms for vC and iC.

*27. The capacitor of Fig. 10.89 is initially charged to 12 V
with the polarity shown.
a. Find the mathematical expressions for the voltage vC

and the current iC when the switch is closed.
b. Sketch the waveforms for vC and iC.

SECTION 10.10 Instantaneous Values

28. Given the expression vC � 8(1 � e�t/(20�10�6)):
a. Determine vC after five time constants.
b. Determine vC after 10 time constants.
c. Determine vC at t � 5 ms.
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Problem 30.
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Problem 31.
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Problem 32.
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Problem 33.

29. For the situation of Problem 25, determine when the dis-
charge current is one-half its maximum value if contact is
made at t � 0 s.

30. For the network of Fig. 10.90, VL must be 8 V before the
system is activated. If the switch is closed at t � 0 s, how
long will it take for the system to be activated?

*31. Design the network of Fig. 10.91 such that the system
will turn on 10 s after the switch is closed.

32. For the circuit of Fig. 10.92:
a. Find the time required for vC to reach 60 V following

the closing of the switch.
b. Calculate the current iC at the instant vC � 60 V.
c. Determine the power delivered by the source at the

instant t � 2t.

*33. For the network of Fig. 10.93:
a. Calculate vC, iC, and vR1

at 0.5 s and 1 s after the
switch makes contact with position 1.

b. The network sits in position 1 10 min before the
switch is moved to position 2. How long after making
contact with position 2 will it take for the current iC to
drop to 8 mA? How much longer will it take for vC to
drop to 10 V?

+ –

C

0.2 mF

E 60 V

iC

+  vC  –

DMM

FIG. 10.94

Problem 34.

34. For the system of Fig. 10.94, using a DMM with a 
10-M� internal resistance in the voltmeter mode:
a. Determine the voltmeter reading one time constant

after the switch is closed.
b. Find the current iC two time constants after the switch

is closed.
c. Calculate the time that must pass after the closing of

the switch for the voltage vC to be 50 V.
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SECTION 10.11 Thévenin Equivalent: t � RThC

35. For the system of Fig. 10.95, using a DMM with a
10-M� internal resistance in the voltmeter mode:
a. Determine the voltmeter reading four time constants

after the switch is closed.
b. Find the time that must pass before iC drops to 3 mA.
c. Find the time that must pass after the closing of the

switch for the voltage across the meter to reach 10 V.

36. For the circuit of Fig. 10.96:
a. Find the mathematical expressions for the transient

behavior of the voltage vC and the current iC follow-
ing the closing of the switch.

b. Sketch the waveforms of vC and iC.

*37. Repeat Problem 36 for the circuit of Fig. 10.97.

38. The capacitor of Fig. 10.98 is initially charged to 4 V
with the polarity shown.
a. Write the mathematical expressions for the voltage vC

and the current iC when the switch is closed.
b. Sketch the waveforms of vC and iC.
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Problem 35.
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Problem 36.
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Problems 37 and 55.
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Problem 38.
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Problem 39.

39. The capacitor of Fig. 10.99 is initially charged to 2 V
with the polarity shown.
a. Write the mathematical expressions for the voltage vC

and the current iC when the switch is closed.
b. Sketch the waveforms of vC and iC.
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Problem 40.
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Problem 41.

*40. The capacitor of Fig. 10.100 is initially charged to 3 V
with the polarity shown.
a. Write the mathematical expressions for the voltage vC

and the current iC when the switch is closed.
b. Sketch the waveforms of vC and iC.

SECTION 10.12 The Current iC

41. Find the waveform for the average current if the voltage
across a 0.06-mF capacitor is as shown in Fig. 10.101.

42. Repeat Problem 41 for the waveform of Fig. 10.102.

*43. Given the waveform of Fig. 10.103 for the current of a
20-mF capacitor, sketch the waveform of the voltage vC

across the capacitor if vC � 0 V at t � 0 s.

v (V)
3

2

1

0

–1

–2

–3

1 2 4 5 6 7 8 9 10 11 12 13 14 15 t  (ms)163

FIG. 10.102

Problem 42.
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FIG. 10.103

Problem 43.
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SECTION 10.13 Capacitors in Series and Parallel

44. Find the total capacitance CT between points a and b of
the circuits of Fig. 10.104.

45. Find the voltage across and charge on each capacitor for
the circuits of Fig. 10.105.

*46. For each configuration of Fig. 10.106, determine the
voltage across each capacitor and the charge on each
capacitor.

3 mF 6 mF

7 mF

0.2 mF

CT

a

b

(a)

60 pF

CT

a

b

(b)

20 pF 10 pF 30 pF

FIG. 10.104

Problem 44.
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Problem 45.
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Problem 46.
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Problem 47.

*47. For the network of Fig. 10.107, determine the following
100 ms after the switch is closed:
a. Vab

b. Vac

c. Vcb

d. Vda

e. If the switch is moved to position 2 one hour later,
find the time required for vR2

to drop to 20 V.

48. For the circuits of Fig. 10.108, find the voltage across and
charge on each capacitor after each capacitor has charged
to its final value.
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FIG. 10.108

Problem 48.

4 k�

6 k�

(b)

60 mF

C1

80 V
5 k�

40 mF

C2

SECTION 10.14 Energy Stored by a Capacitor

49. Find the energy stored by a 120-pF capacitor with 12 V
across its plates.

50. If the energy stored by a 6-mF capacitor is 1200 J, find
the charge Q on each plate of the capacitor.

*51. An electronic flashgun has a 1000-mF capacitor that is
charged to 100 V.
a. How much energy is stored by the capacitor?
b. What is the charge on the capacitor?
c. When the photographer takes a picture, the flash fires

for 1/2000 s. What is the average current through the
flashtube?

d. Find the power delivered to the flashtube.
e. After a picture is taken, the capacitor has to be

recharged by a power supply that delivers a maximum
current of 10 mA. How long will it take to charge the
capacitor?

52. For the network of Fig. 10.109:
a. Determine the energy stored by each capacitor under

steady-state conditions.
b. Repeat part (a) if the capacitors are in series.

3 k�

6 k�
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6 mF 12 mF

FIG. 10.109

Problem 52.
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SECTION 10.17 Computer Analysis

PSpice or Electronics Workbench

53. Using schematics:
a. Obtain the waveforms for vC and iC versus time for

the network of Fig. 10.35.
b. Obtain the power curve (representing the energy

stored by the capacitor over the same time interval),
and compare it to the plot of Fig. 10.70.

*54. Using schematics, obtain the waveforms of vC and iC ver-
sus time for the network of Fig. 10.49 using the IC option.

55. Verify your solution to Problem 37 (Fig. 10.97) using
schematics.

Programming Language (C��, QBASIC, Pascal, etc.)

56. Write a QBASIC program to tabulate the voltage vC and
current iC for the network of Fig. 10.44 for five time con-
stants after the switch is moved to position 1 at t � 0 s.
Use an increment of (1/5)t.

*57. Write a program to write the mathematical expression for
the voltage vC for the network of Fig. 10.52 for any ele-
ment values when the switch is moved to position 1.

*58. Given three capacitors in any series-parallel arrangement,
write a program to determine the total capacitance. That
is, determine the total number of possibilities, and ask the
user to identify the configuration and provide the capaci-
tor values. Then calculate the total capacitance.

GLOSSARY

Breakdown voltage Another term for dielectric strength,
listed below.

Capacitance A measure of a capacitor’s ability to store
charge; measured in farads (F).

Capacitive time constant The product of resistance and
capacitance that establishes the required time for the charg-
ing and discharging phases of a capacitive transient.

Capacitive transient The waveforms for the voltage and
current of a capacitor that result during the charging and
discharging phases.

Capacitor A fundamental electrical element having two con-
ducting surfaces separated by an insulating material and
having the capacity to store charge on its plates.

Coulomb’s law An equation relating the force between two
like or unlike charges.

Dielectric The insulating material between the plates of a
capacitor that can have a pronounced effect on the charge
stored on the plates of a capacitor.

Dielectric constant Another term for relative permittivity,
listed below.

Dielectric strength An indication of the voltage required for
unit length to establish conduction in a dielectric.

Electric field strength The force acting on a unit positive
charge in the region of interest.

Electric flux lines Lines drawn to indicate the strength and
direction of an electric field in a particular region.

Fringing An effect established by flux lines that do not pass
directly from one conducting surface to another.

Leakage current The current that will result in the total dis-
charge of a capacitor if the capacitor is disconnected from
the charging network for a sufficient length of time.

Permittivity A measure of how well a dielectric will permit
the establishment of flux lines within the dielectric.

Relative permittivity The permittivity of a material com-
pared to that of air.

Stray capacitance Capacitances that exist not through
design but simply because two conducting surfaces are rel-
atively close to each other.

Surge voltage The maximum voltage that can be applied
across a capacitor for very short periods of time.

Working voltage The voltage that can be applied across a
capacitor for long periods of time without concern for
dielectric breakdown.
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11.1 INTRODUCTION

Magnetism plays an integral part in almost every electrical device used
today in industry, research, or the home. Generators, motors, trans-
formers, circuit breakers, televisions, computers, tape recorders, and
telephones all employ magnetic effects to perform a variety of impor-
tant tasks.

The compass, used by Chinese sailors as early as the second century
A.D., relies on a permanent magnet for indicating direction. The per-
manent magnet is made of a material, such as steel or iron, that will
remain magnetized for long periods of time without the need for an
external source of energy.

In 1820, the Danish physicist Hans Christian Oersted discovered
that the needle of a compass would deflect if brought near a current-
carrying conductor. For the first time it was demonstrated that elec-
tricity and magnetism were related, and in the same year the French
physicist André-Marie Ampère performed experiments in this area and
developed what is presently known as Ampère’s circuital law. In sub-
sequent years, men such as Michael Faraday, Karl Friedrich Gauss,
and James Clerk Maxwell continued to experiment in this area and
developed many of the basic concepts of electromagnetism—mag-
netic effects induced by the flow of charge, or current.

There is a great deal of similarity between the analyses of electric
circuits and magnetic circuits. This will be demonstrated later in this
chapter when we compare the basic equations and methods used to
solve magnetic circuits with those used for electric circuits.

Difficulty in understanding methods used with magnetic circuits will
often arise in simply learning to use the proper set of units, not because
of the equations themselves. The problem exists because three different
systems of units are still used in the industry. To the extent practical, SI
will be used throughout this chapter. For the CGS and English systems,
a conversion table is provided in Appendix F.

Magnetic Circuits
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11.2 MAGNETIC FIELDS

In the region surrounding a permanent magnet there exists a magnetic
field, which can be represented by magnetic flux lines similar to elec-
tric flux lines. Magnetic flux lines, however, do not have origins or ter-
minating points as do electric flux lines but exist in continuous loops, as
shown in Fig. 11.1. The symbol for magnetic flux is the Greek letter �
(phi).

The magnetic flux lines radiate from the north pole to the south pole,
returning to the north pole through the metallic bar. Note the equal
spacing between the flux lines within the core and the symmetric distri-
bution outside the magnetic material. These are additional properties of
magnetic flux lines in homogeneous materials (that is, materials having
uniform structure or composition throughout). It is also important to
realize that the continuous magnetic flux line will strive to occupy as
small an area as possible. This will result in magnetic flux lines of min-
imum length between the like poles, as shown in Fig. 11.2. The strength
of a magnetic field in a particular region is directly related to the den-
sity of flux lines in that region. In Fig. 11.1, for example, the magnetic
field strength at a is twice that at b since twice as many magnetic flux
lines are associated with the perpendicular plane at a than at b. Recall
from childhood experiments that the strength of permanent magnets
was always stronger near the poles.

If unlike poles of two permanent magnets are brought together, the
magnets will attract, and the flux distribution will be as shown in Fig.
11.2. If like poles are brought together, the magnets will repel, and the
flux distribution will be as shown in Fig. 11.3.

Same area b

a S N

Flux lines

�

FIG. 11.1

Flux distribution for a permanent magnet.

N S N S

FIG. 11.2

Flux distribution for two adjacent, opposite
poles.

S N N S

FIG. 11.3

Flux distribution for two adjacent, like poles.

N

Soft iron

S

Flux lines

Glass

FIG. 11.4

Effect of a ferromagnetic sample on the flux
distribution of a permanent magnet.

FIG. 11.5

Effect of a magnetic shield on the flux
distribution.

Sensitive
instrument

Soft iron

If a nonmagnetic material, such as glass or copper, is placed in the
flux paths surrounding a permanent magnet, there will be an almost
unnoticeable change in the flux distribution (Fig. 11.4). However, if a
magnetic material, such as soft iron, is placed in the flux path, the flux
lines will pass through the soft iron rather than the surrounding air
because flux lines pass with greater ease through magnetic materials
than through air. This principle is put to use in the shielding of sensitive
electrical elements and instruments that can be affected by stray mag-
netic fields (Fig. 11.5).

As indicated in the introduction, a magnetic field (represented by
concentric magnetic flux lines, as in Fig. 11.6) is present around every
wire that carries an electric current. The direction of the magnetic flux
lines can be found simply by placing the thumb of the right hand in the
direction of conventional current flow and noting the direction of the
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Conductor
Magnetic flux lines

I

FIG. 11.6

Magnetic flux lines around a current-carrying
conductor.

I
I

FIG. 11.7

Flux distribution of a single-turn coil.

FIG. 11.8

Flux distribution of a current-carrying coil.
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II

FIG. 11.9

Electromagnet.
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(b)
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�

FIG. 11.10

Determining the direction of flux for an
electromagnet: (a) method; (b) notation.

fingers. (This method is commonly called the right-hand rule.) If the
conductor is wound in a single-turn coil (Fig. 11.7), the resulting flux
will flow in a common direction through the center of the coil. A coil of
more than one turn would produce a magnetic field that would exist in
a continuous path through and around the coil (Fig. 11.8).

The flux distribution of the coil is quite similar to that of the perma-
nent magnet. The flux lines leaving the coil from the left and entering
to the right simulate a north and a south pole, respectively. The princi-
pal difference between the two flux distributions is that the flux lines
are more concentrated for the permanent magnet than for the coil. Also,
since the strength of a magnetic field is determined by the density of the
flux lines, the coil has a weaker field strength. The field strength of the
coil can be effectively increased by placing certain materials, such as
iron, steel, or cobalt, within the coil to increase the flux density (defined
in the next section) within the coil. By increasing the field strength with
the addition of the core, we have devised an electromagnet (Fig. 11.9)
that, in addition to having all the properties of a permanent magnet, also
has a field strength that can be varied by changing one of the compo-
nent values (current, turns, and so on). Of course, current must pass
through the coil of the electromagnet in order for magnetic flux to be
developed, whereas there is no need for the coil or current in the per-
manent magnet. The direction of flux lines can be determined for the
electromagnet (or in any core with a wrapping of turns) by placing the
fingers of the right hand in the direction of current flow around the core.
The thumb will then point in the direction of the north pole of the
induced magnetic flux, as demonstrated in Fig. 11.10(a). A cross sec-
tion of the same electromagnet is included as Fig. 11.10(b) to introduce
the convention for directions perpendicular to the page. The cross and
dot refer to the tail and head of the arrow, respectively.
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Other areas of application for electromagnetic effects are shown in
Fig. 11.11. The flux path for each is indicated in each figure.

Cutaway section

Flux path

Air
gap

Generator

S

N

Transformer
Φ

Secondary

Laminated
sheets of steel

Primary

Loudspeaker

Φ

Medical Applications: Magnetic
resonance imaging.

Φ

Air gap

Φ

Relay

Meter movement

Air gap Φ

N S

FIG. 11.11

Some areas of application of magnetic effects.

11.3 FLUX DENSITY

In the SI system of units, magnetic flux is measured in webers (note
Fig. 11.12) and has the symbol �. The number of flux lines per unit
area is called the flux density, is denoted by the capital letter B, and is
measured in teslas (note Fig. 11.15). Its magnitude is determined by the
following equation:

B � teslas (T) 
B � � � webers (Wb) (11.1)

A � square meters (m2)

where � is the number of flux lines passing through the area A (Fig.
11.13). The flux density at position a in Fig. 11.1 is twice that at b
because twice as many flux lines are passing through the same area.
By definition,

1 T � 1 Wb/m2

�
�
A

FIG. 11.12

Wilhelm Eduard Weber.
FIG. 11.13

Defining the flux density B.

Φ

A

German (Wittenberg, 
Göttingen) 

(1804–91) 

Physicist 

Professor of Physics,

University of 
Göttingen

Courtesy of the 
Smithsonian Institution

Photo No. 52,604

An important contributor to the establishment of a
system of absolute units for the electrical sciences,
which was beginnning to become a very active area of
research and development. Established a definition
of electric current in an electromagnetic system
based on the magnetic field produced by the current.
He was politically active and, in fact, was dismissed
from the faculty of the Universiity of Göttingen for
protesting the suppression of the constitution by the
King of Hanover in 1837. However, he found other
faculty positions and eventually returned to Göt-
tingen as director of the astronomical observatory.
Received honors from England, France, and Ger-
many, including the Copley Medal of the Royal So-
ciety.
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EXAMPLE 11.1 For the core of Fig. 11.14, determine the flux density
B in teslas.

Solution:

B � �
�

A
� � � 5 � 10�2 T

EXAMPLE 11.2 In Fig. 11.14, if the flux density is 1.2 T and the area
is 0.25 in.2, determine the flux through the core.

Solution: By Eq. (11.1),

� � BA

However, converting 0.25 in.2 to metric units,

A � 0.25 in.2� �� � � 1.613 � 10�4 m2

and � � (1.2 T)(1.613 � 10�4 m2)
� 1.936 � 10�4 Wb

An instrument designed to measure flux density in gauss (CGS sys-
tem) appears in Fig. 11.16. Appendix F reveals that 1 T � 104 gauss.
The magnitude of the reading appearing on the face of the meter in Fig.
11.16 is therefore

1.964 gauss� � � 1.964 � 10�4 T

11.4 PERMEABILITY

If cores of different materials with the same physical dimensions are
used in the electromagnet described in Section 11.2, the strength of the
magnet will vary in accordance with the core used. This variation in
strength is due to the greater or lesser number of flux lines passing
through the core. Materials in which flux lines can readily be set up are
said to be magnetic and to have high permeability. The permeability
(m) of a material, therefore, is a measure of the ease with which mag-
netic flux lines can be established in the material. It is similar in many
respects to conductivity in electric circuits. The permeability of free
space mo (vacuum) is

mo � 4p � 10�7

As indicated above, m has the units of Wb/A· m. Practically speak-
ing, the permeability of all nonmagnetic materials, such as copper, alu-
minum, wood, glass, and air, is the same as that for free space. Materi-
als that have permeabilities slightly less than that of free space are said
to be diamagnetic, and those with permeabilities slightly greater than
that of free space are said to be paramagnetic. Magnetic materials,
such as iron, nickel, steel, cobalt, and alloys of these metals, have per-
meabilities hundreds and even thousands of times that of free space.
Materials with these very high permeabilities are referred to as ferro-
magnetic.

Wb
�
A· m

1 T
��
104 gauss

1 m
�
39.37 in.

1 m
�
39.37 in.

6 � 10�5 Wb
��
1.2 � 10�3 m2

�  =  6  �  10–5 Wb
A  =  1.2  �  10–3 m2

� A

FIG. 11.14

Example 11.1.

FIG. 11.15

Nikola Tesla.

FIG. 11.16

Digital display gaussmeter. (Courtesy of LDJ
Electronics, Inc.)

Croatian-American

(Smiljan, Paris,
Colorado Springs,
New York City) 

(1856–1943) 

Electrical Engineer 

and Inventor 

Recipient of the 

Edison Medal in

1917

Courtesy of the 
Smithsonian Institution

Photo No. 52,223

Often regarded as one of the most innovative and
inventive individuals in the history of the sciences.
He was the first to introduce the alternating-current
machine, removing the need for commutator bars of
dc machines. After emigrating to the United States
in 1884, he sold a number of his patents on ac
machines, transformers, and induction coils (includ-
ing the Tesla coil as we know it today) to the West-
inghouse Electric Company. Some say that his most
important discovery was made at his laboratory in
Colorado Springs, where in 1900 he discovered ter-
restrial stationary waves. The range of his discover-
ies and inventions is too extensive to list here but
extends from lighting systems to polyphase power
systems to a wireless world broadcasting system.
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The ratio of the permeability of a material to that of free space is
called its relative permeability; that is,

(11.2)

In general, for ferromagnetic materials, mr ≥ 100, and for nonmagnetic
materials, mr � 1.

Since mr is a variable, dependent on other quantities of the magnetic
circuit, values of mr are not tabulated. Methods of calculating mr from
the data supplied by manufacturers will be considered in a later section.

11.5 RELUCTANCE

The resistance of a material to the flow of charge (current) is deter-
mined for electric circuits by the equation

R � r�
A
l
� (ohms, �)

The reluctance of a material to the setting up of magnetic flux lines
in the material is determined by the following equation:

(rels, or At/Wb) (11.3)

where � is the reluctance, l is the length of the magnetic path, and A is
the cross-sectional area. The t in the units At/Wb is the number of turns
of the applied winding. More is said about ampere-turns (At) in the next
section. Note that the resistance and reluctance are inversely propor-
tional to the area, indicating that an increase in area will result in a
reduction in each and an increase in the desired result: current and flux.
For an increase in length the opposite is true, and the desired effect is
reduced. The reluctance, however, is inversely proportional to the per-
meability, while the resistance is directly proportional to the resistivity.
The larger the m or the smaller the r, the smaller the reluctance and
resistance, respectively. Obviously, therefore, materials with high per-
meability, such as the ferromagnetics, have very small reluctances and
will result in an increased measure of flux through the core. There is no
widely accepted unit for reluctance, although the rel and the At/Wb are
usually applied.

11.6 OHM’S LAW FOR MAGNETIC CIRCUITS

Recall the equation

Effect �

appearing in Chapter 4 to introduce Ohm’s law for electric circuits. For
magnetic circuits, the effect desired is the flux �. The cause is the mag-
netomotive force (mmf) �, which is the external force (or “pressure”)
required to set up the magnetic flux lines within the magnetic material.
The opposition to the setting up of the flux � is the reluctance �.

cause
��
opposition

� � �
m

l

A
�

mr � �
m

m

o

�
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Substituting, we have

(11.4)

The magnetomotive force � is proportional to the product of the
number of turns around the core (in which the flux is to be estab-
lished) and the current through the turns of wire (Fig. 11.17). In equa-
tion form,

(ampere-turns, At) (11.5)

This equation clearly indicates that an increase in the number of turns
or the current through the wire will result in an increased “pressure” on
the system to establish flux lines through the core.

Although there is a great deal of similarity between electric and
magnetic circuits, one must continue to realize that the flux � is not a
“flow” variable such as current in an electric circuit. Magnetic flux is
established in the core through the alteration of the atomic structure of
the core due to external pressure and is not a measure of the flow of
some charged particles through the core.

11.7 MAGNETIZING FORCE

The magnetomotive force per unit length is called the magnetizing
force (H). In equation form,

(At/m) (11.6)

Substituting for the magnetomotive force will result in

(At/m) (11.7)

For the magnetic circuit of Fig. 11.18, if NI � 40 At and l � 0.2 m,
then

H � �
N
l
I

� � � 200 At/m

In words, the result indicates that there are 200 At of “pressure” per
meter to establish flux in the core.

Note in Fig. 11.18 that the direction of the flux � can be determined
by placing the fingers of the right hand in the direction of current
around the core and noting the direction of the thumb. It is interesting
to realize that the magnetizing force is independent of the type of core
material—it is determined solely by the number of turns, the current,
and the length of the core.

The applied magnetizing force has a pronounced effect on the result-
ing permeability of a magnetic material. As the magnetizing force
increases, the permeability rises to a maximum and then drops to a min-
imum, as shown in Fig. 11.19 for three commonly employed magnetic
materials.

40 At
�
0.2 m

H � �
N
l
I

�

H � �
�
l
�

� � NI

� � �
�
�

�

I

I

�

N turns

FIG. 11.17

Defining the components of a magnetomotive
force.

Mean length l  =  0.2 m

I

I
N turns

�

FIG. 11.18

Defining the magnetizing force of a magnetic
circuit.
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The flux density and the magnetizing force are related by the fol-
lowing equation: 

(11.8)

This equation indicates that for a particular magnetizing force, the
greater the permeability, the greater will be the induced flux density.

Since henries (H) and the magnetizing force (H) use the same capi-
tal letter, it must be pointed out that all units of measurement in the text,
such as henries, use roman letters, such as H, whereas variables such as
the magnetizing force use italic letters, such as H.

11.8 HYSTERESIS

A curve of the flux density B versus the magnetizing force H of a mate-
rial is of particular importance to the engineer. Curves of this type can
usually be found in manuals, descriptive pamphlets, and brochures pub-
lished by manufacturers of magnetic materials. A typical B-H curve for
a ferromagnetic material such as steel can be derived using the setup of
Fig. 11.20.

The core is initially unmagnetized and the current I � 0. If the cur-
rent I is increased to some value above zero, the magnetizing force H
will increase to a value determined by

H � �
N

l
ID
�

The flux � and the flux density B (B � �/A) will also increase with the
current I (or H). If the material has no residual magnetism, and the
magnetizing force H is increased from zero to some value Ha, the B-H
curve will follow the path shown in Fig. 11.21 between o and a. If the

B � mH

FIG. 11.19

Variation of m with the magnetizing force.
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magnetizing force H is increased until saturation (Hs) occurs, the curve
will continue as shown in the figure to point b. When saturation occurs,
the flux density has, for all practical purposes, reached its maximum
value. Any further increase in current through the coil increasing H �
NI/l will result in a very small increase in flux density B.

If the magnetizing force is reduced to zero by letting I decrease to
zero, the curve will follow the path of the curve between b and c. The
flux density BR, which remains when the magnetizing force is zero, is
called the residual flux density. It is this residual flux density that makes
it possible to create permanent magnets. If the coil is now removed
from the core of Fig. 11.20, the core will still have the magnetic prop-
erties determined by the residual flux density, a measure of its “reten-
tivity.” If the current I is reversed, developing a magnetizing force, �H,
the flux density B will decrease with an increase in I. Eventually, the
flux density will be zero when �Hd (the portion of curve from c to d)
is reached. The magnetizing force �Hd required to “coerce” the flux
density to reduce its level to zero is called the coercive force, a measure
of the coercivity of the magnetic sample. As the force �H is increased
until saturation again occurs and is then reversed and brought back to
zero, the path def will result. If the magnetizing force is increased in the
positive direction (�H), the curve will trace the path shown from f to b.
The entire curve represented by bcdefb is called the hysteresis curve for
the ferromagnetic material, from the Greek hysterein, meaning “to lag
behind.” The flux density B lagged behind the magnetizing force H dur-
ing the entire plotting of the curve. When H was zero at c, B was not
zero but had only begun to decline. Long after H had passed through
zero and had become equal to �Hd did the flux density B finally
become equal to zero.

If the entire cycle is repeated, the curve obtained for the same core
will be determined by the maximum H applied. Three hysteresis loops
for the same material for maximum values of H less than the saturation
value are shown in Fig. 11.22. In addition, the saturation curve is
repeated for comparison purposes.

Note from the various curves that for a particular value of H, say, Hx,
the value of B can vary widely, as determined by the history of the core.
In an effort to assign a particular value of B to each value of H, we
compromise by connecting the tips of the hysteresis loops. The result-
ing curve, shown by the heavy, solid line in Fig. 11.22 and for various
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Saturation

– Bmax
– BR
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Ha Hs

e
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o

FIG. 11.21

Hysteresis curve.
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materials in Fig. 11.23, is called the normal magnetization curve. An
expanded view of one region appears in Fig. 11.24.

A comparison of Figs. 11.19 and 11.23 shows that for the same value
of H, the value of B is higher in Fig. 11.23 for the materials with the
higher m in Fig. 11.19. This is particularly obvious for low values of H.
This correspondence between the two figures must exist since B � mH.
In fact, if in Fig. 11.23 we find m for each value of H using the equa-
tion m � B/H, we will obtain the curves of Fig. 11.19. An instrument
that will provide a plot of the B-H curve for a magnetic sample appears
in Fig. 11.25.

It is interesting to note that the hysteresis curves of Fig. 11.22 have
a point symmetry about the origin; that is, the inverted pattern to the left
of the vertical axis is the same as that appearing to the right of the ver-

HS

H (At/m)
H3

Hx

B (T)

H1 H2

FIG. 11.22

Defining the normal magnetization curve.
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Normal magnetization curve for three ferromagnetic materials.
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Expanded view of Fig. 11.23 for the low magnetizing force region.
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tical axis. In addition, you will find that a further application of the
same magnetizing forces to the sample will result in the same plot. For
a current I in H � NI/l that will move between positive and negative
maximums at a fixed rate, the same B-H curve will result during each
cycle. Such will be the case when we examine ac (sinusoidal) networks
in the later chapters. The reversal of the field (�) due to the changing
current direction will result in a loss of energy that can best be
described by first introducing the domain theory of magnetism.

Within each atom, the orbiting electrons (described in Chapter 2) are
also spinning as they revolve around the nucleus. The atom, due to its
spinning electrons, has a magnetic field associated with it. In nonmag-
netic materials, the net magnetic field is effectively zero since the mag-
netic fields due to the atoms of the material oppose each other. In mag-
netic materials such as iron and steel, however, the magnetic fields of
groups of atoms numbering in the order of 1012 are aligned, forming
very small bar magnets. This group of magnetically aligned atoms is
called a domain. Each domain is a separate entity; that is, each domain
is independent of the surrounding domains. For an unmagnetized sam-
ple of magnetic material, these domains appear in a random manner,
such as shown in Fig. 11.26(a). The net magnetic field in any one direc-
tion is zero.

FIG. 11.25

Model 9600 vibrating sample magnetometer. (Courtesy of LDJ Electronics, Inc.)

(a) (b)

S N

FIG. 11.26

Demonstrating the domain theory of magnetism.

When an external magnetizing force is applied, the domains that are
nearly aligned with the applied field will grow at the expense of the less
favorably oriented domains, such as shown in Fig. 11.26(b). Eventually,
if a sufficiently strong field is applied, all of the domains will have the
orientation of the applied magnetizing force, and any further increase in
external field will not increase the strength of the magnetic flux through
the core—a condition referred to as saturation. The elasticity of the
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above is evidenced by the fact that when the magnetizing force is
removed, the alignment will be lost to some measure, and the flux den-
sity will drop to BR. In other words, the removal of the magnetizing
force will result in the return of a number of misaligned domains within
the core. The continued alignment of a number of the domains, how-
ever, accounts for our ability to create permanent magnets.

At a point just before saturation, the opposing unaligned domains are
reduced to small cylinders of various shapes referred to as bubbles.
These bubbles can be moved within the magnetic sample through the
application of a controlling magnetic field. These magnetic bubbles
form the basis of the recently designed bubble memory system for com-
puters.

11.9 AMPÈRE’S CIRCUITAL LAW

As mentioned in the introduction to this chapter, there is a broad sim-
ilarity between the analyses of electric and magnetic circuits. This
has already been demonstrated to some extent for the quantities in
Table 11.1.

If we apply the “cause” analogy to Kirchhoff’s voltage law ( V �
0), we obtain the following: 

� � 0 (for magnetic circuits) (11.9) 

which, in words, states that the algebraic sum of the rises and drops of
the mmf around a closed loop of a magnetic circuit is equal to zero; that
is, the sum of the rises in mmf equals the sum of the drops in mmf
around a closed loop.

Equation (11.9) is referred to as Ampère’s circuital law. When it is
applied to magnetic circuits, sources of mmf are expressed by the equation

(At) (11.10)

The equation for the mmf drop across a portion of a magnetic circuit
can be found by applying the relationships listed in Table 11.1; that is,
for electric circuits,

V � IR

resulting in the following for magnetic circuits: 

(At) (11.11)

where � is the flux passing through a section of the magnetic circuit
and � is the reluctance of that section. The reluctance, however, is sel-

� � ��

� � NI

�

�

TABLE 11.1

Electric Circuits Magnetic Circuits

Cause E �
Effect I �
Opposition R �
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dom calculated in the analysis of magnetic circuits. A more practical
equation for the mmf drop is

(At) (11.12)

as derived from Eq. (11.6), where H is the magnetizing force on a sec-
tion of a magnetic circuit and l is the length of the section. 

As an example of Eq. (11.9), consider the magnetic circuit appearing
in Fig. 11.27 constructed of three different ferromagnetic materials.
Applying Ampère’s circuital law, we have

All the terms of the equation are known except the magnetizing force
for each portion of the magnetic circuit, which can be found by using
the B-H curve if the flux density B is known.

11.10 THE FLUX �

If we continue to apply the relationships described in the previous sec-
tion to Kirchhoff’s current law, we will find that the sum of the fluxes
entering a junction is equal to the sum of the fluxes leaving a junction;
that is, for the circuit of Fig. 11.28, 

�a � �b � �c (at junction a)

or �b � �c � �a (at junction b)

both of which are equivalent.

11.11 SERIES MAGNETIC CIRCUITS:
DETERMINING NI

We are now in a position to solve a few magnetic circuit problems, which
are basically of two types. In one type, � is given, and the impressed
mmf NI must be computed. This is the type of problem encountered in
the design of motors, generators, and transformers. In the other type, NI
is given, and the flux � of the magnetic circuit must be found. This type
of problem is encountered primarily in the design of magnetic amplifiers
and is more difficult since the approach is “hit or miss.”

As indicated in earlier discussions, the value of m will vary from
point to point along the magnetization curve. This eliminates the possi-
bility of finding the reluctance of each “branch” or the “total reluc-
tance” of a network, as was done for electric circuits where r had a
fixed value for any applied current or voltage. If the total reluctance
could be determined, � could then be determined using the Ohm’s law
analogy for magnetic circuits.

For magnetic circuits, the level of B or H is determined from the
other using the B-H curve, and m is seldom calculated unless asked for.

� � � 0
�NI � Hablab � Hbclbc � Hcalca � 0

NI    � Hablab � Hbclbc � Hcalca 

Drop

mmf dropsImpressed
mmf

Rise Drop Drop

� � Hl

Iron�
a

c

b

Steel

CobaltI

I

N turns

FIG. 11.27

Series magnetic circuit of three different
materials.

�a

a

I

I

N

b

�c

�a �c

�b

FIG. 11.28

Flux distribution of a series-parallel magnetic
network.
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An approach frequently employed in the analysis of magnetic cir-
cuits is the table method. Before a problem is analyzed in detail, a table
is prepared listing in the extreme left-hand column the various sections
of the magnetic circuit. The columns on the right are reserved for the
quantities to be found for each section. In this way, the individual doing
the problem can keep track of what is required to complete the problem
and also of what the next step should be. After a few examples, the use-
fulness of this method should become clear.

This section will consider only series magnetic circuits in which the
flux � is the same throughout. In each example, the magnitude of the
magnetomotive force is to be determined.

EXAMPLE 11.3 For the series magnetic circuit of Fig. 11.29:
a. Find the value of I required to develop a magnetic flux of � � 4 �

10�4 Wb.
b. Determine m and mr for the material under these conditions.

Solutions: The magnetic circuit can be represented by the system
shown in Fig. 11.30(a). The electric circuit analogy is shown in Fig.
11.30(b). Analogies of this type can be very helpful in the solution of
magnetic circuits. Table 11.2 is for part (a) of this problem. The table is
fairly trivial for this example, but it does define the quantities to be
found.

TABLE 11.2

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

One continuous section 4 � 10�4 2 � 10�3 0.16

Cast-steel coreN  =  400 turns

I

I

A  =  2  �  10–3 m2

l  =  0.16 m
(mean length)

�

FIG. 11.29

Example 11.3.

�

� �

I

RE

(a)

(b)

FIG. 11.30

(a) Magnetic circuit equivalent and 
(b) electric circuit analogy.

a. The flux density B is

B � � � 2 � 10�1 T � 0.2 T
4 � 10�4 Wb
��
2 � 10�3 m2

�
�
A
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Using the B-H curves of Fig. 11.24, we can determine the magnetiz-
ing force H:

H (cast steel) � 170 At/m

Applying Ampère’s circuital law yields

NI � Hl

and I � � � 68 mA

(Recall that t represents turns.)
b. The permeability of the material can be found using Eq. (11.8):

m � �
H
B

� � � 1.176 � 10�3 Wb/A • m

and the relative permeability is

mr � �
m

m

o

� � � 935.83

EXAMPLE 11.4 The electromagnet of Fig. 11.31 has picked up a sec-
tion of cast iron. Determine the current I required to establish the indi-
cated flux in the core.

Solution: To be able to use Figs. 11.23 and 11.24, we must first con-
vert to the metric system. However, since the area is the same through-
out, we can determine the length for each material rather than work
with the individual sections: 

lefab � 4 in. � 4 in. � 4 in. � 12 in.

lbcde � 0.5 in. � 4 in. � 0.5 in. � 5 in.

12 in.� � � 304.8 � 10�3 m

5 in.� � � 127 � 10�3 m

1 in.2� �� � � 6.452 � 10�4 m2

The information available from the specifications of the problem has
been inserted in Table 11.3. When the problem has been completed,
each space will contain some information. Sufficient data to complete
the problem can be found if we fill in each column from left to right. As
the various quantities are calculated, they will be placed in a similar
table found at the end of the example.

1 m
�
39.37 in.

1 m
�
39.37 in.

1 m
�
39.37 in.

1 m
�
39.37 in.

1.176 � 10�3

��
4p � 10�7

0.2 T
��
170 At/m

(170 At/m)(0.16 m)
���

400 t
Hl
�
N

TABLE 11.3

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

efab 3.5 � 10�4 6.452 � 10�4 304.8 � 10�3

bcde 3.5 � 10�4 6.452 � 10�4 127 � 10�3

N  =  50 turns
Sheet steel

Cast iron

f

e

d

a

b

c

�

lab  =  lcd  =  lef  =  lfa  =  4 in.
lbc  =  lde  =  0.5 in.
Area (throughout)  =  1 in.2
�  =  3.5  ×  10–4 Wb

I I

FIG. 11.31

Electromagnet for Example 11.4.

The flux density for each section is

B � � � 0.542 T
3.5 � 10�4 Wb
��
6.452 � 10�4 m2

�
�
A
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and the magnetizing force is

H (sheet steel, Fig. 11.24) � 70 At/m

H (cast iron, Fig. 11.23) � 1600 At/m

Note the extreme difference in magnetizing force for each material for
the required flux density. In fact, when we apply Ampère’s circuital law,
we will find that the sheet steel section could be ignored with a mini-
mal error in the solution.

Determining Hl for each section yields

Hefablefab � (70 At/m)(304.8 � 10�3 m) � 21.34 At

Hbcdelbcde � (1600 At/m)(127 � 10�3 m) � 203.2 At

Inserting the above data in Table 11.3 will result in Table 11.4.

TABLE 11.4

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

efab 3.5 � 10�4 6.452 � 10�4 0.542 70 304.8 � 10�3 21.34
bcde 3.5 � 10�4 6.452 � 10�4 0.542 1600 127 � 10�3 203.2

The magnetic circuit equivalent and the electric circuit analogy for
the system of Fig. 11.31 appear in Fig. 11.32.

Applying Ampère’s circuital law,

NI � Hefablefab � Hbcdelbcde

� 21.34 At � 203.2 At � 224.54 At

and (50 t)I � 224.54 At

so that I � � 4.49 A

EXAMPLE 11.5 Determine the secondary current I2 for the trans-
former of Fig. 11.33 if the resultant clockwise flux in the core is 1.5 �
10�5 Wb.

224.54 At
��

50 t

�

�efab

E

+

(a)

(b)

�bcde

Rbcde

Refab

–

FIG. 11.32

(a) Magnetic circuit equivalent and 
(b) electric circuit analogy for the

electromagnet of Fig. 11.31.
Area (throughout)  =  0.15  ×  10–3 m2

labcda  =  0.16 m

I1 (2 A)

N1  =  60 turns
I1

a

d

b

c

Sheet steel� I2

N2  =  30 turns
I2

FIG. 11.33

Transformer for Example 11.5.

Solution: This is the first example with two magnetizing forces to
consider. In the analogies of Fig. 11.34 you will note that the resulting
flux of each is opposing, just as the two sources of voltage are oppos-
ing in the electric circuit analogy.

The structural data appear in Table 11.5.
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The flux density throughout is

B � �
�

A
� � � 10 � 10�2 T � 0.10 T

and

H (from Fig. 11.24) � (100 At/m) � 20 At/m

Applying Ampère’s circuital law,

N1I1 � N2I2 � Habcdalabcda

(60 t)(2 A) � (30 t)(I2) � (20 At/m)(0.16 m)
120 At � (30 t)I2 � 3.2 At

and (30 t)I2 � 120 At � 3.2 At

or I2 � � 3.89 A

For the analysis of most transformer systems, the equation N1I1 �
N2I2 is employed. This would result in 4 A versus 3.89 A above. This
difference is normally ignored, however, and the equation N1I1 � N2I2

considered exact.
Because of the nonlinearity of the B-H curve, it is not possible to

apply superposition to magnetic circuits; that is, in Example 11.5, we
cannot consider the effects of each source independently and then find
the total effects by using superposition.

11.12 AIR GAPS

Before continuing with the illustrative examples, let us consider the
effects that an air gap has on a magnetic circuit. Note the presence of
air gaps in the magnetic circuits of the motor and meter of Fig. 11.11.
The spreading of the flux lines outside the common area of the core for
the air gap in Fig. 11.35(a) is known as fringing. For our purposes, we
shall neglect this effect and assume the flux distribution to be as in Fig.
11.35(b).

116.8 At
�

30 t

1
�
5

1.5 � 10�5 Wb
��
0.15 � 10�3 m2

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

abcda 1.5 � 10�5 0.15 � 10�3 0.16

TABLE 11.5

�abcda

�

�1 �2

Rabcda

I

E1 E2

(b)(a)

FIG. 11.34

(a) Magnetic circuit equivalent and (b) electric circuit analogy for the
transformer of Fig. 11.33.

�c

�c

(a)

�c

�c

(b)

�c

Air gap

FIG. 11.35

Air gaps: (a) with fringing; (b) ideal.
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The flux density of the air gap in Fig. 11.35(b) is given by

(11.13)

where, for our purposes,

�g � �core

and Ag � Acore

For most practical applications, the permeability of air is taken to be
equal to that of free space. The magnetizing force of the air gap is then
determined by

(11.14)

and the mmf drop across the air gap is equal to Hglg. An equation for
Hg is as follows:

Hg � �
B

mo

g
� �

and (At/m) (11.15)

EXAMPLE 11.6 Find the value of I required to establish a magnetic
flux of � � 0.75 � 10�4 Wb in the series magnetic circuit of Fig.
11.36.

Hg � (7.96 � 105)Bg

Bg
��
4p � 10�7

Hg � �
m

Bg

o

�

Bg � �
�

Ag

g
�

All cast steel

Air gap

Area (throughout)
=  1.5  ×  10–4 m2

�  =  0.75  ×  10–4 Wb

a
b
c

de

f

I

I

N  =  200  turns

lcdefab  =  100  ×  10–3 m
lbc  =  2  ×  10–3 m

�

�

�

FIG. 11.36

Relay for Example 11.6.

Solution: An equivalent magnetic circuit and its electric circuit
analogy are shown in Fig. 11.37.

The flux density for each section is

B � � � 0.5 T
0.75 � 10�4 Wb
��

1.5 � 10�4 m2
�
�
A

�

�

I

E

(a)

�core

Rbc

Rcdefab

�gap

(b)

FIG. 11.37

(a) Magnetic circuit equivalent and 
(b) electric circuit analogy for the relay of

Fig. 11.36.
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From the B-H curves of Fig. 11.24,

H (cast steel) � 280 At/m

Applying Eq. (11.15),

Hg � (7.96 � 105)Bg � (7.96 � 105)(0.5 T) � 3.98 � 105 At/m

The mmf drops are

Hcorelcore � (280 At/m)(100 � 10�3 m) � 28 At

Hglg � (3.98 � 105 At/m)(2 � 10�3 m) � 796 At

Applying Ampère’s circuital law,

NI� Hcorelcore � Hglg
� 28 At � 796 At

(200 t)I � 824 At
I � 4.12 A

Note from the above that the air gap requires the biggest share (by
far) of the impressed NI due to the fact that air is nonmagnetic.

11.13 SERIES-PARALLEL MAGNETIC CIRCUITS

As one might expect, the close analogies between electric and magnetic
circuits will eventually lead to series-parallel magnetic circuits similar
in many respects to those encountered in Chapter 7. In fact, the electric
circuit analogy will prove helpful in defining the procedure to follow
toward a solution.

EXAMPLE 11.7 Determine the current I required to establish a flux of
1.5 � 10�4 Wb in the section of the core indicated in Fig. 11.38.

Sheet steel

I

I

a b c

f e d

1 2
N  =  50 turns

�1
�T

lbcde  =  lefab  =  0.2 m
lbe  =  0.05 m
Cross-sectional area  =  6  ×  10–4 m2 throughout

�2  =  1.5  ×  10–4 Wb

FIG. 11.38

Example 11.7.

Solution: The equivalent magnetic circuit and the electric circuit
analogy appear in Fig. 11.39. We have

B2 � � � 0.25 T

From Fig. 11.24,

Hbcde � 40 At/m

Applying Ampère’s circuital law around loop 2 of Figs. 11.38 and
11.39,

1.5 � 10�4 Wb
��

6 � 10�4 m2
�2�
A

�efab

�T

� �be �bcde

�1 �2

1 2

(a)

Refab

IT I1

1 2Rbe Rbcde

I2

E

(b)

FIG. 11.39

(a) Magnetic circuit equivalent and 
(b) electric circuit analogy for the series-

parallel system of Fig. 11.38.
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� � 0

Hbelbe � Hbcdelbcde � 0

Hbe(0.05 m) � (40 At/m)(0.2 m) � 0

Hbe � � 160 At/m

From Fig. 11.24,

B1 � 0.97 T

and

�1 � B1A � (0.97 T)(6 � 10�4 m2) � 5.82 � 10�4 Wb

The results are entered in Table 11.6.

8 At
�
0.05 m

�

TABLE 11.6

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

bcde 1.5 � 10�4 6 � 10�4 0.25 40 0.2 8
be 5.82 � 10�4 6 � 10�4 0.97 160 0.05 8
efab 6 � 10�4 0.2

The table reveals that we must now turn our attention to section
efab:

�T � �1 � �2 � 5.82 � 10�4 Wb � 1.5 � 10�4 Wb
� 7.32 � 10�4 Wb

B � �

� 1.22 T

From Fig. 11.23,

Hefab � 400 At

Applying Ampère’s circuital law,

�NI � Hefablefab � Hbelbe � 0
NI � (400 At/m)(0.2 m) � (160 At/m)(0.05 m)

(50 t)I � 80 At � 8 At

I � � 1.76 A

To demonstrate that m is sensitive to the magnetizing force H, the
permeability of each section is determined as follows. For section bcde,

m � �
H
B

� � � 6.25 � 10�3

and mr � �
m

m

o

� � � 4972.2

For section be,

m � �
H
B

� � � 6.06 � 10�30.97 T
��
160 At/m

6.25 � 10�3

��
12.57 � 10�7

0.25 T
�
40 At/m

88 At
�
50 t

7.32 � 10�4 Wb
��

6 � 10�4 m2
�T�
A
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and mr � �
m

m

o

� � � 4821

For section efab,

m � �
H
B

� � � 3.05 � 10�3

and mr � �
m

m

o

� � � 2426.41

11.14 DETERMINING �

The examples of this section are of the second type, where NI is given
and the flux � must be found. This is a relatively straightforward prob-
lem if only one magnetic section is involved. Then

H � �
N
l
I

� H → B (B-H curve)

and � � BA

For magnetic circuits with more than one section, there is no set order
of steps that will lead to an exact solution for every problem on the first
attempt. In general, however, we proceed as follows. We must find the
impressed mmf for a calculated guess of the flux � and then compare
this with the specified value of mmf. We can then make adjustments to
our guess to bring it closer to the actual value. For most applications, a
value within 	5% of the actual � or specified NI is acceptable.

We can make a reasonable guess at the value of � if we realize that the
maximum mmf drop appears across the material with the smallest per-
meability if the length and area of each material are the same. As shown
in Example 11.6, if there is an air gap in the magnetic circuit, there will
be a considerable drop in mmf across the gap. As a starting point for
problems of this type, therefore, we shall assume that the total mmf (NI)
is across the section with the lowest m or greatest � (if the other physi-
cal dimensions are relatively similar). This assumption gives a value of
� that will produce a calculated NI greater than the specified value. Then,
after considering the results of our original assumption very carefully, we
shall cut � and NI by introducing the effects (reluctance) of the other por-
tions of the magnetic circuit and try the new solution. For obvious reasons,
this approach is frequently called the cut and try method.

EXAMPLE 11.8 Calculate the magnetic flux � for the magnetic cir-
cuit of Fig. 11.40.

Solution: By Ampère’s circuital law,

NI � Habcdalabcda

or Habcda � �
la

N

bc

I

da
� �

� � 1000 At/m

and Babcda (from Fig. 11.23) � 0.39 T

Since B � �/A, we have

� � BA � (0.39 T)(2 � 10�4 m2) � 0.78 � 10�4 Wb

300 At
�
0.3 m

(60 t)(5 A)
��

0.3 m

3.05 � 10�3

��
12.57 � 10�7

1.22 T
��
400 At/m

6.06 � 10�3

��
12.57 � 10�7

A (throughout)  =  2  ×  10–4 m2

a b

d c

Cast ironlabcda  =  0.3 m

I

I  =  5 A

N  =  60 turns

�

FIG. 11.40

Example 11.8.
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EXAMPLE 11.9 Find the magnetic flux � for the series magnetic cir-
cuit of Fig. 11.41 for the specified impressed mmf.

Solution: Assuming that the total impressed mmf NI is across the air
gap,

NI � Hglg

or Hg � �
N
lg

I
� � � 4 � 105 At/m

and Bg � moHg � (4p � 10�7)(4 � 105 At/m)
� 0.503 T

The flux

�g � �core � BgA
� (0.503 T)(0.003 m2)

�core � 1.51 � 10�3 Wb

Using this value of �, we can find NI. The data are inserted in Table
11.7.

400 At
�
0.001 m

TABLE 11.7

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

Core 1.51 � 10�3 0.003 0.503 1500 0.16
(B-H curve)

Gap 1.51 � 10�3 0.003 0.503 4 � 105 0.001 400

TABLE 11.8

Section � (Wb) A (m2) B (T) H (At/m) l (m) Hl (At)

Core 1.057 � 10�3 0.003 0.16
Gap 1.057 � 10�3 0.003 0.001

Cast iron

Air gap

0.001 m

Area  =  0.003 m2I  =  4 A

N  =  100 turns lcore  =  0.16 m

Φ

FIG. 11.41

Example 11.9.

Hcorelcore � (1500 At/m)(0.16 m) � 240 At

Applying Ampère’s circuital law results in

NI � Hcorelcore � Hglg
� 240 At � 400 At

NI � 640 At > 400 At

Since we neglected the reluctance of all the magnetic paths but the
air gap, the calculated value is greater than the specified value. We must
therefore reduce this value by including the effect of these reluctances.
Since approximately (640 At � 400 At)/640 At � 240 At/640 At �
37.5% of our calculated value is above the desired value, let us reduce
� by 30% and see how close we come to the impressed mmf of 400 At: 

� � (1 � 0.3)(1.51 � 10�3 Wb)
� 1.057 � 10�3 Wb

See Table 11.8.
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B � � � 0.352 T

Hglg � (7.96 � 105)Bglg
� (7.96 � 105)(0.352 T)(0.001 m)

� 280.19 At

From the B-H curves,

Hcore � 850 At/m

Hcorelcore � (850 At/m)(0.16 m) � 136 At

Applying Ampère’s circuital law yields

NI � Hcorelcore � Hglg
� 136 At � 280.19 At

NI � 416.19 At > 400 At (but within 	5%
and therefore acceptable)

The solution is, therefore,

� � 1.057 � 10�3 Wb

11.15 APPLICATIONS

Recording Systems

The most common application of magnetic material is probably in the
increasing number of recording instruments used every day in the office
and the home. For instance, the VHS tape and the 8-mm cassette of Fig.
11.42 are used almost daily by every family with a VCR or cassette
player. The basic recording process is not that difficult to understand
and will be described in detail in the section to follow on computer hard
disks.

1.057 � 10�3 Wb
��

0.003 m2
�
�
A

��� ���

FIG. 11.42

Magnetic tape: (a) VHS and 8-mm cassette (Courtesy of Maxell Corporation of
America); (b) manufacturing process (Courtesy of Ampex Corporation).
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Speakers and Microphones

Electromagnetic effects are the moving force in the design of speakers
such as the one shown in Fig. 11.43. The shape of the pulsating waveform
of the input current is determined by the sound to be reproduced by the
speaker at a high audio level. As the current peaks and returns to the val-
leys of the sound pattern, the strength of the electromagnet varies in
exactly the same manner. This causes the cone of the speaker to vibrate at
a frequency directly proportional to the pulsating input. The higher the
pitch of the sound pattern, the higher the oscillating frequency between the
peaks and valleys and the higher the frequency of vibration of the cone.

A second design used more frequently in more expensive speaker
systems appears in Fig. 11.44. In this case the permanent magnet is
fixed and the input is applied to a movable core within the magnet, as
shown in the figure. High peaking currents at the input produce a strong
flux pattern in the voice coil, causing it to be drawn well into the flux
pattern of the permanent magnet. As occurred for the speaker of Fig.
11.43, the core then vibrates at a rate determined by the input and pro-
vides the audible sound.

Sound
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Magnet
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FIG. 11.44

Coaxial high-fidelity loudspeaker: (a) construction; (b) basic operation; 
(c) cross section of actual unit. (Courtesy of Electro-Voice, Inc.)

Microphones such as those in Fig. 11.45 also employ electromag-
netic effects. The sound to be reproduced at a higher audio level causes
the core and attached moving coil to move within the magnetic field of
the permanent magnet. Through Faraday’s law (e � N df/dt), a voltage
is induced across the movable coil proportional to the speed with which
it is moving through the magnetic field. The resulting induced voltage
pattern can then be amplified and reproduced at a much higher audio
level through the use of speakers, as described earlier. Microphones of
this type are the most frequently employed, although other types that
use capacitive, carbon granular, and piezoelectric* effects are available.
This particular design is commercially referred to as a dynamic micro-
phone.

*Piezoelectricity is the generation of a small voltage by exerting pressure across certain
crystals.
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Computer Hard Disks

The computer hard disk is a sealed unit in a computer that stores data
on a magnetic coating applied to the surface of circular platters that
spin like a record. The platters are constructed on a base of aluminum
or glass (both nonferromagnetic), which makes them rigid—hence the
term hard disk. Since the unit is sealed, the internal platters and com-
ponents are inaccessible, and a “crash” (a term applied to the loss of
data from a disk or the malfunction thereof) usually requires that the
entire unit be replaced. Hard disks are currently available with diame-
ters from less than 1 in. to 51⁄4 in., with the 31⁄2 in. the most popular for
today’s desktop units. Lap-top units typically use 21⁄2 in. All hard disk
drives are often referred to as Winchester drives, a term first applied in
the 1960s to an IBM drive that had 30 MB [a byte is a series of binary
bits (0s and 1s) representing a number, letter, or symbol] of fixed
(nonaccessible) data storage and 30 MB of accessible data storage. The
term Winchester was applied because the 30-30 data capacity matched
the name of the popular 30-30 Winchester rifle.

The magnetic coating on the platters is called the media and is of
either the oxide or the thin-film variety. The oxide coating is formed by
first coating the platter with a gel containing iron-oxide (ferromagnetic)
particles. The disk is then spun at a very high speed to spread the mate-
rial evenly across the surface of the platter. The resulting surface is then
covered with a protective coating that is made as smooth as possible.
The thin-film coating is very thin, but durable, with a surface that is
smooth and consistent throughout the disk area. In recent years the
trend has been toward the thin-film coating because the read/write
heads (to be described shortly) must travel closer to the surface of the
platter, requiring a consistent coating thickness. Recent techniques have
resulted in thin-film magnetic coatings as thin as one-millionth of an
inch.

The information on a disk is stored around the disk in circular paths
called tracks or cylinders, with each track containing so many bits of
information per inch. The product of the number of bits per inch and the
number of tracks per inch is the Areal density of the disk, which pro-
vides an excellent quantity for comparison with early systems and
reveals how far the field has progressed in recent years. In the 1950s the
first drives had an Areal density of about 2 kbits/in.2 compared to
today’s typical 4 Gbits/in.2, an incredible achievement; consider

FIG. 11.45

Dynamic microphone. (Courtesy of Electro-Voice, Inc.)
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4,000,000,000,000 bits of information on an area the size of the face of
your watch. Electromagnetism is the key element in the writing of
information on the disk and the reading of information off the disk. 

In its simplest form the write/read head of a hard disk (or floppy
disk) is a U-shaped electromagnet with an air gap that rides just above
the surface of the disk, as shown in Fig. 11.46. As the disk rotates,
information in the form of a voltage with changing polarities is applied
to the winding of the electromagnet. For our purposes we will associate
a positive voltage level with a 1 level (of binary arithmetic) and a neg-
ative voltage level with a 0 level. Combinations of these 0 and 1 levels
can be used to represent letters, numbers, or symbols. If energized as
shown in Fig. 11.46 with a 1 level (positive voltage), the resulting mag-
netic flux pattern will have the direction shown in the core. When the
flux pattern encounters the air gap of the core, it jumps to the magnetic
material (since magnetic flux always seeks the path of least reluctance
and air has a high reluctance) and establishes a flux pattern, as shown
on the disk, until it reaches the other end of the core air gap, where it
returns to the electromagnet and completes the path. As the head then
moves to the next bit sector, it leaves behind the magnetic flux pattern
just established from the left to the right. The next bit sector has a 0
level input (negative voltage) that reverses the polarity of the applied
voltage and the direction of the magnetic flux in the core of the head.
The result is a flux pattern in the disk opposite that associated with a 1
level. The next bit of information is also a 0 level, resulting in the same
pattern just generated. In total, therefore, information is stored on the
disk in the form of small magnets whose polarity defines whether they
are representing a 0 or a 1. 
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FIG. 11.46

Hard disk storage using a U-shaped electromagnet write head.

Now that the data have been stored, we must have some method to
retrieve the information when desired. The first few hard disks used the
same head for both the write and the read functions. In Fig. 11.47(a),
the U-shaped electromagnet in the read mode simply picks up the flux
pattern of the current bit of information. Faraday’s law of electromag-
net induction states that a voltage is induced across a coil if exposed to
a changing magnetic field. The change in flux for the core in Fig.
11.47(a) is minimal as it passes over the induced bar magnet on the sur-
face of the disk. A flux pattern is established in the core because of the
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Reading the information off a hard disk using a U-shaped electromagnet.

bar magnet on the disk, but the lack of a significant change in flux level
results in an induced voltage at the output terminals of the pickup of
approximately 0 V, as shown in Fig. 11.47(b) for the readout waveform.
A significant change in flux occurs when the head passes over the tran-
sition region so marked in Fig. 11.47(a). In region a the flux pattern
changes from one direction to the other—a significant change in flux
occurs in the core as it reverses direction, causing a measurable voltage
to be generated across the terminals of the pickup coil as dictated by
Faraday’s law and indicated in Fig. 11.47(b). In region b there is no sig-
nificant change in the flux pattern from one bit area to the next, and a
voltage is not generated, as also revealed in Fig. 11.47(b). However,
when region c is reached, the change in flux is significant but opposite
that occurring in region a, resulting in another pulse but of opposite
polarity. In total, therefore, the output bits of information are in the
form of pulses that have a shape totally different from the read signals
but that are certainly representative of the information being stored. In
addition, note that the output is generated at the transition regions and
not in the constant flux region of the bit storage.

In the early years, the use of the same head for the read and write
functions was acceptable; but as the tracks became narrower and the seek
time (the average time required to move from one track to another a ran-
dom distance away) had to be reduced, it became increasingly difficult to
construct the coil or core configuration in a manner that was sufficiently
thin with minimum weight. In the late 1970s IBM introduced the thin-
film inductive head, which was manufactured in much the same way as
the small integrated circuits of today. The result is a head having a length
typically less than 1⁄10 in., a height less than 1⁄50 in., and minimum mass
and high durability. The average seek time has dropped from a few hun-
dred milliseconds to 6 ms to 8 ms for very fast units and 8 ms to 10 ms
for average units. In addition, production methods have improved to the
point that the head can “float” above the surface (to minimize damage to
the disk) at a height of only 5 microinches or 0.000005 in. Using a typi-
cal lap-top hard disk speed of 3600 rpm (as high as 7200 rpm for desk-
tops) and an average diameter of 1.75 in. for a 3.5-in. disk, the speed of
the head over the track is about 38 mph. Scaling the floating height up to
1⁄4 in. (multiplying by a factor of 50,000), the speed would increase to
about 1.9 � 106 mph. In other words, the speed of the head over the sur-
face of the platter is analogous to a mass traveling 1⁄4 in. above a surface
at 1.9 million miles per hour, all the while ensuring that the head never
touches the surface of the disk—quite a technical achievement and amaz-
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ingly enough one that perhaps will be improved by a factor of 10 in the
next decade. Incidentally, the speed of rotation of floppy disks is about
1⁄10 that of the hard disk, or 360 rpm. In addition, the head touches the
magnetic surface of the floppy disk, limiting the storage life of the unit.
The typical magnetizing force needed to lay down the magnetic orienta-
tion is 400 mA-turn (peak-to-peak). The result is a write current of only
40 mA for a 10-turn, thin-film inductive head.

Although the thin-film inductive head could also be used as a read
head,  the magnetoresistive (MR) head has improved reading character-
istics. The MR head depends on the fact that the resistance of a soft fer-
romagnetic conductor such as permolloy is sensitive to changes in
external magnetic fields. As the hard disk rotates, the changes in mag-
netic flux from the induced magnetized regions of the platter change the
terminal resistance of the head. A constant current passed through the
sensor displays a terminal voltage sensitive to the magnitude of the
resistance. The result is output voltages with peak values in excess of
300 V, which exceeds that of typical inductive read heads by a factor of
2 or 3�1.

Further investigation will reveal that the best write head is of the
thin-film inductive variety and that the optimum read head is of the MR
variety. Each has particular design criteria for maximum performance,
resulting in the increasingly common dual-element head, with each
head containing separate conductive paths and different gap widths.
The Areal density of the new hard disks will essentially require the
dual-head assembly for optimum performance.

As the density of the disk increases, the width of the tracks or
cylinders will decrease accordingly. The net result will be smaller
heads for the read/write function, an arm supporting the head that
must be able to move into and out of the rotating disk in smaller
increments, and an increased sensitivity to temperature effects which
can cause the disk itself to contract or expand. At one time the
mechanical system with its gears and pulleys was sensitive enough to
perform the task. However, today’s density requires a system with less
play and with less sensitivity to outside factors such as temperature
and vibration. A number of modern drives use a voice coil and ferro-
magnetic arm as shown in Fig. 11.48. The current through the coil will
determine the magnetic field strength within the coil and will cause
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Read/Write
head

Ferromagnetic
shaft

Control

FIG. 11.48

Disk drive with voice coil and ferromagnetic arm.
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the supporting arm for the head to move in and out, thereby estab-
lishing a rough setting for the extension of the arm over the disk. It
would certainly be possible to relate the position of the arm to the
applied voltage to the coil, but this would lack the level of accuracy
required for high-density disks. For the desired accuracy, a laser beam
has been added as an integral part of the head. Circular strips placed
around the disk (called track indicators) ensure that the laser beam
homes in and keeps the head in the right position. Assuming that the
track is a smooth surface and the surrounding area a rough texture, a
laser beam will be reflected back to the head if it’s on the track,
whereas the beam will be scattered if it hits the adjoining areas. This
type of system permits continuous recalibration of the arm by simply
comparing its position with the desired location—a maneuver referred
to as “recalibration on the fly.”

As with everything, there are limits to any design. However, in this
case, it is not because larger disks cannot be made or that more tracks
cannot be put on the disk. The limit to the size of hard drives in PCs
is set by the BIOS (Basic Input Output System) drive that is built into
all PCs. When first developed years ago, it was designed around a
maximum storage possibility of 8.4 gigabytes. At that time this num-
ber seemed sufficiently large to withstand any new developments for
many years to come. However, 8-gigabyte drives and larger are now
becoming commonplace, with lap-tops averaging 20 gigabytes and
desktops averaging 40 gigabytes. The result is that mathematical meth-
ods had to be developed to circumvent the designed maximum for
each component of the BIOS system. Fundamentally, the maximum
values for the BIOS drive are the following:

Cylinders (or tracks) 1024
Heads 128
Sectors 128
Bytes per sector 512

Multiplying through all the factors results in a maximum of 8.59 giga-
bytes, but the colloquial reference is normally 8.4 gigabytes.

Most modern drives use a BIOS translation technique whereby they
play a mathematical game in which they make the drive appear different
to the BIOS system than it actually is. For instance, the drive may have
2048 tracks and 16 heads, but through the mathematical link with the
BIOS system it will appear to have 1024 tracks and 32 heads. In other
words, there was a trade-off between numbers in the official maximum
listing. This is okay for certain combinations, but the total combination
of figures for the design still cannot exceed 8.4 gigabytes. Also be aware
that this mathematical manipulation is possible only if the operating sys-
tem has BIOS translation built in. By implementing new enchanced IDE
controllers, BIOS can have access drives greater than 8.4 gigabytes.

The above is clear evidence of the importance of magnetic effects in
today’s growing industrial, computer-oriented society. Although
research continues to maximize the Areal density, it appears certain that
the storage will remain magnetic for the write/read process and will not
be replaced by any of the growing alternatives such as the optic laser
variety used so commonly in CD-ROMs.

A 3.5-in. full-height disk drive, which is manufactured by the
Seagate Corporation and has a formatted capacity of 17.2 gigabytes
(GB) with an average search time of 9 ms, appears in Fig. 11.49.

FIG. 11.49

A 3.5-in. hard disk drive with a capacity of
17.2 GB and an average search time of 9 ms.

(Courtesy of Seagate Corporation.)



Hall Effect Sensor

The Hall effect sensor is a semiconductor device that generates an out-
put voltage when exposed to a magnetic field. The basic construction
consists of a slab of semiconductor material through which a current
is passed, as shown in Fig. 11.50(a). If a magnetic field is applied as
shown in the figure perpendicular to the direction of the current, a
voltage VH will be generated between the two terminals, as indicated
in Fig. 11.50(a). The difference in potential is due to the separation of
charge established by the Lorentz force first studied by Professor Hen-
drick Lorentz in the early eighteenth century. He found that electrons
in a magnetic field are subjected to a force proportional to the veloc-
ity of the electrons through the field and the strength of the magnetic
field. The direction of the force is determined by the left-hand rule.
Simply place the index finger of the left hand in the direction of the
magnetic field, with the second finger at right angles to the index fin-
ger in the direction of conventional current through the semiconductor
material, as shown in Fig. 11.50(b). The thumb, if placed at right
angles to the index finger, will indicate the direction of the force on
the electrons. In Fig. 11.50(b), the force causes the electrons to accu-
mulate in the bottom region of the semiconductor (connected to the
negative terminal of the voltage VH), leaving a net positive charge in
the upper region of the material (connected to the positive terminal of
VH). The stronger the current or strength of the magnetic field, the
greater the induced voltage VH.

In essence, therefore, the Hall effect sensor can reveal the strength of
a magnetic field or the level of current through a device if the other
determining factor is held fixed. Two applications of the sensor are
therefore apparent—to measure the strength of a magnetic field in the
vicinity of a sensor (for an applied fixed current) and to measure the
level of current through a sensor (with knowledge of the strength of the
magnetic field linking the sensor). The gaussmeter in Fig. 11.16
employs a Hall effect sensor. Internal to the meter, a fixed current is
passed through the sensor with the voltage VH indicating the relative
strength of the field. Through amplification, calibration, and proper
scaling, the meter can display the relative strength in gauss.

The Hall effect sensor has a broad range of applications that are often
quite interesting and innovative. The most widespread is as a trigger for
an alarm system in large department stores, where theft is often a diffi-
cult problem. A magnetic strip attached to the merchandise sounds an
alarm when a customer passes through the exit gates without paying for
the product. The sensor, control current, and monitoring system are
housed in the exit fence and react to the presence of the magnetic field as
the product leaves the store. When the product is paid for, the cashier
removes the strip or demagnetizes the strip by applying a magnetizing
force that reduces the residual magnetism in the strip to essentially zero.

The Hall effect sensor is also used to indicate the speed of a bicycle
on a digital display conveniently mounted on the handlebars. As shown
in Fig. 11.51(a), the sensor is mounted on the frame of the bike, and a
small permanent magnet is mounted on a spoke of the front wheel. The
magnet must be carefully mounted to be sure that it passes over the
proper region of the sensor. When the magnet passes over the sensor,
the flux pattern in Fig. 11.51(b) results, and a voltage with a sharp peak
is developed by the sensor. Assuming a bicycle with a 26-in.-diameter
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wheel, the circumference will be about 82 in. Over 1 mi, the number of
rotations is

5280 ft � �� � � 773 rotations

If the bicycle is traveling at 20 mph, an output pulse will occur at
a rate of 4.29 per second. It is interesting to note that at a speed of
20 mph, the wheel is rotating at more than 4 revolutions per second,
and the total number of rotations over 20 mi is 15,460.

Magnetic Reed Switch

One of the most frequently employed switches in alarm systems is the
magnetic reed switch shown in Fig. 11.52. As shown by the figure, there
are two components of the reed switch—a permanent magnet embedded
in one unit that is normally connected to the movable element (door, win-
dow, and so on) and a reed switch in the other unit that is connected to
the electrical control circuit. The reed switch is constructed of two iron-
alloy (ferromagnetic) reeds in a hermetically sealed capsule. The can-
tilevered ends of the two reeds do not touch but are in very close prox-
imity to one another. In the absence of a magnetic field the reeds remain
separated. However, if a magnetic field is introduced, the reeds will be
drawn to each other because flux lines seek the path of least reluctance
and, if possible, exercise every alternative to establish the path of least
reluctance. It is similar to placing a ferromagnetic bar close to the ends
of a U-shaped magnet. The bar is drawn to the poles of the magnet, estab-
lishing a magnetic flux path without air gaps and with minimum reluc-
tance. In the open-circuit state the resistance between reeds is in excess
of 100 M�, while in the on state it drops to less than 1 �.

In Fig. 11.53 a reed switch has been placed on the fixed frame of a
window and a magnet on the movable window unit. When the window is
closed as shown in Fig. 11.53, the magnet and reed switch are suffi-
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Magnetic reed switch.
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FIG. 11.53

Using a magnetic reed switch to monitor the
state of a window.

FIG. 11.51

Obtaining a speed indication for a bicycle using a Hall effect sensor:
(a) mounting the components; (b) Hall effect response.
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ciently close to establish contact between the reeds, and a current is
established through the reed switch to the control panel. In the armed
state the alarm system accepts the resulting current flow as a normal
secure response. If the window is opened, the magnet will leave the
vicinity of the reed switch, and the switch will open. The current
through the switch will be interrupted, and the alarm will react appro-
priately.

One of the distinct advantages of the magnetic reed switch is that the
proper operation of any switch can be checked with a portable magnetic
element. Simply bring the magnet to the switch and note the output
response. There is no need to continually open and close windows and
doors. In addition, the reed switch is hermetically enclosed so that oxi-
dation and foreign objects cannot damage it, and the result is a unit that
can last indefinitely. Magnetic reed switches are also available in other
shapes and sizes, allowing them to be concealed from obvious view.
One is a circular variety that can be set into the edge of a door and door
jam, resulting in only two small visible disks when the door is open.

Magnetic Resonance Imaging

Magnetic resonance imaging [MRI, also called nuclear magnetic reso-
nance (NMR)] is receiving more and more attention as we strive to
improve the quality of the cross-sectional images of the body so useful
in medical diagnosis and treatment. MRI does not expose the patient to
potentially hazardous X rays or injected contrast materials such as those
employed to obtain computerized axial tomography (CAT) scans.

The three major components of an MRI system are a huge magnet
that can weigh up to 100 tons, a table for transporting the patient into
the circular hole in the magnet, and a control center, as shown in Fig.
11.54. The image is obtained by placing the patient in the tube to a pre-
cise depth depending on the cross section to be obtained and applying
a strong magnetic field that causes the nuclei of certain atoms in the
body to line up. Radio waves of different frequencies are then applied
to the patient in the region of interest, and if the frequency of the wave
matches the natural frequency of the atom, the nuclei will be set into a
state of resonance and will absorb energy from the applied signal.
When the signal is removed, the nuclei release the acquired energy in
the form of weak but detectable signals. The strength and duration of
the energy emission vary from one tissue of the body to another. The
weak signals are then amplified, digitized, and translated to provide a
cross-sectional image such as the one shown in Fig. 11.55.

MRI units are very expensive and therefore are not available at all
locations. In recent years, however, their numbers have grown, and one
is available in almost every major community. For some patients the
claustrophobic feeling they experience while in the circular tube is dif-
ficult to contend with. Today, however, a more open unit has been
developed, as shown in Fig. 11.56, that has removed most of this dis-
comfort.

Patients who have metallic implants or pacemakers or those who
have worked in industrial environments where minute ferromagnetic
particles may have become lodged in open, sensitive areas such as the
eyes, nose, and so on, may have to use a CAT scan system because it
does not employ magnetic effects. The attending physician is well
trained in such areas of concern and will remove any unfounded fears
or suggest alternative methods.

FIG. 11.54

Magnetic resonance imaging equipment. 
(Courtesy of Siemens Medical Systems, Inc.)

FIG. 11.55

Magnetic resonance image. (Courtesy 
of Siemens Medical Systems, Inc.)

FIG. 11.56

Magnetic resonance imaging equipment (open
variety). (Courtesy of Siemens Medical

Systems, Inc.)



PROBLEMS

SECTION 11.3 Flux Density

1. Using Appendix F, fill in the blanks in the following
table. Indicate the units for each quantity.
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� B

SI 5 � 10�4 Wb 8 � 10�4 T
CGS _________ _________
English _________ _________

� B

SI _________ _________
CGS 60,000 maxwells _________
English _________ _________

Area  =  0.01 m2

N turnsI

Φ  =  4  ×  10–4 Wb

FIG. 11.57
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Problem 4.

2. Repeat Problem 1 for the following table if area � 2 in.2:

3. For the electromagnet of Fig. 11.57:
a. Find the flux density in the core.
b. Sketch the magnetic flux lines and indicate their

direction.
c. Indicate the north and south poles of the magnet.

SECTION 11.5 Reluctance

4. Which section of Fig. 11.58—(a), (b), or (c)—has the
largest reluctance to the setting up of flux lines through
its longest dimension? 

SECTION 11.6 Ohm’s Law for Magnetic Circuits

5. Find the reluctance of a magnetic circuit if a magnetic
flux � � 4.2 � 10�4 Wb is established by an impressed
mmf of 400 At.

6. Repeat Problem 5 for � � 72,000 maxwells and an
impressed mmf of 120 gilberts.

SECTION 11.7 Magnetizing Force

7. Find the magnetizing force H for Problem 5 in SI units if
the magnetic circuit is 6 in. long.

8. If a magnetizing force H of 600 At/m is applied to a mag-
netic circuit, a flux density B of 1200 � 10�4 Wb/m2 is
established. Find the permeability m of a material that
will produce twice the original flux density for the same
magnetizing force.
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SECTION 11.8 Hysteresis

9. For the series magnetic circuit of Fig. 11.59, determine
the current I necessary to establish the indicated flux.

10. Find the current necessary to establish a flux of � � 3 �
10�4 Wb in the series magnetic circuit of Fig. 11.60.

Area (throughout)
=  3  ×  10–3 m2

Cast iron

Φ  =  10  ×  10–4 Wb
Mean length  =  0.2 m

N  =  75 turns

I

I

Φ

Φ

FIG. 11.59

Problem 9.
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I
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liron core  =  lsteel core  =  0.3 m
Area (throughout)  =  5  �  10–4 m2

N  =  100 turns

FIG. 11.60

Problem 10.

I  =  1 A

N2  =  30 turns

Area  =  0.0012 m2

lm (mean length)  =  0.2 m

lm
N1

I  =
2 A

Cast steel

Φ

FIG. 11.61

Problem 11.
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Uniform area
(throughout)
=  1 in.2

lcast steel  =  5.5 in.
lsheet steel  =  0.5 in.

NI

FIG. 11.62

Problem 12.

11. a. Find the number of turns N1 required to establish a
flux � � 12 � 10�4 Wb in the magnetic circuit of
Fig. 11.61.

b. Find the permeability m of the material.

12. a. Find the mmf (NI) required to establish a flux � �
80,000 lines in the magnetic circuit of Fig. 11.62.

b. Find the permeability of each material.

*13. For the series magnetic circuit of Fig. 11.63 with two
impressed sources of magnetic “pressure,” determine the
current I. Each applied mmf establishes a flux pattern in
the clockwise direction.

Cast steel

Cast iron

I

I
I

Area (throughout)  =  0.25 in.2

lcast steel  =  5.5 in.
lcast iron  =  2.5 in.

Φ  =  0.8  �  10–4 Wb N1  =  20 turns N2  =  30 turns

FIG. 11.63

Problem 13.



SECTION 11.12 Air Gaps

14. a. Find the current I required to establish a flux � �
2.4 � 10�4 Wb in the magnetic circuit of Fig. 11.64.

b. Compare the mmf drop across the air gap to that
across the rest of the magnetic circuit. Discuss your
results using the value of m for each material.
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*15. The force carried by the plunger of the door chime of
Fig. 11.65 is determined by

f � �
1
2

� NI �
d
d
f

x
� (newtons)

where df/dx is the rate of change of flux linking the coil
as the core is drawn into the coil. The greatest rate of
change of flux will occur when the core is 1⁄4 to 3⁄4 the
way through. In this region, if � changes from 0.5 �
10�4 Wb to 8 � 10�4 Wb, what is the force carried by
the plunger? 

16. Determine the current I1 required to establish a flux of
� � 2 � 10�4 Wb in the magnetic circuit of Fig.
11.66.

0.003 m

e

d

c

b

Sheet steel

a

f

Φ

N  =
100
turns

I

Area (throughout)  =  2  ×  10–4 m2

lab  =  lef  =  0.05 m
laf  =  lbe  =  0.02 m

lbc  =  lde

I

FIG. 11.64

Problem 14.

I  =  900 mA
N  =  80 turns

4 cm

f

Plunger

Chime

I

FIG. 11.65

Door chime for Problem 15.

0.002 m
Sheet steel

0.3 m

I2  =  0.3 A
N2  =  40 turns

N1  =  200 turns

I1

I1

Φ

Area (throughout)  =  1.3  ×  10–4 m2

FIG. 11.66

Problem 16.

Spring
Armature Air gap  =  0.2 cm

Contacts

Coil
N  =  200 turns
Diameter of core  =  0.01 m

Solenoid
I

FIG. 11.67

Relay for Problem 17.

*17. a. A flux of 0.2 � 10�4 Wb will establish sufficient
attractive force for the armature of the relay of Fig.
11.67 to close the contacts. Determine the required
current to establish this flux level if we assume that
the total mmf drop is across the air gap.

b. The force exerted on the armature is determined by
the equation

F (newtons) � ·

where Bg is the flux density within the air gap and A
is the common area of the air gap. Find the force in
newtons exerted when the flux � specified in part (a)
is established.

B2
g A

�
mo

1
�
2
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*18. For the series-parallel magnetic circuit of Fig. 11.68, find
the value of I required to establish a flux in the gap of
�g � 2 � 10�4 Wb.

SECTION 11.14 Determining �

19. Find the magnetic flux � established in the series mag-
netic circuit of Fig. 11.69.

*20. Determine the magnetic flux � established in the series
magnetic circuit of Fig. 11.70.

*21. Note how closely the B-H curve of cast steel in Fig.
11.23 matches the curve for the voltage across a capaci-
tor as it charges from zero volts to its final value.
a. Using the equation for the charging voltage as a

guide, write an equation for B as a function of H [B �
f(H)] for cast steel.

b. Test the resulting equation at H � 900 At/m, 1800
At/m, and 2700 At/m.

c. Using the equation of part (a), derive an equation for
H in terms of B [H � f(B)].

d. Test the resulting equation at B � 1 T and B � 1.4 T.
e. Using the result of part (c), perform the analysis of

Example 11.3, and compare the results for the current I.

Sheet steel throughout

N  =
200 turns

a

h g f

e

d

cb�T

I

�1

Area for sections other than bg  =  5  ×  10–4 m2

lab  =  lbg  =  lgh  =  lha  =  0.2 m
lbc  =  lfg  =  0.1 m, lcd  =  lef  =  0.099 m

  Area  =
2  ×  10–4 m2

1 2

0.002 m

�2

FIG. 11.68

Problem 18.

Cast steel

Area  =
0.009 m2

0.08 m

N  =  100 turns

I  =  2 A

Φ

FIG. 11.69

Problem 19.

Cast steel

Φ
a b

f e

c

d
N  =  150 turns

I  =  2 A

lcd  =  8  ×  10– 4 m
lab  =  lbe  =  lef  =  lfa  =  0.2 m
Area (throughout)  =  2  ×  10– 4 m2

lbc  =  lde

FIG. 11.70

Problem 20.

COMPUTER ANALYSIS Programming Language

(C��, QBASIC, Pascal, etc.)

*22. Using the results of Problem 21, write a program to per-
form the analysis of a core such as that shown in Exam-
ple 11.3; that is, let the dimensions of the core and the
applied turns be input variables requested by the pro-
gram.

*23. Using the results of Problem 21, develop a program to
perform the analysis appearing in Example 11.9 for cast
steel. A test routine will have to be developed to deter-
mine whether the results obtained are sufficiently close to
the applied ampere-turns.
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GLOSSARY

Ampère’s circuital law A law establishing the fact that the
algebraic sum of the rises and drops of the mmf around a
closed loop of a magnetic circuit is equal to zero.

Diamagnetic materials Materials that have permeabilities
slightly less than that of free space.

Domain A group of magnetically aligned atoms.
Electromagnetism Magnetic effects introduced by the flow

of charge or current.
Ferromagnetic materials Materials having permeabilities

hundreds and thousands of times greater than that of free
space.

Flux density (B) A measure of the flux per unit area perpen-
dicular to a magnetic flux path. It is measured in teslas (T)
or webers per square meter (Wb/m2).

Hysteresis The lagging effect between the flux density of a
material and the magnetizing force applied.

Magnetic flux lines Lines of a continuous nature that reveal
the strength and direction of a magnetic field.

Magnetizing force (H) A measure of the magnetomotive
force per unit length of a magnetic circuit.

Magnetomotive force (mmf) (�) The “pressure” required to
establish magnetic flux in a ferromagnetic material. It is
measured in ampere-turns (At).

Paramagnetic materials Materials that have permeabilities
slightly greater than that of free space.

Permanent magnet A material such as steel or iron that will
remain magnetized for long periods of time without the aid
of external means.

Permeability (m) A measure of the ease with which mag-
netic flux can be established in a material. It is measured in
Wb/Am.

Relative permeability (mr) The ratio of the permeability of a
material to that of free space.

Reluctance (�) A quantity determined by the physical char-
acteristics of a material that will provide an indication of
the “reluctance” of that material to the setting up of mag-
netic flux lines in the material. It is measured in rels or
At/Wb.
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12.1 INTRODUCTION

We have examined the resistor and the capacitor in detail. In this chap-
ter we shall consider a third element, the inductor, which has a number
of response characteristics similar in many respects to those of the
capacitor. In fact, some sections of this chapter will proceed parallel to
those for the capacitor to emphasize the similarity that exists between
the two elements.

12.2 FARADAY’S LAW OF 
ELECTROMAGNETIC INDUCTION

If a conductor is moved through a magnetic field so that it cuts mag-
netic lines of flux, a voltage will be induced across the conductor, as
shown in Fig. 12.1. The greater the number of flux lines cut per unit
time (by increasing the speed with which the conductor passes through
the field), or the stronger the magnetic field strength (for the same tra-

FIG. 12.1

Generating an induced voltage by moving a
conductor through a magnetic field.

Conductor

S

eind

N
Motion

Φ

+

–

V

Inductors
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versing speed), the greater will be the induced voltage across the con-
ductor. If the conductor is held fixed and the magnetic field is moved so
that its flux lines cut the conductor, the same effect will be produced.

If a coil of N turns is placed in the region of a changing flux, as in
Fig. 12.2, a voltage will be induced across the coil as determined by
Faraday’s law:

(volts, V) (12.1)

where N represents the number of turns of the coil and df/dt is the
instantaneous change in flux (in webers) linking the coil. The term link-
ing refers to the flux within the turns of wire. The term changing sim-
ply indicates that either the strength of the field linking the coil changes
in magnitude or the coil is moved through the field in such a way that
the number of flux lines through the coil changes with time.

If the flux linking the coil ceases to change, such as when the coil
simply sits still in a magnetic field of fixed strength, df/dt � 0, and the
induced voltage e � N(df/dt) � N(0) � 0.

12.3 LENZ’S LAW

In Section 11.2 it was shown that the magnetic flux linking a coil of N
turns with a current I has the distribution of Fig. 12.3.

If the current increases in magnitude, the flux linking the coil also
increases. It was shown in Section 12.2, however, that a changing flux
linking a coil induces a voltage across the coil. For this coil, therefore,
an induced voltage is developed across the coil due to the change in
current through the coil. The polarity of this induced voltage tends to
establish a current in the coil that produces a flux that will oppose any
change in the original flux. In other words, the induced effect (eind) is a
result of the increasing current through the coil. However, the resulting
induced voltage will tend to establish a current that will oppose the
increasing change in current through the coil. Keep in mind that this is
all occurring simultaneously. The instant the current begins to increase
in magnitude, there will be an opposing effect trying to limit the
change. It is “choking” the change in current through the coil. Hence,
the term choke is often applied to the inductor or coil. In fact, we will
find shortly that the current through a coil cannot change instanta-
neously. A period of time determined by the coil and the resistance of
the circuit is required before the inductor discontinues its opposition to
a momentary change in current. Recall a similar situation for the volt-
age across a capacitor in Chapter 10. The reaction above is true for
increasing or decreasing levels of current through the coil. This effect is
an example of a general principle known as Lenz’s law, which states
that

an induced effect is always such as to oppose the cause that produced it.

12.4 SELF-INDUCTANCE

The ability of a coil to oppose any change in current is a measure of the
self-inductance L of the coil. For brevity, the prefix self is usually
dropped. Inductance is measured in henries (H), after the American
physicist Joseph Henry (Fig. 12.4).

e � N �
d
d
f

t
�

Changing flux

e

+

– dφ
dt
φ

FIG. 12.2

Demonstrating Faraday’s law.

I

I
+

–einduced

FIG. 12.3

Demonstrating the effect of Lenz’s law.

FIG. 12.4

Joseph Henry.

American (Albany,
NY; Princeton, NJ)
(1797–1878)

Physicist and

Mathematician

Professor of Natural

Philosophy,

Princeton
University

Courtesy of the 
Smithsonian Institution

Photo No. 59,054

In the early 1800s the title Professor of Natural Phi-
losophy was applied to educators in the sciences. As
a student and teacher at the Albany Academy, Henry
performed extensive research in the area of electro-
magnetism. He improved the design of electromag-
nets by insulating the coil wire to permit a tighter
wrap on the core. One of his earlier designs was
capable of lifting 3600 pounds. In 1832 he discov-
ered and delivered a paper on self-induction. This
was followed by the construction of an effective elec-
tric telegraph transmitter and receiver and extensive
research on the oscillatory nature of lightning and
discharges from a Leyden jar. In 1845 he was
appointed the first Secretary of the Smithsonian.
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Inductors are coils of various dimensions designed to introduce
specified amounts of inductance into a circuit. The inductance of a coil
varies directly with the magnetic properties of the coil. Ferromagnetic
materials, therefore, are frequently employed to increase the inductance
by increasing the flux linking the coil.

A close approximation, in terms of physical dimensions, for the
inductance of the coils of Fig. 12.5 can be found using the following
equation:

(henries, H) (12.2)

where N represents the number of turns; m, the permeability of the core
(as introduced in Section 11.4; recall that m is not a constant but
depends on the level of B and H since m � B/H); A, the area of the core
in square meters; and l, the mean length of the core in meters.

Substituting m � mrmo into Eq. (12.2) yields

L � � mr

and (12.3)

where Lo is the inductance of the coil with an air core. In other words,
the inductance of a coil with a ferromagnetic core is the relative per-
meability of the core times the inductance achieved with an air core.

Equations for the inductance of coils different from those shown
above can be found in reference handbooks. Most of the equations are
more complex than those just described.

EXAMPLE 12.1 Find the inductance of the air-core coil of Fig. 12.6.

Solution:

m � mrmo � (1)(mo) � mo

A � � � 12.57 � 10�6 m2

Lo � �

� 1.58 mH

EXAMPLE 12.2 Repeat Example 12.1, but with an iron core and con-
ditions such that mr � 2000.

Solution: By Eq. (12.3),

L � mr Lo � (2000)(1.58 � 10�6 H) � 3.16 mH

12.5 TYPES OF INDUCTORS

Practical Equivalent

Inductors, like capacitors, are not ideal. Associated with every inductor
are a resistance equal to the resistance of the turns and a stray capaci-

(100 t)2(4p � 10�7 Wb/A⋅m)(12.57 � 10�6 m2)
�����

0.1 m

N2moA
�

l

(p)(4 � 10�3 m)2

��
4

pd2

�
4

L � mrLo

N2moA
�

l

N2mrmoA
��

l

L � �
N2

l

mA
�

N turns

l

d

A

Magnetic or nonmagnetic core

Solenoid (for     >>10)l
d

(a)

N turns

Magnetic or
nonmagnetic core

l

(b)
Toroid

A

FIG. 12.5

Inductor configurations for which Equation
(12.2) is appropriate.

l  =  100 mm

d  =  4 mm

100  turns

Air (�o)�

FIG. 12.6

Example 12.1.
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tance due to the capacitance between the turns of the coil. To include
these effects, the equivalent circuit for the inductor is as shown in Fig.
12.7. However, for most applications considered in this text, the stray
capacitance appearing in Fig. 12.7 can be ignored, resulting in the
equivalent model of Fig. 12.8. The resistance Rl can play an important
role in the analysis of networks with inductive elements. For most
applications, we have been able to treat the capacitor as an ideal ele-
ment and maintain a high degree of accuracy. For the inductor, however,
Rl must often be included in the analysis and can have a pronounced
effect on the response of a system (see Chapter 20, “Resonance”). The
level of Rl can extend from a few ohms to a few hundred ohms. Keep
in mind that the longer or thinner the wire used in the construction of
the inductor, the greater will be the dc resistance as determined by R �
rl / A. Our initial analysis will treat the inductor as an ideal element.
Once a general feeling for the response of the element is established,
the effects of Rl will be included.

Symbols

The primary function of the inductor, however, is to introduce induc-
tance—not resistance or capacitance—into the network. For this reason,
the symbols employed for inductance are as shown in Fig. 12.9.

FIG. 12.7

Complete equivalent model for an inductor.

FIG. 12.8

Practical equivalent model for an inductor.

FIG. 12.9

Inductor symbols.

Appearance

All inductors, like capacitors, can be listed under two general headings:
fixed and variable. The fixed air-core and iron-core inductors were
described in the last section. The permeability-tuned variable coil has a
ferromagnetic shaft that can be moved within the coil to vary the flux
linkages of the coil and thereby its inductance. Several fixed and vari-
able inductors appear in Fig. 12.10.

Testing

The primary reasons for inductor failure are shorts that develop
between the windings and open circuits in the windings due to factors
such as excessive currents, overheating, and age. The open-circuit con-
dition can be checked easily with an ohmmeter (∞ ohms indication), but
the short-circuit condition is harder to check because the resistance of
many good inductors is relatively small and the shorting of a few wind-
ings will not adversely affect the total resistance. Of course, if one is
aware of the typical resistance of the coil, it can be compared to the
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(c)

(b)
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measured value. A short between the windings and the core can be
checked by simply placing one lead of the meter on one wire (terminal)
and the other on the core itself. An indication of zero ohms reflects a
short between the two because the wire that makes up the winding has
an insulation jacket throughout. The universal LCR meter of Fig. 10.20
can be used to check the inductance level.

Standard Values and Recognition Factor

The standard values for inductors employ the same numerical multipli-
ers used with resistors and inductors. Like the capacitor, the most com-
mon employ the same numerical multipliers as the most common resis-
tors, that is, those with the full range of tolerances (5%, 10%, and
20%), as appearing in Table 3.8. However, inductors are also readily
available with the multipliers associated with the 5% and 10% resistors
of Table 3.8. In general, therefore, expect to find inductors with the fol-
lowing multipliers: 0.1 mH, 0.12 mH, 0.15 mH, 0.18 mH, 0.22 mH, 0.27
mH, 0.33 mH, 0.39 mH, 0.47 mH, 0.56 mH, 0.68 mH, and 0.82 mH, and
then 1 mH, 1.2 mH, 1.5 mH, 1.8 mH, 2.2 mH, 2.7 mH, and so on.

Figure 12.11 was developed to establish a recognition factor when it
comes to the various types and uses for inductors—in other words, to
help the reader develop the skills to identify types of inductors, their
typical range of values, and some of the most common applications.
Figure 12.11 is certainly not all-inclusive, but it does offer a first step in
establishing a sense for what to expect for various applications.

FIG. 12.10

Various types of inductors: (a) toroidal power inductor (1.4 mH to 5.6 mH)
(courtesy of Microtan Co., Inc.); (b) surface-mount inductors on reels (0.1 mH
through 1000 mH on 500-piece reels in 46 values) (courtesy of Bell Industries);

(c) molded inductors (0.1 mH to 10 mH); (d) high-current filter inductors 
(24 mH at 60 A to 500 mH at 15 A); (e) toroid filter inductors (40 mH to 5 H);

(f) air-core inductors (1 to 32 turns) for high-frequency applications. [Parts (c)
through (f) courtesy of Dale Electronics, Inc.]
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12.6 INDUCED VOLTAGE

The inductance of a coil is also a measure of the change in flux linking
a coil due to a change in current through the coil; that is,

(H) (12.4)

where N is the number of turns, f is the flux in webers, and i is the cur-
rent through the coil. If a change in current through the coil fails to
result in a significant change in the flux linking the coil through its cen-
ter, the resulting inductance level will be relatively small. For this rea-
son the inductance of a coil is sensitive to the point of operation on the
hysteresis curve (described in detail in Section 11.8). If the coil is oper-
ating on the steep slope, the change in flux will be relatively high for a
change in current through the coil. If the coil is operating near or in sat-
uration, the change in flux will be relatively small for the same change
in current, resulting in a reduced level of inductance. This effect is par-
ticularly important when we examine ac circuits since a dc level asso-

L � N �
d
d
f

i
�

Type:  Open Core Coil
Typical Values:  3 mH to 40 mH
Applications:  Used in low-pass
filter circuits.  Found in speaker
crossover networks.

Type:  Toroid Coil
Typical Values:  1 mH to 30 mH
Applications:  Used as a choke in AC
power lines circuits to filter transient
and reduce EMI interference.  This
coil is found in many electronic
appliances.

Type:  Common Mode Choke Coil
Typical Values:  0.6 mH to 50 mH
Applications:  Used in AC line filters,
switching power supplies, battery
charges and other electronic equipment.

Type:  Delay Line Coil
Typical Values:  10    H to 50     H
Applications:  Used in color
televisions to correct for timing
differences between the color
signal and black and white signal.

µ µ

Type:  Hash Choke Coil
Typical Values:  3    H to 1 mH
Applications:  Used in AC supply
lines that deliver high currents.

µ

Coil

Plastic tube

Fiber
insulator

Inner
core

3"

Type:  Adjustable RF Coil
Typical Values:  1    H to 100    H
Applications:  Variable inductor
used in oscillators and various RF
circuits such as CB transceivers,
televisions, and radios.

µ µ

Type:  Surface Mounted Inductors
Typical Values:  0.01   H to 100    H
Applications:  Found in many
electronic circuits that require
miniature components on
multilayered PCB.

µµ

Type:  Moiled Coils
Typical Values:  0.1    H to 100    H
Applications:  Used in a wide variety
of circuit such as oscillators, filters,
pass-band filters, and others.

µ µ

Type:  RF Chokes
Typical Values:  10    H to 50    H
Applications:  Used in radio,
television, and communication
circuits.  Found in AM, FM, and
UHF circuits.

µ µ

FIG. 12.11

Typical areas of application for inductive elements.
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ciated with the applied ac signal may put the coil at or near saturation,
and the resulting inductance level for the applied ac signal will be sig-
nificantly less than expected. You will find that the maximum dc current
is normally provided in supply manuals and data sheets to ensure avoid-
ance of the saturation region.

Equation (12.4) also reveals that the larger the inductance of a coil
(with N fixed), the larger will be the instantaneous change in flux
linking the coil due to an instantaneous change in current through the
coil.

If we write Eq. (12.1) as

eL � N � �N �� �
and substitute Eq. (12.4), we then have

(V) (12.5)

revealing that the magnitude of the voltage across an inductor is directly
related to the inductance L and the instantaneous rate of change of cur-
rent through the coil. Obviously, therefore, the greater the rate of
change of current through the coil, the greater will be the induced volt-
age. This certainly agrees with our earlier discussion of Lenz’s law.

When induced effects are employed in the generation of voltages
such as those available from dc or ac generators, the symbol e is appro-
priate for the induced voltage. However, in network analysis the voltage
across an inductor will always have a polarity such as to oppose the
source that produced it, and therefore the following notation will be
used throughout the analysis to come:

(12.6)

If the current through the coil fails to change at a particular instant,
the induced voltage across the coil will be zero. For dc applications,
after the transient effect has passed, di/dt � 0, and the induced voltage
is

vL � L � L(0) � 0 V

Recall that the equation for the current of a capacitor is the follow-
ing:

iC � C

Note the similarity between this equation and Eq. (12.6). In fact, if we
apply the duality v i (that is, interchange the two) and L C for
capacitance and inductance, each equation can be derived from the
other.

The average voltage across the coil is defined by the equation

(V) (12.7)vLav
� L �

D

D

i
t

�

dvC
�
dt

di
�
dt

vL � L �
d
d
i
t
�

eL � L �
d
d
i
t
�

di
�
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df
�
di
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�
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where D signifies finite change (a measurable change). Compare this to
iC � C(Dv/Dt), and the meaning of D and application of this equation
should be clarified from Chapter 10. An example follows.

EXAMPLE 12.3 Find the waveform for the average voltage across the
coil if the current through a 4-mH coil is as shown in Fig. 12.12.

FIG. 12.12

Example 12.3.

Solutions:

a. 0 to 2 ms: Since there is no change in current through the coil, there
is no voltage induced across the coil; that is,

vL � L � L � 0

b. 2 ms to 4 ms:

vL � L � (4 � 10�3 H)� � � 20 � 10�3 V

� 20 mV

c. 4 ms to 9 ms:

vL � L � (�4 � 10�3 H)� � � �8 � 10�3 V

� �8 mV

d. 9 ms to ∞:

vL � L � L � 0

The waveform for the average voltage across the coil is shown in
Fig. 12.13. Note from the curve that

0
�
Dt

Di
�
Dt

10 � 10�3 A
��

5 � 10�3 s

Di
�
Dt

10 � 10�3 A
��

2 � 10�3 s
Di
�
Dt

0
�
Dt

Di
�
Dt

t (ms)

vL (mV)

20

10

0

–10

1 2 3 4 105 6 7 8 9

FIG. 12.13

Voltage across a 4-mH coil due to the current of Fig. 12.12.
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the voltage across the coil is not determined solely by the magnitude
of the change in current through the coil (Di), but also by the rate of
change of current through the coil (Di/Dt).

A similar statement was made for the current of a capacitor due to a
change in voltage across the capacitor.

A careful examination of Fig. 12.13 will also reveal that the area
under the positive pulse from 2 ms to 4 ms equals the area under the
negative pulse from 4 ms to 9 ms. In Section 12.13, we will find that
the area under the curves represents the energy stored or released by
the inductor. From 2 ms to 4 ms, the inductor is storing energy,
whereas from 4 ms to 9 ms, the inductor is releasing the energy
stored. For the full period zero to 10 ms, energy has simply been
stored and released; there has been no dissipation as experienced for
the resistive elements. Over a full cycle, both the ideal capacitor and
inductor do not consume energy but simply store and release it in their
respective forms.

12.7 R-L TRANSIENTS: STORAGE CYCLE

The changing voltages and current that result during the storing of
energy in the form of a magnetic field by an inductor in a dc circuit can
best be described using the circuit of Fig. 12.14. At the instant the
switch is closed, the inductance of the coil will prevent an instantaneous
change in current through the coil. The potential drop across the coil,
vL, will equal the impressed voltage E as determined by Kirchhoff’s
voltage law since vR � iR � (0)R � 0 V. The current iL will then build
up from zero, establishing a voltage drop across the resistor and a cor-
responding drop in vL. The current will continue to increase until the
voltage across the inductor drops to zero volts and the full impressed
voltage appears across the resistor. Initially, the current iL increases
quite rapidly, followed by a continually decreasing rate until it reaches
its maximum value of E/R.

You will recall from the discussion of capacitors that a capacitor has
a short-circuit equivalent when the switch is first closed and an open-
circuit equivalent when steady-state conditions are established. The
inductor assumes the opposite equivalents for each stage. The instant
the switch of Fig. 12.14 is closed, the equivalent network will appear as
shown in Fig. 12.15. Note the correspondence with the earlier com-
ments regarding the levels of voltage and current. The inductor obvi-
ously meets all the requirements for an open-circuit equivalent: vL � E
volts, and iL � 0 A.

When steady-state conditions have been established and the storage
phase is complete, the “equivalent” network will appear as shown in
Fig. 12.16. The network clearly reveals the following:

An ideal inductor (Rl � 0 �) assumes a short-circuit equivalent in a
dc network once steady-state conditions have been established.

Fortunately, the mathematical equations for the voltages and current
for the storage phase are similar in many respects to those encountered
for the R-C network. The experience gained with these equations in
Chapter 10 will undoubtedly make the analysis of R-L networks some-
what easier to understand.

–

E

+

iL
–+ vR

vLL

R

FIG. 12.14

Basic R-L transient network.

R
iL  =  0 A

i  =   0

vL  =  E volts
–

+

vR  =  iR  =  (0)R  =  0 V

E

FIG. 12.15

Circuit of Fig. 12.14 the instant the switch is 
closed.

R
iL  =

i

vL  =  0 V
–

+

E

vR  =  iR  =         R  =  E voltsE
R(    )

E
R

FIG. 12.16

Circuit of Fig. 12.14 under steady-state 
conditions.
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The equation for the current iL during the storage phase is the fol-
lowing:

(12.8)

Note the factor (1 � e�t/t), which also appeared for the voltage vC of a
capacitor during the charging phase. A plot of the equation is given in
Fig. 12.17, clearly indicating that the maximum steady-state value of iL
is E/R, and that the rate of change in current decreases as time passes.
The abscissa is scaled in time constants, with t for inductive circuits
defined by the following:

(seconds, s) (12.9)t � �
R
L

�

iL � Im(1 � e�t/t ) � �
E
R

�(1 � e�t/(L/R))

0 1� 2� 3� 4� 5� t

iL

0.632Im

0.865Im

0.951Im
0.981Im 0.993Im

Im  =
E
R

(1  –  e–t/(L/R))iL  =
E
R

� � � � �

FIG. 12.17

Plotting the waveform for iL during the storage cycle.

The fact that t has the units of time can be verified by taking the
equation for the induced voltage

vL � L

and solving for L: L �

which leads to the ratio

t � � � � � t (s)

Our experience with the factor (1 � e−t/t) verifies the level of 63.2%
after one time constant, 86.5% after two time constants, and so on. For
convenience, Figure 10.29 is repeated as Fig. 12.18 to evaluate the
functions (1 � e�t/t) and e�t/t at various values of t.

If we keep R constant and increase L, the ratio L/R increases and the
rise time increases. The change in transient behavior for the current iL
is plotted in Fig. 12.19 for various values of L. Note again the duality
between these curves and those obtained for the R-C network in Fig.
10.32.

V
—
�
V
t
�

V
—
�
IR
t
�

vL—
�
d
d
i
t
� R

�
d

v
i/

L

dt
�

—
R

L
�
R

vL
�
di/dt

di
�
dt
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For most practical applications, we will assume that

the storage phase has passed and steady-state conditions have been
established once a period of time equal to five time constants has
occurred.

In addition, since L/R will always have some numerical value, even
though it may be very small, the period 5t will always be greater than
zero, confirming the fact that

the current cannot change instantaneously in an inductive network.

In fact, the larger the inductance, the more the circuit will oppose a
rapid buildup in current level.

Figures 12.15 and 12.16 clearly reveal that the voltage across the
coil jumps to E volts when the switch is closed and decays to zero volts
with time. The decay occurs in an exponential manner, and vL during

FIG. 12.18

Plotting the functions y � 1 � e�t/t and y � e�t/t.

0 1t 2t 3t 4t 5t 6t

1.0

y

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1t

y  =  e – t/t

0.368 (close to     )1 3

0.632 (close to     )2 3

t

y  =  1  –  e – t/�

iLE
R L1 L2

L3

L3  >  L2  >  L1
(R fixed)

t (s)

FIG. 12.19

Effect of L on the shape of the iL storage 
waveform.



484  INDUCTORS

the storage phase can be described mathematically by the following
equation:

(12.10)

A plot of vL appears in Fig. 12.20 with the time axis again divided
into equal increments of t. Obviously, the voltage vL will decrease to
zero volts at the same rate the current presses toward its maximum
value.

vL � Ee�t/t

0

vL

E

1t 2t 3t 4t 5t 6t t

0.368E

0.135E
0.049E 0.019E 0.007E

vL  =  Ee – t/t

FIG. 12.20

Plotting the voltage vR versus time for the network of Fig. 12.14.

In five time constants, iL � E/R, vL � 0 V, and the inductor can be
replaced by its short-circuit equivalent.

Since vR � iRR � iLR

then vR � � (1 � e�t/t)�R

and (12.11)

and the curve for vR will have the same shape as obtained for iL.

EXAMPLE 12.4 Find the mathematical expressions for the transient
behavior of iL and vL for the circuit of Fig. 12.21 after the closing of the
switch. Sketch the resulting curves.

Solution:

t � � � 2 ms

By Eq. (12.8),

Im � � � 25 � 10�3 A � 25 mA

and iL � (25 � 10�3)(1 � e�t/(2�10�3))

By Eq. (12.10),

vL � 50e�t/(2�10�3)

Both waveforms appear in Fig. 12.22.

50
�
2 k�

E
�
R1

4 H
�
2 k�

L
�
R1

vR � E(1 � e�t/t)

E
�
R

–
E

+

iL

R1

vLL 4 H50 V

2 k�

FIG. 12.21

Example 12.4.

iL

25 mA

0 1t 2t 3t 4t 5t t

t  =  2 ms

0 2t 3t 4t 5t t1t

t  =  2 ms

50 V

vL

FIG. 12.22

iL and vL for the network of Fig. 12.21.
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12.8 INITIAL VALUES

This section will parallel Section 10.9 (Initial Values—Capacitors) on
the effect of initial values on the transient phase. Since the current
through a coil cannot change instantaneously, the current through a
coil will begin the transient phase at the initial value established by
the network (note Fig. 12.23) before the switch was closed. It will
then pass through the transient phase until it reaches the steady-state
(or final) level after about five time constants. The steady-state level of
the inductor current can be found by simply substituting its short-
circuit equivalent (or Rl for the practical equivalent) and finding the
resulting current through the element.

Using the transient equation developed in the previous section, an
equation for the current iL can be written for the entire time interval of
Fig. 12.23; that is,

iL � Ii � (If � Ii)(1 � e�t/t)

with (If � Ii) representing the total change during the transient phase.
However, by multiplying through and rearranging terms:

iL � Ii � If � If e
�t/t � Ii � Iie

�t/t

� If � If e
�t/t � Iie

�t/t

we find

(12.12)

If you are required to draw the waveform for the current iL from ini-
tial value to final value, start by drawing a line at the initial value and
steady-state levels, and then add the transient response (sensitive to the
time constant) between the two levels. The following example will clar-
ify the procedure.

EXAMPLE 12.5 The inductor of Fig. 12.24 has an initial current level
of 4 mA in the direction shown. (Specific methods to establish the ini-
tial current will be presented in the sections and problems to follow.)
a. Find the mathematical expression for the current through the coil

once the switch is closed.
b. Find the mathematical expression for the voltage across the coil dur-

ing the same transient period.
c. Sketch the waveform for each from initial value to final value.

Solutions:

a. Substituting the short-circuit equivalent for the inductor will result in
a final or steady-state current determined by Ohm’s law:

If � � � � 1.78 mA

The time constant is determined by

t � � � � 11.11 ms
100 mH
�

9 k�

100 mH
��
2.2 k� � 6.8 k�

L
�
RT

16 V
�
9 k�

16 V
��
2.2 k� � 6.8 k�

E
�
R1 � R2

iL � If � (Ii � If)e
�t/t

transient
response

Ii

iL

If

0 t

initial
conditions

steady-state
region

FIG. 12.23

Defining the three phases of a transient waveform.

–

+

4 mA

vL

iL

R2

6.8 k�

R1

2.2 k�

E 16 V L = 100 mH

FIG. 12.24

Example 12.5.
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Applying Eq. (12.12):

iL � If � (Ii � If)e
�t/t

� 1.78 mA � (4 mA � 1.78 mA)e�t/11.11 ms

� 1.78 mA � 2.22 mAe�t/11.11 ms

b. Since the current through the inductor is constant at 4 mA prior to
the closing of the switch, the voltage (whose level is sensitive only
to changes in current through the coil) must have an initial value of
0 V. At the instant the switch is closed, the current through the coil
cannot change instantaneously, so the current through the resistive
elements will be 4 mA. The resulting peak voltage at t � 0 s can
then be found using Kirchhoff’s voltage law as follows:

Vm � E � VR1
� VR2

� 16 V � (4 mA)(2.2 k�) � (4 mA)(6.8 k�)
� 16 V � 8.8 V � 27.2 V � 16 V � 36 V
� �20 V

Note the minus sign to indicate that the polarity of the voltage vL is
opposite to the defined polarity of Fig. 12.24.

The voltage will then decay (with the same time constant as the
current iL) to zero because the inductor is approaching its short-
circuit equivalence.

The equation for vL is therefore:

vL � �20e�t/11.11 ms

c. See Fig. 12.25. The initial and final values of the current were drawn
first, and then the transient response was included between these
levels. For the voltage, the waveform begins and ends at zero, with
the peak value having a sign sensitive to the defined polarity of vL in
Fig. 12.24.

3

2

1

0 1τ 2τ 3τ 4τ 5τ

1.78 mA

t (�s)

iL (mA)

4 mA

τ τ τ τ τ �

vL (volts)

0 V1τ 2τ 3τ 4τ 5ττ τ τ τ τ

–20 V

0 V 0

τ = 11.11 �sτ �

FIG. 12.25

iL and vL for the network of Fig. 12.24.



Let us now test the validity of the equation for iL by substituting
t � 0 s to reflect the instant the switch is closed.

e�t/t � e�0 � 1

and iL � 1.78 mA � 2.22 mAe�t/t � 1.78 mA � 2.22 mA 
� 4 mA

When t > 5t, 

e�t/t � 0

and iL � 1.78 mA � 2.22 mAe�t/t � 1.78 mA

12.9 R-L TRANSIENTS: DECAY PHASE

In the analysis of R-C circuits, we found that the capacitor could hold
its charge and store energy in the form of an electric field for a period
of time determined by the leakage factors. In R-L circuits, the energy is
stored in the form of a magnetic field established by the current through
the coil. Unlike the capacitor, however, an isolated inductor cannot con-
tinue to store energy since the absence of a closed path would cause the
current to drop to zero, releasing the energy stored in the form of a
magnetic field. If the series R-L circuit of Fig. 12.26 had reached
steady-state conditions and the switch were quickly opened, a spark
would probably occur across the contacts due to the rapid change in
current from a maximum of E/R to zero amperes. The change in current
di/dt of the equation vL � L(di/dt) would establish a high voltage vL

across the coil that in conjunction with the applied voltage E appears
across the points of the switch. This is the same mechanism as applied
in the ignition system of a car to ignite the fuel in the cylinder. Some
25,000 V are generated by the rapid decrease in ignition coil current
that occurs when the switch in the system is opened. (In older systems,
the “points” in the distributor served as the switch.) This inductive reac-
tion is significant when you consider that the only independent source
in a car is a 12-V battery.

If opening the switch to move it to another position will cause such
a rapid discharge in stored energy, how can the decay phase of an R-L
circuit be analyzed in much the same manner as for the R-C circuit?
The solution is to use a network such as that appearing in Fig.
12.27(a). When the switch is closed, the voltage across the resistor R2

is E volts, and the R-L branch will respond in the same manner as
described above, with the same waveforms and levels. A Thévenin net-
work of E in parallel with R2 would simply result in the source as
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E
+

–
L vL

–

+

vR = iRR = (0 A)R = 0 V

Rvcontact = vL + E
+ –vcontact

iL
0 A

FIG. 12.26

Demonstrating the effect of opening a switch
in series with an inductor with a steady-state

current.

(a)

R2E

R1
+

–

iL

+

–
vR2

Th

vR1
+ –

L vL

(b)

E

R1
+

–

iL
vR1

+ –

L vL

+

–

+

–

FIG. 12.27

Initiating the storage phase for the inductor L 
by closing the switch.
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shown in Fig. 12.27(b) since R2 would be shorted out by the short-
circuit replacement of the voltage source E when the Thévenin resis-
tance is determined.

After the storage phase has passed and steady-state conditions are
established, the switch can be opened without the sparking effect or
rapid discharge due to the resistor R2, which provides a complete path
for the current iL. In fact, for clarity the discharge path is isolated in Fig.
12.28. The voltage vL across the inductor will reverse polarity and have
a magnitude determined by

(12.13)

Recall that the voltage across an inductor can change instanta-
neously but the current cannot. The result is that the current iL must
maintain the same direction and magnitude as shown in Fig. 12.28.
Therefore, the instant after the switch is opened, iL is still Im � E/R1,
and

vL � �(vR1
� vR2

) � �(i1R1 � i2R2)

� �iL(R1 � R2) � � (R1 � R2) � �� � �E

and (12.14)

which is bigger than E volts by the ratio R2 /R1. In other words, when
the switch is opened, the voltage across the inductor will reverse polar-
ity and drop instantaneously from E to �[1 � (R2 /R1)]E volts.

As an inductor releases its stored energy, the voltage across the coil
will decay to zero in the following manner:

(12.15)

with Vi � �1 � �E

and t′ � �

The current will decay from a maximum of Im � E/R1 to zero. Using
Eq. (12.20), Ii � E/R1 and If � 0 A so that 

iL � If � (Ii � If)e
�t/t′

� 0 A � ��
R

E

1
� � 0 A�e�t/t′

and (12.16)

with t′ �
L

�
R1 � R2

iL � �
R

E

1
�e�t/t′

L
�
R1 � R2

L
�
RT

R2
�
R1

vL � �Vie
�t/t′

vL � ��1 � �
R

R
2

1
��E

R2
�
R1

R1
�
R1

E
�
R1

vL � �(vR1
� vR2

)

–

+

iL
–+

vLLvR2
R2

vR1

–

+

iL

iL

(same
direction)

(reversed
polarity)

(same polarity)

R1

FIG. 12.28

Network of Fig. 12.27 the instant the switch 
is opened.
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The mathematical expression for the voltage across either resistor
can then be determined using Ohm’s law:

vR1
� iR1

R1 � iLR1

� �
R
E

1
�R1e

�t/t′

and (12.17)

The voltage vR1
has the same polarity as during the storage phase since

the current iL has the same direction. The voltage vR2
is expressed as

follows using the defined polarity of Fig. 12.27:

vR2
� �iR2

R2 � �iLR2

� � R2e
�t/t′

and vR2
� ��

R

R
2

1
�Ee�t/t′ (12.18)

EXAMPLE 12.6 The resistor R2 was added to the network of Fig.
12.21, as shown in Fig. 12.29.
a. Find the mathematical expressions for iL, vL, vR1

, and vR2
for five

time constants of the storage phase.
b. Find the mathematical expressions for iL, vL, vR1

, and vR2
if the

switch is opened after five time constants of the storage phase.
c. Sketch the waveforms for each voltage and current for both phases

covered by this example and Example 12.4 if five time constants
pass between phases. Use the defined polarities of Fig. 12.27.

E
�
R1

vR1
� Ee�t/t′

3 k�E = 50 V

R1 iL

vR1
+ –

L 4 H
+

–
vL

2 k�

R2

+

–
vR2

FIG. 12.29

Defined polarities for vR1
, vR2

, vL , and current direction for iL for 
Example 12.6.

Solutions:

a. t � � � 2 ms

Eq. (12.10): vL � Ee�t/t

vL � 50e�t/2�10�3

Eq. (12.8): iL � Im(1 � e�t/t)

4 H
�
2 k�

L
�
R
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Im � � = 25 mA

iL � 25 � 10�3(1 � e�t/2�10�3
)

Eq. (12.11): vR1
� E(1 � e�t/t)

vR1
� 50(1 � e�t/2�10�3

)

vR2
� 50 V

b. t′ � � � � 0.8 � 10�3 s

� 0.8 ms

By Eq. (12.15),

Vi � �1 � �E � �1 � �(50 V) � 125 V

and vL � �Vie
�t/t′ � �125e�t/(0.8�10�3)

By Eq. (12.16),

Ii � Im � � � 25 mA

and iL � (25 � 10�3)e�t/(0.8�10�3)

By Eq. (12.17),

vR1
� Ee�t/t′ � 50e�t/(0.8�10�3)

By Eq. (12.18),

vR2
� � Ee�t/t′ � � (50 V)e�t/t′ � �75e�t/(0.8�10�3)

c. See Fig. 12.30 (opposite page).

In the preceding analysis, it was assumed that steady-state conditions
were established during the charging phase and Im � E/R1, with vL �
0 V. However, if the switch of Fig. 12.28 is opened before iL reaches its
maximum value, the equation for the decaying current of Fig. 12.28
must change to

(12.19)

where Ii is the starting or initial current. Equation (12.15) would be
modified as follows:

(12.20)

with Vi � Ii(R1 � R2)

12.10 INSTANTANEOUS VALUES

The development presented in Section 10.10 for capacitive networks
can also be applied to R-L networks to determine instantaneous volt-
ages, currents, and time. The instantaneous values of any voltage or cur-
rent can be determined by simply inserting t into the equation and using

vL � �Vie
�t/t′

iL � Iie
�t/t′

3 k�
�
2 k�

R2
�
R1

50 V
�
2 k�

E
�
R1

3 k�
�
2 k�

R2�
R1

4 H
��
5 � 103 �

4 H
��
2 k� � 3 k�

L
�
R1 � R2

50 V
�
2 k�

E
�
R1
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a calculator or table to determine the magnitude of the exponential
term.

The similarity between the equations vC � E(1 � e�t/t) and iL �
Im(1 � e�t/t) results in a derivation of the following for t that is iden-
tical to that used to obtain Eq. (10.24):

(12.21)t � t loge��Im

I

�
m

iL
��

0

R1

vR1

50 VE

vL:

vL

+

–

Defined
polarity

Switch
closed

5t
5(2 ms)
=  10 ms

5t′  =  5(0.8 ms)  =  4 ms

Switch opened

–125
Instantaneous
change

t

0

iL:

Defined
direction 5t

t

iL (mA)

25

5t′

No instantaneous
change

0
Defined
polarity 5t

t

volts

50

5t′

Same shape
as iL since
vR1

  =  iL R1

+ –

R2vR2

0
Defined
polarity 5t

t

volts

50

5t′

+

–

vR2
 :

75

vR1
 :

FIG. 12.30

The various voltages and the current for the network of Fig. 12.29.
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For the other form, the equation vC � Ee�t/t is a close match with 
vL � Ee�t/t, permitting a derivation similar to that employed for Eq.
(10.25):

t � t loge�
v
E

L

� (12.22)

The similarities between the above and the equations in Chapter 10
should make the equation for t fairly easy to obtain.

12.11 THÉVENIN EQUIVALENT: t � L/RTh

In Chapter 10 (“Capacitors”), we found that there are occasions when
the circuit does not have the basic form of Fig. 12.14. The same is true
for inductive networks. Again, it is necessary to find the Thévenin
equivalent circuit before proceeding in the manner described in this
chapter. Consider the following example.

EXAMPLE 12.7 For the network of Fig. 12.31:
a. Find the mathematical expression for the transient behavior of the

current iL and the voltage vL after the closing of the switch (Ii �
0 mA).

b. Draw the resultant waveform for each.

Solutions:

a. Applying Thévenin’s theorem to the 80-mH inductor (Fig. 12.32)
yields

RTh � � � 10 k�
20 k�
�

2
R
�
N

R1

20 k�

RTh

R2

4 k�

R3 16 k�

RTh:

R1 20 k�RTh

R2  +  R3  =

4 k�  +  16 k�
=  20 k�

FIG. 12.32

Determining RTh for the network of Fig. 12.31.

Applying the voltage divider rule (Fig. 12.33),

ETh �

� � � 6 V

The Thévenin equivalent circuit is shown in Fig. 12.34. Using Eq.
(12.8),

(20 k�)(12 V)
��

40 k�

(4 k� � 16 k�)(12 V)
���
20 k� � 4 k� � 16 k�

(R2 � R3)E
��
R1 � R2 � R3

FIG. 12.33

Determining ETh for the network of Fig. 12.31.

–

E
+

iL

L  =  80 mH

R1

vL

20 k�

R2

4 k�

R3 16 k�12 V

FIG. 12.31

Example 12.7.
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iL � (1 � e�t/t)

t � � � 8 � 10�6 s

Im � � � 0.6 � 10�3 A

and iL � (0.6 � 10�3)(1 � e�t/(8�10�6))

Using Eq. (12.10),

vL � EThe
�t/t

so that vL � 6e�t/(8�10�6)

b. See Fig. 12.35.

6 V
��
10 � 103 �

ETh
�
RTh

80 � 10�3 H
��
10 � 103 �

L
�
RTh

ETh
�
R

FIG. 12.34

The resulting Thévenin equivalent circuit for
the network of Fig. 12.31.

ETh

+

iL

–
vL6 V

RTh

10 k�

80 mH

Thévenin equivalent circuit:

5 10 15 20 25 30 35 40 45 50
t (ms)

vL

=  0.6 mA

Im  =
ETh
R

ETh  =  6 V

vL, iL

iL

5t

FIG. 12.35

The resulting waveforms for iL and vL for the network of Fig. 12.31.

EXAMPLE 12.8 The switch S1 of Fig. 12.36 has been closed for a
long time. At t � 0 s, S1 is opened at the same instant S2 is closed to
avoid an interruption in current through the coil.

iL

R1 = 2.2 k�

1 k�

R3

8.2 k�

R2

I 12 mA

S1
(t = 0 s)

S2
(t = 0 s)

+

–
6 VE680 mHL

FIG. 12.36

Example 12.8.
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a. Find the initial current through the coil. Pay particular attention to its
direction.

b. Find the mathematical expression for the current iL following the
closing of the switch S2.

c. Sketch the waveform for iL.

Solutions:

a. Using Ohm’s law, the initial current through the coil is determined
by

Ii � � � � � �6 mA

b. Applying Thévenin’s theorem:

RTh � R1 � R2 � 2.2 k� � 8.2 k� � 10.4 k�

ETh � IR1 � (12 mA)(2.2 k�) � 26.4 V

The Thévenin equivalent network appears in Fig. 12.37.
The steady-state current can then be determined by substituting

the short-circuit equivalent for the inductor:

If � � � 2.54 mA

The time constant:

t � � � 65.39 ms

Applying Eq. (12.12):

iL � If � (Ii � If)e
�t/t

� 2.54 mA � (�6 mA � 2.54 mA)e�t/65.39 ms

� 2.54 mA � 8.54 mAe�t/(65.39 ms)

c. Note Fig. 12.38.

680 mH
�
10.4 k�

L
�
RTh

26.4 V
�
10.4 k�

E
�
RTh

6 V
�
1 k�

E
�
R3

FIG. 12.38

The current iL for the network of Fig. 12.37.
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–4

–5
–6 mA

FIG. 12.37

Thévenin equivalent circuit for the network of
Fig. 12.36 for t ≥ 0 s.
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12.12 INDUCTORS IN SERIES AND PARALLEL

Inductors, like resistors and capacitors, can be placed in series or paral-
lel. Increasing levels of inductance can be obtained by placing inductors
in series, while decreasing levels can be obtained by placing inductors
in parallel.

For inductors in series, the total inductance is found in the same
manner as the total resistance of resistors in series (Fig. 12.39):

(12.23)LT � L1 � L2 � L3 � • • • � LN

FIG. 12.39

Inductors in series.

FIG. 12.40

Inductors in parallel.

For inductors in parallel, the total inductance is found in the same
manner as the total resistance of resistors in parallel (Fig. 12.40):

(12.24)�
L
1

T
� � �

L
1

1
� � �

L
1

2
� � �

L
1

3
� � • • • � �

L
1

N
�

FIG. 12.41

Example 12.9.

R

1.2 k�

L2

1.2 H

L1

0.56 H

L4

1.8 H
L3 = 1.2 H

For two inductors in parallel,

(12.25)

EXAMPLE 12.9 Reduce the network of Fig. 12.41 to its simplest
form.

Solution: The inductors L2 and L3 are equal in value and they are in
parallel, resulting in an equivalent parallel value of

L′T � � � 0.6 H

The resulting 0.6 H is then in parallel with the 1.8-H inductor, and

L″T � �

� 0.45 H

(0.6 H)(1.8 H)
��
0.6 H � 1.8 H

(L′T)(L4)
�
L′T � L4

1.2 H
�

2
L
�
N

LT � �
L1

L

�
1L2

L2
�
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The inductor L1 is then in series with the equivalent parallel value, and

LT � L1 � L″T � 0.56 H � 0.45 H
� 1.01 H

The reduced equivalent network appears in Fig. 12.42.

12.13 R-L AND R-L-C CIRCUITS
WITH dc INPUTS

We found in Section 12.7 that, for all practical purposes, an inductor
can be replaced by a short circuit in a dc circuit after a period of time
greater than five time constants has passed. If in the following circuits
we assume that all of the currents and voltages have reached their final
values, the current through each inductor can be found by replacing
each inductor with a short circuit. For the circuit of Fig. 12.43, for
example,

I1 � � � 5 A
10 V
�
2 �

E
�
R1

FIG. 12.42

Terminal equivalent of the network of 
Fig. 12.41.

R

1.2 k�

LT 1.01 H

FIG. 12.43

Substituting the short-circuit equivalent for the inductor for t > 5t.

R1

10 VE

2 �

–

+
L  =  2 H R2 3 �

I1

R1

10 VE

2 �

–

+
R2 3 �

I1

For the circuit of Fig. 12.44,

I � � � 10.5 A
21 V
�
2 �

E
�
R2 � R3

R1

21 VE

5 �

–

+
6 mH

R3 6 �

I1

R1

21 VE

5 �

–

+
R3 6 �

I1

R2 3 �

10 mHI I

R2 3 �

2 �

I

FIG. 12.44

Establishing the equivalent network for t > 5t.
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Applying the current divider rule,

I1 � � � � 7 A

In the following examples we will assume that the voltage across
the capacitors and the current through the inductors have reached their
final values. Under these conditions, the inductors can be replaced
with short circuits, and the capacitors can be replaced with open cir-
cuits.

EXAMPLE 12.10 Find the current IL and the voltage VC for the net-
work of Fig. 12.45.

63 A
�

9

(6 �)(10.5 A)
��

6 � � 3 �

R3 I
�
R3 � R2

EXAMPLE 12.11 Find the currents I1 and I2 and the voltages V1 and
V2 for the network of Fig. 12.46.

E 10 V

R1

2 �

–+

R3 4 �

R2 3 �

L1
C

VC

IL

–

+
E 10 V

R1

2 �

R3
4 �

R2 3 �

IL

–

+
V  =  0
–

+

I  =  0

+  VC  –

FIG. 12.45

Example 12.10.

R1

2 �

I1

R2 5 �
R4 4 �

R3

1 �

I2

L1 L2

R5 7 �

C1 V1

+

–
V2

+

–
C2

E
+

–
50 V

FIG. 12.46

Example 12.11.

Solution:

IL � � � 2 A

VC � � � 6 V
(3 �)(10 V)
��
3 � � 2 �

R2 E
�
R2 � R1

10 V
�
5 �

E
�
R1 � R2
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Solution: Note Fig. 12.47:

E

Im

iL

vL

pL  =  vLiL

t

Energy stored

FIG. 12.48

The power curve for an inductive element under transient conditions.

I1 � I2

I1 � � � � 5 A

V2 � I2R5 � (5 A)(7 �) � 35 V

Applying the voltage divider rule,

V1 � � � � 40 V

12.14 ENERGY STORED BY AN INDUCTOR

The ideal inductor, like the ideal capacitor, does not dissipate the elec-
trical energy supplied to it. It stores the energy in the form of a mag-
netic field. A plot of the voltage, current, and power to an inductor is
shown in Fig. 12.48 during the buildup of the magnetic field surround-
ing the inductor. The energy stored is represented by the shaded area
under the power curve. Using calculus, we can show that the evaluation
of the area under the curve yields

(joules, J) (12.26)Wstored � �
1
2

�LI2
m

(8 �)(50 V)
��

10 �

(1 � � 7 �)(50 V)
��
2 � � 1 � � 7 �

(R3 � R5)E
��
R1 � R3 � R5

50 V
�
10 �

50 V
��
2 � � 1 � � 7 �

E
��
R1 � R3 � R5

R1

2 �

I1

R2 5 � R4 4 �

R3

1 �

I2

R5 7 �

V1

+

–
V2

+

–

E
+

–
50 V

FIG. 12.47

Substituting the short-circuit equivalents for the inductors and the open-circuit
equivalents for the capacitor for t > 5t.
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EXAMPLE 12.12 Find the energy stored by the inductor in the circuit
of Fig. 12.49 when the current through it has reached its final value.

R1

3 �

R2

2 �
–

+
L 6 mH15 VE

R1

3 �

R2

2 �
–

+
15 VE Im

FIG. 12.49

Example 12.12.

Solution:

Im � � � � 3 A

Wstored � LI2
m � (6 � 10�3 H)(3 A)2 � � 10�3 J

� 27 mJ

12.15 APPLICATIONS

Camera Flash Lamp and Line Conditioner

The inductor (or coil as some prefer to call it) played important roles in
both the camera flash lamp circuitry and the line conditioner (surge pro-
tector) described in the Applications section of Chapter 10 on capaci-
tors. For the camera it was the important component that resulted in the
high spike voltage across the trigger coil which was then magnified by
the autotransformer action of the secondary to generate the 4000 V nec-
essary to ignite the flash lamp. Recall that the capacitor in parallel with
the trigger coil charged up to 300 V using the low-resistance path pro-
vided by the SCR. However, once the capacitor was fully charged, the
short-circuit path to ground provided by the SCR was removed, and the
capacitor immediately started to discharge through the trigger coil.
Since the only resistance in the time constant for the inductive network
is the relatively low resistance of the coil itself, the current through the
coil grew at a very rapid rate. A significant voltage was then developed
across the coil as defined by Eq. (12.6): vL � L(di/dt). This voltage was
in turn increased by transformer action to the secondary coil of the
autotransformer, and the flash lamp was ignited. That high voltage gen-
erated across the trigger coil will also appear directly across the capac-
itor of the trigger network. The result is that it will begin to charge up
again until the generated voltage across the coil drops to zero volts.
However, when it does drop, the capacitor will again discharge through
the coil, establish another charging current through the coil, and again
develop a voltage across the coil. The high-frequency exchange of
energy between the coil and capacitor is called flyback because of the
“flying back” of energy from one storage element to the other. It will
begin to decay with time because of the resistive elements in the loop.

54
�
2

1
�
2

1
�
2

15 V
�
5 �

15 V
��
3 � � 2 �

E
�
R1 � R2
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The more resistance, the more quickly it will die out. If the capacitor-
inductor pairing were isolated and “tickled” along the way with the
application of a dc voltage, the high frequency-generated voltage across
the coil could be maintained and put to good use. In fact, it is this fly-
back effect that is used to generate a steady dc voltage (using rectifica-
tion to convert the oscillating waveform to one of a steady dc nature)
that is commonly used in TVs.

In the line conditioner, the primary purpose of the inductors is to
“choke” out spikes of current that may come down the line using the
effect described under the discussion of Lenz’s law in this chapter.
Inductors are such that a rapidly changing current through a coil will
result in the development of a current in the coil that will oppose the
current that established the induced effect in the first place. This effect
is so strong that it can squelch current spikes of a significant number of
amperes in the line. An undesirable result in line conditioners, however,
is the voltage across the coil that will develop when it “chokes” this
rapidly changing current through the coil. However, as mentioned in
Chapter 10, there are two coils in the system that will generate oppos-
ing emf’s so that the net voltage to ground is zero. This is fairly clear
when you carefully examine the two coils on the ferromagnetic core
and note that they are wound in a way to develop opposing fields. The
reaction of the coils in the line conditioner to different frequencies and
their ability to help out with the blocking of EMI and RFI disturbances
will have to wait until we discuss the effect of frequency on the reac-
tion of an inductor in a later chapter.

Household Dimmer Switch

Inductors can be found in a wide variety of common electronic circuits
in the home. The typical household dimmer uses an inductor to protect
the other components and the applied load from “rush” currents—cur-
rents that increase at very high rates and often to excessively high lev-
els. This feature is particularly important for dimmers since they are
most commonly used to control the light intensity of an incandescent
lamp. At “turn on,” the resistance of incandescent lamps is typically
very low, and relatively high currents may flow for short periods of time
until the filament of the bulb heats up. The inductor is also effective in
blocking high-frequency noise (RFI) generated by the switching action
of the triac in the dimmer. A capacitor is also normally included from
line to neutral to prevent any voltage spikes from affecting the operation
of the dimmer and the applied load (lamp, etc.) and to assist with the
suppression of RFI disturbances.

A photograph of one of the most common dimmers is provided in
Fig. 12.50(a), with an internal view shown in Fig. 12.50(b). The basic
components of most commercially available dimmers appear in the
schematic of Fig. 12.50(c). In this design, a 14.5-mH inductor is used in
the “choking” capacity described above, with a 0.068-mF capacitor for
the “bypass” operation. Note the size of the inductor with its heavy wire
and large ferromagnetic core and the relatively large size of the two
0.068-mF capacitors. Both suggest that they are designed to absorb
high-energy disturbances.

The general operation of the dimmer is shown in Fig. 12.51. The
controlling network is in series with the lamp and will essentially act as
an impedance that can vary between very low and very high levels: very
low impedance levels resembling a short circuit so that the majority of
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the applied voltage appears across the lamp [Fig. 12.51(a)] and very
high impedances approaching open circuit where very little voltage
appears across the lamp [Fig. 12.51(b)]. Intermediate levels of imped-
ance will control the terminal voltage of the bulb accordingly. For
instance, if the controlling network has a very high impedance (open-
circuit equivalent) through half the cycle as shown in Fig. 12.51(c), the
brightness of the bulb will be less than full voltage but not 50% due to
the nonlinear relationship between the brightness of a bulb and the
applied voltage. There is also a lagging effect present in the actual oper-
ation of the dimmer, but this subject will have to wait until leading and
lagging networks are examined in the ac chapters.

The controlling knob, slide, or whatever other method is used on the
face of the switch to control the light intensity is connected directly to
the rheostat in the branch parallel to the triac. Its setting will determine

FIG. 12.50

Dimmer control: (a) external appearance; (b) internal construction; 
(c) schematic.
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when the voltage across the capacitor reaches a sufficiently high level
to turn on the diac (a bidirectional diode) and establish a voltage at the
gate (G) of the triac to turn it on. When it does, it will establish a very
low resistance path from the anode (A) to the cathode (K), and the
applied voltage will appear directly across the lamp. A more detailed
explanation of this operation will appear in a later chapter following the
examination of some important concepts for ac networks. During the
period the SCR is off, its terminal resistance between anode and cath-
ode will be very high and can be approximated by an open circuit. Dur-
ing this period the applied voltage will not reach the load (lamp). Dur-
ing such intervals the impedance of the parallel branch containing the
rheostat, fixed resistor, and capacitor is sufficiently high compared to
the load that it can also be ignored, completing the open-circuit equiv-
alent in series with the load. Note the placement of the elements in the
photograph of Fig. 12.50 and the fact that the metal plate to which the
triac is connected is actually a heat sink for the device. The on/off
switch is in the same housing as the rheostat. The total design is cer-
tainly well planned to maintain a relatively small size for the dimmer.

Since the effort here is simply to control the amount of power get-
ting to the load, the question is often asked, Why don’t we simply use
a rheostat in series with the lamp? The question is best answered by
examining Fig. 12.52, which shows a rather simple network with a
rheostat in series with the lamp. At full wattage, a 60-W bulb on a 120-V
line theoretically has an internal resistance of R � V2/P (from the equa-
tion P � V2/R) � (120 V)2/60 W � 240 �. Although the resistance
is sensitive to the applied voltage, we will assume this level for the
following calculations. If we consider the case where the rheostat is set
for the same level as the bulb, as shown in Fig. 12.52, there will be
60 V across the rheostat and the bulb. The power to each element will
then be P � V2/R � (60 V)2/240 � � 15 W. The bulb is certainly quite
dim, but the rheostat inside the dimmer switch would be dissipating 15 W
of power on a continuous basis. When you consider the size of a 2-W
potentiometer in your laboratory, you can imagine the size rheostat you

FIG. 12.51

Basic operation of the dimmer of Fig. 12.50: (a) full voltage to the lamp; (b)
approaching the cutoff point for the bulb; (c) reduced illumination of the lamp.
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Direct rheostat control of the brightness of a
60-W bulb.
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would need for 15 W, not to mention the purchase cost, although the
biggest concern would probably be all the heat developed in the walls
of the house. You would certainly be paying for electric power that
would not be performing a useful function. Also, if you had four dim-
mers set at the same level, you would actually be wasting sufficient
power to fully light another 60-W bulb.

On occasion, especially when the lights are set very low by the dim-
mer, a faint “singing” can sometimes be heard from the light bulb. This
effect will sometimes occur when the conduction period of the dimmer
is very small. The short, repetitive voltage pulse applied to the bulb will
set the bulb into a condition that could be likened to a resonance (Chap-
ter 20) state. The short pulses are just enough to heat up the filament
and its supporting structures, and then the pulses are removed to allow
the filament to cool down again for a longer period of time. This repet-
itive heating and cooling cycle can set the filament in motion, and the
“singing” can be heard in a quiet environment. Incidentally, the longer
the filament, the louder the “singing.” A further condition for this effect
is that the filament be in the shape of a coil and not a straight wire so
that the “slinky” effect can develop.

TV or PC Monitor Yolk

Inductors and capacitors play a multitude of roles in the operation of a
TV or PC monitor. However, the most obvious use of the coil is in the
yolk assembly wrapped around the neck of the tube as shown in Fig.
12.53. As shown in the figure, the tube itself, in addition to providing
the screen for viewing, is actually a large capacitor which plays an inte-
gral part in establishing the high dc voltage for the proper operation of
the monitor.

A photograph of the yolk assembly of a black-and-white TV tube is
provided in Fig. 12.54(a). It is constructed of four 28-mH coils with
two sets of two coils connected at one point [Fig. 12.54(b)] so that they
will share the same current and will establish the same magnetic field.
The purpose of the yolk assembly is to control the direction of the elec-
tron beam from the cathode to the screen of the tube. When the cathode
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for many years!
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(GND)

FIG. 12.53

Yolk assembly for a TV or PC tube.
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is heated to a very high temperature by a filament internal to the struc-
ture, electrons are emitted into the surrounding media. The placement
of a very high positive potential (10 kV to 25 kV dc) to the conductive
coating on the face of the tube will attract the emitted electrons at a
very high speed and therefore at a high level of kinetic energy. When
the electrons hit the phosphorescent coating (usually white, green, or
amber) on the screen, light will be emitted which can be seen by some-
one facing the monitor. The beam characteristics (such as intensity,
focus, and shape) are controlled by a series of grids placed relatively
close to the cathode in the neck of the tube. The grid is such that the
negatively charged electrons can easily pass through, but the number
and speed with which they pass can be controlled by a negative poten-
tial applied to the grid. The grids cannot have a positive potential
because the negatively charged electrons would be attracted to the grid
structure and would eventually disintegrate from the high rate of con-
duction. Negative potentials on the grids control the flow of electrons
by repulsion and by masking the attraction for the large positive poten-
tial applied to the face of the tube.

Once the beam has been established with the desired intensity and
shape, it must be directed to a particular location on the screen using
the yolk assembly. For vertical control, the two coils on the side estab-
lish a magnetic flux pattern as shown in Fig. 12.55(a). The resulting
direction of the magnetic field is from left to right as shown in Figs.
12.55(a) and 12.55(b). Using the right hand, with the index finger point-
ing in the direction of the magnetic field and the middle finger (at right
angles to the index finger) in the direction of electron flow, will result
in the thumb (also at right angles to the index finger) pointing in the
direction of the force on the electron beam. The result is a bending of
the beam as shown in Fig. 12.53. The stronger the magnetic field of the
coils as determined by the current through the coils, the greater the
deflection of the beam.

Before continuing, it is important to realize that when the electron
beam hits the phosphorescent screen as shown in Fig. 12.56, it is mov-
ing with sufficient velocity to cause a secondary emission of X rays that

FIG. 12.55

Deflection coils: (a) vertical control; 
(b) right-hand-rule (RHR) 
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FIG. 12.54

(a) Black-and-white TV yolk assembly; (b) schematic representation.

���

Vertical output
driver network

Horizontal output
driver network

(b)

V

28 mH

28 mH
28 mH

28 mH
H



APPLICATIONS  505

will scatter to all sides of the monitor. Even though the X rays will die
off exponentially with distance from the source, there is some concern
about safety, and all modern-day monitors have shields all around the
outside surface of the tube as shown in Fig. 12.56. It is therefore inter-
esting that it is not the direct viewing that is of some concern but rather
viewing by individuals to the side, above, or below the screen. Monitors
are currently limited to 25 kV at the anode because the application of
voltages in excess of 25 kV can result in a direct emission of X rays.
Internally, all monitors currently have a safety shutoff to ensure that this
level is never attained in the operating system.

Time and space do not permit a detailed discussion of the full oper-
ation of a monitor, but there are some facts about its operation that
reveal the sophistication of the design. When an image is generated on
a screen, it is done one pixel at a time along one horizontal line at a
time. A pixel is one point on the screen. Pixels are black (no signal) or
white (with signal) for black-and-white (monochromic) TVs or black
and white or some color for color TVs. For EGA monitors the resolu-
tion is 640 pixels wide and 35 pixels high, whereas VGA monitors are
also 640 pixels wide but 480 pixels high. Obviously the more pixels in
the same area, the sharper the image. A typical scan rate is 31.5 kHz
which means that 31,500 lines can be drawn in 1 s, or one line of 640
pixels can be drawn in about 31.7 ms.

Patterns on the screen are developed by the sequence of lines appear-
ing in Fig. 12.57. Starting at the top left, the image moves across the
screen down to the next line until it ends at the bottom right of the screen,
at which point there is a rapid retrace (invisible) back to the starting
point. Typical scanning rates (full image generated) extend from 60
frames per second to 80 frames per second. The slower the rate, the
higher the possibility of flickering in the images. At 60 frames per sec-
ond, one entire frame is generated every 1/60 � 16.67 ms � 0.017 s.

Color monitors are particularly interesting because all colors on the
screen are generated by the colors red, blue, and green. The reason is that
the human eye is responding to the wavelengths and energy levels of the
various colors. The absence of any color is black, and the result of full
energy to each of the three colors is white. The color yellow is a combi-
nation of red and green with no blue, and pink is primarily red energy with
smaller amounts of blue and green. An in-depth description of this “addi-
tive” type of color generation must be left as an exercise for the reader.

The fact that three colors define the resulting color requires that
there be three cathodes in a color monitor to generate three electron
beams. However, the three beams must sweep the screen in the same
relative positions. Each pixel is now made up of three color dots in the
same relative position for each pixel, as shown in Fig. 12.58. Each dot
has a phosphorescent material that will generate the desired color when
hit with an electron beam. For situations where the desired color has no
green, the electron beam associated with the color green will be turned
off. In fact, between each pixel, each beam is shut down to provide def-
inition between the color pixels. The dots within the pixel are so close
that the human eye cannot pick up the individual colors but simply the
color that would result from the “additive” process.

During the entire “on” time of a monitor, a full 10 kV to 25 kV are
applied to the conductor on the screen to attract electrons. Over time
there will naturally be an accumulation of negative charge on the screen
which will remain after the power is turned off—a typical capacitive
storage charge. For a brief period of time, it will sit with 25 kV across

Shield

Screen

Secondary
emission

Shield

Electron beam
e

FIG. 12.56

Secondary emission from and protective
measures for a TV or PC monitor.

FIG. 12.57

Pattern generation.

Green

Cyan
White

Yellow

MagentaBlue Red

FIG. 12.58

Color television pixels.
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the plates which will drop as the “capacitor” begins to discharge. How-
ever, the lack of a low-resistance path will often result in a storage of
the charge for a fairly long period of time. This stored charge and the
associated voltage across the plates are sufficiently high to cause severe
damage. It is therefore paramount that TVs and monitors be repaired or
investigated only by someone who is well versed in how to discharge
the tube. One commonly applied procedure is to attach a long lead from
the metal shaft of a flat-edge screwdriver to a good ground connection.
Then leave the anode connection to the tube in place, and simply insert
the screwdriver under the cap until it touches the metal clip of the cap.
You will probably hear a loud snap when discharge occurs. Because of
the enormous amount of residual charge, it is recommended that the
above procedure be repeated two or three times. Even then, treat the
tube with a great deal of respect. In short, until you become familiar
with the discharge procedure, leave the investigation of TVs and moni-
tors to someone with the necessary experience. A further concern is the
very high pulse voltages generated in an operating system. Be aware
that they are of a magnitude that could destroy standard test equipment.

The capacitive effect of the tube is an integral part of developing the
high dc anode potential. Its filtering action smooths out the repetitive,
high-voltage pulses generated by the flyback action of the TV. Other-
wise, the screen would simply be a flickering pattern as the anode
potential switched on and off with the pulsating signal.

12.16 COMPUTER ANALYSIS

PSpice 

Transient RL Response The computer analysis will begin with a
transient analysis of the network of parallel inductive elements in Fig.
12.59. The inductors are picked up from the ANALOG library in the
Place Part dialog box. As noted in Fig. 12.59, the inductor is displayed
with its terminal identification which is helpful for identifying nodes
when calling for specific output plots and values. In general, when an
element is first placed on a schematic, the number 1 is assigned to the
left end on a horizontal display and to the top on a vertical display.
Similarly, the number 2 is assigned to the right end of an element in the
horizontal position and to the bottom in the vertical position. Be aware,
however, that the option Rotate rotates the element in the CCW direc-
tion, so taking a horizontal resistor to the vertical position requires
three rotations to get the number 1 to the top again. In previous chap-
ters you may have noted that a number of the outputs were taken off
terminal 2 because a single rotation placed this terminal at the top of
the vertical display. Also note in Fig. 12.59 the need for a series resis-
tor Rl within the parallel loop of inductors. In PSpice, inductors must
have a series resistor to reflect real-world conditions. The chosen value
of 1 m� is so small, however, that it will not affect the response of the
system. For VPulse, the rise time was selected as 0.01 ms, and the
pulse width was chosen as 10 ms because the time constant of the net-
work is t � LT /R � (4 H � 12 H)/2 k� � 1.5 ms and 5t � 7.5 ms.

The simulation is the same as applied when obtaining the transient
response of capacitive networks. In condensed form, the sequence to
obtain a plot of the voltage across the coils versus time is as follows: New
SimulationProfilekey-TransientRL-Create-TimeDomain(Transient)-
Run to time:10ms-Start saving data after:0s and Maximum step
size:5ms-OK-Run PSpice key-Add Trace key-V1(L2)-OK. The result-
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ing trace appears in the bottom of Fig. 12.60. A maximum step size of 5
ms was chosen to ensure that it was less than the rise or fall times of 10
ms. Note that the voltage across the coil jumps to the 50-V level almost
immediately; then it decays to 0 V in about 8 ms. A plot of the total cur-
rent through the parallel coils can be obtained through Plot-Plot to Win-
dow-Add Trace key-I(R)-OK, resulting in the trace appearing at the top
of Fig. 12.60. When the trace first appeared, the vertical scale extended
from 0 A to 40 mA even though the maximum value of iR was 25 mA. To
bring the maximum value to the top of the graph, Plot was selected fol-
lowed by Axis Settings-Y Axis-User Defined-0A to 25mA-OK.

For values, the voltage plot was selected, SEL��, followed by the
Toggle cursor key and a click on the screen to establish the crosshairs.
The left-click cursor was set on one time constant to reveal a value of
18.461 V for A1 (about 36.8% of the maximum as defined by the expo-
nential waveform). The right-click cursor was set at 7.5 ms or five time
constants, resulting in a relatively low 0.338 V for A2.

Transient Response with Initial Conditions The next applica-
tion will verify the results of Example 12.5 which has an initial condi-
tion associated with the inductive element. VPULSE is again employed
with the parameters appearing in Fig. 12.61. Since t � L /R � 100 mH/
(2.2 k� � 6.8 k�) � 100 mH/9 k� � 11.11 ms and 5t � 55.55 ms, the
pulse width (PW) was set to 100 ms. The rise and fall times were set at
100 ms/1000 � 0.1 ms. Note again that the labels 1 and 2 appear with
the inductive element.

Setting the initial conditions for the inductor requires a procedure
that has not been described as yet. First double-click on the inductor
symbol to obtain the Property Editor dialog box. Then select Parts at

FIG. 12.59

Using PSpice to obtain the transient response of a parallel inductive network due to an applied
pulse of 50 V.
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the bottom of the dialog box, and select New Column to obtain the
Add New Column dialog box. Under Name, enter IC (an abbreviation
for “initial condition”—not “capacitive current”) followed by the initial
condition of 4 mA under Value; then click OK. The Property Editor
dialog box will appear again, but now the initial condition appears as a
New Column in the horizontal listing dedicated to the inductive ele-
ment. Now select Display to obtain the Display Properties dialog box,
and under Display Format choose Name and Value so that both IC
and 4mA will appear. Click OK, and we return to the Property Editor
dialog box. Finally, click on Apply and exit the dialog box (X). The
result is the display of Fig. 12.61 for the inductive element.

Now for the simulation. First select the New Simulation Profile key,
insert the name InitialCond(L), and follow up with Create. Then in the
Simulation Settings dialog box, select Time Domain(Transient) for
the Analysis type and General Settings for the Options. The Run to
time should be 200 ms so that we can see the full effect of the pulse
source on the transient response. The Start saving data after should
remain at 0 s, and the Maximum step size should be 200 ms/1000 �
200 ns. Click OK and then select the Run PSpice key. The result will
be a screen with an x-axis extending from 0 to 200 ms. Selecting Trace
to get to the Add Traces dialog box and then selecting I(L) followed
by OK will result in the display of Fig. 12.62. The plot for I(L) clearly
starts at the initial value of 4 mA and then decays to 1.78 mA as defined
by the left-click cursor. The right-click cursor reveals that the current
has dropped to 0.222 mA (essentially 0 A) after the pulse source
has dropped to 0 V for 100 ms. The VPulse source was placed in the
same figure through Plot-Add Plot to Window-Trace-Add Trace-
V(VPulse:�)-OK to permit a comparison between the applied voltage
and the resulting inductor current.

FIG. 12.60

The transient response of vL and iR for the network of Fig. 12.59.
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FIG. 12.61

Using PSpice to determine the transient response for a circuit in which the
inductive element has an initial condition.

FIG. 12.62

A plot of the applied pulse and resulting current for the circuit of Fig. 12.61.
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Electronics Workbench

The transient response of an R-L network can also be obtained using
Electronics Workbench. The circuit to be examined appears in Fig.
12.63 with a pulse voltage source to simulate the closing of a switch at
t � 0 s. The source, referred to as PULSE–VOLTAGE–SOURCE in
the Source listing, is the near the bottom left of the Sources parts bin.
When selected, it will appear with a label, an initial voltage, a step volt-
age, and a frequency. All can be changed by simply double-clicking on
the source symbol to obtain the Pulse Voltage dialog box. As shown in
Fig. 12.63, the Pulsed Value will be set at 20 V, and the Delay Time to
0 s. The Rise Time and Fall Time will both remain at the default lev-
els of 1 ns. For our analysis we want a Pulse Width that is at least
twice the 5t transient period of the circuit. For the chosen values of R
and L, t � L/R � 10 mH/100 � � 0.1 ms � 100 ms. The transient
period of 5t is therefore 500 ms or 0.5 ms. Thus, a Pulse Width of 1 ms
would seem appropriate with a Period of 2 ms. The result is a fre-
quency of f � 1/T � 1/2 ms � 500 Hz. When all have been set and
selected, the parameters of the pulse source will appear as shown in Fig.
12.63. Next the resistor, inductor, and ground are placed on the screen
to complete the circuit.

This time we will want to see the node names so that we can call for
them when we set up the simulation process. This is accomplished
through Options-Preferences-Show node names. In this case we have
two—one at the positive terminal of the supply (1) and the other at the
top end of the inductor (2) representing the voltage across the inductor.

The simulation process is initiated by the following sequence: Sim-
ulate-Analyses-Transient Analysis. The result is the Transient Analy-
sis dialog box in which Analysis Parameters is chosen first. Under

FIG. 12.63

Using Electronics Workbench to obtain the transient response for an inductive circuit.
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Parameters, use 0 s as the Start time and 4 ms as the End time so that
we get two full cycles of the applied voltage. After enabling the Maxi-
mum time step settings(TMAX), we set the Minimum number of
time points at 1000 to get a reasonably good plot during the rapidly
changing transient period. Next, the Output variables section must be
selected and the program told which voltage and current levels we are
interested in. On the left side of the dialog box is a list of Variables that
have been defined for the circuit. On the right is a list of Selected vari-
ables for analysis. In between you see a Plot during simulation or
Remove. To move a variable from the left to the right column, simply
select it in the left column and choose Plot during simulation. It will
then appear in the right column. For our purposes it seems appropriate
that we plot both the applied voltage and the voltage across the coil, so
1 and 2 were moved to the right column. Then Simulate is selected, and
a window titled Analysis Graphs will appear with the selected plots as
shown in Fig. 12.63. Click on the Show/Hide Grid key (a red grid on
a black axis), and the grid lines will appear. Then selecting the
Show/Hide Legend key on the immediate right will result in the small
Transient Anal dialog box that will identify the color that goes with
each nodal voltage. In our case, blue is the color of the applied voltage,
and red is the color of the voltage across the coil.

The source voltage appears as expected with its transition to 20 V,
50% duty cycle, and the period of 2 ms. The voltage across the coil
jumped immediately to the 20-V level and then began its decay to 0 V
in about 0.5 ms as predicted. When the source voltage dropped to
zero, the voltage across the coil reversed polarity to maintain the same
direction of current in the inductive circuit. Remember that for a coil,
the voltage can change instantaneously, but the inductor will “choke”
any instantaneous change in current. By reversing its polarity, the
voltage across the coil ensures the same polarity of voltage across the
resistor and therefore the same direction of current through the coil
and circuit.

PROBLEMS

SECTION 12.2 Faraday’s Law of

Electromagnetic Induction

1. If the flux linking a coil of 50 turns changes at a rate of
0.085 Wb/s, what is the induced voltage across the coil?

2. Determine the rate of change of flux linking a coil if 
20 V are induced across a coil of 40 turns.

3. How many turns does a coil have if 42 mV are induced
across the coil by a change of flux of 0.003 Wb/s?

SECTION 12.4 Self-Inductance

4. Find the inductance L in henries of the inductor of Fig.
12.64.

5. Repeat Problem 4 with l � 4 in. and d � 0.25 in.

l  =  0.075 m

d  =  0.005 m

200  turns

Wood core

FIG. 12.64

Problems 4 and 5.
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SECTION 12.6 Induced Voltage

7. Find the voltage induced across a coil of 5 H if the rate
of change of current through the coil is
a. 0.5 A/s
b. 60 mA/s
c. 0.04 A/ms

8. Find the induced voltage across a 50-mH inductor if the
current through the coil changes at a rate of 0.1 mA/ms.

300 turns

Air core

l  =  0.1 m

A  =  1.5  ×  10–4 m2

FIG. 12.65

Problem 6.

6. a. Find the inductance L in henries of the inductor of
Fig. 12.65.

b. Repeat part (a) if a ferromagnetic core is added hav-
ing a mr of 2000.

9. Find the waveform for the voltage induced across a 200-
mH coil if the current through the coil is as shown in Fig.
12.66.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

40 mA
iL

t (ms)

FIG. 12.66

Problem 9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17

iL

t (µs)

66 µAµ

50 µAµ

– 44 µAµ

14 µ

FIG. 12.67

Problem 10.

10. Sketch the waveform for the voltage induced across a
0.2-H coil if the current through the coil is as shown in
Fig. 12.67.
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+60 V
vL

0 5 10 12 16
–5 V

24 t (ms)

–24 V

FIG. 12.68

Problem 11.

–
E

+

iL

R

vLL 250 mH40 mV

20 k�

–+ vR

FIG. 12.69

Problem 12.

*11. Find the waveform for the current of a 10-mH coil if the
voltage across the coil follows the pattern of Fig. 12.68.
The current iL is 4 mA at t � 0 s.

SECTION 12.7 R-L Transients: Storage Cycle

12. For the circuit of Fig. 12.69:
a. Determine the time constant.
b. Write the mathematical expression for the current iL

after the switch is closed.
c. Repeat part (b) for vL and vR.
d. Determine iL and vL at one, three, and five time con-

stants.
e. Sketch the waveforms of iL, vL, and vR.

13. For the circuit of Fig. 12.70:
a. Determine t.
b. Write the mathematical expression for the current iL

after the switch is closed at t � 0 s.
c. Write the mathematical expressions for vL and vR

after the switch is closed at t � 0 s.
d. Determine iL and vL at t � 1t, 3t, and 5t.
e. Sketch the waveforms of iL, vL, and vR for the storage

phase.

R

2.2 k�

L

5 mH

iL

+  vR  – +  vL  –

+12 V

FIG. 12.70

Problem 13.

SECTION 12.8 Initial Values

14. For the network of Fig. 12.71:
a. Write the mathematical expressions for the current iL

and the voltage vL following the closing of the switch.
Note the magnitude and direction of the initial cur-
rent.

b. Sketch the waveform of iL and vL for the entire period
from initial value to steady-state level.

FIG. 12.71

Problem 14.

iL

R1 = 1.2 k�

2.2 k�

R2

I 5 mA 2 HL vL

+

–
3 mA
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15. For the network of Fig. 12.72:
a. Write the mathematical expressions for the current iL

and the voltage vL following the closing of the switch.
Note the magnitude and direction of the initial cur-
rent.

b. Sketch the waveform of iL and vL for the entire period
from initial value to steady-state level.

SECTION 12.9 R-L Transients: Decay Phase

17. For the network of Fig. 12.74:
a. Determine the mathematical expressions for the cur-

rent iL and the voltage vL when the switch is closed.
b. Repeat part (a) if the switch is opened after a period

of five time constants has passed.
c. Sketch the waveforms of parts (a) and (b) on the same

set of axes.

iL

4.7 k�

R1

vL+ –

36 VE

8 mA

3.9 k�R2

120 mH

L

FIG. 12.72

Problem 15.

iL

vL+ –

16 VE

3 mA

L = 200 mH

I 4 mA R1 = 2.2 k�

R2

8.2 k�

FIG. 12.73

Problem 16.

–

+
R2 10 k� L 10 mH

R1

10 k�

iL

vL20 V

FIG. 12.74

Problems 17, 45, and 46.

*16. For the network of Fig. 12.73:
a. Write the mathematical expressions for the current iL

and the voltage vL following the closing of the switch.
Note the magnitude and direction of the initial cur-
rent.

b. Sketch the waveform of iL and vL for the entire period
from initial value to steady-state level.

*18. For the network of Fig. 12.75:
a. Write the mathematical expression for the current iL

and the voltage vL following the closing of the switch.
b. Determine the mathematical expressions for iL and vL

if the switch is opened after a period of five time con-
stants has passed.

c. Sketch the waveforms of iL and vL for the time peri-
ods defined by parts (a) and (b).

d. Sketch the waveform for the voltage across R2 for the
same period of time encompassed by iL and vL. Take
careful note of the defined polarities and directions of
Fig. 12.75.

E – 6 V

–

+

R2 8.2 k�

R1 6.8 k�

L 5 mH vL

–

+
vR2

iL

iL

FIG. 12.75

Problem 18.
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*19. For the network of Fig. 12.76:
a. Determine the mathematical expressions for the cur-

rent iL and the voltage vL following the closing of the
switch.

b. Repeat part (a) if the switch is opened at t � 1 ms.
c. Sketch the waveforms of parts (a) and (b) on the same

set of axes.

FIG. 12.76

Problem 19.

–

+
R2 10 k� L 1 mH

R1

2 k�

iL

vLE 12 V

SECTION 12.10 Instantaneous Values

20. Referring to the solution to Example 12.4, determine the
time when the current iL reaches a level of 10 mA. Then de-
termine the time when the voltage drops to a level of 10 V.

21. Referring to the solution to Example 12.5, determine the
time when the current iL drops to 2 mA.

–

+
12 k� L 2 mH

R2

24 k�
iL

vL

I  =
4 mA R1

FIG. 12.77

Problem 22.

E  =  + 8 V

–

+
R2 4.7 k� L 10 mH vL

iL

R1 2.2 k�

FIG. 12.78

Problem 23.

SECTION 12.11 Thévenin Equivalent: t � L/RTh

22. a. Determine the mathematical expressions for iL and vL

following the closing of the switch in Fig. 12.77.
b. Determine iL and vL at t � 100 ns.

*23. a. Determine the mathematical expressions for iL and vL

following the closing of the switch in Fig. 12.78.
b. Calculate iL and vL at t � 10 ms.
c. Write the mathematical expressions for the current iL

and the voltage vL if the switch is opened at t � 10 ms.
d. Sketch the waveforms of iL and vL for parts (a) and (c).
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*24. a. Determine the mathematical expressions for iL and vL

following the closing of the switch in Fig. 12.79.
b. Determine iL and vL after two time constants of the

storage phase.
c. Write the mathematical expressions for the current iL

and the voltage vL if the switch is opened at the
instant defined by part (b).

d. Sketch the waveforms of iL and vL for parts (a) and (c).

*25. For the network of Fig. 12.80, the switch is closed at
t � 0 s.
a. Determine vL at t � 25 ms.
b. Find vL at t � 1 ms.
c. Calculate vR1

at t � 1t.
d. Find the time required for the current iL to reach 

100 mA.

*26. The switch for the network of Fig. 12.81 has been closed
for about 1 h. It is then opened at the time defined as t �
0 s.
a. Determine the time required for the current iR to drop

to 1 mA.
b. Find the voltage vL at t � 1 ms.
c. Calculate vR3

at t � 5t.

27. The network of Fig. 12.81 employs a DMM with an
internal resistance of 10 M� in the voltmeter mode. The
switch is closed at t � 0 s.
a. Find the voltage across the coil the instant after the

switch is closed.
b. What is the final value of the current iL?
c. How much time must pass before iL reaches 10 mA?
d. What is the voltmeter reading at t � 12 ms?

*28. The switch in Fig. 12.82 has been open for a long time.
It is then closed at t � 0 s.
a. Write the mathematical expression for the current iL

and the voltage vL after the switch is closed.
b. Sketch the waveform of iL and vL from the initial

value to the steady-state level.

R2 4 k� R4 1.5 k�

L 5 mHR3 3 k�

R1

12 k�

+20 V

iL

vL

–

+

– 6 V

FIG. 12.79

Problem 24.

–

+
R2 470 � L 0.6 H

R1

100 �

iL

vL36 V

R3

20 �

E

+ –vR1

– +vR3

FIG. 12.80

Problem 25.

FIG. 12.81

Problems 26 and 27.

–

+
L 5 H

iL

vL

24 V

2 M�

E
+ –

iL4.7 k�

R1

16 VE

1 k�R3

2 HL

3.3 k�

R2

vL

+

–
(t = 0 s)

FIG. 12.82

Problem 28.
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*29. The switch of Fig. 12.83 has been closed for a long time.
It is then opened at t � 0 s.
a. Write the mathematical expression for the current iL

and the voltage vL after the switch is opened.
b. Sketch the waveform of iL and vL from initial value to

the steady-state level. iL2.2 k�

R1

vL

+

–
1.2 H

(t = 0 s)

24 VE

4.7 k�

R2

FIG. 12.83

Problem 29.

iL
vL+ –

220 mH

I 4 mA

R2

1.2 k�

1 k�R1 18 VE

(t = 0 s)

FIG. 12.84

Problems 30 and 43.

(b)

12 H
LT

3.6 H

6 H 4 H

4 H

2 H
LT

3 H 6 H

(a)

FIG. 12.85

Problem 31.

(b)

5 mH

12  µFµ

42 µFµ

20 mH

7  µFµ
10 µFµ

(a)

35 mH 90 µFµ9 µFµ

14 mH

FIG. 12.86

Problem 32.

*30. The switch of Fig. 12.84 has been open for a long time.
It is then closed at t � 0 s.
a. Write the mathematical expression for the current iL

and the voltage vL after the switch is closed.
b. Sketch the waveform of iL and vL from initial value to

the steady-state level.

SECTION 12.12 Inductors in Series and Parallel

31. Find the total inductance of the circuits of Fig. 12.85.

32. Reduce the networks of Fig. 12.86 to the fewest elements.
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V2

–

+

V1

4 k�

I1

2 H

2 k� 3 H

–+

16 V

FIG. 12.89

Problems 35 and 38.

–

+ 4 �

L  =  6 H

6 �V1 C  =  5 �F

I1

20 V

�

FIG. 12.90

Problems 36 and 39.

33. Reduce the network of Fig. 12.87 to the fewest number
of components.

*34. For the network of Fig. 12.88:
a. Find the mathematical expressions for the voltage vL

and the current iL following the closing of the switch.
b. Sketch the waveforms of vL and iL obtained in part (a).
c. Determine the mathematical expression for the volt-

age vL3
following the closing of the switch, and

sketch the waveform.

9.1 k�

1 k�

4.7 k�

E 20 V

4 H 1 H

6 H 2 H

FIG. 12.87

Problem 33.

–

+

R1

5 k�

R2 20 k�

iL

6 HL2 30 HL3 vL3

–

+

vL

20 V L1

5 H

FIG. 12.88

Problem 34.

SECTION 12.13 R-L and R-L-C Circuits

with dc Inputs

For Problems 35 through 37, assume that the voltage across
each capacitor and the current through each inductor have
reached their final values.

35. Find the voltages V1 and V2 and the current I1 for the cir-
cuit of Fig. 12.89.

36. Find the current I1 and the voltage V1 for the circuit of
Fig. 12.90.
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6 �

V1

20 �

–

+

3 �
3 �

I2

5 �

50 V

I1
6 �F 4 H

0.5 H

�

FIG. 12.91

Problems 37 and 40.

37. Find the voltage V1 and the current through each inductor
in the circuit of Fig. 12.91.

SECTION 12.14 Energy Stored by an Inductor

38. Find the energy stored in each inductor of Problem 35.

39. Find the energy stored in the capacitor and inductor of
Problem 36.

40. Find the energy stored in each inductor of Problem 37.

SECTION 12.16 Computer Analysis

PSpice or Electronics Workbench

*41. Verify the results of Example 12.6 using the VPULSE
function and a pulse width (PW) equal to five time con-
stants of the charging network.

*42. Verify the results of Example 12.3 using the VPULSE
function and a PW equal to 1 ns.

*43. Verify the results of Problem 30 using the VPULSE func-
tion and the appropriate initial current.

Programming Language (C��, QBASIC, Pascal, etc.)

44. Write a program to provide a general solution for the cir-
cuit of Fig. 12.14; that is, given the network parameters,
generate the equations for iL, vL, and vR.

45. Write a program that will provide a general solution for
the storage and decay phase of the network of Fig. 12.74;
that is, given the network values, generate the equations
for iL and vL for each phase. In this case, assume that the
storage phase has passed through five time constants
before the decay phase begins.

46. Repeat Problem 45, but assume that the storage phase
was not completed, requiring that the instantaneous val-
ues of iL and vL be determined when the switch is
opened.

GLOSSARY

Choke A term often applied to an inductor, due to the ability
of an inductor to resist a change in current through it.

Faraday’s law A law relating the voltage induced across a
coil to the number of turns in the coil and the rate at which
the flux linking the coil is changing.

Inductor A fundamental element of electrical systems con-
structed of numerous turns of wire around a ferromagnetic
core or an air core.

Lenz’s law A law stating that an induced effect is always
such as to oppose the cause that produced it.

Self-inductance (L) A measure of the ability of a coil to
oppose any change in current through the coil and to store
energy in the form of a magnetic field in the region sur-
rounding the coil.
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13.1 INTRODUCTION

The analysis thus far has been limited to dc networks, networks in
which the currents or voltages are fixed in magnitude except for tran-
sient effects. We will now turn our attention to the analysis of networks
in which the magnitude of the source varies in a set manner. Of partic-
ular interest is the time-varying voltage that is commercially available
in large quantities and is commonly called the ac voltage. (The letters
ac are an abbreviation for alternating current.) To be absolutely rigor-
ous, the terminology ac voltage or ac current is not sufficient to
describe the type of signal we will be analyzing. Each waveform of Fig.
13.1 is an alternating waveform available from commercial supplies.
The term alternating indicates only that the waveform alternates
between two prescribed levels in a set time sequence (Fig. 13.1). To be

0 t

v

Triangular wave

0 t

v

Square wave

0 t

v

Sinusoidal

FIG. 13.1

Alternating waveforms.

absolutely correct, the term sinusoidal, square wave, or triangular must
also be applied. The pattern of particular interest is the sinusoidal ac
waveform for voltage of Fig. 13.1. Since this type of signal is encoun-
tered in the vast majority of instances, the abbreviated phrases ac volt-
age and ac current are commonly applied without confusion. For the
other patterns of Fig. 13.1, the descriptive term is always present, but
frequently the ac abbreviation is dropped, resulting in the designation
square-wave or triangular waveforms.

Sinusoidal Alternating
Waveforms
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One of the important reasons for concentrating on the sinusoidal ac
voltage is that it is the voltage generated by utilities throughout the
world. Other reasons include its application throughout electrical, elec-
tronic, communication, and industrial systems. In addition, the chapters
to follow will reveal that the waveform itself has a number of charac-
teristics that will result in a unique response when it is applied to the
basic electrical elements. The wide range of theorems and methods
introduced for dc networks will also be applied to sinusoidal ac sys-
tems. Although the application of sinusoidal signals will raise the
required math level, once the notation given in Chapter 14 is under-
stood, most of the concepts introduced in the dc chapters can be applied
to ac networks with a minimum of added difficulty.

The increasing number of computer systems used in the industrial
community requires, at the very least, a brief introduction to the termi-
nology employed with pulse waveforms and the response of some fun-
damental configurations to the application of such signals. Chapter 24
will serve such a purpose.

13.2 SINUSOIDAL ac VOLTAGE
CHARACTERISTICS AND DEFINITIONS

Generation

Sinusoidal ac voltages are available from a variety of sources. The
most common source is the typical home outlet, which provides an ac
voltage that originates at a power plant; such a power plant is most
commonly fueled by water power, oil, gas, or nuclear fusion. In each
case an ac generator (also called an alternator), as shown in Fig.
13.2(a), is the primary component in the energy-conversion process.

(e)(d)(c)(b)(a)

Inverter

FIG. 13.2

Various sources of ac power: (a) generating plant; (b) portable ac generator; 
(c) wind-power station; (d) solar panel; (e) function generator.

The power to the shaft developed by one of the energy sources listed
will turn a rotor (constructed of alternating magnetic poles) inside a
set of windings housed in the stator (the stationary part of the
dynamo) and will induce a voltage across the windings of the stator,
as defined by Faraday’s law,
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e � N

Through proper design of the generator, a sinusoidal ac voltage is
developed that can be transformed to higher levels for distribution
through the power lines to the consumer. For isolated locations where
power lines have not been installed, portable ac generators [Fig.
13.2(b)] are available that run on gasoline. As in the larger power
plants, however, an ac generator is an integral part of the design.

In an effort to conserve our natural resources, wind power and solar
energy are receiving increasing interest from various districts of the world
that have such energy sources available in level and duration that make the
conversion process viable. The turning propellers of the wind-power sta-
tion [Fig. 13.2(c)] are connected directly to the shaft of an ac generator to
provide the ac voltage described above. Through light energy absorbed in
the form of photons, solar cells [Fig. 13.2(d)] can generate dc voltages.
Through an electronic package called an inverter, the dc voltage can be
converted to one of a sinusoidal nature. Boats, recreational vehicles (RVs),
etc., make frequent use of the inversion process in isolated areas.

Sinusoidal ac voltages with characteristics that can be controlled by
the user are available from function generators, such as the one in Fig.
13.2(e). By setting the various switches and controlling the position of
the knobs on the face of the instrument, one can make available sinu-
soidal voltages of different peak values and different repetition rates.
The function generator plays an integral role in the investigation of the
variety of theorems, methods of analysis, and topics to be introduced in
the chapters that follow.

Definitions

The sinusoidal waveform of Fig. 13.3 with its additional notation will now
be used as a model in defining a few basic terms.These terms, however, can

df
�
dt

Max

e

0 t1

e1

T3

Ep–pt

T2T1

Em t2

Em

Max

e2

FIG. 13.3

Important parameters for a sinusoidal voltage.

be applied to any alternating waveform. It is important to remember as you
proceed through the various definitions that the vertical scaling is in volts
or amperes and the horizontal scaling is always in units of time.

Waveform: The path traced by a quantity, such as the voltage in
Fig. 13.3, plotted as a function of some variable such as time (as
above), position, degrees, radians, temperature, and so on.



T  =  0.4 s

1 s

(b)

T  =  1 s

(a)

T  =  0.5 s

1 s

(c)

1 cycle

T1

1 cycle

T2

1 cycle

T3
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FIG. 13.4

Defining the cycle and period of a sinusoidal waveform.

Frequency ( f ): The number of cycles that occur in 1 s. The fre-
quency of the waveform of Fig. 13.5(a) is 1 cycle per second, and
for Fig. 13.5(b), 21⁄2 cycles per second. If a waveform of similar
shape had a period of 0.5 s [Fig. 13.5(c)], the frequency would be 2
cycles per second.

FIG. 13.5

Demonstrating the effect of a changing frequency on the period of a sinusoidal
waveform.

Instantaneous value: The magnitude of a waveform at any instant
of time; denoted by lowercase letters (e1, e2).
Peak amplitude: The maximum value of a waveform as measured
from its average, or mean, value, denoted by uppercase letters (such
as Em for sources of voltage and Vm for the voltage drop across a
load). For the waveform of Fig. 13.3, the average value is zero volts,
and Em is as defined by the figure.
Peak value: The maximum instantaneous value of a function as
measured from the zero-volt level. For the waveform of Fig. 13.3,
the peak amplitude and peak value are the same, since the average
value of the function is zero volts.
Peak-to-peak value: Denoted by Ep-p or Vp-p, the full voltage
between positive and negative peaks of the waveform, that is, the
sum of the magnitude of the positive and negative peaks.
Periodic waveform: A waveform that continually repeats itself
after the same time interval. The waveform of Fig. 13.3 is a periodic
waveform.
Period (T ): The time interval between successive repetitions of a
periodic waveform (the period T1 � T2 � T3 in Fig. 13.3), as long as
successive similar points of the periodic waveform are used in deter-
mining T.
Cycle: The portion of a waveform contained in one period of time.
The cycles within T1, T2, and T3 of Fig. 13.3 may appear different in
Fig. 13.4, but they are all bounded by one period of time and there-
fore satisfy the definition of a cycle.
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The unit of measure for frequency is the hertz (Hz), where

(13.1)

The unit hertz is derived from the surname of Heinrich Rudolph Hertz
(Fig. 13.6), who did original research in the area of alternating currents
and voltages and their effect on the basic R, L, and C elements. The fre-
quency standard for North America is 60 Hz, whereas for Europe it is
predominantly 50 Hz.

As with all standards, any variation from the norm will cause dif-
ficulties. In 1993, Berlin, Germany, received all its power from east-
ern plants, whose output frequency was varying between 50.03 and
51 Hz. The result was that clocks were gaining as much as 4 min-
utes a day. Alarms went off too soon, VCRs clicked off before the
end of the program, etc., requiring that clocks be continually reset. In
1994, however, when power was linked with the rest of Europe, the
precise standard of 50 Hz was reestablished and everyone was on
time again.

Using a log scale (described in detail in Chapter 23), a frequency
spectrum from 1 Hz to 1000 GHz can be scaled off on the same axis, as
shown in Fig. 13.7. A number of terms in the various spectrums are
probably familiar to the reader from everyday experiences. Note that the
audio range (human ear) extends from only 15 Hz to 20 kHz, but the
transmission of radio signals can occur between 3 kHz and 300 GHz.
The uniform process of defining the intervals of the radio-frequency
spectrum from VLF to EHF is quite evident from the length of the bars
in the figure (although keep in mind that it is a log scale, so the fre-
quencies encompassed within each segment are quite different). Other
frequencies of particular interest (TV, CB, microwave, etc.) are also
included for reference purposes. Although it is numerically easy to talk
about frequencies in the megahertz and gigahertz range, keep in mind
that a frequency of 100 MHz, for instance, represents a sinusoidal
waveform that passes through 100,000,000 cycles in only 1 s—an
incredible number when we compare it to the 60 Hz of our conventional
power sources. The new Pentium II chip manufactured by Intel can run
at speeds up to 450 MHz. Imagine a product able to handle 450,000,000
instructions per second—an incredible achievement. The new Pentium
IV chip manufactured by Intel can run at a speed of 1.5 GHz. Try to
imagine a product able to handle 1,500,000,000,000 instructions in just
1 s—an incredible achievement.

Since the frequency is inversely related to the period—that is, as one
increases, the other decreases by an equal amount—the two can be
related by the following equation:

f � Hz
T � seconds (s)

(13.2)

or (13.3)T � �
1
f
�

f � �
T
1

�

1 hertz (Hz) � 1 cycle per second (c/s)

FIG. 13.6

Heinrich Rudolph Hertz.

German (Hamburg,
Berlin, Karlsruhe)

(1857–94)

Physicist

Professor of Physics,

Karlsruhe 
Polytechnic and
University of Bonn

Courtesy of the 
Smithsonian Institution

Photo No. 66,606

Spurred on by the earlier predictions of the English
physicist James Clerk Maxwell, Heinrich Hertz pro-
duced electromagnetic waves in his laboratory at the
Karlsruhe Polytechnic while in his early 30s. The
rudimentary transmitter and receiver were in es-
sence the first to broadcast and receive radio waves.
He was able to measure the wavelength of the
electromagnetic waves and confirmed that the ve-
locity of propagation is in the same order of magni-
tude as light. In addition, he demonstrated that the
reflective and refractive properties of electromag-
netic waves are the same as those for heat and light
waves. It was indeed unfortunate that such an inge-
nious, industrious individual should pass away at the
very early age of 37 due to a bone disease.
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Microwave

Microwave
oven

LF

VLF

3 kHz – 30 kHz (Very Low Freq.)

30 kHz – 300 kHz (Low Freq.)

300 kHz – 3 MHz (Medium Freq.)

3 MHz – 30 MHz (High Freq.)

30 MHz – 300 MHz (Very High Freq.)

300 MHz – 3 GHz (Ultrahigh Freq.)

3 GHz – 30 GHz (Super-High Freq.)

30 GHz – 300 GHz
(Extremely High Freq.)

MF

HF

VHF

UHF

SHF

EHF

RADIO FREQUENCIES (SPECTRUM)

Infrared3 kHz – 300 GHz

15 Hz – 20 kHz

AUDIO FREQUENCIES

1 Hz 10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz 1 GHz 10 GHz 1000 GHz f (log scale)

FM

TV

88 MHz – 108 MHz

54 MHz – 88 MHz

TV channels (7 – 13)

174 MHz – 216 MHz

TV channels (14 – 83)

470 MHz – 890 MHz

Countertop microwave oven

2.45 GHz

CB

26.9 MHz – 27.4 MHz

Shortwave

1.5 MHz – 30 MHz

Cordless telephones

46 MHz – 49 MHz

Pagers VHF

30 MHz – 50 MHz

Pagers UHF

405 MHz – 512 MHz

Cellular phones

Pagers

TV channels (2 – 6)

100 GHz

FIG. 13.7

Areas of application for specific frequency bands.
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EXAMPLE 13.1 Find the period of a periodic waveform with a fre-
quency of
a. 60 Hz.
b. 1000 Hz.

Solutions:

a. T � � � 0.01667 s or 16.67 ms

(a recurring value since 60 Hz is so prevalent)

b. T � � � 10�3 s � 1 ms

EXAMPLE 13.2 Determine the frequency of the waveform of Fig.
13.8.

Solution: From the figure, T � (25 ms � 5 ms) � 20 ms, and

f � � � 50 Hz

EXAMPLE 13.3 The oscilloscope is an instrument that will display
alternating waveforms such as those described above.A sinusoidal pattern
appears on the oscilloscope of Fig. 13.9 with the indicated vertical and
horizontal sensitivities. The vertical sensitivity defines the voltage associ-
ated with each vertical division of the display. Virtually all oscilloscope
screens are cut into a crosshatch pattern of lines separated by 1 cm in the
vertical and horizontal directions. The horizontal sensitivity defines the
time period associated with each horizontal division of the display.

For the pattern of Fig. 13.9 and the indicated sensitivities, determine
the period, frequency, and peak value of the waveform.

Solution: One cycle spans 4 divisions. The period is therefore

T � 4 div.� � � 200 ms

and the frequency is

f � �
T
1

� � � 5 kHz

The vertical height above the horizontal axis encompasses 2 divisions.
Therefore,

Vm � 2 div.� � � 0.2 V

Defined Polarities and Direction

In the following analysis, we will find it necessary to establish a set of
polarities for the sinusoidal ac voltage and a direction for the sinusoidal
ac current. In each case, the polarity and current direction will be for an
instant of time in the positive portion of the sinusoidal waveform. This
is shown in Fig. 13.10 with the symbols for the sinusoidal ac voltage
and current. A lowercase letter is employed for each to indicate that the
quantity is time dependent; that is, its magnitude will change with time.

0.1 V
�
div.

1
��
200 � 10�6 s

50 ms
�

div.

1
��
20 � 10�3 s

1
�
T

1
�
1000 Hz

1
�
f

1
�
60 Hz

1
�
f

0 t (ms)

10 V
e

5 15 25 35

FIG. 13.8

Example 13.2.

Vertical sensitivity  =  0.1 V/div.
Horizontal sensitivity  =  50 �s/div.�

FIG. 13.9

Example 13.3.

(a)

e

e

t
+

–

i

(b)

i

t

FIG. 13.10

(a) Sinusoidal ac voltage sources; 
(b) sinusoidal current sources.
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The need for defining polarities and current direction will become quite
obvious when we consider multisource ac networks. Note in the last
sentence the absence of the term sinusoidal before the phrase ac net-
works. This phrase will be used to an increasing degree as we progress;
sinusoidal is to be understood unless otherwise indicated.

13.3 THE SINE WAVE

The terms defined in the previous section can be applied to any type of
periodic waveform, whether smooth or discontinuous. The sinusoidal
waveform is of particular importance, however, since it lends itself
readily to the mathematics and the physical phenomena associated with
electric circuits. Consider the power of the following statement:

The sinusoidal waveform is the only alternating waveform whose
shape is unaffected by the response characteristics of R, L, and C
elements.

In other words, if the voltage across (or current through) a resistor,
coil, or capacitor is sinusoidal in nature, the resulting current (or volt-
age, respectively) for each will also have sinusoidal characteristics, as
shown in Fig. 13.11. If a square wave or a triangular wave were
applied, such would not be the case.

The unit of measurement for the horizontal axis of Fig. 13.12 is the
degree. A second unit of measurement frequently used is the radian
(rad). It is defined by a quadrant of a circle such as in Fig. 13.13 where
the distance subtended on the circumference equals the radius of the
circle.

If we define x as the number of intervals of r (the radius) around the
circumference of the circle, then

C � 2pr � x ⋅ r

and we find

x � 2p

Therefore, there are 2p rad around a 360° circle, as shown in Fig.
13.14, and

(13.4)2p rad � 360°

+

–

i

t
vR, L, or C

t

FIG. 13.11

The sine wave is the only alternating
waveform whose shape is not altered by the
response characteristics of a pure resistor,

inductor, or capacitor.

FIG. 13.12

Sine wave and cosine wave with the
horizontal axis in degrees.

r

r

57.296°

1 radian
r

r

57.296°

1 radian

57.296°

FIG. 13.13

Defining the radian.
FIG. 13.14

There are 2p radians in one full circle of 360°.
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with (13.5)

A number of electrical formulas contain a multiplier of p. For this
reason, it is sometimes preferable to measure angles in radians rather
than in degrees.

The quantity p is the ratio of the circumference of a circle to its
diameter.

p has been determined to an extended number of places primarily in
an attempt to see if a repetitive sequence of numbers appears. It does
not. A sampling of the effort appears below:

p � 3.14159 26535 89793 23846 26433 . . .

Although the approximation p � 3.14 is often applied, all the calcula-
tions in this text will use the p function as provided on all scientific cal-
culators.

For 180° and 360°, the two units of measurement are related as
shown in Fig. 13.14. The conversion equations between the two are the
following:

Radians � ��18
p

0°
�� � (degrees) (13.6)

Degrees � � � � (radians) (13.7)

Applying these equations, we find

90°: Radians � (90°) � rad

30°: Radians � (30°) � rad

rad: Degrees � � � � 60°

rad: Degrees � � � � 270°

Using the radian as the unit of measurement for the abscissa, we would
obtain a sine wave, as shown in Fig. 13.15.

It is of particular interest that the sinusoidal waveform can be
derived from the length of the vertical projection of a radius vector
rotating in a uniform circular motion about a fixed point. Starting as
shown in Fig. 13.16(a) and plotting the amplitude (above and below
zero) on the coordinates drawn to the right [Figs. 13.16(b) through (i)],
we will trace a complete sinusoidal waveform after the radius vector
has completed a 360° rotation about the center.

The velocity with which the radius vector rotates about the center,
called the angular velocity, can be determined from the following
equation:

Angular velocity � (13.8)
distance (degrees or radians)
���

time (seconds)

3p
�
2
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�
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�
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�
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FIG. 13.15

Plotting a sine wave versus radians.
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FIG. 13.16

Generating a sinusoidal waveform through the vertical projection of a 
rotating vector.
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Substituting into Eq. (13.8) and assigning the Greek letter omega (q)
to the angular velocity, we have

(13.9)

and (13.10)

Since q is typically provided in radians per second, the angle a
obtained using Eq. (13.10) is usually in radians. If a is required in
degrees, Equation (13.7) must be applied. The importance of remem-
bering the above will become obvious in the examples to follow.

In Fig. 13.16, the time required to complete one revolution is equal
to the period (T) of the sinusoidal waveform of Fig. 13.16(i). The radi-
ans subtended in this time interval are 2p. Substituting, we have

(rad/s) (13.11)

In words, this equation states that the smaller the period of the
sinusoidal waveform of Fig. 13.16(i), or the smaller the time interval
before one complete cycle is generated, the greater must be the angu-
lar velocity of the rotating radius vector. Certainly this statement
agrees with what we have learned thus far. We can now go one step
further and apply the fact that the frequency of the generated wave-
form is inversely related to the period of the waveform; that is, f �
1/T. Thus,

(rad/s) (13.12)

This equation states that the higher the frequency of the generated
sinusoidal waveform, the higher must be the angular velocity. Equations
(13.11) and (13.12) are verified somewhat by Fig. 13.17, where for the
same radius vector, q � 100 rad/s and 500 rad/s.

EXAMPLE 13.4 Determine the angular velocity of a sine wave hav-
ing a frequency of 60 Hz.

Solution:

q � 2pf � (2p)(60 Hz) � 377 rad/s

(a recurring value due to 60-Hz predominance)

EXAMPLE 13.5 Determine the frequency and period of the sine wave
of Fig. 13.17(b).

Solution: Since q � 2p/T,

T � � � � 12.57 ms

and f � � � 79.58 Hz
1

��
12.57 � 10�3 s

1
�
T

2p rad
�
500 rad/s

2p rad
�
500 rad/s

2p
�
q

q � 2pf

q � �
2
T
p
�

a � qt

q � �
a

t
�

(a)

(b)

T
α

T

Decreased ω, increased T,
decreased f

ω

Increased ω, increased T,
increased f

ω

α

ω  =  500 rad/sω

ω  =  100 rad/sω

FIG. 13.17

Demonstrating the effect of q on the 
frequency and period.
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EXAMPLE 13.6 Given q � 200 rad/s, determine how long it will take
the sinusoidal waveform to pass through an angle of 90°.

Solution: Eq. (13.10): a � qt, and

t �

However, a must be substituted as p/2 (� 90°) since q is in radians per
second:

t � � � s � 7.85 ms

EXAMPLE 13.7 Find the angle through which a sinusoidal waveform
of 60 Hz will pass in a period of 5 ms.

Solution: Eq. (13.11): a � qt, or

a � 2pft � (2p)(60 Hz)(5 � 10�3s) � 1.885 rad

If not careful, one might be tempted to interpret the answer as
1.885°. However,

a (°) � (1.885 rad) � 108°

13.4 GENERAL FORMAT FOR THE SINUSOIDAL
VOLTAGE OR CURRENT

The basic mathematical format for the sinusoidal waveform is

(13.13)

where Am is the peak value of the waveform and a is the unit of mea-
sure for the horizontal axis, as shown in Fig. 13.18.

Am sin a

180°
�
p rad

p
�
400

p/2 rad
�
200 rad/s

a
�
q

a
�
q

FIG. 13.18

Basic sinusoidal function.

The equation a � qt states that the angle a through which the rotat-
ing vector of Fig. 13.16 will pass is determined by the angular velocity
of the rotating vector and the length of time the vector rotates. For
example, for a particular angular velocity (fixed q), the longer the
radius vector is permitted to rotate (that is, the greater the value of t),
the greater will be the number of degrees or radians through which the
vector will pass. Relating this statement to the sinusoidal waveform, for
a particular angular velocity, the longer the time, the greater the num-
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ber of cycles shown. For a fixed time interval, the greater the angular
velocity, the greater the number of cycles generated.

Due to Eq. (13.10), the general format of a sine wave can also be
written

(13.14)

with qt as the horizontal unit of measure.
For electrical quantities such as current and voltage, the general for-

mat is

i � Im sin qt � Im sin a

e � Em sin qt � Em sin a

where the capital letters with the subscript m represent the amplitude,
and the lowercase letters i and e represent the instantaneous value of
current or voltage, respectively, at any time t. This format is particularly
important since it presents the sinusoidal voltage or current as a func-
tion of time, which is the horizontal scale for the oscilloscope. Recall
that the horizontal sensitivity of a scope is in time per division and not
degrees per centimeter.

EXAMPLE 13.8 Given e � 5 sin a, determine e at a � 40° and a �
0.8p .

Solution: For a � 40°,

e � 5 sin 40° � 5(0.6428) � 3.214 V

For a � 0.8p,

a (°) � (0.8p) � 144°

and e � 5 sin 144° � 5(0.5878) � 2.939 V

The conversion to degrees will not be required for most modern-day
scientific calculators since they can perform the function directly. First, be
sure that the calculator is in the RAD mode. Then simply enter the radian
measure and use the appropriate trigonometric key (sin, cos, tan, etc.).

The angle at which a particular voltage level is attained can be
determined by rearranging the equation

e � Em sin a

in the following manner:

sin a �

which can be written

(13.15)

Similarly, for a particular current level,

(13.16)

The function sin�1 is available on all scientific calculators.

a � sin�1 �
I
i

m
�

a � sin�1 �
E
e

m
�

e
�
Em

180°
�

p

Am sin qt
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EXAMPLE 13.9

a. Determine the angle at which the magnitude of the sinusoidal func-
tion v � 10 sin 377t is 4 V.

b. Determine the time at which the magnitude is attained.

Solutions:

a. Eq. (13.15):

a1 � sin�1 � sin�1 � sin�1 0.4 � 23.578°

However, Figure 13.19 reveals that the magnitude of 4 V (posi-
tive) will be attained at two points between 0° and 180°. The second
intersection is determined by

a2 � 180° � 23.578° � 156.422°

In general, therefore, keep in mind that Equations (13.15) and
(13.16) will provide an angle with a magnitude between 0° and 90°.

b. Eq. (13.10): a � qt, and so t � a /q. However, a must be in radians.
Thus,

a (rad) � (23.578°) � 0.411 rad

and t1 � � � 1.09 ms

For the second intersection,

a (rad) � (156.422°) � 2.73 rad

t2 � � � 7.24 ms

The sine wave can also be plotted against time on the horizontal
axis. The time period for each interval can be determined from t � a /q,
but the most direct route is simply to find the period T from T � 1/f and
break it up into the required intervals. This latter technique will be
demonstrated in Example 13.10.

Before reviewing the example, take special note of the relative sim-
plicity of the mathematical equation that can represent a sinusoidal
waveform. Any alternating waveform whose characteristics differ from
those of the sine wave cannot be represented by a single term, but may
require two, four, six, or perhaps an infinite number of terms to be rep-
resented accurately. Additional description of nonsinusoidal waveforms
can be found in Chapter 25.

EXAMPLE 13.10 Sketch e � 10 sin 314t with the abscissa
a. angle (a) in degrees.
b. angle (a) in radians.
c. time (t) in seconds.

Solutions:

a. See Fig 13.20. (Note that no calculations are required.)
b. See Fig. 13.21. (Once the relationship between degrees and radians

is understood, there is again no need for calculations.)

2.73 rad
�
377 rad/s

a
�
q

p
�
180°

0.411 rad
��
377 rad/s

a
�
q

p
�
180°

4 V
�
10 V

v
�
Em

v (V)

4

1 90°

10

0
t1

2

t2

180° ���

FIG. 13.19

Example 13.9.

FIG. 13.20

Example 13.10, horizontal axis in degrees.

FIG. 13.21

Example 13.10, horizontal axis in radians.
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c. 360°: T � � � 20 ms

180°: � � 10 ms

90°: � � 5 ms

30°: � � 1.67 ms

See Fig. 13.22.

EXAMPLE 13.11 Given i � 6 � 10�3 sin 1000t, determine i at t �
2 ms.

Solution:

a � qt � 1000t � (1000 rad/s)(2 � 10�3 s) � 2 rad

a (°) � (2 rad) � 114.59°

i � (6 � 10�3)(sin 114.59°)
� (6 mA)(0.9093) � 5.46 mA

13.5 PHASE RELATIONS

Thus far, we have considered only sine waves that have maxima at p/2
and 3p/2, with a zero value at 0, p, and 2p, as shown in Fig. 13.21. If the
waveform is shifted to the right or left of 0°, the expression becomes

(13.17)

where v is the angle in degrees or radians that the waveform has been
shifted.

If the waveform passes through the horizontal axis with a positive-
going (increasing with time) slope before 0°, as shown in Fig. 13.23,
the expression is

(13.18)

At qt � a � 0°, the magnitude is determined by Am sin v. If the wave-
form passes through the horizontal axis with a positive-going slope
after 0°, as shown in Fig. 13.24, the expression is

(13.19)

And at qt � a � 0°, the magnitude is Am sin(�v), which, by a trigono-
metric identity, is �Am sin v.

If the waveform crosses the horizontal axis with a positive-going slope
90° (p/2) sooner, as shown in Fig. 13.25, it is called a cosine wave; that is,

sin(qt � 90°) � sin�qt � �
p

2
�� � cos qt (13.20)

Am sin(qt � v)

Am sin(qt � v)

Am sin(qt � v)

180°
�
p rad

20 ms
�

12
T

�
12

20 ms
�

4
T
�
4

20 ms
�

2
T
�
2

2p
�
314

2p
�
q

FIG. 13.22

Example 13.10, horizontal axis in
milliseconds.

�

(    –    )

Am

(2     –    )

�

Am sin�
� �

�      �

FIG. 13.23

Defining the phase shift for a sinusoidal 
function that crosses the horizontal axis with 

a positive slope before 0°.

v (p  +  v)

Am

(2p  +  v)

�– Am sin v

FIG. 13.24

Defining the phase shift for a sinusoidal 
function that crosses the horizontal axis with 

a positive slope after 0°.

0

Am

90°

cos �
sin �

p 2p

�

p
2

– p
2

p3
2

FIG. 13.25

Phase relationship between a sine wave and a
cosine wave.
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or sin qt � cos(qt � 90°) � cos�qt � �
p

2
�� (13.21)

The terms lead and lag are used to indicate the relationship
between two sinusoidal waveforms of the same frequency plotted on
the same set of axes. In Fig. 13.25, the cosine curve is said to lead
the sine curve by 90°, and the sine curve is said to lag the cosine
curve by 90°. The 90° is referred to as the phase angle between the
two waveforms. In language commonly applied, the waveforms are
out of phase by 90°. Note that the phase angle between the two
waveforms is measured between those two points on the horizontal
axis through which each passes with the same slope. If both wave-
forms cross the axis at the same point with the same slope, they are
in phase.

The geometric relationship between various forms of the sine and
cosine functions can be derived from Fig. 13.26. For instance, starting
at the sin a position, we find that cos a is an additional 90° in the coun-
terclockwise direction. Therefore, cos a � sin(a � 90°). For �sin a
we must travel 180° in the counterclockwise (or clockwise) direction so
that �sin a � sin(a � 180°), and so on, as listed below:

(13.22)

In addition, one should be aware that

(13.23)

If a sinusoidal expression should appear as

e � �Em sin qt

the negative sign is associated with the sine portion of the expression,
not the peak value Em. In other words, the expression, if not for conve-
nience, would be written

e � Em(�sin qt)

Since

�sin qt � sin(qt � 180°)

the expression can also be written

e � Em sin(qt � 180°)

revealing that a negative sign can be replaced by a 180° change in
phase angle (� or �); that is,

e � Em sin qt � Em sin(qt � 180°)
� Em sin(qt � 180°)

A plot of each will clearly show their equivalence. There are, there-
fore, two correct mathematical representations for the functions.

sin(�a) � �sin a
cos(�a) � cos a

cos a � sin(a � 90°)
sin a � cos(a � 90°)

�sin a � sin(a � 180°)
�cos a � sin(a � 270°) � sin(a � 90°)

etc.

+cos

–cos

+sin–sin

α

α α

α

FIG. 13.26

Graphic tool for finding the relationship
between specific sine and cosine functions.
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The phase relationship between two waveforms indicates which
one leads or lags, and by how many degrees or radians.

EXAMPLE 13.12 What is the phase relationship between the sinu-
soidal waveforms of each of the following sets?
a. v � 10 sin(qt � 30°)

i � 5 sin(qt � 70°)
b. i � 15 sin(qt � 60°)

v � 10 sin(qt � 20°)
c. i � 2 cos(qt � 10°)

v � 3 sin(qt � 10°)
d. i � �sin(qt � 30°)

v � 2 sin(qt � 10°)
e. i � �2 cos(qt � 60°)

v � 3 sin(qt � 150°)

Solutions:

a. See Fig. 13.27.
i leads v by 40°, or v lags i by 40°.

v

30°40°

5
10

i

0
2

�
3
2

2 �t

70°

�

�

�

FIG. 13.27

Example 13.12; i leads v by 40°.

b. See Fig. 13.28.
i leads v by 80°, or v lags i by 80°.

10 15

i

v

2
–

2
� 3

2
�

2 �t

20°
80°

60°

0
� � �

FIG. 13.28

Example 13.12; i leads v by 80°.
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d. See Fig. 13.30.
Note

�sin(qt � 30°) � sin(qt � 30° � 180°)

� sin(qt � 150°)

v leads i by 160°, or i lags v by 160°.

i

v2
3

10°

110°

2
0 � 3

2
�

2 �t

100°

�
2

–– � � �

FIG. 13.29

Example 13.12; i leads v by 110°.

2

1

2
– 3

2
�

�2
2

5
2

�
3

�t

10°
160°

200°
360°

0

i

v

150°

�

�

�

�

FIG. 13.30

Example 13.12; v leads i by 160°.

Or using
Note

�sin(qt � 30°) � sin(qt � 30° � 180°)

� sin(qt � 210°)

i leads v by 200°, or v lags i by 200°.

e. See Fig. 13.31.
By choice

i � �2 cos(qt � 60°) � 2 cos(qt � 60° � 180°)
� 2 cos(qt � 240°)

2
– 3

2
��

2

2 5
2
� 3

�t
0

i

v

150°

2
3

� � � �

FIG. 13.31

Example 13.12; v and i are in phase.

c. See Fig. 13.29.

i � 2 cos(qt � 10°) � 2 sin(qt � 10° � 90°)
� 2 sin(qt � 100°)

i leads v by 110°, or v lags i by 110°.
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However, cos a � sin(a � 90°)

so that 2 cos(qt � 240°) � 2 sin(qt � 240° � 90°)
� 2 sin(qt � 150°)

v and i are in phase.

Phase Measurements

The hookup procedure for using an oscilloscope to measure phase
angles is covered in detail in Section 15.13. However, the equation for
determining the phase angle can be introduced using Fig. 13.32. First,
note that each sinusoidal function has the same frequency, permitting
the use of either waveform to determine the period. For the waveform
chosen in Fig. 13.32, the period encompasses 5 divisions at 0.2 ms/div.
The phase shift between the waveforms (irrespective of which is lead-
ing or lagging) is 2 divisions. Since the full period represents a cycle of
360°, the following ratio [from which Equation (13.24) can be derived]
can be formed:

�

and v � � 360° (13.24)

Substituting into Eq. (13.24) will result in

v � � 360° � 144°

and e leads i by 144°.

13.6 AVERAGE VALUE

Even though the concept of the average value is an important one in
most technical fields, its true meaning is often misunderstood. In Fig.
13.33(a), for example, the average height of the sand may be required
to determine the volume of sand available. The average height of the
sand is that height obtained if the distance from one end to the other
is maintained while the sand is leveled off, as shown in Fig. 13.33(b).
The area under the mound of Fig. 13.33(a) will then equal the area
under the rectangular shape of Fig. 13.33(b) as determined by A �
b � h. Of course, the depth (into the page) of the sand must be the
same for Fig. 13.33(a) and (b) for the preceding conclusions to have
any meaning.

In Fig. 13.33 the distance was measured from one end to the other.
In Fig. 13.34(a) the distance extends beyond the end of the original pile
of Fig. 13.33. The situation could be one where a landscaper would like
to know the average height of the sand if spread out over a distance
such as defined in Fig. 13.34(a). The result of an increased distance is
as shown in Fig. 13.34(b). The average height has decreased compared
to Fig. 13.33. Quite obviously, therefore, the longer the distance, the
lower is the average value.

(2 div.)
�
(5 div.)

phase shift (no. of div.)
���

T (no. of div.)

v
���
phase shift (no. of div.)

360°
��
T (no. of div.) Vertical sensitivity = 2 V/div.

Horizontal sensitivity = 0.2 ms/div.

T

θ

e
i

FIG. 13.32

Finding the phase angle between waveforms
using a dual-trace oscilloscope.

Height

Distance

Sand

(a)

Height

Average height

Sand

Same
distance

(b)

FIG. 13.33

Defining average value.
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If the distance parameter includes a depression, as shown in Fig.
13.35(a), some of the sand will be used to fill the depression, resulting
in an even lower average value for the landscaper, as shown in Fig.
13.35(b). For a sinusoidal waveform, the depression would have the
same shape as the mound of sand (over one full cycle), resulting in an
average value at ground level (or zero volts for a sinusoidal voltage over
one full period).

After traveling a considerable distance by car, some drivers like to
calculate their average speed for the entire trip. This is usually done by
dividing the miles traveled by the hours required to drive that distance.
For example, if a person traveled 225 mi in 5 h, the average speed was
225 mi/5 h, or 45 mi/h. This same distance may have been traveled at
various speeds for various intervals of time, as shown in Fig. 13.36.

By finding the total area under the curve for the 5 h and then divid-
ing the area by 5 h (the total time for the trip), we obtain the same result
of 45 mi/h; that is,

Average speed � (13.25)

Average speed �

�

� mi/h

� 45 mi/h

Equation (13.25) can be extended to include any variable quantity, such
as current or voltage, if we let G denote the average value, as follows:

G (average value) � (13.26)
algebraic sum of areas
���

length of curve

225
�

5

(60 mi/h)(2 h) � (50 mi/h)(2.5 h)
����

5 h

A1 � A2
�

5 h

area under curve
��
length of curve

Height

Distance

Sand

(a)

Height

Average height

Sand

Same
distance

(b)

FIG. 13.34

Effect of distance (length) on average value.

Height

Distance

(a)

Height

Average height

Sand

Same
distance

(b)

Sand

Ground level

FIG. 13.35

Effect of depressions (negative excursions) on
average value.

10
20
30
40
50
60
70

Speed (mi/h)

A1 A2

0 1 2 3 4 5 6 t (h)
Lunch break

Average speed

FIG. 13.36

Plotting speed versus time for an automobile excursion.

The algebraic sum of the areas must be determined, since some area
contributions will be from below the horizontal axis. Areas above the
axis will be assigned a positive sign, and those below, a negative sign.
A positive average value will then be above the axis, and a negative
value, below.

The average value of any current or voltage is the value indicated on
a dc meter. In other words, over a complete cycle, the average value is
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the equivalent dc value. In the analysis of electronic circuits to be con-
sidered in a later course, both dc and ac sources of voltage will be
applied to the same network. It will then be necessary to know or deter-
mine the dc (or average value) and ac components of the voltage or cur-
rent in various parts of the system.

EXAMPLE 13.13 Determine the average value of the waveforms of
Fig. 13.37.

0

10 V

1 2 3 4 t (ms)

–10 V

(a)

0

14 V

1 2 3 4 t (ms)

–6  V

(b)

v1
v2

(Square wave)

FIG. 13.37

Example 13.13.

Solutions:

a. By inspection, the area above the axis equals the area below over
one cycle, resulting in an average value of zero volts. Using Eq.
(13.26):

G �

� � 0 V

b. Using Eq. (13.26):

G �

� � � 4 V

as shown in Fig. 13.38.
In reality, the waveform of Fig. 13.37(b) is simply the square wave

of Fig. 13.37(a) with a dc shift of 4 V; that is,

v2 � v1 � 4 V

EXAMPLE 13.14 Find the average values of the following waveforms
over one full cycle:
a. Fig. 13.39.
b. Fig. 13.40.

8 V
�

2
14 V � 6 V
��

2

(14 V)(1 ms) � (6 V)(1 ms)
���

2 ms

0
�
2 ms

(10 V)(1 ms) � (10 V)(1 ms)
����

2 ms

14 V

4 V
0

–6 V
1 2 3 4 t (ms)

FIG. 13.38

Defining the average value for the waveform
of Fig. 13.37(b).

3

v (V)

0

–1

4 8
t (ms)

1 cycle

FIG. 13.39

Example 13.14, part (a).
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Solutions:

a. G � � � 1 V

Note Fig. 13.41.

b. G �

� � � � �1.6 V

Note Fig. 13.42.

We found the areas under the curves in the preceding example by
using a simple geometric formula. If we should encounter a sine wave
or any other unusual shape, however, we must find the area by some
other means. We can obtain a good approximation of the area by
attempting to reproduce the original wave shape using a number of
small rectangles or other familiar shapes, the area of which we already
know through simple geometric formulas. For example,

the area of the positive (or negative) pulse of a sine wave is 2Am.

Approximating this waveform by two triangles (Fig. 13.43), we obtain
(using area � 1/2 base � height for the area of a triangle) a rough idea
of the actual area:

b h

Area shaded � 2� bh� � 2�� �� �(Am)� � Am

� 1.58Am

A closer approximation might be a rectangle with two similar trian-
gles (Fig. 13.44):

Area � Am � 2� bh� � Am � Am� pAm

� 2.094Am

which is certainly close to the actual area. If an infinite number of
forms were used, an exact answer of 2Am could be obtained. For irreg-
ular waveforms, this method can be especially useful if data such as the
average value are desired.

The procedure of calculus that gives the exact solution 2Am is
known as integration. Integration is presented here only to make the

2
�
3

p
�
3

p
�
3

1
�
2

p
�
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p
�
2

p
�
2

1
�
2

1
�
2

16 V
�

10
�20 V � 8 V � 4 V
���

10

�(10 V)(2 ms) � (4 V)(2 ms) � (2 V)(2 ms)
�����

10 ms

12 V � 4 V
��

8
�(3 V)(4 ms) � (1 V)(4 ms)
���

8 ms

    

1 cycle

2 4
6 8

10 t (ms)

i (A)

4

0

–2

–10

FIG. 13.40

Example 13.14, part (b).

1

vav (V)

8 t (ms)

1V0

dc voltmeter (between 0 and 8 ms)

FIG. 13.41

The response of a dc meter to the waveform of
Fig. 13.39.

0
–1.6

iav (A)

t (ms)

dc ammeter (between 0 and 10 ms)

– +–1.6

10

FIG. 13.42

The response of a dc meter to the waveform of
Fig. 13.40.

FIG. 13.43

Approximating the shape of the positive pulse
of a sinusoidal waveform with two right

triangles.

FIG. 13.44

A better approximation for the shape of the
positive pulse of a sinusoidal waveform.
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method recognizable to the reader; it is not necessary to be proficient in
its use to continue with this text. It is a useful mathematical tool, how-
ever, and should be learned. Finding the area under the positive pulse of
a sine wave using integration, we have

Area � �p

0
Am sin a da

where ∫ is the sign of integration, 0 and p are the limits of integration,
Am sin a is the function to be integrated, and da indicates that we are
integrating with respect to a.

Integrating, we obtain

Area � Am[�cos a]p0
� �Am(cos p � cos 0°)
� �Am[�1 � (�1)] � �Am(�2)

(13.27)

Since we know the area under the positive (or negative) pulse, we
can easily determine the average value of the positive (or negative)
region of a sine wave pulse by applying Eq. (13.26):

G �

and (13.28)

For the waveform of Fig. 13.45,

G � �
(average the same
as for a full pulse)

EXAMPLE 13.15 Determine the average value of the sinusoidal
waveform of Fig. 13.46.

Solution: By inspection it is fairly obvious that

the average value of a pure sinusoidal waveform over one full cycle is
zero.

Eq. (13.26):

G � � 0 V

EXAMPLE 13.16 Determine the average value of the waveform of
Fig. 13.47.

Solution: The peak-to-peak value of the sinusoidal function is
16 mV � 2 mV � 18 mV. The peak amplitude of the sinusoidal wave-
form is, therefore, 18 mV/2 � 9 mV. Counting down 9 mV from 2 mV
(or 9 mV up from �16 mV) results in an average or dc level of �7 mV,
as noted by the dashed line of Fig. 13.47.

�2Am � 2Am
��

2p

2Am
�
p

(2Am/2)
�

p/2

G Am

0 p

G � 0.637Am

2Am
�
p

Am

0 p

Area � 2Am

FIG. 13.45

Finding the average value of one-half the
positive pulse of a sinusoidal waveform.

0

1 cycle

Am

Am

π 2 απ

FIG. 13.46

Example 13.15.

+2 mV

v

0
t

–16 mV

FIG. 13.47

Example 13.16.
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EXAMPLE 13.17 Determine the average value of the waveform of
Fig. 13.48.

Solution:

G � � � 3.18 V

EXAMPLE 13.18 For the waveform of Fig. 13.49, determine whether
the average value is positive or negative, and determine its approximate
value.

Solution: From the appearance of the waveform, the average value
is positive and in the vicinity of 2 mV. Occasionally, judgments of this
type will have to be made.

Instrumentation

The dc level or average value of any waveform can be found using a
digital multimeter (DMM) or an oscilloscope. For purely dc circuits,
simply set the DMM on dc, and read the voltage or current levels.
Oscilloscopes are limited to voltage levels using the sequence of steps
listed below:

1. First choose GND from the DC-GND-AC option list associated
with each vertical channel. The GND option blocks any signal to
which the oscilloscope probe may be connected from entering the
oscilloscope and responds with just a horizontal line. Set the
resulting line in the middle of the vertical axis on the horizontal
axis, as shown in Fig. 13.50(a).

2(10 V)
�

2p

2Am � 0
�

2p

v (mV)

10 mV

0 t

FIG. 13.49

Example 13.18.

(b)

Vertical sensitivity = 50 mV/div.

Shift = 2.5 div.

(a)

FIG. 13.50

Using the oscilloscope to measure dc voltages: (a) setting the GND condition;
(b) the vertical shift resulting from a dc voltage when shifted to the DC option.

2. Apply the oscilloscope probe to the voltage to be measured (if
not already connected), and switch to the DC option. If a dc volt-
age is present, the horizontal line will shift up or down, as
demonstrated in Fig. 13.50(b). Multiplying the shift by the verti-
cal sensitivity will result in the dc voltage. An upward shift is a
positive voltage (higher potential at the red or positive lead of the
oscilloscope), while a downward shift is a negative voltage
(lower potential at the red or positive lead of the oscilloscope).

�1

1 cycle

2pp

v (V)

10

0

Sine wave

FIG. 13.48

Example 13.17.
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In general,

Shift = 0.9 div.

(a)

Reference

level

(b)

FIG. 13.51

Determining the average value of a nonsinusoidal waveform using the
oscilloscope: (a) vertical channel on the ac mode; (b) vertical channel on the

dc mode.

The procedure outlined above can be applied to any alternating
waveform such as the one in Fig. 13.49. In some cases the average
value may require moving the starting position of the waveform under
the AC option to a different region of the screen or choosing a higher
voltage scale. DMMs can read the average or dc level of any waveform
by simply choosing the appropriate scale.

(13.29)Vdc � (vertical shift in div.) � (vertical sensitivity in V/div.)

For the waveform of Fig. 13.50(b),

Vdc � (2.5 div.)(50 mV/div.) � 125 mV

The oscilloscope can also be used to measure the dc or average level
of any waveform using the following sequence:

1. Using the GND option, reset the horizontal line to the middle of
the screen.

2. Switch to AC (all dc components of the signal to which the probe
is connected will be blocked from entering the oscilloscope—
only the alternating, or changing, components will be displayed).
Note the location of some definitive point on the waveform, such
as the bottom of the half-wave rectified waveform of Fig.
13.51(a); that is, note its position on the vertical scale. For the
future, whenever you use the AC option, keep in mind that the
computer will distribute the waveform above and below the hori-
zontal axis such that the average value is zero; that is, the area
above the axis will equal the area below.

3. Then switch to DC (to permit both the dc and the ac components
of the waveform to enter the oscilloscope), and note the shift in
the chosen level of part 2, as shown in Fig. 13.51(b). Equation
(13.29) can then be used to determine the dc or average value of
the waveform. For the waveform of Fig. 13.51(b), the average
value is about

Vav � Vdc � (0.9 div.)(5 V/div.) � 4.5 V
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13.7 EFFECTIVE (rms) VALUES

This section will begin to relate dc and ac quantities with respect to
the power delivered to a load. It will help us determine the amplitude
of a sinusoidal ac current required to deliver the same power as a
particular dc current. The question frequently arises, How is it possi-
ble for a sinusoidal ac quantity to deliver a net power if, over a full
cycle, the net current in any one direction is zero (average value �
0)? It would almost appear that the power delivered during the posi-
tive portion of the sinusoidal waveform is withdrawn during the neg-
ative portion, and since the two are equal in magnitude, the net
power delivered is zero. However, understand that irrespective of
direction, current of any magnitude through a resistor will deliver
power to that resistor. In other words, during the positive or negative
portions of a sinusoidal ac current, power is being delivered at each
instant of time to the resistor. The power delivered at each instant
will, of course, vary with the magnitude of the sinusoidal ac current,
but there will be a net flow during either the positive or the negative
pulses with a net flow over the full cycle. The net power flow will
equal twice that delivered by either the positive or the negative
regions of sinusoidal quantity.

A fixed relationship between ac and dc voltages and currents can be
derived from the experimental setup shown in Fig. 13.52. A resistor in
a water bath is connected by switches to a dc and an ac supply. If switch
1 is closed, a dc current I, determined by the resistance R and battery
voltage E, will be established through the resistor R. The temperature
reached by the water is determined by the dc power dissipated in the
form of heat by the resistor.

Switch 2

iac

ac generatore

Switch 1

dc source
E

R

Idc

FIG. 13.52

An experimental setup to establish a relationship between dc and ac quantities.

If switch 2 is closed and switch 1 left open, the ac current through
the resistor will have a peak value of Im. The temperature reached by
the water is now determined by the ac power dissipated in the form of
heat by the resistor. The ac input is varied until the temperature is the
same as that reached with the dc input. When this is accomplished, the
average electrical power delivered to the resistor R by the ac source is
the same as that delivered by the dc source.

The power delivered by the ac supply at any instant of time is

Pac � (iac)
2R � (Im sin qt)2R � (I 2

m sin2qt)R

but

sin2 qt � (1 � cos 2qt) (trigonometric identity)
1
�
2
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Therefore,

Pac � I 2
m� (1 � cos 2qt)�R

and (13.30)

The average power delivered by the ac source is just the first term,
since the average value of a cosine wave is zero even though the wave
may have twice the frequency of the original input current waveform.
Equating the average power delivered by the ac generator to that deliv-
ered by the dc source,

Pav(ac) � Pdc

� I 2
dcR and Im � �2�Idc

or Idc � � 0.707Im

which, in words, states that

the equivalent dc value of a sinusoidal current or voltage is 1/ �2� or
0.707 of its maximum value.

The equivalent dc value is called the effective value of the sinusoidal
quantity.

In summary,

(13.31)

or (13.32)

and (13.33)

or (13.34)

As a simple numerical example, it would require an ac current with
a peak value of �2�(10) � 14.14 A to deliver the same power to the
resistor in Fig. 13.52 as a dc current of 10 A. The effective value of any
quantity plotted as a function of time can be found by using the fol-
lowing equation derived from the experiment just described:

Ieff � 	
 (13.35)

or Ieff � 	
 (13.36)
area (i2(t))
��

T

�T

0
i2(t) dt

�
T

Em � �2�Eeff � 1.414Eeff

Eeff � 0.707Em

Im � �2�Ieff � 1.414Ieff

Ieq(dc) � Ieff � 0.707Im

Im�
�2�

I2
mR

�
2

Pac � �
I 2

m

2

R
� � �

I 2
m

2

R
� cos 2qt

1
�
2
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which, in words, states that to find the effective value, the function i(t)
must first be squared. After i(t) is squared, the area under the curve is
found by integration. It is then divided by T, the length of the cycle or
the period of the waveform, to obtain the average or mean value of the
squared waveform. The final step is to take the square root of the mean
value. This procedure gives us another designation for the effective
value, the root-mean-square (rms) value. In fact, since the rms term is
the most commonly used in the educational and industrial communities,
it will used throughout this text.

EXAMPLE 13.19 Find the rms values of the sinusoidal waveform in
each part of Fig. 13.53.

12

i (mA)

0 1s
t

12

i (mA)

0
t

1s 2 s
t

v

169.7 V

(c)(b)(a)

FIG. 13.53

Example 13.19.

Solution: For part (a), Irms � 0.707(12 � 10�3 A) � 8.484 mA.
For part (b), again Irms � 8.484 mA. Note that frequency did not
change the effective value in (b) above compared to (a). For part (c),
Vrms � 0.707(169.73 V) � 120 V, the same as available from a home
outlet.

EXAMPLE 13.20 The 120-V dc source of Fig. 13.54(a) delivers
3.6 W to the load. Determine the peak value of the applied voltage
(Em) and the current (Im) if the ac source [Fig. 13.54(b)] is to
deliver the same power to the load.

iac

–

P  =  3.6 W
Load

Em

Idc

E 120 V P  =  3.6 W
Load

e

Im

+

(b)(a)

FIG. 13.54

Example 13.20.
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Solution:

Pdc � VdcIdc

and Idc � � � 30 mA

Im � �2�Idc � (1.414)(30 mA) � 42.42 mA

Em � �2�Edc � (1.414)(120 V) � 169.68 V

EXAMPLE 13.21 Find the effective or rms value of the waveform of
Fig. 13.55.

Solution:

v2 (Fig. 13.56):

Vrms � 	
 � 	
 � 2.236 V

EXAMPLE 13.22 Calculate the rms value of the voltage of Fig. 13.57.

40
�
8

(9)(4) � (1)(4)
��

8

3.6 W
�
120 V

Pdc�
Vdc

1 cycle

t (s)
840

3

–1

v (V)

9

v2 (V)

1

0 4 8 t (s)

(– 1)2  =  1

1 cycle

4

v (V)

0
–2

–10

4 6 8 10 t (s)

FIG. 13.55

Example 13.21.

FIG. 13.56

The squared waveform of Fig. 13.55.

FIG. 13.57

Example 13.22.

Solution:

v2 (Fig. 13.58):

Vrms � 	

 � 	

� 4.899 V

240
�
10

(100)(2) � (16)(2) � (4)(2)
���

10

100

2 4 6 8 10

16
4

0 t (s)

v2 (V)

FIG. 13.58

The squared waveform of Fig. 13.57.
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EXAMPLE 13.23 Determine the average and rms values of the square
wave of Fig. 13.59.

Solution: By inspection, the average value is zero.

v2 (Fig. 13.60):

Vrms � 	



� 	
� �1�6�0�0�

Vrms � 40 V

(the maximum value of the waveform of Fig. 13.60)

The waveforms appearing in these examples are the same as those
used in the examples on the average value. It might prove interesting to
compare the rms and average values of these waveforms.

The rms values of sinusoidal quantities such as voltage or current
will be represented by E and I. These symbols are the same as those
used for dc voltages and currents. To avoid confusion, the peak value
of a waveform will always have a subscript m associated with it: Im

sin qt. Caution: When finding the rms value of the positive pulse of a
sine wave, note that the squared area is not simply (2Am)2 � 4A2

m; it
must be found by a completely new integration. This will always be
the case for any waveform that is not rectangular.

A unique situation arises if a waveform has both a dc and an ac com-
ponent that may be due to a source such as the one in Fig. 13.61. The
combination appears frequently in the analysis of electronic networks
where both dc and ac levels are present in the same system.

32,000 � 10�3

��
20 � 10�3

(1600)(10 � 10�3) � (1600)(10 � 10�3)
�����

20 � 10�3

20100

v2 (V)

1600

t (ms)

FIG. 13.60

The squared waveform of Fig. 13.59.

3 sin    t
+

–

6 V

vT

+

–

vT

7.5 V

6 V

4.5 V

0 t

ω

FIG. 13.61

Generation and display of a waveform having a dc and an ac component.

The question arises, What is the rms value of the voltage vT? One
might be tempted to simply assume that it is the sum of the rms values
of each component of the waveform; that is, VT rms

� 0.7071(1.5 V) �
6 V � 1.06 V � 6 V � 7.06 V. However, the rms value is actually
determined by

Vrms � �V�2
dc� �� V�2

ac�(rm�s)� (13.37)

which for the above example is

Vrms � �(6� V�)2� �� (�1�.0�6� V�)2�
� �3�7�.1�2�4� V
� 6.1 V

40

0

–40

10 20 t (ms)

v (V)

1 cycle

FIG. 13.59

Example 13.23.
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This result is noticeably less than the above solution. The development
of Eq. (13.37) can be found in Chapter 25.

Instrumentation

It is important to note whether the DMM in use is a true rms meter or
simply a meter where the average value is calibrated (as described in
the next section) to indicate the rms level. A true rms meter will read
the effective value of any waveform (such as Figs. 13.49 and 13.61)
and is not limited to only sinusoidal waveforms. Since the label true
rms is normally not placed on the face of the meter, it is prudent to
check the manual if waveforms other than purely sinusoidal are to be
encountered. For any type of rms meter, be sure to check the manual for
its frequency range of application. For most it is less than 1 kHz.

13.8 ac METERS AND INSTRUMENTS

The d’Arsonval movement employed in dc meters can also be used to
measure sinusoidal voltages and currents if the bridge rectifier of Fig.
13.62 is placed between the signal to be measured and the average read-
ing movement.

The bridge rectifier, composed of four diodes (electronic switches),
will convert the input signal of zero average value to one having an
average value sensitive to the peak value of the input signal. The con-
version process is well described in most basic electronics texts. Fun-
damentally, conduction is permitted through the diodes in such a man-
ner as to convert the sinusoidal input of Fig. 13.63(a) to one having the
appearance of Fig. 13.63(b). The negative portion of the input has been
effectively “flipped over” by the bridge configuration. The resulting
waveform of Fig. 13.63(b) is called a full-wave rectified waveform.

vmovement

vi

+

–

+–

FIG. 13.62

Full-wave bridge rectifier.

vi

Vm

–Vm

0 � 2 �

(a)

vmovement

Vm

0 � 2 �

(b)

Vdc  =  0.637Vm

� �

FIG. 13.63

(a) Sinusoidal input; (b) full-wave rectified signal.

The zero average value of Fig. 13.63(a) has been replaced by a pat-
tern having an average value determined by

G � � � � 0.637Vm

The movement of the pointer will therefore be directly related to the
peak value of the signal by the factor 0.637.

Forming the ratio between the rms and dc levels will result in

� � 1.11
0.707Vm
�
0.637Vm

Vrms
�
Vdc

2Vm
�
p

4Vm
�
2p

2Vm � 2Vm
��

2p
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revealing that the scale indication is 1.11 times the dc level measured
by the movement; that is,

full-wave (13.38)

Some ac meters use a half-wave rectifier arrangement that results in
the waveform of Fig. 13.64, which has half the average value of Fig.
13.63(b) over one full cycle. The result is

half-wave (13.39)

A second movement, called the electrodynamometer movement
(Fig. 13.65), can measure both ac and dc quantities without a change in
internal circuitry. The movement can, in fact, read the effective value of
any periodic or nonperiodic waveform because a reversal in current
direction reverses the fields of both the stationary and the movable
coils, so the deflection of the pointer is always up-scale.

The VOM, introduced in Chapter 2, can be used to measure both dc
and ac voltages using a d’Arsonval movement and the proper switching
networks. That is, when the meter is used for dc measurements, the dial
setting will establish the proper series resistance for the chosen scale
and will permit the appropriate dc level to pass directly to the move-
ment. For ac measurements, the dial setting will introduce a network
that employs a full- or half-wave rectifier to establish a dc level. As dis-
cussed above, each setting is properly calibrated to indicate the desired
quantity on the face of the instrument.

EXAMPLE 13.24 Determine the reading of each meter for each situ-
ation of Fig. 13.66(a) and (b).

Meter indication � 2.22 (dc or average value)

Meter indication � 1.11 (dc or average value)

Vm

vmovement

Vdc  =  0.318Vm

� 2�

FIG. 13.64

Half-wave rectified signal.

FIG. 13.65

Electrodynamometer movement. (Courtesy of
Weston Instruments, Inc.)

(1)

20 V

+

–

dc

(2)

Vm  =  20 V

+

–

ac

(a)

d’Arsonval
movement

rms scale

(full-wave
rectifier)

Voltmeter

(1)

+

–

dc

(2)

+

–

(b)

Electrodynamometer
movement

rms scale

Voltmeter

25 V e  =  15 sin 200t

FIG. 13.66

Example 13.24.
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Solution: For Fig. 13.66(a), situation (1): By Eq. (13.38),

Meter indication � 1.11(20 V) � 22.2 V

For Fig. 13.66(a), situation (2):

Vrms � 0.707Vm � 0.707(20 V) � 14.14 V

For Fig. 13.66(b), situation (1):

Vrms � Vdc � 25 V

For Fig. 13.66(b), situation (2):

Vrms � 0.707Vm � 0.707(15 V) � 10.6 V

Most DMMs employ a full-wave rectification system to convert the
input ac signal to one with an average value. In fact, for the DMM of
Fig. 2.27, the same scale factor of Eq. (13.38) is employed; that is, the
average value is scaled up by a factor of 1.11 to obtain the rms value.
In digital meters, however, there are no moving parts such as in the
d’Arsonval or electrodynamometer movements to display the signal
level. Rather, the average value is sensed by a multiprocessor integrated
circuit (IC), which in turn determines which digits should appear on the
digital display.

Digital meters can also be used to measure nonsinusoidal signals,
but the scale factor of each input waveform must first be known (nor-
mally provided by the manufacturer in the operator’s manual). For
instance, the scale factor for an average responding DMM on the ac rms
scale will produce an indication for a square-wave input that is 1.11
times the peak value. For a triangular input, the response is 0.555 times
the peak value. Obviously, for a sine wave input, the response is 0.707
times the peak value.

For any instrument, it is always good practice to read (if only briefly)
the operator’s manual if it appears that you will use the instrument on a
regular basis.

For frequency measurements, the frequency counter of Fig. 13.67
provides a digital readout of sine, square, and triangular waves from 
5 Hz to 100 MHz at input levels from 30 mV to 42 V. Note the relative
simplicity of the panel and the high degree of accuracy available.

The Amp-Clamp® of Fig. 13.68 is an instrument that can measure
alternating current in the ampere range without having to open the cir-
cuit. The loop is opened by squeezing the “trigger”; then it is placed
around the current-carrying conductor. Through transformer action, the
level of current in rms units will appear on the appropriate scale. The
accuracy of this instrument is �3% of full scale at 60 Hz, and its scales
have maximum values ranging from 6 A to 300 A. The addition of two
leads, as indicated in the figure, permits its use as both a voltmeter and
an ohmmeter.

One of the most versatile and important instruments in the electron-
ics industry is the oscilloscope, which has already been introduced in
this chapter. It provides a display of the waveform on a cathode-ray
tube to permit the detection of irregularities and the determination of
quantities such as magnitude, frequency, period, dc component, and so
on. The analog oscilloscope of Fig. 13.69 can display two waveforms at
the same time (dual-channel) using an innovative interface (front
panel). It employs menu buttons to set the vertical and horizontal scales
by choosing from selections appearing on the screen. One can also store
up to four measurement setups for future use.

FIG. 13.67

Frequency counter. (Courtesy of Tektronix,
Inc.)

FIG. 13.68

Amp-Clamp®. (Courtesy of Simpson
Instruments, Inc.)

FIG. 13.69

Dual-channel oscilloscope. (Courtesy of
Tektronix, Inc.)
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A student accustomed to watching TV might be confused when
first introduced to an oscilloscope. There is, at least initially, an
assumption that the oscilloscope is generating the waveform on the
screen—much like a TV broadcast. However, it is important to
clearly understand that

an oscilloscope displays only those signals generated elsewhere and
connected to the input terminals of the oscilloscope. The absence of
an external signal will simply result in a horizontal line on the screen
of the scope.

On most modern-day oscilloscopes, there is a switch or knob with
the choice DC/GND/AC, as shown in Fig. 13.70(a), that is often
ignored or treated too lightly in the early stages of scope utilization.
The effect of each position is fundamentally as shown in Fig. 13.70(b).
In the DC mode the dc and ac components of the input signal can pass
directly to the display. In the AC position the dc input is blocked by the
capacitor, but the ac portion of the signal can pass through to the
screen. In the GND position the input signal is prevented from reaching
the scope display by a direct ground connection, which reduces the
scope display to a single horizontal line.

Input signal
AC

GND

DC

(b)

Oscilloscope
display

AC

GND

DC

(a)

FIG. 13.70

AC-GND-DC switch for the vertical channel of an oscilloscope.

13.9 APPLICATIONS

(120 V at 60 Hz) versus (220 V at 50 Hz)

In North and South America the most common available ac supply is
120 V at 60 Hz, while in Europe and the Eastern countries it is 220 V
at 50 Hz. The choices of rms value and frequency were obviously made
carefully because they have such an important impact on the design and
operation of so many systems.

The fact that the frequency difference is only 10 Hz reveals that
there was agreement on the general frequency range that should be used
for power generation and distribution. History suggests that the ques-
tion of frequency selection was originally focused on that frequency
that would not exhibit flicker in the incandescent lamps available in
those days. Technically, however, there really wouldn’t be a noticeable
difference between 50 and 60 cycles per second based on this criterion.
Another important factor in the early design stages was the effect of fre-
quency on the size of transformers, which play a major role in power
generation and distribution. Working through the fundamental equa-
tions for transformer design, you will find that the size of a transformer
is inversely proportional to frequency. The result is that transformers
operating at 50 Hz must be larger (on a purely mathematical basis about
17% larger) than those operating at 60 Hz. You will therefore find that
transformers designed for the international market where they can oper-
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ate on 50 Hz or 60 Hz are designed around the 50-Hz frequency. On the
other side of the coin, however, higher frequencies result in increased
concerns about arcing, increased losses in the transformer core due to
eddy current and hysteresis losses (Chapter 19), and skin effect phe-
nomena (Chapter 19). Somewhere in the discussion we must consider
the fact that 60 Hz is an exact multiple of 60 seconds in a minute and
60 minutes in an hour. Since accurate timing is such a critical part of
our technological design, was this a significant motive in the final
choice? There is also the question about whether the 50 Hz is a result
of the close affinity of this value to the metric system. Keep in mind
that powers of 10 are all powerful in the metric system, with 100 cm in
a meter, 100°C the boiling point of water, and so on. Note that 50 Hz is
exactly half of this special number. All in all, it would seem that both
sides have an argument that would be worth defending. However, in the
final analysis, we must also wonder whether the difference is simply
political in nature.

The difference in voltage between North America and Europe is a
different matter entirely in the sense that the difference is close to
100%. Again, however, there are valid arguments for both sides. There
is no question that larger voltages such as 220 V raise safety issues
beyond those raised by voltages of 120 V. However, when higher volt-
ages are supplied, there is less current in the wire for the same power
demand, permitting the use of smaller conductors—a real money saver.
In addition, motors, compressors, and so on, found in common home
appliances and throughout the industrial community can be smaller in
size. Higher voltages, however, also bring back the concern about arc-
ing effects, insulation requirements, and, due to real safety concerns,
higher installation costs. In general, however, international travelers are
prepared for most situations if they have a transformer that can convert
from their home level to that of the country they plan to visit. Most
equipment (not clocks, of course) can run quite well on 50 Hz or 60 Hz
for most travel periods. For any unit not operating at its design fre-
quency, it will simply have to “work a little harder” to perform the
given task. The major problem for the traveler is not the transformer
itself but the wide variety of plugs used from one country to another.
Each country has its own design for the “female” plug in the wall. For
the three-week tour, this could mean as many as 6 to 10 different plugs
of the type shown in Fig. 13.71. For a 120-V, 60-Hz supply, the plug is
quite standard in appearance with its two spade leads (and possible
ground connection).

In any event, both the 120 V at 60 Hz and the 220 V at 50 Hz are
obviously meeting the needs of the consumer. It is a debate that could
go on at length without an ultimate victor.

Safety Concerns (High Voltages and dc versus ac)

Be aware that any “live” network should be treated with a calculated
level of respect. Electricity in its various forms is not to be feared but
should be employed with some awareness of its potentially dangerous
side effects. It is common knowledge that electricity and water do not
mix (never use extension cords or plug in TVs or radios in the bath-
room) because a full 120 V in a layer of water of any height (from a
shallow puddle to a full bath) can be lethal. However, other effects of
dc and ac voltages are less known. In general, as the voltage and cur-
rent increase, your concern about safety should increase exponentially.

FIG. 13.71

Variety of plugs for a 220-V, 50-Hz
connection.
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For instance, under dry conditions, most human beings can survive a
120-V ac shock such as obtained when changing a light bulb, turning
on a switch, and so on. Most electricians have experienced such a jolt
many times in their careers. However, ask an electrician to relate how it
feels to hit 220 V, and the response (if he or she has been unfortunate to
have had such an experience) will be totally different. How often have
you heard of a back-hoe operator hitting a 220-V line and having a fatal
heart attack? Remember, the operator is sitting in a metal container on
a damp ground which provides an excellent path for the resulting cur-
rent to flow from the line to ground. If only for a short period of time,
with the best environment (rubber-sole shoes, etc.), in a situation where
you can quickly escape the situation, most human beings can also sur-
vive a 220-V shock. However, as mentioned above, it is one you will
not quickly forget. For voltages beyond 220 V rms, the chances of sur-
vival go down exponentially with increase in voltage. It takes only
about 10 mA of steady current through the heart to put it in defibrilla-
tion. In general, therefore, always be sure that the power is discon-
nected when working on the repair of electrical equipment. Don’t
assume that throwing a wall switch will disconnect the power. Throw
the main circuit breaker and test the lines with a voltmeter before work-
ing on the system. Since voltage is a two-point phenomenon, don’t be a
hero and work with one line at at time—accidents happen!

You should also be aware that the reaction to dc voltages is quite dif-
ferent from that to ac voltages. You have probably seen in movies or
comic strips that people are often unable to let go of a hot wire. This is
evidence of the most important difference between the two types of
voltages. As mentioned above, if you happen to touch a “hot” 120-V ac
line, you will probably get a good sting, but you can let go. If it hap-
pens to be a “hot” 120-V dc line, you will probably not be able to let
go, and a fatality could occur. Time plays an important role when this
happens, because the longer you are subjected to the dc voltage, the
more the resistance in the body decreases until a fatal current can be
established. The reason that we can let go of an ac line is best demon-
strated by carefully examining the 120-V rms, 60-Hz voltage in Fig.
13.72. Since the voltage is oscillating, there is a period of time when the
voltage is near zero or less than, say, 20 V, and is reversing in direction.
Although this time interval is very short, it appears every 8.3 ms and
provides a window to let go.

Now that we are aware of the additional dangers of dc voltages, it is
important to mention that under the wrong conditions, dc voltages as
low as 12 V such as from a car battery can be quite dangerous. If you
happen to be working on a car under wet conditions, or if you are
sweating badly for some reason or, worse yet, wearing a wedding ring
that may have moisture and body salt underneath, touching the positive
terminal may initiate the process whereby the body resistance begins to
drop and serious injury could take place. It is one of the reasons you
seldom see a professional electrician wearing any rings or jewelry—it
is just not worth the risk.

Before leaving this topic of safety concerns, you should also be
aware of the dangers of high-frequency supplies. We are all aware of
what 2.45 GHz at 120 V can do to a meat product in a microwave oven.
As discussed in Chapter 5, it is therefore very important that the seal
around the oven be as tight as possible. However, don’t ever assume
that anything is absolutely perfect in design—so don’t make it a habit
to view the cooking process in the microwave 6 in. from the door on a
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Interval of time when sinusoidal voltage is
near zero volts.
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continuing basis. Find something else to do, and check the food only
when the cooking process is complete. If you ever visit the Empire
State Building, you will notice that you are unable to get close to the
antenna on the dome due to the high-frequency signals being emitted
with a great deal of power. Also note the large KEEP OUT signs near
radio transmission towers for local radio stations. Standing within 10 ft
of an AM transmitter working at 540 kHz would bring on disaster. Sim-
ply holding (not to be tried!) a fluorescent bulb near the tower could
make it light up due to the excitation of the molecules inside the bulb.

In total, therefore, treat any situation with high ac voltages or cur-
rents, high-energy dc levels, and high frequencies with added care.

Bulb Savers

Ever since the invention of the light bulb, consumers have clamored for
ways to extend the life of a bulb. I can remember the days when I was
taught to always turn a light off when leaving a room and not to play
with a light switch because it cost us a penny (at a time when a penny
had some real value) every time I turned the switch on and off. Through
advanced design we now have bulbs that are guaranteed to last a num-
ber of years. They cost more, but there is no need to replace the bulb as
often, and over time there is a financial savings. For some of us it is
simply a matter of having to pay so much for a single bulb.

For interest sake, I measured the cold dc resistance of a standard
60-W bulb and found it to be about 14 �. Forgetting any inductive
effects due to the filament and wire, this would mean a current of
120 V/14 � � 8.6 A when the light is first turned on. This is a fairly
heavy current for the filament to absorb when you consider that the nor-
mal operating current is 60 W/120 V � 0.5 A. Fortunately, it lasts for
only a few milliseconds, as shown in Fig. 13.73(a), before the bulb
heats up, causing the filament resistance to quickly increase and cut the
current down to reasonable levels. However, over time, hitting the bulb
with 8.6 A every time you turn the switch on will take its toll on the fil-
ament, and eventually the filament will simply surrender its natural
characteristics and open up. You can easily tell if a bulb is bad by sim-
ply shaking it and listening for the clinking sound of the broken fila-
ment hitting the bulb. Assuming an initial current of 8.6 A for a single
bulb, if the light switch controlled four 60-W bulbs in the same room,
the surge current through the switch could be as high as 4(8.6 A) �
34.4 A as shown in Fig. 13.73(b), which probably exceeds the rating of
the breaker (typically 20 A) for the circuit. However, the saving grace is
that it lasts for only a few milliseconds, and circuit breakers are not
designed to react that quickly. Even the GFI safety breakers in the bath-
room are typically rated at a 5-ms response time. However, when you
look at the big picture and imagine all these spikes on the line gener-
ated throughout a residential community, it is certainly a problem that
the power company has to deal with on a continuing basis.

One way to suppress this surge current is to place an inductor in
series with the bulb to choke out the spikes down the line. This method,
in fact, leads to one way of extending the life of a light bulb through the
use of dimmers. Any well-designed dimmer (such as the one described
in Chapter 12) has an inductor in the line to suppress current surges.
The results are both an extended life for the bulb and the ability to con-
trol the power level. Left on in the full voltage position, the switch
could be used as a regular switch and the life of the bulb could be
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FIG 13.73

Surge currents: (a) single 60-W bulb; (b) four
parallel 60-W bulbs.
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extended. In fact, many dimmers now use triacs designed to turn on
only when the applied voltage passes through zero. If we look at the full
sine wave of Fig. 13.74(a), we find that the voltage is at least half of its
maximum value of 85 V for a full two-thirds of each cycle, or about
67% of the time. The chances, therefore, of your turning on a light bulb
with at least 85 V on the line is far better than 2 to 1, so you can expect
the current for a 60-W light bulb to be at least 85 V/14 � � 6 A 67%
of the time, which exceeds the rated 0.5-A rated value by 1100%. If we
use a dimmer with a triac designed to turn on only when the applied
voltage passes through zero or shortly thereafter, as shown in Fig.
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Turn-on voltage: (a) equal to or greater than one-half the peak value; (b) when
a dimmer is used.
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13.74(b), the applied voltage will increase from about zero volts, giving
the bulb time to warm up before the full voltage is applied.

Another commercial offering to extend the life of light bulbs is the
smaller circular disc shown in Fig. 13.75(a) which is inserted between
the bulb and the holder. Contacts are provided on both sides to permit
conduction through the simple diode network shown in Fig. 13.75(b).
You may recall from an earlier chapter that the voltage across diodes in
the on state is 0.7 V as shown for each diode in Fig. 13.75(b) for the
positive portion of the input voltage. The result is that the voltage to the
bulb is reduced by about 1.4 V throughout the cycle, reducing the
power delivered to the bulb. For most situations the reduced lighting is
not a problem, and the bulb will last longer simply because it is not
pressed to work at full output. However, the real saving in the device is
the manner in which it could help suppress the surge currents through
the light bulb. The true characteristics of a diode are shown in Fig.
13.75(c) for the full range of currents through the diode. For most
applications in electronic circuits, the vertical region is employed. For
excessive currents the diode characteristics flatten out as shown. This
region is characterized as having a large resistance (compared to very
small resistance of the vertical region) which will come into play
when the bulb is first turned on. In other words, when the bulb is first
turned on, the current will be so high that the diode will enter its high-
resistance region and by Ohm’s law will limit the surge current—
thereby extending the life of the bulb. The two diodes facing the other
way are for the negative portion of the supply voltage.

New methods of extending the life of bulbs hit the marketplace every
day. All in all, however, one guaranteed way to extend the life of your
bulbs is to return to the old philosophy of turning lights off when you
leave a room, and “Don’t play with the light switch!”

13.10 COMPUTER ANALYSIS

PSpice

OrCAD Capture offers a variety of ac voltage and current sources.
However, for the purposes of this text, the voltage source VSIN and
the current source ISIN are the most appropriate because they have a
list of attributes that will cover current areas of interest. Under the
library SOURCE, a number of others are listed, but they don’t have
the full range of the above, or they are dedicated to only one type of
analysis. On occasion, ISRC will be used because it has an arrow
symbol like that appearing in the text, and it can be used for dc, ac,
and some transient analyses. The symbol for ISIN is simply a sine
wave which utilizes the plus-and-minus sign to indicate direction. The
sources VAC, IAC, VSRC, and ISRC are fine if the magnitude and
the phase of a specific quantity are desired or if a transient plot against
frequency is desired. However, they will not provide a transient
response against time even if the frequency and the transient informa-
tion are provided for the simulation.

For all of the sinusoidal sources, the magnitude (VAMPL) is the
peak value of the waveform and not the rms value. This will become
clear when a plot of a quantity is desired and the magnitude calculated
by PSpice is the peak value of the transient response. However, for a
purely steady-state ac response, the magnitude provided can be the rms



560  SINUSOIDAL ALTERNATING WAVEFORMS

value, and the output read as the rms value. Only when a plot is desired
will it be clear that PSpice is accepting every ac magnitude as the peak
value of the waveform. Of course, the phase angle is the same whether
the magnitude is the peak or the rms value.

Before examining the mechanics of getting the various sources,
remember that

Transient Analysis provides an ac or a dc output versus time, while
AC Sweep is used to obtain a plot versus frequency.

To obtain any of the sources listed above, apply the following sequence: 
Place part key-Place Part dialog box-Source-(enter type of source).
Once selected the ac source VSIN will appear on the schematic with
VOFF, VAMPL, and FREQ. Always specify VOFF as 0 V (unless a
specific value is part of the analysis), and provide a value for the ampli-
tude and frequency. The remaining quantities of PHASE, AC, DC, DF,
and TD can be entered by double-clicking on the source symbol to
obtain the Property Editor, although PHASE, DF (damping factor),
and TD (time delay) do have a default of 0 s. To add a phase angle, sim-
ply click on PHASE, enter the phase angle in the box below, and then
select Apply. If you want to display a factor such as a phase angle of
60°, simply click on PHASE followed by Display to obtain the Dis-
play Properties dialog box. Then choose Name and Value followed by
OK and Apply, and leave the Properties Editor dialog box (X) to see
PHASE�60 next to the VSIN source. The next chapter will include the
use of the ac source in a simple circuit.

Electronics Workbench

For EWB, the ac voltage source is available from two sources—the
Sources parts bin and the Function Generator. The major difference
between the two is that the phase angle can be set when using the Sources
parts bin, whereas it cannot be set using the Function Generator.

Under Sources, the ac voltage source is the fourth option down on
the left column of the toolbar. When selected and placed, it will display
the default values for the amplitude, frequency, and phase. All the param-
eters of the source can be changed by double-clicking on the source
symbol to obtain the AC Voltage dialog box. The Voltage Amplitude
and Voltage RMS are interlinked so that when you change one, the
other will change accordingly. For the 1V default value, the rms value
is automatically listed as 0.71 (not 0.7071 because of the hundredths-
place accuracy). Note that the unit of measurement is controlled by the
scrolls to the right of the default label and cannot be set by typing in the
desired unit of measurement. The label can be changed by simply
switching the Label heading and inserting the desired label. After all
the changes have been made in the AC Voltage dialog box, click OK,
and all the changes will appear next to the ac voltage source symbol. In
Fig. 13.76 the label was changed to Vs and the amplitude to 10 V while
the frequency and phase angle were left with their default values. It is
particularly important to realize that 

for any frequency analysis (that is, where the frequency will change),
the AC Magnitude of the ac source must be set under Analysis Setup
in the AC Voltage dialog box. Failure to do so will create results
linked to the default values rather than the value set under the Value
heading.
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To view the sinusoidal voltage set in Fig. 13.76, an oscilloscope can
be selected from the Instrument toolbar at the right of the screen. It is
the fourth option down and has the appearance shown in Fig. 13.76
when selected. Note that it is a dual-channel oscilloscope with an A
channel and a B channel. It has a ground (G) connection and a trigger
(T) connection. The connections for viewing the ac voltage source on
the A channel are provided in Fig. 13.76. Note that the trigger control
is also connected to the A channel for sync control. The screen appear-
ing in Fig. 13.76 can be displayed by double-clicking on the oscillo-
scope symbol on the screen. It has all the major controls of a typical
laboratory oscilloscope. When you select Simulate-Run or select 1 on
the Simulate Switch, the ac voltage will appear on the screen. Chang-
ing the Time base to 100 ms/div. will result in the display of Fig. 13.76
since there are 10 divisions across the screen and 10(100ms) � 1 ms
(the period of the applied signal). Changes in the Time base are made
by simply clicking on the default value to obtain the scrolls in the same
box. It is important to remember, however, that

changes in the oscilloscope setting or any network should not be
made until the simulation is ended by disabling the Simulate-Run
option or placing the Simulate switch in the 0 mode.

The options within the time base are set by the scroll bars and can-
not be changed—again they match those typically available on a labo-
ratory oscilloscope. The vertical sensitivity of the A channel was auto-
matically set by the program at 5 V/div. to result in two vertical boxes
for the peak value as shown in Fig. 13.76. Note the AC and DC key
pads below Channel A. Since there is no dc component in the applied
signal, either one will result in the same display. The Trigger control is

FIG. 13.76

Using the oscilloscope to display the sinusoidal ac voltage source available in
the Electronics Workbench Sources tool bin.
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set on the positive transition at a level of 0 V. The T1 and T2 refer to
the cursor positions on the horizontal time axis. By simply clicking on
the small red triangle at the top of the red line at the far left edge of the
screen and dragging the triangle, you can move the vertical red line to
any position along the axis. In Fig.13.76 it was moved to the peak value
of the waveform at 1⁄4 of the total period or 0.25 ms � 250 ms. Note the
value of T1 (250.3 ms) and the corresponding value of VA1 (10.0V). By
moving the other cursor with a blue triangle at the top to 1⁄2 the total
period or 0.5 ms � 500 ms, we find that the value at T2 (500.3 ms) is
�18.9 mV (VA2), which is approximately 0 V for a waveform with a
peak value of 10 V. The accuracy is controlled by the number of data
points called for in the simulation setup. The more data points, the
higher the likelihood of a higher degree of accuracy for the desired
quantity. However, an increased number of data points will also extend
the running time of the simulation. The third display box to the right
gives the difference between T2 and T1 as 250 ms and difference
between their magnitudes (VA2-VA1) as �10 V, with the negative sign
appearing because VA1 is greater than VA2.

As mentioned above, an ac voltage can also be obtained from the
Function Generator appearing as the second option down on the
Instrument toolbar. Its symbol appears in Fig. 13.77 with positive, neg-
ative, and ground connections. Double-click on the generator graphic
symbol, and the Function Generator-XFG1 dialog box will appear in
which selections can be made. For this example, the sinusoidal wave-
form is chosen. The Frequency is set at 1 kHz, the Amplitude is set at
10 V, and the Offset is left at 0 V. Note that there is no option to set the
phase angle as was possible for the source above. Double-clicking on the

FIG. 13.77

Using the function generator to place a sinusoidal ac voltage waveform on the
screen of the oscilloscope.



COMPUTER ANALYSIS  563

oscilloscope will generate the oscilloscope on which a Timebase of
100 ms/div. can be set again with a vertical sensitivity of 5 V/div. Select
1 on the Simulate switch, and the waveform of Fig. 13.77 will appear.
Choosing Singular under Trigger will result in a fixed display; then set
the Simulate switch on 0 to the end the simulation. Placing the cursors
in the same position shows that the waveforms for Figs. 13.76 and 13.77
are the same.

For most of the EWB analyses to appear in this text, the
AC–VOLTAGE–SOURCE under Sources will be employed. How-
ever, with such a limited introduction to EWB, it seemed appropriate
to introduce the use of the Function Generator because of its close
linkage to the laboratory experience.

C��

Calculating the Average Value of a Waveform The absence of
any network configurations to analyze in this chapter severely limits the
content with respect to packaged computer programs. However, the
door is still wide open for the application of a language to write pro-
grams that can be helpful in the application of some of the concepts
introduced in the chapter. In particular, let us examine the C�� pro-
gram of Fig. 13.78, designed to calculate the average value of a pulse
waveform having up to 5 different levels.

The program begins with a heading and preprocessor directive.
Recall that the iostream.h header file sets up the input-output path

Heading

Preprocessor

directive

Define

form

and

name

of

variables

Obtain

# of

levels

Iterative

for

statement

Calculate Vave

Display

results

Body

of

program

FIG. 13.78

C�� program designed to calculate the average value of a waveform with up
to five positive or negative pulses.
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between the program and the disk operating system. Note that the main
( ) part of the program extends all the way down to the bottom, as iden-
tified by the braces { }. Within this region all the calculations will be
performed, and the results will be displayed.

Within the main ( ) part of the program, all the variables to be
employed in the calculations are defined as floating point (decimal val-
ues) or integer (whole numbers). The comments on the right identify
each variable. This is followed by a display of the question about how
many levels will be encountered in the waveform using cout (comment
out). The cin (comment in) statement permits a response from the user. 

Next, the loop statement for is employed to establish a fixed number
of repetitions of the sequence appearing within the parentheses ( ) for
a number of loops defined by the variable levels. The format of this for
statement is such that the first entry within the parentheses ( ) is the
initial value of the variable count (1 in this case), followed by a semi-
colon and then a test expression determining how many times the
sequence to follow will be repeated. In other words, if levels is 5, then
the first pass through the for statement will result in 1 being compared
to 5, and the test expression will be satisfied because 5 is greater than
or equal to 1 (< �). On the next pass, count will be increased to 2, and
the same test will be performed. Eventually count will equal 5, the test
expression will not be satisfied, and the program will move to its next
statement, which is Vave � VT sum/ T. The last entry count�� of the
for statement simply increments the variable count after each iteration.
The first line within the for statement calls for a line to be skipped, fol-
lowed by a question on the display about the level of voltage for the
first time interval. The question will include the current state of the
count variable followed by a colon. In C�� all character outputs must
be displayed in quotes (not required for numerical values). However,
note the absence of the quotes for count since it will be a numerical
value. Next the user enters the first voltage level through cin, followed
by a request for the time interval. In this case units are not provided but
simply measured as an increment of the whole; that is, if the total
period is 5 ms and the first interval is 2 ms, then just a 2 is entered.

The area under the pulse is then calculated to establish the variable
VTsum, which was initially set at 0. On the next pass the value of
VTsum will be the value obtained by the first run plus the new area. In
other words, VTsum is a storage for the total accumulated area. Simi-
larly, T is the accumulated sum of the time intervals.

Following a FALSE response from the test expression of the for
statement, the program will move to calculate the average value of the
waveform using the accumulated values of the area and time. A line is
then skipped; and the average value is displayed with the remaining
cout statements. Brackets have been added along the edge of the pro-
gram to help identify the various components of the program.

A program is now available that can find the average value of any
pulse waveform having up to five positive or negative pulses. It can be
placed in storage and simply called for when needed. Operations such as
the above are not available in either form of PSpice or in any commer-
cially available software package. It took the knowledge of a language
and a few minutes of time to generate a short program of lifetime value.

Two runs will clearly reveal what will be displayed and how the out-
put will appear. The waveform of Fig. 13.79 has five levels, entered as
shown in the output file of Fig. 13.80. As indicated the average value is
1.6 V. The waveform of Fig. 13.81 has only three pulses, and the time
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FIG. 13.79

Waveform with five pulses to be analyzed by
the C�� program of Fig. 13.78.
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interval for each is different. Note the manner in which the time inter-
vals were entered. Each is entered as a multiplier of the standard unit of
measure for the horizontal axis. The variable levels will be only 3,
requiring only three iterations of the for statement. The result is a neg-
ative value of �0.933 V, as shown in the output file of Fig. 13.82.
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FIG. 13.81

Waveform with three pulses to be analyzed by
the C�� program of Fig. 13.78.

FIG. 13.80

Output results for the waveform of Fig. 13.79.

FIG. 13.82

Output results for the waveform of Fig. 13.81.

PROBLEMS

SECTION 13.2 Sinusoidal ac Voltage Characteristics

and Definitions

1. For the periodic waveform of Fig. 13.83:
a. Find the period T.
b. How many cycles are shown?
c. What is the frequency?

*d. Determine the positive amplitude and peak-to-peak
value (think!).
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FIG. 13.83

Problem 1.



566  SINUSOIDAL ALTERNATING WAVEFORMS

2. Repeat Problem 1 for the periodic waveform of Fig.
13.84.
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t (ms)
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FIG. 13.84

Problems 2, 9, and 47.

3. Determine the period and frequency of the sawtooth
waveform of Fig. 13.85.

36261660

20

v (V)

t (ms)

FIG. 13.85

Problems 3 and 48.

4. Find the period of a periodic waveform whose frequency is
a. 25 Hz. b. 35 MHz.
c. 55 kHz. d. 1 Hz.

5. Find the frequency of a repeating waveform whose
period is
a. 1/60 s. b. 0.01 s.
c. 34 ms. d. 25 ms.

6. Find the period of a sinusoidal waveform that completes
80 cycles in 24 ms.

7. If a periodic waveform has a frequency of 20 Hz, how
long (in seconds) will it take to complete five cycles?

8. What is the frequency of a periodic waveform that com-
pletes 42 cycles in 6 s?

9. Sketch a periodic square wave like that appearing in Fig.
13.84 with a frequency of 20,000 Hz and a peak value of
10 mV.

10. For the oscilloscope pattern of Fig. 13.86:
a. Determine the peak amplitude.
b. Find the period.
c. Calculate the frequency.
Redraw the oscilloscope pattern if a �25-mV dc level
were added to the input waveform.

Vertical sensitivity = 50 mV/div.
Horizontal sensitivity = 10    s/div.�

FIG. 13.86

Problem 10.
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SECTION 13.3 The Sine Wave

11. Convert the following degrees to radians:
a. 45° b. 60°
c. 120° d. 270°
e. 178° f. 221°

12. Convert the following radians to degrees:
a. p/4 b. p/6
c. �

1
1
0
�p d. �

7
6

�p

e. 3p f. 0.55p

13. Find the angular velocity of a waveform with a period of
a. 2 s. b. 0.3 ms.
c. 4 ms. d. �

2
1
6
� s.

14. Find the angular velocity of a waveform with a frequency
of
a. 50 Hz. b. 600 Hz.
c. 2 kHz. d. 0.004 MHz.

15. Find the frequency and period of sine waves having an
angular velocity of
a. 754 rad/s. b. 8.4 rad/s.
c. 6000 rad/s. d. �

1
1
6
� rad/s.

16. Given f � 60 Hz, determine how long it will take the
sinusoidal waveform to pass through an angle of 45°.

17. If a sinusoidal waveform passes through an angle of 30°
in 5 ms, determine the angular velocity of the waveform.

SECTION 13.4 General Format for the Sinusoidal

Voltage or Current

18. Find the amplitude and frequency of the following
waves:
a. 20 sin 377t b. 5 sin 754t
c. 106 sin 10,000t d. 0.001 sin 942t
e. �7.6 sin 43.6t f. (�

4
1
2
�) sin 6.283t

19. Sketch 5 sin 754t with the abscissa
a. angle in degrees.
b. angle in radians.
c. time in seconds.

20. Sketch 106 sin 10,000t with the abscissa
a. angle in degrees.
b. angle in radians.
c. time in seconds.

21. Sketch �7.6 sin 43.6t with the abscissa
a. angle in degrees.
b. angle in radians.
c. time in seconds.

22. If e � 300 sin 157t, how long (in seconds) does it take
this waveform to complete 1/2 cycle?

23. Given i � 0.5 sin a, determine i at a � 72°.

24. Given v � 20 sin a, determine v at a � 1.2p.

*25. Given v � 30 � 10�3 sin a, determine the angles at
which v will be 6 mV.

*26. If v � 40 V at a � 30° and t � 1 ms, determine the
mathematical expression for the sinusoidal voltage.



568  SINUSOIDAL ALTERNATING WAVEFORMS

SECTION 13.5 Phase Relations

27. Sketch sin(377t � 60°) with the abscissa
a. angle in degrees.
b. angle in radians.
c. time in seconds.

28. Sketch the following waveforms:
a. 50 sin(qt � 0°) b. �20 sin(qt � 2°)
c. 5 sin(qt � 60°) d. 4 cos qt
e. 2 cos(qt � 10°) f. �5 cos(qt � 20°)

29. Find the phase relationship between the waveforms of
each set:
a. v � 4 sin(qt � 50°)

i � 6 sin(qt � 40°)
b. v � 25 sin(qt � 80°)

i � 5 � 10�3 sin(qt � 10°)
c. v � 0.2 sin(qt � 60°)

i � 0.1 sin(qt � 20°)
d. v � 200 sin(qt � 210°)

i � 25 sin(qt � 60°)

*30. Repeat Problem 29 for the following sets:
a. v � 2 cos(qt � 30°) b. v � �1 sin(qt � 20°)

i � 5 sin(qt � 60°) i � 10 sin(qt � 70°)
c. v � �4 cos(qt � 90°)

i � �2 sin(qt � 10°)

31. Write the analytical expression for the waveforms of Fig.
13.87 with the phase angle in degrees.

v (V)

qt0
p
6

25 f  =  60 Hz

i (A)

qt0

–3  ×  10–3

f  =  1000 Hz

2
3
p

(b)(a)

FIG. 13.87

Problem 31.

32. Repeat Problem 31 for the waveforms of Fig. 13.88.

p

v (V)

qt0

0.01 f  =  25 Hz

i (A)

�t0

2  ×  10–3

f  =  10 kHz

3
4

11
18

p

(a) (b)

FIG. 13.88

Problem 32.
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*33. The sinusoidal voltage v � 200 sin(2p1000t � 60°) is
plotted in Fig. 13.89. Determine the time t1.

*34. The sinusoidal current i � 4 sin(50,000t � 40°) is plot-
ted in Fig. 13.90. Determine the time t1.

200

t1–p 0 p 2p t

60°

t1

v

FIG. 13.89

Problem 33.

4A

t1–p 0 p 2p t (ms)
40°

i

FIG. 13.90

Problem 34.

*35. Determine the phase delay in milliseconds between the
following two waveforms:

v � 60 sin(1800t � 20°)
i � 1.2 sin(1800t � 20°)

36. For the oscilloscope display of Fig. 13.91:
a. Determine the period of each waveform.
b. Determine the frequency of each waveform.
c. Find the rms value of each waveform.
d. Determine the phase shift between the two waveforms

and which leads or lags.
Vertical sensitivity  =  0.5 V/div.
Horizontal sensitivity  =  1 ms/div.

e i

FIG. 13.91

Problem 36.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  0.2 ms/div.

FIG. 13.92

Problem 37.

SECTION 13.6 Average Value

37. For the waveform of Fig. 13.92:
a. Determine the period.
b. Find the frequency.
c. Determine the average value.
d. Sketch the resulting oscilloscope display if the verti-

cal channel is switched from DC to AC.
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38. Find the average value of the periodic waveforms of Fig.
13.93 over one full cycle.

1

1 cycle

0 2 3 t (s)

v (V)

–3

3

6

0 4 6 t  (ms)

i  (mA)

–8

20

8

(a) (b)

FIG. 13.93

Problem 38.

39. Find the average value of the periodic waveforms of Fig.
13.94 over one full cycle.

10

v (V)

5
0

–5

–10

1 2 3 4 5 6 7 8 9 10 t (s)

1 cycle

(a)

10

5

0
–5

–10

qtp

4
p

2
p 3

2
p 2p

–15

(b)

1 cycle

Sine wave

i (mA)

FIG. 13.94

Problem 39.

*40. a. By the method of approximation, using familiar geo-
metric shapes, find the area under the curve of Fig.
13.95 from zero to 10 s. Compare your solution with
the actual area of 5 volt-seconds (V• s).

b. Find the average value of the waveform from zero to
10 s.

0

0.632

1 2 3 4 5 6 7 8 9 10 t (s)

0.007
0.019

0.049

0.135

0.368

0.993

v  =  e–t
0.981

0.951

0.865

v   =  1  –  e–t

v (V)

1

FIG. 13.95

Problem 40.
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*41. For the waveform of Fig. 13.96:
a. Determine the period.
b. Find the frequency.
c. Determine the average value.
d. Sketch the resulting oscilloscope display if the verti-

cal channel is switched from DC to AC.

0

1 cycle

1 2 3 4 5 6 7 8 9 10 11 12 t (s)

v (V)

3

2

1

–1

–2

FIG. 13.97

Problem 44.

0

1 cycle

1 2 3 4 5 6 7 8 9 10 11 12 t (s)

v (V)

3

2

1

–1

–2

–3

FIG. 13.98

Problem 45.

0 4 8

–10

10

v (V)

1 cycle

t (ms)

FIG. 13.99

Problem 46.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  10   s/div.                                         �

FIG. 13.96

Problem 41.SECTION 13.7 Effective (rms) Values

42. Find the rms values of the following sinusoidal wave-
forms:
a. v � 20 sin 754t
b. v � 7.07 sin 377t
c. i � 0.006 sin(400t � 20°)
d. i � 16 � 10�3 sin(377t � 10°)

43. Write the sinusoidal expressions for voltages and cur-
rents having the following rms values at a frequency of
60 Hz with zero phase shift:
a. 1.414 V b. 70.7 V
c. 0.06 A d. 24 mA

44. Find the rms value of the periodic waveform of Fig.
13.97 over one full cycle.

45. Find the rms value of the periodic waveform of Fig.
13.98 over one full cycle.

46. What are the average and rms values of the square wave
of Fig. 13.99?

47. What are the average and rms values of the waveform of
Fig. 13.84?

48. What is the average value of the waveform of Fig. 13.85?
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49. For each waveform of Fig. 13.100, determine the period,
frequency, average value, and rms value.

SECTION 13.8 ac Meters and Instruments

50. Determine the reading of the meter for each situation of
Fig. 13.101.

Vertical sensitivity  =  0.2 V/div.
Horizontal sensitivity  =  50 �s/div.�

Vertical sensitivity  =  20 mV/div.
Horizontal sensitivity  =  10 �s/div.�

(b)(a)

Vertical sensitivity  =  20 mV/div.
Horizontal sensitivity  =  10 �s/div.�

FIG. 13.100

Problem 49.

d’Arsonval movement

2 k�

rms scale
(half-wave
rectifier)

Voltmeter

(a)

+

–

Idc  =  4 mA

v  =  16 sin(377t  +  20°)

+

–

ac

(b)

FIG. 13.101

Problem 50.

SECTION 13.10 Computer Analysis

Programming Language (C��, QBASIC, Pascal, etc.)

51. Given a sinusoidal function, write a program to deter-
mine the rms value, frequency, and period.

52. Given two sinusoidal functions, write a program to deter-
mine the phase shift between the two waveforms, and
indicate which is leading or lagging.

53. Given an alternating pulse waveform, write a program to
determine the average and rms values of the waveform
over one complete cycle.

Angular velocity The velocity with which a radius vector
projecting a sinusoidal function rotates about its center.

Average value The level of a waveform defined by the con-
dition that the area enclosed by the curve above this level is
exactly equal to the area enclosed by the curve below this
level.

GLOSSARY

Alternating waveform A waveform that oscillates above
and below a defined reference level.

Amp-Clamp® A clamp-type instrument that will permit non-
invasive current measurements and that can be used as a con-
ventional voltmeter or ohmmeter.
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Cycle A portion of a waveform contained in one period of time.
Effective value The equivalent dc value of any alternating

voltage or current.
Electrodynamometer meters Instruments that can measure

both ac and dc quantities without a change in internal cir-
cuitry.

Frequency ( f ) The number of cycles of a periodic waveform
that occur in 1 second.

Frequency counter An instrument that will provide a digital
display of the frequency or period of a periodic time-vary-
ing signal.

Instantaneous value The magnitude of a waveform at any
instant of time, denoted by lowercase letters.

Oscilloscope An instrument that will display, through the use
of a cathode-ray tube, the characteristics of a time-varying
signal.

Peak amplitude The maximum value of a waveform as mea-
sured from its average, or mean, value, denoted by upper-
case letters.

Peak-to-peak value The magnitude of the total swing of
a signal from positive to negative peaks. The sum of the
absolute values of the positive and negative peak values.

Peak value The maximum value of a waveform, denoted by
uppercase letters.

Period (T ) The time interval between successive repetitions
of a periodic waveform.

Periodic waveform A waveform that continually repeats
itself after a defined time interval.

Phase relationship An indication of which of two wave-
forms leads or lags the other, and by how many degrees or
radians.

Radian (rad) A unit of measure used to define a particular
segment of a circle. One radian is approximately equal to
57.3°; 2p rad are equal to 360°.

Root-mean-square (rms) value The root-mean-square or
effective value of a waveform.

Sinusoidal ac waveform An alternating waveform of unique
characteristics that oscillates with equal amplitude above
and below a given axis.

VOM A multimeter with the capability to measure resistance
and both ac and dc levels of current and voltage.

Waveform The path traced by a quantity, plotted as a func-
tion of some variable such as position, time, degrees, tem-
perature, and so on.
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14.1 INTRODUCTION

The response of the basic R, L, and C elements to a sinusoidal voltage
and current will be examined in this chapter, with special note of how
frequency will affect the “opposing” characteristic of each element.
Phasor notation will then be introduced to establish a method of analy-
sis that permits a direct correspondence with a number of the methods,
theorems, and concepts introduced in the dc chapters.

14.2 THE DERIVATIVE

In order to understand the response of the basic R, L, and C elements to
a sinusoidal signal, you need to examine the concept of the derivative
in some detail. It will not be necessary that you become proficient in the
mathematical technique, but simply that you understand the impact of a
relationship defined by a derivative.

Recall from Section 10.11 that the derivative dx/dt is defined as the
rate of change of x with respect to time. If x fails to change at a particu-
lar instant, dx � 0, and the derivative is zero. For the sinusoidal wave-
form, dx/dt is zero only at the positive and negative peaks (qt � p/2 and
��p in Fig. 14.1), since x fails to change at these instants of time. The
derivative dx/dt is actually the slope of the graph at any instant of time.

A close examination of the sinusoidal waveform will also indicate
that the greatest change in x will occur at the instants qt � 0, p, and 2p.
The derivative is therefore a maximum at these points. At 0 and 2p, x
increases at its greatest rate, and the derivative is given a positive sign
since x increases with time. At p, dx/dt decreases at the same rate as it
increases at 0 and 2p, but the derivative is given a negative sign since x
decreases with time. Since the rate of change at 0, p, and 2p is the
same, the magnitude of the derivative at these points is the same also.
For various values of qt between these maxima and minima, the deriv-
ative will exist and will have values from the minimum to the maximum
inclusive. A plot of the derivative in Fig. 14.2 shows that

the derivative of a sine wave is a cosine wave.

�

The Basic Elements 
and Phasors
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FIG. 14.1

Defining those points in a sinusoidal waveform that have maximum and
minimum derivatives.

Sine wave

qt0 p

dx
dt  =  0

p 2p

dx
dt  =  max

dx
dt  =  0

3
2 �

x

2 p

Cosine wave

qt0 p
2

dx
dt  =  0

p 2p

dx
dt

dx
dt  =  0

max

max

3
2 

p

max

FIG. 14.2

Derivative of the sine wave of Fig. 14.1.

FIG. 14.3

Effect of frequency on the peak value of the derivative.

The peak value of the cosine wave is directly related to the fre-
quency of the original waveform. The higher the frequency, the steeper
the slope at the horizontal axis and the greater the value of dx/dt, as
shown in Fig. 14.3 for two different frequencies.
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Note in Fig. 14.3 that even though both waveforms (x1 and x2) have
the same peak value, the sinusoidal function with the higher frequency
produces the larger peak value for the derivative. In addition, note that

the derivative of a sine wave has the same period and frequency as
the original sinusoidal waveform.

For the sinusoidal voltage

e(t) � Em sin(qt � v)

the derivative can be found directly by differentiation (calculus) to pro-
duce the following:

e(t) � qEm cos(qt � v)

� 2pfEm cos(qt � v)
(14.1)

The mechanics of the differentiation process will not be discussed or
investigated here; nor will they be required to continue with the text. Note,
however, that the peak value of the derivative, 2pfEm, is a function of the
frequency of e(t), and the derivative of a sine wave is a cosine wave.

14.3 RESPONSE OF BASIC R, L, AND C
ELEMENTS TO A SINUSOIDAL VOLTAGE 
OR CURRENT

Now that we are familiar with the characteristics of the derivative of a
sinusoidal function, we can investigate the response of the basic ele-
ments R, L, and C to a sinusoidal voltage or current.

Resistor

For power-line frequencies and frequencies up to a few hundred kilo-
hertz, resistance is, for all practical purposes, unaffected by the fre-
quency of the applied sinusoidal voltage or current. For this frequency
region, the resistor R of Fig. 14.4 can be treated as a constant, and
Ohm’s law can be applied as follows. For v � Vm sin qt,

i � � � sin qt � Im sin qt

where (14.2)

In addition, for a given i,

v � iR � (Im sin qt)R � ImR sin qt � Vm sin qt

where (14.3)

A plot of v and i in Fig. 14.5 reveals that

for a purely resistive element, the voltage across and the current
through the element are in phase, with their peak values related by
Ohm’s law.

Vm � ImR

Im � �
V

R
m
�

Vm
�
R

Vm sin qt
�

R

v
�
R

d
�
dt
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v

+

–

i

R

FIG. 14.4

Determining the sinusoidal response for a
resistive element.

qt0 p 2p

iR

vR

Vm
Im

FIG. 14.5

The voltage and current of a resistive element
are in phase.
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Inductor

For the series configuration of Fig. 14.6, the voltage velement of the
boxed-in element opposes the source e and thereby reduces the mag-
nitude of the current i. The magnitude of the voltage across the ele-
ment is determined by the opposition of the element to the flow of
charge, or current i. For a resistive element, we have found that the
opposition is its resistance and that velement and i are determined by
velement � iR.

We found in Chapter 12 that the voltage across an inductor is
directly related to the rate of change of current through the coil. Conse-
quently, the higher the frequency, the greater will be the rate of change
of current through the coil, and the greater the magnitude of the volt-
age. In addition, we found in the same chapter that the inductance of a
coil will determine the rate of change of the flux linking a coil for a par-
ticular change in current through the coil. The higher the inductance,
the greater the rate of change of the flux linkages, and the greater the
resulting voltage across the coil.

The inductive voltage, therefore, is directly related to the frequency
(or, more specifically, the angular velocity of the sinusoidal ac current
through the coil) and the inductance of the coil. For increasing values
of f and L in Fig. 14.7, the magnitude of vL will increase as described
above.

Utilizing the similarities between Figs. 14.6 and 14.7, we find that
increasing levels of vL are directly related to increasing levels of oppo-
sition in Fig. 14.6. Since vL will increase with both q (� 2pf ) and L,
the opposition of an inductive element is as defined in Fig. 14.7.

We will now verify some of the preceding conclusions using a more
mathematical approach and then define a few important quantities to be
employed in the sections and chapters to follow.

For the inductor of Fig. 14.8, we recall from Chapter 12 that

vL � L 

and, applying differentiation,

� (Im sin qt) � qIm cos qt

Therefore, vL � L � L(qIm cos qt) � qLIm cos qt

or vL � Vm sin(qt � 90°)

where Vm � qLIm

Note that the peak value of vL is directly related to q (� 2pf ) and L
as predicted in the discussion above.

A plot of vL and iL in Fig. 14.9 reveals that

for an inductor, vL leads iL by 90°, or iL lags vL by 90°.

If a phase angle is included in the sinusoidal expression for iL, such
as

iL � Im sin(qt � v)

then vL � qLIm sin(qt � v � 90°)

diL
�
dt

d
�
dt

diL
�
dt

diL
�
dt

�

Opposition

e
i+–

+ –velement

FIG. 14.6

Defining the opposition of an element to the
flow of charge through the element.

FIG. 14.7

Defining the parameters that determine the
opposition of an inductive element to the flow

of charge.

iL  =  Im sin qt

L vL

+

–

FIG. 14.8

Investigating the sinusoidal response of an
inductive element.
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The opposition established by an inductor in a sinusoidal ac network
can now be found by applying Eq. (4.1):

Effect �

which, for our purposes, can be written

Opposition �

Substituting values, we have

Opposition � � � qL

revealing that the opposition established by an inductor in an ac sinu-
soidal network is directly related to the product of the angular velocity
(q � 2pf ) and the inductance, verifying our earlier conclusions.

The quantity qL, called the reactance (from the word reaction) of an
inductor, is symbolically represented by XL and is measured in ohms;
that is,

(ohms, �) (14.4)

In an Ohm’s law format, its magnitude can be determined from

XL � (ohms, �) (14.5)

Inductive reactance is the opposition to the flow of current, which
results in the continual interchange of energy between the source and
the magnetic field of the inductor. In other words, inductive reactance,
unlike resistance (which dissipates energy in the form of heat), does not
dissipate electrical energy (ignoring the effects of the internal resistance
of the inductor).

Capacitor

Let us now return to the series configuration of Fig. 14.6 and insert the
capacitor as the element of interest. For the capacitor, however, we will
determine i for a particular voltage across the element. When this
approach reaches its conclusion, the relationship between the voltage

Vm
�
Im

XL � qL

qLIm
�

Im

Vm
�
Im

cause
�
effect

cause
��
opposition
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qt0 p 2p

iL

vL
Vm

Im

p
2

3
2 

p

– p
90°

L: vL leads iL by 90°

2

FIG. 14.9

For a pure inductor, the voltage across the coil leads the current through the
coil by 90°.
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and current will be known, and the opposing voltage (velement) can be
determined for any sinusoidal current i.

Our investigation of the inductor revealed that the inductive voltage
across a coil opposes the instantaneous change in current through the
coil. For capacitive networks, the voltage across the capacitor is limited
by the rate at which charge can be deposited on, or released by, the
plates of the capacitor during the charging and discharging phases,
respectively. In other words, an instantaneous change in voltage across
a capacitor is opposed by the fact that there is an element of time
required to deposit charge on (or release charge from) the plates of a
capacitor, and V � Q/C.

Since capacitance is a measure of the rate at which a capacitor will
store charge on its plates,

for a particular change in voltage across the capacitor, the greater the
value of capacitance, the greater will be the resulting capacitive
current.

In addition, the fundamental equation relating the voltage across a
capacitor to the current of a capacitor [i � C(dv/dt)] indicates that

for a particular capacitance, the greater the rate of change of voltage
across the capacitor, the greater the capacitive current.

Certainly, an increase in frequency corresponds to an increase in the
rate of change of voltage across the capacitor and to an increase in the
current of the capacitor.

The current of a capacitor is therefore directly related to the fre-
quency (or, again more specifically, the angular velocity) and the capac-
itance of the capacitor. An increase in either quantity will result in an
increase in the current of the capacitor. For the basic configuration of
Fig. 14.10, however, we are interested in determining the opposition of
the capacitor as related to the resistance of a resistor and qL for the
inductor. Since an increase in current corresponds to a decrease in
opposition, and iC is proportional to q and C, the opposition of a capac-
itor is inversely related to q (� 2pf ) and C.

�

Opposition inversely
related to f and C

e iC+–

+ –vC

C

FIG. 14.10

Defining the parameters that determine the opposition of a capacitive element
to the flow of the charge.

We will now verify, as we did for the inductor, some of the above
conclusions using a more mathematical approach.

For the capacitor of Fig. 14.11, we recall from Chapter 10 that

iC � C

and, applying differentiation,

� (Vm sin qt) � qVm cos qt
d

�
dt

dvC
�
dt

dvC
�
dt

iC  =  ?

 vC  =  Vm sin qt

+

–
C

FIG. 14.11

Investigating the sinusoidal response of a
capacitive element.
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Therefore,

iC � C � C(qVm cos qt) � qCVm cos qt

or iC � Im sin(qt � 90°)

where Im � qCVm

Note that the peak value of iC is directly related to q (� 2pf ) and C,
as predicted in the discussion above.

A plot of vC and iC in Fig. 14.12 reveals that

for a capacitor, iC leads vC by 90°, or vC lags iC by 90°.*

If a phase angle is included in the sinusoidal expression for vC, such
as

vC � Vm sin(qt � v)

then iC � qCVm sin(qt � v � 90°)

Applying

Opposition �

and substituting values, we obtain

Opposition � � �

which agrees with the results obtained above.
The quantity 1/qC, called the reactance of a capacitor, is symboli-

cally represented by XC and is measured in ohms; that is,

XC � (ohms, �) (14.6)

In an Ohm’s law format, its magnitude can be determined from

XC � (ohms, �) (14.7)

Capacitive reactance is the opposition to the flow of charge, which
results in the continual interchange of energy between the source and
the electric field of the capacitor. Like the inductor, the capacitor does
not dissipate energy in any form (ignoring the effects of the leakage
resistance).

In the circuits just considered, the current was given in the inductive
circuit, and the voltage in the capacitive circuit. This was done to avoid
the use of integration in finding the unknown quantities. In the induc-
tive circuit,

vL � L
diL
�
dt

Vm
�
Im

1
�
qC

1
�
qC

Vm
�
qCVm

Vm
�
Im

cause
�
effect

dvC
�
dt
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qt0 p 2p

iC vC

Vm

Im

p
2

–
90°

C:  iC leads vC by 90°.

3
2 

pp
2

FIG. 14.12

The current of a purely capacitive element
leads the voltage across the element by 90°.

*A mnemonic phrase sometimes used to remember the phase relationship between the
voltage and current of a coil and capacitor is “ELI the ICE man.” Note that the L (induc-
tor) has the E before the I (e leads i by 90°), and the C (capacitor) has the I before the E
(i leads e by 90°).



582  THE BASIC ELEMENTS AND PHASORS

but iL � �vL dt (14.8)

In the capacitive circuit,

iC � C 

but vC � � iC dt (14.9)

Shortly, we shall consider a method of analyzing ac circuits that will
permit us to solve for an unknown quantity with sinusoidal input with-
out having to use direct integration or differentiation.

It is possible to determine whether a network with one or more ele-
ments is predominantly capacitive or inductive by noting the phase rela-
tionship between the input voltage and current.

If the source current leads the applied voltage, the network is
predominantly capacitive, and if the applied voltage leads the source
current, it is predominantly inductive.

Since we now have an equation for the reactance of an inductor or
capacitor, we do not need to use derivatives or integration in the
examples to be considered. Simply applying Ohm’s law, Im � Em/XL

(or XC), and keeping in mind the phase relationship between the volt-
age and current for each element, will be sufficient to complete the
examples.

EXAMPLE 14.1 The voltage across a resistor is indicated. Find the
sinusoidal expression for the current if the resistor is 10 �. Sketch the
curves for v and i.
a. v � 100 sin 377t
b. v � 25 sin(377t + 60°)

Solutions:

a. Eq. (14.2): Im � � � 10 A

(v and i are in phase), resulting in

i � 10 sin 377t

The curves are sketched in Fig. 14.13.

100 V
�
10 �

Vm
�
R

1
�
C

dvC
�
dt

1
�
L

�

�0 p 2piR

vR
Vm  =  100 V

Im  =  10 A

In phase

FIG. 14.13

Example 14.1(a).
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b. Eq. (14.2): Im � � � 2.5 A

(v and i are in phase), resulting in

i � 2.5 sin(377t � 60°)

The curves are sketched in Fig. 14.14.

25 V
�
10 �

Vm
�
R
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– p2
�0

p

2pp
260°

3
2 

p

iR

vRVm  =  25 V

Im  =  2.5 A

In phase

FIG. 14.14

Example 14.1(b).

EXAMPLE 14.2 The current through a 5-� resistor is given. Find the
sinusoidal expression for the voltage across the resistor for i �
40 sin(377t � 30°).

Solution: Eq. (14.3): Vm � ImR � (40 A)(5 �) � 200 V

(v and i are in phase), resulting in

v � 200 sin(377t � 30°)

EXAMPLE 14.3 The current through a 0.1-H coil is provided. Find
the sinusoidal expression for the voltage across the coil. Sketch the v
and i curves.
a. i � 10 sin 377t
b. i � 7 sin(377t � 70°)

Solutions:

a. Eq. (14.4): XL � qL � (377 rad/s)(0.1 H) � 37.7 �
Eq. (14.5): Vm � ImXL � (10 A)(37.7 �) � 377 V

and we know that for a coil v leads i by 90°. Therefore,

v � 377 sin(377t � 90°)

The curves are sketched in Fig. 14.15.

– p2
�0 p 2pp

2

90° iL

vL Vm  =  377 V

Im  =  10 Av leads i by 90°.

3
2 

p

FIG. 14.15

Example 14.3(a).
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b. XL remains at 37.7 �.

Vm � ImXL � (7 A)(37.7 �) � 263.9 V

and we know that for a coil v leads i by 90°. Therefore,

v � 263.9 sin(377t � 70° � 90°)

and

v � 263.9 sin(377t � 20°)

The curves are sketched in Fig. 14.16.

�

FIG. 14.16

Example 14.3(b).

EXAMPLE 14.4 The voltage across a 0.5-H coil is provided below.
What is the sinusoidal expression for the current?

v � 100 sin 20t

Solution:

XL � qL � (20 rad/s)(0.5 H) � 10 �

Im � � � 10 A

and we know that i lags v by 90°. Therefore,

i � 10 sin(20t � 90°)

EXAMPLE 14.5 The voltage across a 1-mF capacitor is provided
below. What is the sinusoidal expression for the current? Sketch the v
and i curves.

v � 30 sin 400t

Solution:

Eq. (14.6): XC � � � � 2500 �

Eq. (14.7): Im � � � 0.0120 A � 12 mA

and we know that for a capacitor i leads v by 90°. Therefore,

i � 12 � 10�3 sin(400t � 90°)

30 V
�
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Vm
�
XC

106 �
�

400
1

���
(400 rad/s)(1 � 10�6 F)

1
�
qC

100 V
�
10 �

Vm
�
XL

�

0
p 2p

iL
vL

Vm  =  263.9 V

Im  =  7 A

90°

p
2

70°

v leads i by 90°.

3
2 

p20°
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The curves are sketched in Fig. 14.17.
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2
p 3

2 p 2p

FIG. 14.17

Example 14.5.

EXAMPLE 14.6 The current through a 100-mF capacitor is given.
Find the sinusoidal expression for the voltage across the capacitor.

i � 40 sin(500t � 60°)

Solution:

XC � � � � � 20 �

Vm � ImXC � (40 A)(20 �) � 800 V

and we know that for a capacitor, v lags i by 90°. Therefore,

v � 800 sin(500t � 60° � 90°)

and v � 800 sin(500t � 30°)

EXAMPLE 14.7 For the following pairs of voltages and currents,
determine whether the element involved is a capacitor, an inductor, or a
resistor, and determine the value of C, L, or R if sufficient data are pro-
vided (Fig. 14.18):
a. v � 100 sin(qt � 40°)

i � 20 sin(qt � 40°)
b. v � 1000 sin(377t � 10°)

i � 5 sin(377t � 80°)
c. v � 500 sin(157t � 30°)

i � 1 sin(157t � 120°)
d. v � 50 cos(qt � 20°)

i � 5 sin(qt � 110°)

Solutions:

a. Since v and i are in phase, the element is a resistor, and

R � � � 5 �

b. Since v leads i by 90°, the element is an inductor, and

XL � � � 200 �

so that XL � qL � 200 � or

1000 V
�

5 A

Vm
�
Im

100 V
�
20 A

Vm
�
Im

102 �
�

5
106 �
�
5 � 104

1
���
(500 rad/s)(100 � 10�6 F)

1
�
qC

v ?
+

–

i

FIG. 14.18

Example 14.7.



586  THE BASIC ELEMENTS AND PHASORS

L � � � 0.531 H

c. Since i leads v by 90°, the element is a capacitor, and

XC � � � 500 �

so that XC � � 500 � or

C � � � 12.74 mF

d. v � 50 cos(qt � 20°) � 50 sin(qt � 20° � 90°)
� 50 sin(qt � 110°)

Since v and i are in phase, the element is a resistor, and

R � � � 10 �

dc, High-, and Low-Frequency Effects on L and C

For dc circuits, the frequency is zero, and the reactance of a coil is

XL � 2pfL � 2p(0)L � 0 �

The use of the short-circuit equivalence for the inductor in dc circuits
(Chapter 12) is now validated. At very high frequencies, XL � 2pf L
is very large, and for some practical applications the inductor can be
replaced by an open circuit. In equation form,

dc, f � 0 Hz
(14.10)

and (14.11)

The capacitor can be replaced by an open-circuit equivalence in dc
circuits since f � 0, and

XC � � ⇒ � �

once again substantiating our previous action (Chapter 10). At very
high frequencies, for finite capacitances,

XC �

is very small, and for some practical applications the capacitor can be
replaced by a short circuit. In equation form

(14.12)

and f � very high frequencies (14.13)XC � 0 �

XC ⇒ � � as f ⇒ 0 Hz

1
�
2pf ↑ C

1
�
2p(0)C

1
�
2pfC

XL ⇒ � � as f ⇒ � Hz

XL � 0 �

50 V
�
5 A

Vm
�
Im

1
��
(157 rad/s)(500 �)

1
�
q500 �

1
�
qC

500 V
�

1 A

Vm
�
Im

200 �
�
377 rad/s

200 �
�

q

�



�

Table 14.1 reviews the preceding conclusions.
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L

C

f  =  0 Hz f  =  very high frequencies

TABLE 14.1

Effect of high and low frequencies on the circuit model of an inductor and 
a capacitor.

Phase Angle Measurements between the 
Applied Voltage and Source Current

Now that we are familiar with phase relationships and understand how
the elements affect the phase relationship between the applied voltage
and resulting current, the use of the oscilloscope to measure the phase
angle can be introduced. Recall from past discussions that the oscillo-
scope can be used only to display voltage levels versus time. However,
now that we realize that the voltage across a resistor is in phase with
the current through a resistor, we can consider the phase angle associ-
ated with the voltage across any resistor actually to be the phase angle
of the current. For example, suppose that we want to find the phase
angle introduced by the unknown system of Fig. 14.19(a). In Fig.
14.19(b), a resistor was added to the input leads, and the two channels
of a dual trace (most modern-day oscilloscopes can display two sig-
nals at the same time) were connected as shown. One channel will dis-
play the input voltage vi, whereas the other will display vR, as shown
in Fig. 14.19(c). However, as noted before, since vR and iR are in
phase, the phase angle appearing in Fig. 14.19(c) is also the phase
angle between vi and ii. The addition of a “sensing” resistor (a resis-
tor of a magnitude that will not adversely affect the input characteris-
tics of the system), therefore, can be used to determine the phase
angle introduced by the system and can be used to determine the mag-
nitude of the resulting current. The details of the connections that
must be made and how the actual phase angle is determined will be
left for the laboratory experience.

FIG. 14.19

Using an oscilloscope to determine the phase angle between the applied
voltage and the source current.
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14.4 FREQUENCY RESPONSE 
OF THE BASIC ELEMENTS

The analysis of Section 14.3 was limited to a particular applied fre-
quency. What is the effect of varying the frequency on the level of
opposition offered by a resistive, inductive, or capacitive element? We
are aware from the last section that the inductive reactance increases
with frequency while the capacitive reactance decreases. However, what
is the pattern to this increase or decrease in opposition? Does it con-
tinue indefinitely on the same path? Since applied signals may have fre-
quencies extending from a few hertz to megahertz, it is important to be
aware of the effect of frequency on the opposition level.

R

Thus far we have assumed that the resistance of a resistor is indepen-
dent of the applied frequency. However, in the real world each resistive
element has stray capacitance levels and lead inductance that are sensi-
tive to the applied frequency. However, the capacitive and inductive lev-
els involved are usually so small that their real effect is not noticed until
the megahertz range. The resistance-versus-frequency curves for a num-
ber of carbon composition resistors are provided in Fig. 14.20. Note
that the lower resistance levels seem to be less affected by the fre-
quency level. The 100-� resistor is essentially stable up to about 
300 MHz, whereas the 100-k� resistor starts its radical decline at about
15 MHz.

�

Frequency, therefore, does have impact on the resistance of an ele-
ment, but for our current frequency range of interest, we will assume
the resistance-versus-frequency plot of Fig. 14.21 (like Fig. 14.20 up to
15 MHz), which essentially specifies that the resistance level of a resis-
tor is independent of frequency.

L

For inductors, the equation

XL � qL � 2pfL � 2pLf

FIG. 14.20

Typical resistance-versus-frequency curves for carbon compound resistors.

0 5 10 15 20 f(kHz)

R

FIG. 14.21

R versus f for the range of interest.
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is directly related to the straight-line equation

y � mx � b � (2pL)f � 0

with a slope (m) of 2pL and a y-intercept (b) of zero. XL is the y vari-
able and f is the x variable, as shown in Fig. 14.22.

The larger the inductance, the greater the slope (m � 2pL) for the
same frequency range, as shown in Fig. 14.22. Keep in mind, as reem-
phasized by Fig. 14.22, that the opposition of an inductor at very low
frequencies approaches that of a short circuit, while at high frequencies
the reactance approaches that of an open circuit.

For the capacitor, the reactance equation

XC �

can be written XC f �

which matches the basic format of a hyperbola,

yx � k

with y � XC, x � f, and the constant k � 1/(2pC).
At f � 0 Hz, the reactance of the capacitor is so large, as shown in

Fig. 14.23, that it can be replaced by an open-circuit equivalent. As the
frequency increases, the reactance decreases, until eventually a short-
circuit equivalent would be appropriate. Note that an increase in capac-
itance causes the reactance to drop off more rapidly with frequency.

In summary, therefore, as the applied frequency increases, the
resistance of a resistor remains constant, the reactance of an inductor
increases linearly, and the reactance of a capacitor decreases
nonlinearly.

EXAMPLE 14.8 At what frequency will the reactance of a 200-mH
inductor match the resistance level of a 5-k� resistor?

Solution: The resistance remains constant at 5 k� for the frequency
range of the inductor. Therefore,

R � 5000 � � XL � 2pfL � 2pLf
� 2p(200 � 10�3 H)f � 1.257f

and f � � 3.98 kHz

EXAMPLE 14.9 At what frequency will an inductor of 5 mH have the
same reactance as a capacitor of 0.1 mF?

Solution:

XL � XC

2pfL �

f 2 �

and f � �
1

����
2p�(5� �� 1�0���3�H�)(�0�.1� �� 1�0���6�F�)�

1
�
2p�L�C�

1
�
4p2LC

1
�
2pfC

5000 Hz
�

1.257

1
�
2pC

1
�
2pfC
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FIG. 14.22

XL versus frequency.
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FIG. 14.23

XC versus frequency.



� �

f � � 7.12 kHz

One must also be aware that commercial inductors are not ideal ele-
ments. In other words, the terminal characteristics of an inductance will
vary with several factors, such as frequency, temperature, and current.
A true equivalent for an inductor appears in Fig. 14.24. The series resis-
tance Rs represents the copper losses (resistance of the many turns of
thin copper wire); the eddy current losses (which will be described in
Chapter 19 and which are losses due to small circular currents in the
core when an ac voltage is applied); and the hysteresis losses (which
will also be described in Chapter 19 and which are losses due to core
losses created by the rapidly reversing field in the core). The capaci-
tance Cp is the stray capacitance that exists between the windings of the
inductor. For most inductors, the construction is usually such that the
larger the inductance, the lower the frequency at which the parasitic ele-
ments become important. That is, for inductors in the millihenry range
(which is very typical), frequencies approaching 100 kHz can have an
effect on the ideal characteristics of the element. For inductors in the
microhenry range, a frequency of 1 MHz may introduce negative
effects. This is not to suggest that the inductors lose their effect at these
frequencies but more that they can no longer be considered ideal
(purely inductive elements). 

105 Hz
�
14.05

1
���
(2p)(2.236 � 10�5)
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ZL

Rs

Cp

L

FIG. 14.24

Practical equivalent for an inductor.

1MHz 2MHz 4MHz 6MHz 10MHz
f (log scale)

Due to Cp

10 �H

100 �H

Due to Cp

ZL (�)

�

�

ZL ≅  2   fL�

ZL ≅  2   fL�

FIG. 14.25

ZL versus frequency for the practical inductor equivalent of Fig. 14.24.

Figure 14.25 is a plot of the magnitude of the impedance ZL of Fig.
14.24 versus frequency. Note that up to about 2 MHz the impedance
increases almost linearly with frequency, clearly suggesting that the
100-mH inductor is essentially ideal. However, above 2 MHz all the fac-
tors contributing to Rs will start to increase, while the reactance due to
the capacitive element Cp will be more pronounced. The dropping level
of capacitive reactance will begin to have a shorting effect across the
windings of the inductor and will reduce the overall inductive effect.
Eventually, if the frequency continues to increase, the capacitive effects
will overcome the inductive effects, and the element will actually begin
to behave in a capacitive fashion. Note the similarities of this region
with the curves of Fig. 14.23. Also note that decreasing levels of induc-
tance (available with fewer turns and therefore lower levels of Cp) will
not demonstrate the degrading effect until higher frequencies are

1
��
2p�5� �� 1�0���10�
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applied. In general, therefore, the frequency of application for a coil
becomes important at increasing frequencies. Inductors lose their ideal
characteristics and in fact begin to act as capacitive elements with
increasing losses at very high frequencies.

The capacitor, like the inductor, is not ideal at higher frequencies. In
fact, a transition point can be defined where the characteristics of the
capacitor will actually be inductive. The complete equivalent model for
a capacitor is provided in Fig. 14.26. The resistance Rs, defined by the
resistivity of the dielectric (typically 1012 � ·m or better) and the case
resistance, will determine the level of leakage current to expect during
the discharge cycle. In other words, a charged capacitor can discharge
both through the case and through the dielectric at a rate determined by
the resistance of each path. Depending on the capacitor, the discharge
time can extend from a few seconds for some electrolytic capacitors to
hours (paper) or perhaps days (polystyrene). Inversely, therefore, elec-
trolytics obviously have much lower levels of Rs than paper or poly-
styrene. The resistance Rp reflects the energy lost as the atoms continu-
ally realign themselves in the dielectric due to the applied alternating ac
voltage. Molecular friction is present due to the motion of the atoms as
they respond to the alternating applied electric field. Interestingly
enough, however, the relative permittivity will decrease with increasing
frequencies but will eventually take a complete turnaround and begin to
increase at very high frequencies. The inductance Ls includes the induc-
tance of the capacitor leads and any inductive effects introduced by
the design of the capacitor. Be aware that the inductance of the leads
is about 0.05 mH per centimeter or 0.2 mH for a capacitor with two
2-cm leads—a level that can be important at high frequencies. As for
the inductor, the capacitor will behave quite ideally for the low- and
mid-frequency range, as shown by the plot of Fig. 14.27 for a 0.01-mF
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C

Rp (leakage)

Ls (leads)

Rs (dielectric loss)

FIG. 14.26

Practical equivalent for a capacitor.
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FIG. 14.27

Impedance characteristics of a 0.01-mF metalized film capacitor versus
frequency.

metalized film capacitor with 2-cm leads. As the frequency increases,
however, and the reactance Xs becomes larger, a frequency will eventu-
ally be reached where the reactance of the coil equals that of the capac-
itor (a resonant condition to be described in Chapter 20). Any additional
increase in frequency will simply result in Xs being greater than XC, and
the element will behave like an inductor. In general, therefore, the fre-
quency of application is important for capacitive elements because
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there comes a point with increasing frequency when the element will
take on inductive characteristics. It also points out that the frequency of
application defines the type of capacitor (or inductor) that would be
applied: Electrolytics are limited to frequencies up to perhaps 10 kHz,
while ceramic or mica can handle frequencies beyond 10 MHz.

The expected temperature range of operation can have an important
impact on the type of capacitor chosen for a particular application.
Electrolytics, tantalum, and some high-k ceramic capacitors are very
sensitive to colder temperatures. In fact, most electrolytics lose 20% of
their room-temperature capacitance at 0°C (freezing). Higher tempera-
tures (up to 100°C or 212°F) seem to have less of an impact in general
than colder temperatures, but high-k ceramics can lose up to 30% of
their capacitance level at 100°C compared to room temperature. With
exposure and experience, you will learn the type of capacitor employed
for each application, and concern will arise only when very high fre-
quencies, extreme temperatures, or very high currents or voltages are
encountered.

14.5 AVERAGE POWER AND POWER FACTOR

For any load in a sinusoidal ac network, the voltage across the load and
the current through the load will vary in a sinusoidal nature. The ques-
tions then arise, How does the power to the load determined by the
product v· i vary, and what fixed value can be assigned to the power
since it will vary with time?

If we take the general case depicted in Fig. 14.28 and use the fol-
lowing for v and i:

v � Vm sin(qt � vv)

i � Im sin(qt � vi)

then the power is defined by

p � vi � Vm sin(qt � vv)Im sin(qt � vi)

� VmIm sin(qt � vv) sin(qt � vi)

Using the trigonometric identity

sin A sin B �

the function sin(qt � vv) sin(qt � vi) becomes

sin(qt � vv) sin(qt � vi)

�

�

so that Fixed value Time-varying (function of t)

p � � cos(vv � vi)� � � cos(2qt � vv � vi)�
A plot of v, i, and p on the same set of axes is shown in Fig. 14.29.

Note that the second factor in the preceding equation is a cosine
wave with an amplitude of VmIm /2 and with a frequency twice that of

VmIm
�

2

VmIm
�

2

cos(vv � vi) � cos(2qt � vv � vi)
����

2

cos[(qt � vv) � (qt � vi)] � cos[(qt � vv) � (qt � vi)]
�������

2

cos(A � B) � cos(A � B)
���

2

�

                 

Loadv

P

i

+

–

FIG. 14.28

Determining the power delivered in a 
sinusoidal ac network.
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the voltage or current. The average value of this term is zero over one
cycle, producing no net transfer of energy in any one direction.

The first term in the preceding equation, however, has a constant
magnitude (no time dependence) and therefore provides some net trans-
fer of energy. This term is referred to as the average power, the reason
for which is obvious from Fig. 14.29. The average power, or real
power as it is sometimes called, is the power delivered to and dissi-
pated by the load. It corresponds to the power calculations performed
for dc networks. The angle (vv � vi) is the phase angle between v and
i. Since cos(�a) � cos a,

the magnitude of average power delivered is independent of whether
v leads i or i leads v.

Defining v as equal to |vv � vi|, where | | indicates that only the mag-
nitude is important and the sign is immaterial, we have

(watts, W) (14.14)

where P is the average power in watts. This equation can also be
written

P � � �� � cos v

or, since Veff � and Ieff �

Equation (14.14) becomes

(14.15)

Let us now apply Eqs. (14.14) and (14.15) to the basic R, L, and C
elements.

Resistor

In a purely resistive circuit, since v and i are in phase, |vv � vi| � v �
0°, and cos v � cos 0° � 1, so that

P � VeffIeff cos v

Im
�
�2�

Vm
�
�2�

Im
�
�2�

Vm
�
�2�

P � �
Vm

2

Im
� cos v
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FIG. 14.29

Defining the average power for a sinusoidal ac network.
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(W) (14.16)

Or, since Ieff �

then (W) (14.17)

Inductor

In a purely inductive circuit, since v leads i by 90°, |vv � vi| � v �
|�90°| � 90°. Therefore,

P � cos 90° � (0) � 0 W

The average power or power dissipated by the ideal inductor (no
associated resistance) is zero watts.

Capacitor

In a purely capacitive circuit, since i leads v by 90°, |vv � vi| � v �
|�90°| � 90°. Therefore,

P � cos(90°) � (0) � 0 W

The average power or power dissipated by the ideal capacitor (no
associated resistance) is zero watts.

EXAMPLE 14.10 Find the average power dissipated in a network
whose input current and voltage are the following:

i � 5 sin(qt � 40°)

v � 10 sin(qt � 40°)

Solution: Since v and i are in phase, the circuit appears to be purely
resistive at the input terminals. Therefore,

P � � � 25 W

or R � � � 2 �

and P � � � 25 W

or P � I 2
eff R � [(0.707)(5 A)]2(2) � 25 W

For the following example, the circuit consists of a combination of
resistances and reactances producing phase angles between the input
current and voltage different from 0° or 90°.

[(0.707)(10 V)]2

��
2

V 2
eff

�
R

10 V
�
5 A

Vm
�
Im

(10 V)(5 A)
��

2

VmIm
�

2

VmIm
�

2

VmIm
�

2

VmIm
�

2

VmIm
�

2

P � �
V

R

2
eff
� � I2

effR

Veff
�

R

P � �
Vm

2

Im
� � VeffIeff

�
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EXAMPLE 14.11 Determine the average power delivered to networks
having the following input voltage and current:
a. v � 100 sin(qt � 40°)

i � 20 sin(qt � 70°)
b. v � 150 sin(qt � 70°)

i � 3 sin(qt � 50°)

Solutions:

a. Vm � 100, vv � 40°
Im � 20, vi � 70°
v � |vv � vi| � |40° � 70°| � |�30°| � 30°

and

P � cos v � cos(30°) � (1000 W)(0.866)

� 866 W

b. Vm � 150 V, vv � �70°
Im � 3 A, vi � �50°
v � |vv � vi| � |�70° � (�50°)|

� |�70° � 50°| � |�20°| � 20°
and

P � cos v � cos(20°) � (225 W)(0.9397)

� 211.43 W

Power Factor

In the equation P � (VmIm /2)cos v, the factor that has significant con-
trol over the delivered power level is the cos v. No matter how large the
voltage or current, if cos v � 0, the power is zero; if cos v � 1, the
power delivered is a maximum. Since it has such control, the expression
was given the name power factor and is defined by

(14.18)

For a purely resistive load such as the one shown in Fig. 14.30, the
phase angle between v and i is 0° and Fp � cos v� cos 0° � 1. The power
delivered is a maximum of (VmIm/2) cos v � ((100 V)(5 A)/2) 	 (1) �
250 W.

For a purely reactive load (inductive or capacitive) such as the one
shown in Fig. 14.31, the phase angle between v and i is 90° and Fp �
cos v � cos 90° � 0. The power delivered is then the minimum value
of zero watts, even though the current has the same peak value as
that encountered in Fig. 14.30.

For situations where the load is a combination of resistive and
reactive elements, the power factor will vary between 0 and 1. The
more resistive the total impedance, the closer the power factor is to
1; the more reactive the total impedance, the closer the power factor
is to 0.

In terms of the average power and the terminal voltage and cur-
rent,

Power factor � Fp � cos v

(150 V)(3 A)
��

2

VmIm
�

2

(100 V)(20 A)
��

2

VmIm
�

2
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Im = 5 A

R 20 �100 VEm

+

–

Fp = 1

Pmax = 250 W

FIG. 14.30

Purely resistive load with Fp � 1.

Im = 5 A

100 VEm

+

–

Fp = 0

P = 0 W

XL 20 �

FIG. 14.31

Purely inductive load with Fp � 0.



Imaginary axis ( j )

+

–

Real axis

–

+

LOAD

Ieff = 5 A

Fp = ? Veff = 20 V

P = 100 W

+

–
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(14.19)

The terms leading and lagging are often written in conjunction with
the power factor. They are defined by the current through the load. If
the current leads the voltage across a load, the load has a leading
power factor. If the current lags the voltage across the load, the load
has a lagging power factor. In other words,

capacitive networks have leading power factors, and inductive
networks have lagging power factors.

The importance of the power factor to power distribution systems is
examined in Chapter 19. In fact, one section is devoted to power-factor
correction.

EXAMPLE 14.12 Determine the power factors of the following loads,
and indicate whether they are leading or lagging:
a. Fig. 14.32
b. Fig. 14.33
c. Fig. 14.34

Solutions:

a. Fp � cos v � cos |40° � (�20°)| � cos 60° � 0.5 leading
b. Fp � cos v |80° � 30°| � cos 50° � 0.6428 lagging

c. Fp � cos v � � � � 1

The load is resistive, and Fp is neither leading nor lagging.

14.6 COMPLEX NUMBERS

In our analysis of dc networks, we found it necessary to determine the
algebraic sum of voltages and currents. Since the same will also be true
for ac networks, the question arises, How do we determine the algebraic
sum of two or more voltages (or currents) that are varying sinusoidally?
Although one solution would be to find the algebraic sum on a point-to-
point basis (as shown in Section 14.12), this would be a long and
tedious process in which accuracy would be directly related to the scale
employed.

It is the purpose of this chapter to introduce a system of complex
numbers that, when related to the sinusoidal ac waveform, will result
in a technique for finding the algebraic sum of sinusoidal waveforms
that is quick, direct, and accurate. In the following chapters, the tech-
nique will be extended to permit the analysis of sinusoidal ac networks
in a manner very similar to that applied to dc networks. The methods
and theorems as described for dc networks can then be applied to sinu-
soidal ac networks with little difficulty.

A complex number represents a point in a two-dimensional plane
located with reference to two distinct axes. This point can also deter-
mine a radius vector drawn from the origin to the point. The horizontal
axis is called the real axis, while the vertical axis is called the imagi-
nary axis. Both are labeled in Fig. 14.35. Every number from zero to
�∞ can be represented by some point along the real axis. Prior to the
development of this system of complex numbers, it was believed that

100 W
�
100 W

100 W
��
(20 V)(5 A)

P
�
VeffIeff

Fp � cos v � �
Vef

P

fIeff
�

�

i = 2 sin(   t + 40°)ω

Fp = ? Load

+

–

v = 50 sin(   t – 20°)ω

FIG. 14.32

Example 14.12(a).

FIG. 14.33

Example 14.12(b).

FIG. 14.34

Example 14.12(c).

FIG. 14.35

Defining the real and imaginary axes of a
complex plane.



–1 +–

–j

j

C = 0 – j6
–2
–3
–4
–5
–6

0

–6

+–

–j

j

C = –10 – j20

0

–20

–10

–20

–10

1 +– 0 2 3

1
2
3
4

–j

j
C = 3 + j4

+3

+4

C = X + jY

j

X

Y

–j

– +

�

any number not on the real axis would not exist—hence the term imag-
inary for the vertical axis.

In the complex plane, the horizontal or real axis represents all posi-
tive numbers to the right of the imaginary axis and all negative numbers
to the left of the imaginary axis. All positive imaginary numbers are
represented above the real axis, and all negative imaginary numbers,
below the real axis. The symbol j (or sometimes i) is used to denote the
imaginary component.

Two forms are used to represent a complex number: rectangular
and polar. Each can represent a point in the plane or a radius vector
drawn from the origin to that point.

14.7 RECTANGULAR FORM

The format for the rectangular form is

(14.20)

as shown in Fig. 14.36. The letter C was chosen from the word “com-
plex.” The boldface notation is for any number with magnitude and
direction. The italic is for magnitude only.

EXAMPLE 14.13 Sketch the following complex numbers in the com-
plex plane:
a. C � 3 � j 4
b. C � 0 � j 6
c. C � �10 � j20

Solutions:

a. See Fig. 14.37.
b. See Fig. 14.38.
c. See Fig. 14.39.

C � X � jY
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FIG. 14.36

Defining the rectangular form.

FIG. 14.37

Example 14.13(a).

FIG. 14.38

Example 14.13(b).

FIG. 14.39

Example 14.13(c).

14.8 POLAR FORM

The format for the polar form is

(14.21)

with the letter Z chosen from the sequence X, Y, Z.

C � Z �v



+–

–j

j

C = 4.2 � 240°

4.2

+240°

–120°

C = – 4.2 � 60° = 4.2 � 60° + 180°
= 4.2 � + 240°

+–

–j

j

7
–120°

C = 7�–120°

+–

–j

j

X

Y

C = Z �    = X + jYθ

θ

Z

+–

–j

j

C = 5 � 30°

+30°
5

+–

–j

j

θ

– C

C
�

�

+–

–j

j

Z C

θ
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where Z indicates magnitude only and v is always measured counter-
clockwise (CCW) from the positive real axis, as shown in Fig. 14.40.
Angles measured in the clockwise direction from the positive real axis
must have a negative sign associated with them.

A negative sign in front of the polar form has the effect shown in
Fig. 14.41. Note that it results in a complex number directly opposite
the complex number with a positive sign.

(14.22)

EXAMPLE 14.14 Sketch the following complex numbers in the com-
plex plane:
a. C � 5 �30°
b. C � 7 ��120°
c. C � �4.2 �60°

Solutions:

a. See Fig. 14.42.
b. See Fig. 14.43.
c. See Fig. 14.44.

�C � �Z �v � Z �v � 180°

�

FIG. 14.40

Defining the polar form.

FIG. 14.41

Demonstrating the effect of a negative sign on
the polar form.

FIG. 14.42

Example 14.14(a).
FIG. 14.43

Example 14.14(b).
FIG. 14.44

Example 14.14(c).

14.9 CONVERSION BETWEEN FORMS

The two forms are related by the following equations, as illustrated in
Fig. 14.45.

Rectangular to Polar

(14.23)

(14.24)v � tan�1
�
X
Y

�

Z � �X�2��� Y�2�

FIG. 14.45

Conversion between forms.



+–

–j

j C = 3 + j4

Z

θ

+3

+4

�

Polar to Rectangular

(14.25)

(14.26)Y � Z sin v

X � Z cos v
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FIG. 14.46

Example 14.15.

FIG. 14.47

Example 14.16.

–j

+

3
b

C  =  – 6  +  j3 j

–

v

Z

6

FIG. 14.48

Example 14.17.

EXAMPLE 14.15 Convert the following from rectangular to polar
form:

C � 3 � j 4 (Fig. 14.46)

Solution:

Z � �(3�)2� �� (�4�)2� � �2�5� � 5

v � tan�1� � � 53.13°

and C � 5 �53.13°

4
�
3

EXAMPLE 14.16 Convert the following from polar to rectangular
form:

C � 10 �45° (Fig. 14.47)

Solution:

X � 10 cos 45° � (10)(0.707) � 7.07

Y � 10 sin 45° � (10)(0.707) � 7.07

and C � 7.07 � j7.07

If the complex number should appear in the second, third, or fourth
quadrant, simply convert it in that quadrant, and carefully determine the
proper angle to be associated with the magnitude of the vector.

EXAMPLE 14.17 Convert the following from rectangular to polar
form:

C � �6 � j 3 (Fig. 14.48)

Solution:

Z � �(6�)2� �� (�3�)2� � �4�5� � 6.71

b � tan�1� � � 26.57°

v � 180° � 26.57° � 153.43°

and C � 6.71 �153.43°

3
�
6



–j

j

C

Complex conjugate of C

+

30°

–30°

2

2

–j

j C = 2 + j3

2

3

–3

Complex conjugate of C
C = 2 – j3

+
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EXAMPLE 14.18 Convert the following from polar to rectangular
form:

C � 10 �230° (Fig. 14.49)

Solution:

X� Z cos b � 10 cos(230° � 180°) � 10 cos 50°
� (10)(0.6428) � 6.428

Y � Z sin b � 10 sin 50° � (10)(0.7660) � 7.660

and C � �6.428 � j7.660

14.10 MATHEMATICAL OPERATIONS WITH
COMPLEX NUMBERS

Complex numbers lend themselves readily to the basic mathematical
operations of addition, subtraction, multiplication, and division. A few
basic rules and definitions must be understood before considering these
operations.

Let us first examine the symbol j associated with imaginary num-
bers. By definition,

(14.27)

Thus, (14.28)

and j3 � j 2j � �1j � �j

with j 4 � j 2j 2 � (�1)(�1) � �1

j 5 � j

and so on. Further,

� (1)� � � � �� � � �
j

j
2� �

and (14.29)

Complex Conjugate

The conjugate or complex conjugate of a complex number can be
found by simply changing the sign of the imaginary part in the rectan-
gular form or by using the negative of the angle of the polar form. For
example, the conjugate of

C � 2 � j3

is 2 � j3

as shown in Fig. 14.50. The conjugate of

C � 2 �30°

is 2 ��30°

as shown in Fig. 14.51.

�
1
j
� � �j

j
�
�1

1
�
j

j
�
j

1
�
j

1
�
j

j 2 � �1

j � ���1�

�

+

Y

v  =  230°

C  =  10∠ 230°

–j

j

–

Z = 10

X

b

FIG. 14.49

Example 14.18.

FIG. 14.50

Defining the complex conjugate of a complex
number in rectangular form.

FIG. 14.51

Defining the complex conjugate of a complex
number in polar form.



–j

j

+

C1

C1 + C2

C2

6

4

0 2 4 6–2–4–6–8

8

10

2

–j

j

+

C1

C1 + C2

C2

6

4

2

0 2 4 6

�

Reciprocal

The reciprocal of a complex number is 1 divided by the complex num-
ber. For example, the reciprocal of

C � X � j Y

is

and of Z �v,

We are now prepared to consider the four basic operations of
addition, subtraction, multiplication, and division with complex num-
bers.

Addition

To add two or more complex numbers, simply add the real and imagi-
nary parts separately. For example, if

C1 � �X1 � j Y1 and C2 � �X2 � j Y2

then (14.30)

There is really no need to memorize the equation. Simply set one above
the other and consider the real and imaginary parts separately, as shown
in Example 14.19.

EXAMPLE 14.19

a. Add C1 � 2 � j 4 and C2 � 3 � j 1.
b. Add C1 � 3 � j 6 and C2 � �6 � j 3.

Solutions:

a. By Eq. (14.30),

C1 � C2 � (2 � 3) � j(4 � 1) � 5 � j5

Note Fig. 14.52. An alternative method is

2 � j 4
3 � j 1

C1 � C2 � (�X1 � X2) � j (�Y1 � Y2)

1
�
Z �v

1
�
X � j Y
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FIG. 14.52

Example 14.19(a).

FIG. 14.53

Example 14.19(b).

5 � j5
b. By Eq. (14.30),

C1 � C2 � (3 � 6) � j(6 � 3) � �3 � j9

Note Fig. 14.53. An alternative method is

3 � j 6
�6 � j 3

�3 � j9



2

+–
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j
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–j
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+
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2
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Subtraction

In subtraction, the real and imaginary parts are again considered sepa-
rately. For example, if

C1 � �X1 � j Y1 and C2 � �X2 � j Y2

then

(14.31)

Again, there is no need to memorize the equation if the alternative
method of Example 14.20 is employed.

EXAMPLE 14.20

a. Subtract C2 � 1 � j 4 from C1 � 4 � j 6.
b. Subtract C2 � �2 � j 5 from C1 � �3 � j 3.

Solutions:

a. By Eq. (14.31),

C1 � C2 � (4 � 1) � j (6 � 4) � 3 � j2

Note Fig. 14.54. An alternative method is

4 � j 6
�(1 � j 4)

3 � j2
b. By Eq. (14.31),

C1 � C2 � [3 � (�2)] � j (3 � 5) � 5 � j2

Note Fig. 14.55. An alternative method is

3 � j 3
�(�2 � j 5)

5 � j2

Addition or subtraction cannot be performed in polar form unless the
complex numbers have the same angle v or unless they differ only by
multiples of 180°.

EXAMPLE 14.21

a. 2 �45° � 3 �45° � 5 �45°

Note Fig. 14.56. Or

b. 2 �0° � 4 �180° � 6 �0°

Note Fig. 14.57.

C1 � C2 � [�X2 � (�X2)] � j[�Y1 � (�Y2)]

�

FIG. 14.54

Example 14.20(a).

FIG. 14.55

Example 14.20(b).

FIG. 14.56

Example 14.21(a).



�

Multiplication

To multiply two complex numbers in rectangular form, multiply the
real and imaginary parts of one in turn by the real and imaginary parts
of the other. For example, if

C1 � X1 � j Y1 and C2 � X2 � j Y2

then C1 ⋅ C2: X1 � j Y1

and (14.32)

In Example 14.22(b), we obtain a solution without resorting to mem-
orizing Eq. (14.32). Simply carry along the j factor when multiplying
each part of one vector with the real and imaginary parts of the other.

EXAMPLE 14.22

a. Find C1 ⋅ C2 if

C1 � 2 � j 3 and C2 � 5 � j 10

b. Find C1 ⋅ C2 if

C1 � �2 � j 3 and C2 � �4 � j 6
Solutions:

a. Using the format above, we have

C1 ⋅ C2� [(2)(5) � (3)(10)] � j [(3)(5) � (2)(10)]
� �20 � j35

b. Without using the format, we obtain

�2 � j 3
�4 � j 6

�8 � j 12
� j 12 � j 218

�8 � j (�12 � 12) � 18

and C1 ⋅ C2 � �26 � 26 �180°

C1 ⋅ C2 � (X1X2 � Y1Y2) � j (Y1X2 � X1Y2)

� j X1Y2 � j 2Y1Y2����
X1X2 � j (X1Y1X2 � X1Y2) � Y1Y2(�1)

X2 � j Y2��
X1X2 � j Y1X2
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FIG. 14.57

Example 14.21(b).

+–
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j
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2

–4 � 180°

4 � 180°
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In polar form, the magnitudes are multiplied and the angles added
algebraically. For example, for

C1 � Z1 �v1 and C2 � Z2 �v2

we write

(14.33)

EXAMPLE 14.23

a. Find C1 ⋅ C2 if

C1 � 5 �20° and C2 � 10 �30°

b. Find C1 ⋅ C2 if

C1 � 2 ��40° and C2 � 7 ��120°

Solutions:

a. C1 ⋅ C2 � (5 �20°)(10 �30°) � (5)(10) /20° � 30° � 50 �50°
b. C1 ⋅ C2 � (2 ��40°)(7 ��120°) � (2)(7) /�40° � 120°

� 14 ��80°

To multiply a complex number in rectangular form by a real number
requires that both the real part and the imaginary part be multiplied by
the real number. For example,

(10)(2 � j 3) � 20 � j 30

and 50 �0°(0 � j 6) � j 300 � 300 �90°

Division

To divide two complex numbers in rectangular form, multiply the
numerator and denominator by the conjugate of the denominator and
the resulting real and imaginary parts collected. That is, if

C1 � X1 � jY1 and C2 � X2 � jY2

then �

�

and � � j (14.34)

The equation does not have to be memorized if the steps above used
to obtain it are employed. That is, first multiply the numerator by the
complex conjugate of the denominator and separate the real and imagi-
nary terms. Then divide each term by the sum of each term of the
denominator squared.

EXAMPLE 14.24

a. Find C1/C2 if C1 � 1 � j 4 and C2 � 4 � j 5.
b. Find C1/C2 if C1 � �4 � j 8 and C2 � �6 � j 1.

X2Y1 � X1Y2
��

X2
2 � Y2

2

X1X2 � Y1Y2
��

X2
2 � Y2

2

C1
�
C2

(X1X2 � Y1Y2) � j(X2Y1 � X1Y2)
����

X2
2 � Y2

2

(X1 � jY1)(X2 � jY2)
���
(X2 � jY2)(X2 � jY2)

C1
�
C2

C1 ⋅ C2 � Z1Z2 / v1 � v2

�



�

Solutions:

a. By Eq. (14.34),

� � j

� � � 0.585 � j 0.268

b. Using an alternative method, we obtain

�4 � j 8
�6 � j 1

�24 � j 48
� j 4 � j28

�24 � j 52 � 8 � �16 � j 52

�6 � j 1
�6 � j 1

36 � j 6
� j 6 � j21

36 �0 � 1 � 37

and � � � �0.432 �j1.405

To divide a complex number in rectangular form by a real number,
both the real part and the imaginary part must be divided by the real
number. For example,

� 4 � j 5

and � 3.4 �j 0 � 3.4 �0°

In polar form, division is accomplished by simply dividing the mag-
nitude of the numerator by the magnitude of the denominator and sub-
tracting the angle of the denominator from that of the numerator. That
is, for

C1 � Z1 �v1 and C2 � Z2 �v2

we write

� /v1 � v2 (14.35)

EXAMPLE 14.25

a. Find C1/C2 if C1 � 15 �10° and C2 � 2 �7°.
b. Find C1/C2 if C1 � 8 �120° and C2 � 16 ��50°.

Solutions:

a. � � /10° � 7° � 7.5 �3°
15
�
2

15 �10°
�
2 �7°

C1
�
C2

Z1�
Z2

C1
�
C2

6.8 � j 0
��

2

8 � j 10
�

2

j52
�
37

�16
�

37

C1
�
C2

j 11
�
41

24
�
41

(4)(4) � (1)(5)
��

42 � 52

(1)(4) � (4)(5)
��

42 � 52

C1
�
C2
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b. � � /120° � (�50°) � 0.5 �170°

We obtain the reciprocal in the rectangular form by multiplying the
numerator and denominator by the complex conjugate of the denomi-
nator:

� � �� � �

and � � j (14.36)

In polar form, the reciprocal is

� ��v (14.37)

A concluding example using the four basic operations follows.

EXAMPLE 14.26 Perform the following operations, leaving the answer
in polar or rectangular form:

a. �

�

�

� � 0.983 � j0.207

b. � �

� 35.35 /75° � (�20°) � 35.35 �95°

c. �

� �

� 2 /93.13° � (�36.87°) � 2.0 �130°

d. 3 �27° � 6 ��40° � (2.673 � j 1.362) � (4.596 � j 3.857)

� (2.673 � 4.596) � j (1.362 � 3.857)

� �1.923 � j 5.219

14.11 CALCULATOR AND COMPUTER
METHODS WITH COMPLEX NUMBERS

The process of converting from one form to another or working through
lengthy operations with complex numbers can be time-consuming and

20 �93.13°
��
10 ��36.87°

(4 �40°)(5 �53.13°)
���

10 ��36.87°

(2 �20°)(2 �20°)(5 �53.13°)
����

10 ��36.87°
(2 �20°)2(3 � j 4)
��

8 � j 6

353.5 �75°
��
10 ��20°

(50 �30°)(7.07 �45°)
���

10 ��20°
(50 �30°)(5 � j 5)
��

10 ��20°

114 � j 24
��

116

[(6)(4) � (9)(10)] � j [(4)(9) � (6)(10)]
�����

42 � 102

(6 � j 9)(4 � j 10)
���
(4 � j 10)(4 � j 10)

(2 � 4) � j (3 � 6)
���
(7 � 3) � j (7 � 3)

(2 � j 3) � (4 � j 6)
���
(7 � j 7) � (3 � j 3)

1
�
Z

1
�
Z �v

Y
�
X2 � Y2

X
�
X2 � Y2

1
�
X � j Y

X � j Y
�
X2 � Y2

X � j Y
�
X � j Y

1
�
X � j Y

1
�
X � j Y

8
�
16

8 �120°
��
16 ��50°

C1
�
C2

�
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often frustrating if one lost minus sign or decimal point invalidates the
solution. Fortunately, technologists of today have calculators and com-
puter methods that make the process measurably easier with higher
degrees of reliability and accuracy.

Calculators

The TI-86 calculator of Fig. 14.58 is only one of numerous calculators
that can convert from one form to another and perform lengthy calcula-
tions with complex numbers in a concise, neat form. Not all of the
details of using a specific calculator will be included here because each
has its own format and sequence of steps. However, the basic operations
with the TI-86 will be included primarily to demonstrate the ease with
which the conversions can be made and the format for more complex
operations.

For the TI-86 calculator, one must first call up the 2nd function
CPLX from the keyboard, which results in a menu at the bottom of the
display including conj, real, imag, abs, and angle. If we choose the key
MORE, � Rec and � Pol will appear as options (for the conversion
process). To convert from one form to another, simply enter the current
form in brackets with a comma between components for the rectangu-
lar form and an angle symbol for the polar form. Follow this form with
the operation to be performed, and press the ENTER key—the result
will appear on the screen in the desired format.

EXAMPLE 14.27 This example is for demonstration purposes only. It
is not expected that all readers will have a TI-86 calculator. The sole
purpose of the example is to demonstrate the power of today’s calcula-
tors.

Using the TI-86 calculator, perform the following conversions:
a. 3 � j 4 to polar form.
b. 0.006 �20.6° to rectangular form.

Solutions:

a. The TI-86 display for part (a) is the following:
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CALC. 14.1

(0.006�20.6) � Rec ENTER

(5.616E�3, 2.111E�3)

CALC. 14.2

FIG. 14.58

TI-86 scientific calculator. (Courtesy of Texas 
Instruments, Inc.)

(3, �4) � Pol ENTER

(5.000E0��53.130E0)

b. The TI-86 display for part (b) is the following:

EXAMPLE 14.28 Using the TI-86 calculator, perform the desired
operations required in part (c) of Example 14.26, and compare solutions.

Solution: One must now be aware of the hierarchy of mathematical
operations. In other words, in which sequence will the calculator per-
form the desired operations? In most cases, the sequence is the same as
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that used in longhand calculations, although one must become adept at
setting up the parentheses to ensure the correct order of operations. For
this example, the TI-86 display is the following:

�

((2�20)2
*(3,4))/(8,�6)� Pol ENTER

(2.000E0�130.000E0)

CALC. 14.3

Mathcad

The Mathcad format for complex numbers will now be introduced in
preparation for the chapters to follow. We will continue to use j when
we define a complex number in rectangular form even though the Math-
cad result will always appear with the letter i. You can change this by
going to the Format menu, but for this presentation we decided to use
the default operators as much as possible.

When entering j to define the imaginary component of a complex
number, be sure to enter it as 1j; but do not put a multiplication opera-
tor between the 1 and the j. Just type 1 and then j. In addition, place the
j after the constant rather than before as in the text material.

When Mathcad operates on an angle, it will assume that the angle is
in radians and not degrees. Further, all results will appear in radians
rather than degrees.

The first operation to be developed is the conversion from rectangu-
lar to polar form. In Fig. 14.59 the rectangular number 4 � j 3 is being
converted to polar form using Mathcad. First X and Y are defined using
the colon operator. Next the equation for the magnitude of the polar
form is written in terms of the two variables just defined. The magni-
tude of the polar form is then revealed by writing the variable again and
using the equal sign. It will take some practice, but be careful when
writing the equation for Z in the sense that you pay particular attention
to the location of the bracket before performing the next operation. The
resulting magnitude of 5 is as expected.

For the angle, the sequence View-Toolbars-Greek is first applied to
obtain the Greek toolbar appearing in Fig. 14.59. It can be moved to
any location by simply clicking on the blue at the top of the toolbar and
dragging it to the preferred location. Then 0 is selected from the toolbar
as the variable to be defined. The tan�1 v is obtained through the
sequence Insert-f(x)-Insert Function dialog box-trigonometric-atan-
OK in which Y/X is inserted. Then bring the controlling bracket to the
outside of the entire expression, and multiply by the ratio of 180/p with
p selected from the Calculator toolbar (available from the same
sequence used to obtain the Greek toolbar). The multiplication by the
last factor of the equation will ensure that the angle is in degrees.
Selecting v again followed by an equal sign will result in the correct
angle of 36.87° as shown in Fig. 14.59.

We will now look at two forms for the polar form of a complex num-
ber. The first is defined by the basic equations introduced in this chap-
ter, while the second uses a special format. For all the Mathcad analy-
ses to be provided in this text, the latter format will be employed. First

which is a perfect match with the earlier solution.

German-American

(Breslau, Germany;
Yonkers and 
Schenectady,
NY, USA)

(1865–1923)

Mathematician,

Scientist,

Engineer, Inventor,

Professor of 

Electrical 

Engineering and 

Electrophysics,

Union College
Department Head,

General Electric Co.

Although the holder of some 200 patents and recog-
nized worldwide for his contributions to the study of
hysteresis losses and electrical transients, Charles
Proteus Steinmetz is best recognized for his contri-
bution to the study of ac networks. His “Symbolic
Method of Alternating-current Calculations” pro-
vided an approach to the analysis of ac networks
that removed a great deal of the confusion and frus-
tration experienced by engineers of that day as they
made the transition from dc to ac systems. His
approach (from which the phasor notation of this
text is premised) permitted a direct analysis of ac
systems using many of the theorems and methods of
analysis developed for dc systems. In 1897 he
authored the epic work Theory and Calculation of
Alternating Current Phenomena, which became the
“bible” for practicing engineers. Dr. Steinmetz was
fondly referred to as “The Doctor” at General Elec-
tric Company where he worked for some 30 years in
a number of important capacities. His recognition as
a “multigifted genius” is supported by the fact that
he maintained active friendships with such individu-
als as Albert Einstein, Guglielmo Marconi (radio),
and Thomas A. Edison, to name just a few. He was
President of the American Institute of Electrical
Engineers (AIEE) and the National Association of
Corporation Schools and actively supported his
local community (Schenectady) as president of the
Board of Education and the Commission on Parks
and City Planning.

CHARLES PROTEUS STEINMETZ

Courtesy of the
Hall of History Foundation,

Schenectady, New York
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the magnitude of the polar form is defined followed by the conversion
of the angle of 60° to radians by multiplying by the factor p�180 as
shown in Fig. 14.60. In this example the resulting angular measure is
p�3 radians. Next the rectangular format is defined by a real part X �
Z cos v and by an imaginary part Y � Z sin v. Both the cos and the sin
are obtained by the sequence Insert-f(x)-trigonometric-cos(or sin)-
OK. Note the multiplication by j which was actually entered as 1j.
Entering C again followed by an equal sign will result in the correct
conversion shown in Fig. 14.60.

The next format is based on the mathematical relationship that e jv �
cos v � j sin v. Both Z and v are as defined above, but now the complex
number is written as shown in Fig. 14.60 using the notation just intro-
duced. Note that both Z and v are part of this defining form. The ex is
obtained directly from the Calculator toolbar. Remember to enter the j
as 1j without a multiplication sign between the 1 and the j. However,
there is a multiplication operator placed between the j and v. When
entered again followed by an equal sign, the rectangular form appears
to match the above results. As mentioned above, it is this latter format
that will be used throughout the text due to its cleaner form and more
direct entering path.

The last example using Mathcad will be a confirmation of the results
of Example 14.26(b) as shown in Fig. 14.61. The three complex num-
bers are first defined as shown. Then the equation for the desired result
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FIG. 14.59

Using Mathcad to convert from rectangular to polar form.
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FIG. 14.60

Using Mathcad to convert from polar to rectangular form.

FIG. 14.61

Using Mathcad to confirm the results of Example 14.26(b).
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is entered using C4, and finally the results are called for. Note the rela-
tive simplicity of the equation for C4 now that all the other variables
have been defined. As shown, however, the immediate result is in the
rectangular form using the magnitude feature from the calculator and
the arg function from Insert-f(x)-Complex Numbers-arg. There will
be a number of other examples in the chapters to follow on the use of
Mathcad with complex numbers.

14.12 PHASORS

As noted earlier in this chapter, the addition of sinusoidal voltages
and currents will frequently be required in the analysis of ac circuits.
One lengthy but valid method of performing this operation is to place
both sinusoidal waveforms on the same set of axes and add alge-
braically the magnitudes of each at every point along the abscissa, as
shown for c � a � b in Fig. 14.62. This, however, can be a long and
tedious process with limited accuracy. A shorter method uses the
rotating radius vector first appearing in Fig. 13.16. This radius vector,
having a constant magnitude (length) with one end fixed at the ori-
gin, is called a phasor when applied to electric circuits. During its
rotational development of the sine wave, the phasor will, at the
instant t � 0, have the positions shown in Fig. 14.63(a) for each
waveform in Fig. 14.63(b).

v1
a

b

0 t

v2

vT = v1 + v2c = a + b

v

FIG. 14.62

Adding two sinusoidal waveforms on a point-by-point basis.

Note in Fig. 14.63(b) that v2 passes through the horizontal axis at
t � 0 s, requiring that the radius vector in Fig. 14.63(a) be on the hori-
zontal axis to ensure a vertical projection of zero volts at t � 0 s. Its
length in Fig. 14.63(a) is equal to the peak value of the sinusoid as
required by the radius vector of Fig. 13.16. The other sinusoid has
passed through 90° of its rotation by the time t � 0 s is reached and
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therefore has its maximum vertical projection as shown in Fig. 14.63(a).
Since the vertical projection is a maximum, the peak value of the sinu-
soid that it will generate is also attained at t � 0 s, as shown in Fig.
14.63(b). Note also that vT � v1 at t � 0 s since v2 � 0 V at this instant.

It can be shown [see Fig. 14.63(a)] using the vector algebra
described in Section 14.10 that

1 V �0° � 2 V �90° � 2.236 V �63.43°

In other words, if we convert v1 and v2 to the phasor form using

v � Vm sin(qt � v) ⇒ Vm ��v

and add them using complex number algebra, we can find the phasor
form for vT with very little difficulty. It can then be converted to the
time domain and plotted on the same set of axes, as shown in Fig.
14.63(b). Figure 14.63(a), showing the magnitudes and relative posi-
tions of the various phasors, is called a phasor diagram. It is actually
a “snapshot” of the rotating radius vectors at t � 0 s.

In the future, therefore, if the addition of two sinusoids is required,
they should first be converted to the phasor domain and the sum found
using complex algebra. The result can then be converted to the time
domain.

�

1 V

2 V

v
2.236 V

1 V

2.236 V2 V

(a) (b)

v1 = 2 sin (   t + 90°)�

vT = v1 + v2
     = 2.236 sin (   t + 63.43°)�

v2 = 1 sin    t�

   t�
  2 (0°)
(t = 0 s)
θ

  1 =
90°
θ

   T =
63.43°
θ  2 = 0°θ

  T = 63.43°θ  1 = 90°θ

FIG. 14.63

(a) The phasor representation of the sinusoidal waveforms of Fig. 14.63(b); 
(b) finding the sum of two sinusoidal waveforms of v1 and v2.
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The case of two sinusoidal functions having phase angles different
from 0° and 90° appears in Fig. 14.64. Note again that the vertical
height of the functions in Fig. 14.64(b) at t � 0 s is determined by the
rotational positions of the radius vectors in Fig. 14.64(a).

Since the rms, rather than the peak, values are used almost exclu-
sively in the analysis of ac circuits, the phasor will now be redefined for
the purposes of practicality and uniformity as having a magnitude equal
to the rms value of the sine wave it represents. The angle associated
with the phasor will remain as previously described—the phase angle.

In general, for all of the analyses to follow, the phasor form of a
sinusoidal voltage or current will be

V � V �v and I � I �v

where V and I are rms values and v is the phase angle. It should be
pointed out that in phasor notation, the sine wave is always the refer-
ence, and the frequency is not represented.

Phasor algebra for sinusoidal quantities is applicable only for
waveforms having the same frequency.

EXAMPLE 14.29 Convert the following from the time to the phasor
domain:

6 A 5 A

ImT

0°
(t = 0 s)

i

5 A

6 A

10.63 A

(a) (b)

iT = i1 + i2 = 10.63 sin(qt + 46.40°)

i1 = 5 sin(qt + 30°)

qt

i2 = 6 sin(qt + 60°)

v1 = 30°

vT

v2 = 60°

v2 = 60°

v1 = 30°

vT = 46.40°

FIG. 14.64

Adding two sinusoidal currents with phase angles other than 90°.

Time Domain Phasor Domain

a. �2�(50) sin qt 50 �0°
b. 69.6 sin(qt � 72°) (0.707)(69.6) �72° � 49.21 �72°
c. 45 cos qt (0.707)(45) �90° � 31.82 �90°



EXAMPLE 14.31 Find the input voltage of the circuit of Fig. 14.65 if

va � 50 sin(377t � 30°)

vb � 30 sin(377t � 60°)
f � 60 Hz

Phasor Domain Time Domain

a. I � 10 �30° i � �2�(10) sin(2p60t � 30°)
and i � 14.14 sin(377t � 30°)

b. V � 115 ��70° v � �2�(115) sin(377t � 70°)
and v � 162.6 sin(377t � 70°)





EXAMPLE 14.30 Write the sinusoidal expression for the following
phasors if the frequency is 60 Hz:

+

–

+

–

+ –

ein

va

vb

FIG. 14.65

Example 14.31.
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Solution: Applying Kirchhoff’s voltage law, we have

ein � va � vb

Converting from the time to the phasor domain yields

va � 50 sin(377t � 30°) ⇒ Va � 35.35 V �30°

vb � 30 sin(377t � 60°) ⇒ Vb � 21.21 V �60°

Converting from polar to rectangular form for addition yields

Va � 35.35 V �30° � 30.61 V � j 17.68 V

Vb � 21.21 V �60° � 10.61 V � j 18.37 V

Then

Ein � Va � Vb � (30.61 V � j 17.68 V) � (10.61 V � j 18.37 V)
� 41.22 V � j 36.05 V

Converting from rectangular to polar form, we have

Ein � 41.22 V � j 36.05 V � 54.76 V �41.17°

Converting from the phasor to the time domain, we obtain

Ein � 54.76 V �41.17° ⇒ ein � �2�(54.76) sin(377t � 41.17°)

and ein � 77.43 sin(377t � 41.17°)



� PHASORS  615

A plot of the three waveforms is shown in Fig. 14.66. Note that at
each instant of time, the sum of the two waveforms does in fact add up
to ein. At t � 0 (qt � 0), ein is the sum of the two positive values, while
at a value of qt, almost midway between p/2 and p, the sum of the pos-
itive value of va and the negative value of vb results in ein � 0.

EXAMPLE 14.32 Determine the current i2 for the network of Fig.
14.67.

ein  =  va  +  vb

60°

41.17°

30°

30 50

77.43

va

vb

0

– 2
p

2
p p 3

2 p
2p   tq

FIG. 14.66

Solution to Example 14.31.

iT  =  120  �  10–3 sin (qt  +  60°)

i1  =  80  �  10–3 sin qt

i2  =  ?

FIG. 14.67

Example 14.32.

Solution: Applying Kirchhoff’s current law, we obtain

iT � i1 � i2 or i2 � iT � i1

Converting from the time to the phasor domain yields

iT � 120 � 10�3 sin(qt � 60°) ⇒ 84.84 mA �60°

i1 � 80 � 10�3 sin qt ⇒ 56.56 mA �0°
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Converting from polar to rectangular form for subtraction yields

IT � 84.84 mA �60° � 42.42 mA � j 73.47 mA

I1 � 56.56 mA �0° � 56.56 mA � j 0

Then

I2 � IT � I1

� (42.42 mA � j 73.47 mA) � (56.56 mA � j 0)

and I2 � �14.14 mA � j 73.47 mA

Converting from rectangular to polar form, we have

I2 � 74.82 mA �100.89°

Converting from the phasor to the time domain, we have

I2 � 74.82 mA �100.89° ⇒
i2 � �2�(74.82 � 10�3) sin(qt � 100.89°)

and i2 � 105.8 � 10�3 sin(qt � 100.89°)

A plot of the three waveforms appears in Fig. 14.68. The waveforms
clearly indicate that iT � i1 � i2.

i2

60°100.89°

0°

80
105.8

120
i1

iT

i (mA)
i2  =  iT  –  i1

�– 2
�

2
� 3

2 � 2�

FIG. 14.68

Solution to Example 14.32.

14.13 COMPUTER ANALYSIS

PSpice 

Capacitors and the ac Response The simplest of ac capacitive
circuits will now be analyzed to introduce the process of setting up an
ac source and running an ac transient simulation. The ac source of Fig.
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14.69 is obtained through Place part key-SOURCE-VSIN-OK. The
name or value of any parameter can be changed by simply double-
clicking on the parameter on the display or by double-clicking on the
source symbol to get the Property Editor dialog box. Within the dia-
log box the values appearing in Fig. 14.69 were set, and under Display,
Name and Value were selected. After you have selected Apply and
exited the dialog box, the parameters will appear as shown in the figure. 

The simulation process is initiated by selecting the New Simulation
Profile and under New Simulation entering Transientac for the Name
followed by Create. In the Simulation Settings dialog box, Analysis is
selected and Time Domain(Transient) is chosen under Analysis type.
The Run to time will be set at 3 ms to permit a display of three cycles of
the sinusoidal waveforms (T � 1/f � 1/1000 Hz � 1 ms). The Start
saving data after will be left at 0 s, and the Maximum step size will be
3 ms/1000 � 3 ms. Clicking OK and then selecting the Run PSpice icon
will result in a plot having a horizontal axis that extends from 0 to 3 ms.

Now we have to tell the computer which waveforms we are inter-
ested in. First, we should take a look at the applied ac source by select-
ing Trace-Add Trace-V(Vs:�) followed by OK. The result is the
sweeping ac voltage in the botttom region of the screen of Fig. 14.70.
Note that it has a peak value of 5 V, and three cycles appear in the 3-ms
time frame. The current for the capacitor can be added by selecting
Trace-Add Trace and choosing I(C) followed by OK. The resulting
waveform for I(C) appears at a 90° phase shift from the applied volt-
age, with the current leading the voltage (the current has already peaked

FIG. 14.69

Using PSpice to analyze the response of a capacitor to a sinusoidal ac signal.



as the voltage crosses the 0-V axis). Since the peak value of each plot
is in the same magnitude range, the 5 appearing on the vertical scale
can be used for both. A theoretical analysis would result in XC � 2.34 �,
and the peak value of IC � E/XC � 5 V/2.34 � � 2.136 A, as shown in
Fig. 14.70. 

For interest sake, and a little bit of practice, let us obtain the curve
for the power delivered to the capacitor over the same time period. First
select Plot-Add Plot to Window-Trace-Add Trace to obtain the Add
Traces dialog box. Then chose V(Vs:�), follow it with a * for multi-
plication, and finish by selecting I(C). The result is the expression
V(Vs:�)*I(C) of the power format: p � vi. Click OK, and the power
plot at the top of Fig 14.70 will appear. Note that over the full three
cycles, the area above the axis equals the area below—there is no net
transfer of power over the 3-ms period. Note also that the power curve
is sinusoidal (which is quite interesting) with a frequency twice that of
the applied signal. Using the cursor control, we can determine that the
maximum power (peak value of the sinusoidal waveform) is 5.34 W.
The cursors, in fact, have been added to the lower curves to show the
peak value of the applied sinusoid and the resulting current.

After selecting the Toggle cursor icon, left-click the mouse to sur-
round the V(Vs:�) at the bottom of the plot with a dashed line to show
that the cursor is providing the levels of that quantity. When placed at 1⁄4
of the total period of 250 ms (A1), the peak value is exactly 5 V as
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FIG. 14.70

A plot of the voltage, current, and power for the capacitor of Fig. 14.69.
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FIG. 14.71

Using Electronics Workbench to review the response of an inductive element 
to a sinusoidal ac signal.

shown in the Probe Cursor dialog box. Placing the cursor over the
symbol next to I(C) at the bottom of the plot and right-clicking the
mouse will assign the right cursor to the current. Placing it at exactly
1 ms (A2) will result in a peak value of 2.136 A to match the solution
above. To further distinguish between the voltage and current wave-
forms, the color and the width of the lines of the traces were changed.
Place the cursor right on the plot line and perform a right click. Then
the Properties option appears. When Properties is selected, a Trace
Properties dialog box will appear in which the yellow color can be
selected and the width widened to improve the visibility on the black
background. Note that yellow was chosen for Vs and green for I(C).
Note also that the axis and the grid have been changed to a more visi-
ble color using the same procedure.

Electronics Workbench

Since PSpice reviewed the response of a capacitive element to an ac
voltage, Electronics Workbench will repeat the analysis for an inductive
element. The ac voltage source was derived from the Sources parts bin
as described in Chapter 13 with the values appearing in Fig. 14.71 set in
the AC Voltage dialog box. Since the transient response of Electronics
Workbench is limited to a plot of voltage versus time, a plot of the cur-
rent of the circuit will require the addition of a resistor of 1 � in series
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with the inductive element. The magnitude of the current through the
resistor and, of course, the series inductor will then be determined by

| iR | � | | � | | � | vR | � | iL |

revealing that the current will have the same peak value as the voltage
across the resistor due to the division by 1. When viewed on the graph,
it can simply be considered a plot of the current. In actuality, all
inductors require a series resistance, so the 1-� resistor serves an
important dual purpose. The 1-� resistance is also so small compared
to the reactance of the coil at the 1-kHz frequency that its effect on the
total impedance or voltage across the coil can be ignored.

Once the circuit has been constructed, the sequence Simulate-
Analyses-Transient Analysis will result in a Transient Analysis dia-
log box in which the Start time is set at 0 s and the End time at 105 ms.
The 105 ms was set as the End time to give the network 100 ms to set-
tle down in its steady-state mode and 5 ms for five cycles in the output
display. The Minimum number of time points was set at 10,000 to
ensure a good display for the rapidly changing waveforms.

Next the Output variables heading was chosen within the dialog
box, and nodes 1 and 2 were moved from the Variables in Circuit to
Selected variables for analysis using the Plot during simulation key
pad. Choosing Simulate will then result in a waveform that extends
from 0 s to 105 ms. Even though we plan to save only the response that
occurs after 100 ms, the computer is unaware of our interest, and it
plots the response for the entire period, This is corrected by selecting
the Properties key pad in the toolbar at the top of the graph (it looks
like a tag and pencil) to obtain the Graph Properties dialog box.
Selecting Bottom Axis will permit setting the Range from a Minimum
of 0.100s�100ms to a Maximum of 0.105s�105ms. Click OK, and
the time period of Fig. 14.71 will be displayed. The grid structure is
added by selecting the Show/Hide Grid key pad, and the color associ-
ated with each nodal voltage will be displayed if we choose the
Show/Hide Legend key next to it.

The scale for the plot of iL can be improved by first going to Traces
and setting the Trace to the number 2 representing the voltage across
the 1-� resistor. When 2 is selected, the Color displayed will automat-
icaly change to blue. In the Y Range, select Right Axis followed by
OK. Then select the Right Axis heading, and enter Current(A) for the
Label, enable Axis, change the Pen Size to 1, and change the Range
from �500 mA to �500 mA. Finally, set the Total Ticks at 8 with
Minor Ticks at 2 to match the Left Axis, and leave the box with an
OK. The plot of Fig. 14.71 will result. Take immediate note of the new
axis on the right and the Current(A) label. We can now see that the
current has a peak of about 160 mA. For more detail on the peak val-
ues, simply click on the Show/Hide Cursors key pad on the top tool-
bar. A Transient Analysis dialog box will appear with a 1 and a red
line to indicate that it is working on the full source voltage at node 1.
To switch to the current curve (the blue curve), simply bring the cursor
to any point on the blue curve and perform a left click. A blue line and
the number 2 will appear at the heading of the Transient Analysis dia-
log box. Clicking on the 1 in the small inverted arrow at the top will
allow you to drag the vertical red line to any horizontal point on the
graph. As shown in Fig. 14.71, when the cursor is set on 101.5 ms (x1),

vR�
1�

vR�
R

�
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the peak value of the current curve is 159.05 mA (y1). A second cursor
appears in blue with a number 2 in the inverted arrowhead that can also
be moved with a left click on the number 2 at the top of the line. If set
at 101.75 ms (x2), it has a minimum value of �5.18 mA (y2), the
smallest value available for the calculated data points. Note that the dif-
ference between horizontal time values dx � 252 ms � 0.25 ms which
is 1⁄4 of the period of the wave (at 1 ms).

C��

The versatility of the C�� programming language is clearly demon-
strated by the following program designed to perform conversions
between the polar and rectangular forms. Comments are provided on
the right side of the program to help identify the function of specific
lines or sections of the program. Recall that any comments to the right
of the parallel slash bars // are ignored by the compiler. In this case the
file math.h must be added to the preprocessor directive list, as shown in
Fig. 14.72, to provide the mathematical functions to be employed in the
program. A complete list of operations can be found in the compiler ref-
erence manual. The #define directive defines the level of PI to be
employed when called for in the program and specifies the operations
to be performed when SQR(N) and SGN(N) appear. The ? associated
with the SGN(N) directive is a conditional operator that specifies �1 if
N is greater than or equal to 0 and �1 if not.

Next the variables are introduced and defined as floating points. The
next entry includes the term void to indicate that the variable to

�
polar

will not return a specific numerical value when part of an execution but
rather may identify a subroutine or string of words or characters. The
void within the parentheses reveals that the variable does not have a list
of parameters associated with it for possible use in an application.

As described in earlier programs the main ( ) defines the point at
which execution will begin, with the body of main defined by the open-
ing and closing braces { }. Within main, an integer variable choice is
introduced to handle the integer number (1 or 2) which the user will
choose in response to the question posed under cout. Through cin the
user will respond with a 1 or 2, which will define the variable choice.
The switch is a conditional response that will follow a path defined by
the variable choice. The possible paths for the program to follow under
switch are enclosed in the braces { }. Since a numerical value will
determine the path, the options must begin with the word case. In this
case, a 1 will follow the to_polar structured variable, and a 2 will fol-
low the to_rectangular structured variable. The break simply marks the
end of the selection process.

On a to_polar choice the program will move to the subroutine void
to_polar and will convert the number to the polar form. The first six lines
simply create line shifts and ask for the values of X and Y. The next line
calculates the magnitude of the polar form (Z) using SQR(N ), defined
above, and the sqrt from the math.h header file. An if statement sensitive
to the value of X and Y will then delineate which line will determine the
phase angle of the polar form. The SGN(N ), as introduced in the pre-
processor listing, will determine the sign to be employed in the equation.
The a preceding the tan function indicates arc tan or tan�1, while PI is as
defined above in the preprocessor section. Note also that the angles must
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FIG. 14.72

C�� program for complex number conversions.
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FIG. 14.73

Polar-to-rectangular conversion using the C�� program of Fig. 14.72.

FIG. 14.74

Rectangular-to-polar conversion using the C�� program of Fig. 14.72.

first be converted to radians by multiplying by the ratio 180°/p. Once
determined, the polar form is printed out using the cout statements.

Choosing the to_rectangular structured variable will cause the pro-
gram to bypass the above subroutine and move directly to the polar-
to-rectangular-conversion sequence. Again, the first six lines simply ask
for the components of the polar form. The real and imaginary parts are
then calculated and the results printed out. Note the if-else statement
required to associate the properly signed j with the imaginary part.

In an effort to clearly identify the major components of the program,
brackets have been added at the edge of the program with a short
description of the function performed. As mentioned earlier, do not be
concerned if a number of questions arise about the program structure or
specific commands or statements. The purpose here is simply to intro-
duce the basic format of the C�� programming language and not to
provide all the details required to write your own programs.

Two runs of the program have been provided in Figs. 14.73 and
14.74, one for a polar-to-rectangular conversion and the other for a rec-
tangular-to-polar conversion. Note in each case the result of the cout
and cin statements and in general the clean, clear, and direct format of
the resulting output.
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PROBLEMS

SECTION 14.2 The Derivative

1. Plot the following waveform versus time showing one
clear, complete cycle. Then determine the derivative of
the waveform using Eq. (14.1), and sketch one complete
cycle of the derivative directly under the original wave-
form. Compare the magnitude of the derivative at vari-
ous points versus the slope of the original sinusoidal
function.

v � 1 sin 3.14t

2. Repeat Problem 1 for the following sinusoidal function,
and compare results. In particular, determine the fre-
quency of the waveforms of Problems 1 and 2, and com-
pare the magnitude of the derivative.

v � 1 sin 15.71t

3. What is the derivative of each of the following sinusoidal
expressions?
a. 10 sin 377t b. 0.6 sin(754t � 20°)
c. �2� 20 sin(157t � 20°) d. �200 sin(t � 180°)

SECTION 14.3 Response of Basic R, L, and C

Elements to a Sinusoidal Voltage or Current

4. The voltage across a 5-� resistor is as indicated. Find the
sinusoidal expression for the current. In addition, sketch
the v and i sinusoidal waveforms on the same axis.
a. 150 sin 377t b. 30 sin(377t � 20°)
c. 40 cos(qt � 10°) d. �80 sin(qt � 40°)

5. The current through a 7-k� resistor is as indicated. Find
the sinusoidal expression for the voltage. In addition,
sketch the v and i sinusoidal waveforms on the same axis.
a. 0.03 sin 754t
b. 2 � 10�3 sin(400t � 120°)
c. 6 � 10�6 cos(qt � 2°)
d. �0.004 cos(qt � 90°)

6. Determine the inductive reactance (in ohms) of a 2-H coil
for
a. dc
and for the following frequencies:
b. 25 Hz c. 60 Hz
d. 2000 Hz e. 100,000 Hz

7. Determine the inductance of a coil that has a reactance of
a. 20 � at f � 2 Hz.
b. 1000 � at f � 60 Hz.
c. 5280 � at f � 1000 Hz.

8. Determine the frequency at which a 10-H inductance has
the following inductive reactances:
a. 50 � b. 3770 �
c. 15.7 k� d. 243 �

9. The current through a 20-� inductive reactance is given.
What is the sinusoidal expression for the voltage?
Sketch the v and i sinusoidal waveforms on the same
axis.
a. i � 5 sin qt b. i � 0.4 sin(qt � 60°)
c. i � �6 sin(qt � 30°) d. i � 3 cos(qt � 10°)

10. The current through a 0.1-H coil is given. What is the
sinusoidal expression for the voltage?
a. 30 sin 30t
b. 0.006 sin 377t
c. 5 � 10�6 sin(400t � 20°)
d. �4 cos(20t � 70°)

11. The voltage across a 50-� inductive reactance is given.
What is the sinusoidal expression for the current? Sketch
the v and i sinusoidal waveforms on the same set of axes.
a. 50 sin qt b. 30 sin(qt � 20°)
c. 40 cos(qt � 10°) d. �80 sin(377t � 40°)

12. The voltage across a 0.2-H coil is given. What is the sinu-
soidal expression for the current?
a. 1.5 sin 60t
b. 0.016 sin(t � 4°)
c. �4.8 sin(0.05t � 50°)
d. 9 � 10�3 cos(377t � 360°)

13. Determine the capacitive reactance (in ohms) of a 5-mF
capacitor for
a. dc

and for the following frequencies:
b. 60 Hz c. 120 Hz
d. 1800 Hz e. 24,000 Hz

14. Determine the capacitance in microfarads if a capacitor
has a reactance of
a. 250 � at f � 60 Hz.
b. 55 � at f � 312 Hz.
c. 10 � at f � 25 Hz.

15. Determine the frequency at which a 50-mF capacitor has
the following capacitive reactances:
a. 342 � b. 684 �
c. 171 � d. 2000 �

16. The voltage across a 2.5-� capacitive reactance is given.
What is the sinusoidal expression for the current? Sketch
the v and i sinusoidal waveforms on the same set of axes.
a. 100 sin qt b. 0.4 sin(qt � 20°)
c. 8 cos(qt � 10°) d. �70 sin(qt � 40°)

17. The voltage across a 1-mF capacitor is given. What is the
sinusoidal expression for the current?
a. 30 sin 200t b. 90 sin 377t
c. �120 sin(374t � 30°) d. 70 cos(800t � 20°)

18. The current through a 10-� capacitive reactance is given.
Write the sinusoidal expression for the voltage. Sketch
the v and i sinusoidal waveforms on the same set of axes.
a. i � 50 sin qt b. i � 40 sin(qt � 60°)
c. i � �6 sin(qt � 30°) d. i � 3 cos(qt � 10°)

19. The current through a 0.5-mF capacitor is given. What is
the sinusoidal expression for the voltage?
a. 0.20 sin 300t b. 0.007 sin 377t
c. 0.048 cos 754t d. 0.08 sin(1600t � 80°)
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35. In Fig. 14.76, e � 100 sin(157t � 30°).
a. Find the sinusoidal expression for i.
b. Find the value of the inductance L.
c. Find the average power loss by the inductor.

e

+

–

R = 3 Ω

i

FIG. 14.75

Problem 34.

XL = 50 Ωe

+

–

i

FIG. 14.76

Problem 35.

e

i

+

–

XC  =  400 �

FIG. 14.77

Problem 36.

36. In Fig. 14.77, i � 3 sin(377t � 20°).
a. Find the sinusoidal expression for e.
b. Find the value of the capacitance C in microfarads.
c. Find the average power loss in the capacitor.

32. A circuit dissipates 100 W (average power) at 150 V
(effective input voltage) and 2 A (effective input current).
What is the power factor? Repeat if the power is 0 W;
300 W.

*33. The power factor of a circuit is 0.5 lagging. The power
delivered in watts is 500. If the input voltage is
50 sin(qt � 10°), find the sinusoidal expression for the
input current.

34. In Fig. 14.75, e � 30 sin(377t � 20°).
a. What is the sinusoidal expression for the current?
b. Find the power loss in the circuit.
c. How long (in seconds) does it take the current to com-

plete six cycles?

*20. For the following pairs of voltages and currents, indicate
whether the element involved is a capacitor, an inductor,
or a resistor, and the value of C, L, or R if sufficient data
are given:
a. v � 550 sin(377t � 40°)

i � 11 sin(377t � 50°)
b. v � 36 sin(754t � 80°)

i � 4 sin(754t � 170°)
c. v � 10.5 sin(qt � 13°)

i � 1.5 sin(qt � 13°)

*21. Repeat Problem 20 for the following pairs of voltages
and currents:
a. v � 2000 sin qt

i � 5 cos qt
b. v � 80 sin(157t � 150°)

i � 2 sin(157t � 60°)
c. v � 35 sin(qt � 20°)

i � 7 cos(qt � 110°)

SECTION 14.4 Frequency Response of the

Basic Elements

22. Plot XL versus frequency for a 5-mH coil using a fre-
quency range of zero to 100 kHz on a linear scale.

23. Plot XC versus frequency for a 1-mF capacitor using a fre-
quency range of zero to 10 kHz on a linear scale.

24. At what frequency will the reactance of a 1-mF capacitor
equal the resistance of a 2-k� resistor?

25. The reactance of a coil equals the resistance of a 10-k�
resistor at a frequency of 5 kHz. Determine the induc-
tance of the coil.

26. Determine the frequency at which a 1-mF capacitor and a
10-mH inductor will have the same reactance.

27. Determine the capacitance required to establish a capaci-
tive reactance that will match that of a 2-mH coil at a fre-
quency of 50 kHz.

SECTION 14.5 Average Power and Power

Factor

28. Find the average power loss in watts for each set in Prob-
lem 20.

29. Find the average power loss in watts for each set in Prob-
lem 21.

*30. Find the average power loss and power factor for each of
the circuits whose input current and voltage are as fol-
lows:
a. v � 60 sin(qt � 30°)

i � 15 sin(qt � 60°)
b. v � �50 sin(qt � 20°)

i � �2 sin(qt � 40°)
c. v � 50 sin(qt � 80°)

i � 3 cos(qt � 20°)
d. v � 75 sin(qt � 5°)

i � 0.08 sin(qt � 35°)

31. If the current through and voltage across an element are 
i � 8 sin(qt � 40°) and v � 48 sin(qt � 40°), respec-
tively, compute the power by I2R, (VmIm/2) cos v, and
VI cos v, and compare answers.
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e
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e  =  √
—
2 100 sin (104t  +  60°)
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i1 i2

FIG. 14.78

Problem 37.

*37. For the network of Fig. 14.78 and the applied signal:
a. Determine i1 and i2.
b. Find is.

vs

+

–

is  =  √
—
2 6 sin (103t  +  30°)

L2 12 mHL1 4 mH

i1 i2

is

FIG. 14.79

Problem 38.

*38. For the network of Fig. 14.79 and the applied source:
a. Determine the source voltage vs.
b. Find the currents i1 and i2.

SECTION 14.9 Conversion between Forms

39. Convert the following from rectangular to polar form:
a. 4 � j 3 b. 2 � j 2
c. 3.5 � j16 d. 100 � j 800
e. 1000 � j 400 f. 0.001 � j 0.0065
g. 7.6 � j 9 h. �8 � j 4
i. �15 � j 60 j. �78 � j 65
k. �2400 � j 3600
l. 5 � 10�3 � j 25 � 10�3

40. Convert the following from polar to rectangular form:
a. 6 �30° b. 40 �80°
c. 7400 �70° d. 4 � 10�4 �8°
e. 0.04 �80° f. 0.0093 �23°
g. 65 �150° h. 1.2 �135°
i. 500 �200° j. 6320 ��35°
k. 7.52 ��125° l. 0.008 �310°

41. Convert the following from rectangular to polar form:
a. 1 � j 15 b. 60 � j 5
c. 0.01 � j 0.3 d. 100 � j 2000
e. �5.6 � j 86 f. �2.7 � j 38.6

42. Convert the following from polar to rectangular form:
a. 13 �5° b. 160 �87°
c. 7 � 10�6 �2° d. 8.7 �177°
e. 76 ��4° f. 396 ��265°

SECTION 14.10 Mathematical Operations with

Complex Numbers

Perform the following operations.

43. Addition and subtraction (express your answers in rec-
tangular form):
a. (4.2 � j 6.8) � (7.6 � j 0.2)
b. (142 � j 7) � (9.8 � j 42) � (0.1 � j 0.9)
c. (4 � 10�6 � j 76) � (7.2 � 10�7 � j 5)
d. (9.8 � j 6.2) � (4.6 � j 4.6)
e. (167 � j 243) � (�42.3 � j 68)
f. (�36.0 � j 78) � (�4 � j 6) � (10.8 � j 72)
g. 6 �20° � 8 �80°
h. 42 �45° � 62 �60° � 70 �120°

44. Multiplication [express your answers in rectangular form
for parts (a) through (d), and in polar form for parts (e)
through (h)]:
a. (2 � j 3)(6 � j 8)
b. (7.8 � j 1)(4 � j 2)(7 � j 6)
c. (0.002 � j 0.006)(�2 � j 2)
d. (400 � j 200)(�0.01 � j 0.5)(�1 � j 3)
e. (2 �60°)(4 �22°)
f. (6.9 �8°)(7.2 ��72°)
g. 0.002 �120°)(0.5 �200°)(40 ��60°)
h. (540 ��20°)(�5 �180°)(6.2 �0°)

45. Division (express your answers in polar form):
a. (42 �10°)/(7 �60°)
b. (0.006 �120°)/(30 ��20°)
c. (4360 ��20°)/(40 �210°)
d. (650 ��80°)/(8.5 �360°)
e. (8 � j 8)/(2 � j 2)
f. (8 � j 42)/(�6 � j 60)
g. (0.05 � j 0.25)/(8 � j 60)
h. (�4.5 � j 6)/(0.1 � j 0.4)

*46. Perform the following operations (express your answers
in rectangular form):

a.

b.

c.

d.

e. � �� �
3

� �1
��
62 � j �9�0�0�

2
�
j

1
��
(0.02 �10°)2

(0.4 �60°)2(300 �40°)
���

3 � j 9

(6 �20°)(120 ��40°)(3 � j 4)
����

2 ��30°

8 �60°
���
(2 �0°) � (100 � j 100)

(4 � j 3) � (6 � j 8)
���
(3 � j 3) � (2 � j 3)



� PROBLEMS  627
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Problem 50.

*47. a. Determine a solution for x and y if

(x � j 4) � (3x � j y) � j 7 � 16 �0°

b. Determine x if

(10 �20°)(x ��60°) � 30.64 � j 25.72

c. Determine a solution for x and y if

(5x � j 10)(2 � j y) � 90 � j 70

d. Determine v if

� 3.464 � j 2

SECTION 14.12 Phasors

48. Express the following in phasor form:
a. �2�(100) sin(qt � 30°)
b. �2�(0.25) sin(157t � 40°)
c. 100 sin(qt � 90°)
d. 42 sin(377t � 0°)
e. 6 � 10�6 cos qt
f. 3.6 � 10�6 cos(754t � 20°)

49. Express the following phasor currents and voltages as
sine waves if the frequency is 60 Hz:
a. I � 40 A �20° b. V � 120 V �0°
c. I � 8 � 10�3 A �120° d. V � 5 V �90°

e. I � 1200 A ��120° f. V � V ��180°

50. For the system of Fig. 14.80, find the sinusoidal expres-
sion for the unknown voltage va if

ein � 60 sin(377t � 20°)

vb � 20 sin 377t

51. For the system of Fig. 14.81, find the sinusoidal expres-
sion for the unknown current i1 if

is � 20 � 10�6 sin(qt � 90°)

i2 � 6 � 10�6 sin(qt � 60°)

52. Find the sinusoidal expression for the applied voltage e
for the system of Fig. 14.82 if

va � 60 sin(qt � 30°)

vb � 30 sin(qt � 30°)

vc � 40 sin(qt � 120°)

6000
�
�2�

80 �0°
�
20 �v
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53. Find the sinusoidal expression for the current is for the
system of Fig. 14.83 if

i1 � 6 � 10�3 sin(377t � 180°)

i2 � 8 � 10�3 sin 377t

i3 � 2i2

SECTION 14.13 Computer Analysis

PSpice or Electronics Workbench

54. Plot iC and vC versus time for the network of Fig. 14.69
for two cycles if the frequency is 0.2 kHz.

55. Plot the magnitude and phase angle of the current iC ver-
sus frequency (100 Hz to 100 kHz) for the network of
Fig. 14.69.

56. Plot the total impedance of the configuration of Fig.
14.26 versus frequency (100 kHz to 100 MHz) for the
following parameter values: C � 0.1 mF, Ls � 0.2 mH,
Rs � 2 M�, and Rp � 100 M�. For what frequency
range is the capacitor “capacitive”?

Programming Language (C��, QBASIC, Pascal, etc.)

57. Given a sinusoidal function, write a program to print out
the derivative.

58. Given the sinusoidal expression for the current, deter-
mine the expression for the voltage across a resistor, a
capacitor, or an inductor, depending on the element
involved. In other words, the program will ask which ele-
ment is to be investigated and will then request the perti-
nent data to obtain the mathematical expression for the
sinusoidal voltage.

59. Write a program to tabulate the reactance versus fre-
quency for an inductor or a capacitor for a specified fre-
quency range.

60. Given the sinusoidal expression for the voltage and cur-
rent of a load, write a program to determine the average
power and power factor.

61. Given two sinusoidal functions, write a program to con-
vert each to the phasor domain, add the two, and print out
the sum in the phasor and time domains.

GLOSSARY

Average or real power The power delivered to and dissi-
pated by the load over a full cycle.

Complex conjugate A complex number defined by simply
changing the sign of an imaginary component of a complex
number in the rectangular form.

Complex number A number that represents a point in a
two-dimensional plane located with reference to two dis-
tinct axes. It defines a vector drawn from the origin to that
point.

Derivative The instantaneous rate of change of a function
with respect to time or another variable.

Leading and lagging power factors An indication of
whether a network is primarily capacitive or inductive in
nature. Leading power factors are associated with capaci-
tive networks, and lagging power factors with inductive net-
works.

Phasor A radius vector that has a constant magnitude at a
fixed angle from the positive real axis and that represents a
sinusoidal voltage or current in the vector domain.

is i1 i3

i2

FIG. 14.83

Problem 53.

Phasor diagram A “snapshot” of the phasors that represent
a number of sinusoidal waveforms at t � 0.

Polar form A method of defining a point in a complex plane
that includes a single magnitude to represent the distance
from the origin, and an angle to reflect the counterclock-
wise distance from the positive real axis.

Power factor (Fp) An indication of how reactive or resistive
an electrical system is. The higher the power factor, the
greater the resistive component.

Reactance The opposition of an inductor or a capacitor to
the flow of charge that results in the continual exchange of
energy between the circuit and magnetic field of an induc-
tor or the electric field of a capacitor.

Reciprocal A format defined by 1 divided by the complex
number.

Rectangular form A method of defining a point in a com-
plex plane that includes the magnitude of the real compo-
nent and the magnitude of the imaginary component, the
latter component being defined by an associated letter j.
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15.1 INTRODUCTION

In this chapter, phasor algebra will be used to develop a quick, direct
method for solving both the series and the parallel ac circuits. The close
relationship that exists between this method for solving for unknown
quantities and the approach used for dc circuits will become apparent
after a few simple examples are considered. Once this association is
established, many of the rules (current divider rule, voltage divider rule,
and so on) for dc circuits can be readily applied to ac circuits.

SERIES ac CIRCUITS

15.2 IMPEDANCE AND THE PHASOR DIAGRAM

Resistive Elements

In Chapter 14, we found, for the purely resistive circuit of Fig. 15.1,
that v and i were in phase, and the magnitude

Im � �
V
R

m� or Vm � ImR

a c

R v  =  Vm sin qt

+

–

i  =  Im sin qt

FIG. 15.1

Resistive ac circuit.

Series and Parallel 
ac Circuits



a c

In phasor form,

v � Vm sin qt ⇒ V � V �0°

where V � 0.707Vm.
Applying Ohm’s law and using phasor algebra, we have

I � � /0° � vR

Since i and v are in phase, the angle associated with i also must be 0°.
To satisfy this condition, vR must equal 0°. Substituting vR � 0°, we
find

I � � /0° � 0° � �0°

so that in the time domain,

i � �2�� � sin qt

The fact that vR � 0° will now be employed in the following polar
format to ensure the proper phase relationship between the voltage and
current of a resistor:

(15.1)

The boldface roman quantity ZR, having both magnitude and an
associated angle, is referred to as the impedance of a resistive element.
It is measured in ohms and is a measure of how much the element will
“impede” the flow of charge through the network. The above format
will prove to be a useful “tool” when the networks become more com-
plex and phase relationships become less obvious. It is important to
realize, however, that ZR is not a phasor, even though the format R�0°
is very similar to the phasor notation for sinusoidal currents and volt-
ages. The term phasor is reserved for quantities that vary with time, and
R and its associated angle of 0° are fixed, nonvarying quantities.

EXAMPLE 15.1 Using complex algebra, find the current i for the cir-
cuit of Fig. 15.2. Sketch the waveforms of v and i.

Solution: Note Fig. 15.3:

ZR � R �0°

V
�
R

V
�
R

V
�
R

V �0°
�
R �0°

V
�
R

V �0°
�
R �vR
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5 � v  =  100 sin qt

+

–

i

FIG. 15.2

Example 15.1.

100 V

0

20 A

2
�

� 2
3�

2�
�t

v

i

�

FIG. 15.3

Waveforms for Example 15.1.



+

j

I

V

(b)

5.565 V

2.828 A

30°
+

j

14.14 A
70.7 V

I V

(a)
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v � 100 sin qt ⇒ phasor form V � 70.71 V �0°

I � � � � 14.14 A �0°

and i � �2�(14.14) sin qt � 20 sin qt

EXAMPLE 15.2 Using complex algebra, find the voltage v for the cir-
cuit of Fig. 15.4. Sketch the waveforms of v and i.

Solution: Note Fig. 15.5:

i � 4 sin(qt � 30°) ⇒ phasor form I � 2.828 A �30°

V � IZR � (I �v)(R �0°) � (2.828 A �30°)(2 � �0°)
� 5.656 V �30°

and v � �2�(5.656) sin(qt � 30°) � 8.0 sin(qt � 30°)

70.71 V �0°
��

5 � �0°
V �v
�
R �0°

V
�
ZR

a c

v

+

–
2 �

i  =  4 sin(qt + 30°)

FIG. 15.4

Example 15.2.

8 V

0

4 A

� �t

v

i

30°
�2�

2
3�

2
�

It is often helpful in the analysis of networks to have a phasor dia-
gram, which shows at a glance the magnitudes and phase relations
among the various quantities within the network. For example, the pha-
sor diagrams of the circuits considered in the two preceding examples
would be as shown in Fig. 15.6. In both cases, it is immediately obvi-
ous that v and i are in phase since they both have the same phase angle.

FIG. 15.5

Waveforms for Example 15.2.

FIG. 15.6

Phasor diagrams for Examples 15.1 and 15.2.
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Inductive Reactance

It was learned in Chapter 13 that for the pure inductor of Fig. 15.7, the
voltage leads the current by 90° and that the reactance of the coil XL is
determined by qL.

v � Vm sin qt ⇒ phasor form V � V �0°

By Ohm’s law,

I � � /0° � vL

Since v leads i by 90°, i must have an angle of �90° associated with it.
To satisfy this condition, vL must equal �90°. Substituting vL � 90°, we
obtain

I � � /0° � 90° � ��90°

so that in the time domain,

i � �2�� � sin(qt � 90°)

The fact that vL � 90° will now be employed in the following polar
format for inductive reactance to ensure the proper phase relationship
between the voltage and current of an inductor.

ZL � XL �90° (15.2)

The boldface roman quantity ZL, having both magnitude and an
associated angle, is referred to as the impedance of an inductive ele-
ment. It is measured in ohms and is a measure of how much the induc-
tive element will “control or impede” the level of current through the
network (always keep in mind that inductive elements are storage
devices and do not dissipate like resistors). The above format, like that
defined for the resistive element, will prove to be a useful “tool” in the
analysis of ac networks. Again, be aware that ZL is not a phasor quan-
tity, for the same reasons indicated for a resistive element.

EXAMPLE 15.3 Using complex algebra, find the current i for the cir-
cuit of Fig. 15.8. Sketch the v and i curves.

Solution: Note Fig. 15.9:

V
�
XL

V
�
XL

V
�
XL

V �0°
�
XL �90°

V
�
XL

V �0°
�
XL �vL

a c

v  =  24 sin qt

+

–

i

XL  =  3 �

FIG. 15.8

Example 15.3.

24 V

0

8 A

2
� �

2
3� 2�

v

i

90°
2
5�   t�

FIG. 15.9

Waveforms for Example 15.3.

XL  =  qL v  =  Vm sin qt

+

–

i

FIG. 15.7

Inductive ac circuit.



+

j

I

V
5.656 A

16.968 A

Leading

+

j

I

V

3.535 A
14.140 V

30°

Leading
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v � 24 sin qt ⇒ phasor form V � 16.968 V �0°

I � � �
XL

V
�

�

9
v

0°
� � � 5.656 A ��90°

and i � �2�(5.656) sin(qt � 90°) � 8.0 sin(qt � 90°)

EXAMPLE 15.4 Using complex algebra, find the voltage v for the cir-
cuit of Fig. 15.10. Sketch the v and i curves.

Solution: Note Fig. 15.11:

i � 5 sin(qt � 30°) ⇒ phasor form I � 3.535 A �30°

V � IZL � (I �v)(XL �90°) � (3.535 A �30°)(4 � ��90°)
� 14.140 V �120°

and v ��2�(14.140) sin(qt � 120°) � 20 sin(qt � 120°)

16.968 V �0°
��

3 � �90°
V
�
ZL

a c

v

+

–

i  =  5 sin(qt  +  30°)

XL  =  4 �

FIG. 15.10

Example 15.4.

20 V

0

5 A

2
�

�
3� 2�

i

90°
2
�–

30°

  t�
2

υ

FIG. 15.11

Waveforms for Example 15.4.

The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.12. Both indicate quite clearly that the volt-
age leads the current by 90°.

FIG. 15.12

Phasor diagrams for Examples 15.3 and 15.4.
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Capacitive Reactance

It was learned in Chapter 13 that for the pure capacitor of Fig. 15.13,
the current leads the voltage by 90° and that the reactance of the capac-
itor XC is determined by 1/qC.

v � Vm sin qt ⇒ phasor form V � V �0°

Applying Ohm’s law and using phasor algebra, we find

I � � /0° � vC

Since i leads v by 90°, i must have an angle of �90° associated with it.
To satisfy this condition, vC must equal �90°. Substituting vC � �90°
yields

I � � /0° � (�90°) � �90°

so, in the time domain,

i � �2�� � sin(qt � 90°)

The fact that vC � �90° will now be employed in the following
polar format for capacitive reactance to ensure the proper phase rela-
tionship between the voltage and current of a capacitor.

(15.3)

The boldface roman quantity ZC, having both magnitude and an
associated angle, is referred to as the impedance of a capacitive ele-
ment. It is measured in ohms and is a measure of how much the capac-
itive element will “control or impede” the level of current through the
network (always keep in mind that capacitive elements are storage
devices and do not dissipate like resistors). The above format, like that
defined for the resistive element, will prove a very useful “tool” in the
analysis of ac networks. Again, be aware that ZC is not a phasor quan-
tity, for the same reasons indicated for a resistive element.

EXAMPLE 15.5 Using complex algebra, find the current i for the cir-
cuit of Fig. 15.14. Sketch the v and i curves.

Solution: Note Fig. 15.15:

ZC � XC ��90°

V
�
XC

V
�
XC

V
�
XC

V �0°
��
XC ��90°

V
�
XC

V �0°
�
XC �vC

a c

v  =  15 sin qt

+

–
XC  =  2 �

i

FIG. 15.14

Example 15.5.

15 V

0

7.5 A

2
� � 3� 2�

v

i

90°
2
�–

2
  t�

FIG. 15.15

Waveforms for Example 15.5.

v  =  Vm sin qt

+

–

i

XC  =  1/qC

FIG. 15.13

Capacitive ac circuit.



The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.18. Both indicate quite clearly that the current
i leads the voltage v by 90°.

+

j

I

V

10.605 V

Leading
5.303 A

+

j

Leading

V

I

60°2.121 V

4.242 A

(a) (b)
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v � 15 sin qt ⇒ phasor notation V � 10.605 V �0°

I � � � � 5.303 A �90°

and i � �2�(5.303) sin(qt � 90°) � 7.5 sin(qt � 90°)

EXAMPLE 15.6 Using complex algebra, find the voltage v for the cir-
cuit of Fig. 15.16. Sketch the v and i curves.

Solution: Note Fig. 15.17:

i � 6 sin(qt � 60°) ⇒ phasor notation I � 4.242 A ��60°

V� IZC � (I �v)(XC ��90°) � (4.242 A ��60°)(0.5 � ��90°)
� 2.121 V ��150°

and v � �2�(2.121) sin(qt � 150°) � 3.0 sin(qt � 150°)

10.605 V �0°
��

2 � ��90°
V �v

��
XC ��90°

V
�
ZC

a c

v

+

–
XC  =  0.5 �

i  =  6 sin(qt  –  60°)

FIG. 15.16

Example 15.6.

3 V

0

6 A

�

v

i

90°
60°

  t�3�5�
2

2�
2
� 3�

2

FIG. 15.18

Phasor diagrams for Examples 15.5 and 15.6.

Impedance Diagram

Now that an angle is associated with resistance, inductive reactance,
and capacitive reactance, each can be placed on a complex plane dia-

FIG. 15.17

Waveforms for Example 15.6.
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gram, as shown in Fig. 15.19. For any network, the resistance will
always appear on the positive real axis, the inductive reactance on the
positive imaginary axis, and the capacitive reactance on the negative
imaginary axis. The result is an impedance diagram that can reflect
the individual and total impedance levels of an ac network.

We will find in the sections and chapters to follow that networks
combining different types of elements will have total impedances that
extend from �90° to �90°. If the total impedance has an angle of 0°,
it is said to be resistive in nature. If it is closer to 90°, it is inductive in
nature; and if it is closer to �90°, it is capacitive in nature.

Of course, for single-element networks the angle associated with the
impedance will be the same as that of the resistive or reactive element,
as revealed by Eqs. (15.1) through (15.3). It is important to stay aware
that impedance, like resistance or reactance, is not a phasor quantity
representing a time-varying function with a particular phase shift. It is
simply an operating “tool” that is extremely useful in determining the
magnitude and angle of quantities in a sinusoidal ac network.

Once the total impedance of a network is determined, its magnitude
will define the resulting current level (through Ohm’s law), whereas its
angle will reveal whether the network is primarily inductive or capaci-
tive or simply resistive.

For any configuration (series, parallel, series-parallel, etc.), the
angle associated with the total impedance is the angle by which the
applied voltage leads the source current. For inductive networks, vT

will be positive, whereas for capacitive networks, vT will be
negative.

15.3 SERIES CONFIGURATION

The overall properties of series ac circuits (Fig. 15.20) are the same as
those for dc circuits. For instance, the total impedance of a system is the
sum of the individual impedances:

(15.4)ZT � Z1 � Z2 � Z3 � ⋅ ⋅ ⋅ � ZN

a c

I

ZT

I I I
ZNZ3Z2Z1

I

FIG. 15.20

Series impedances.

EXAMPLE 15.7 Draw the impedance diagram for the circuit of Fig.
15.21, and find the total impedance.

Solution: As indicated by Fig. 15.22, the input impedance can be
found graphically from the impedance diagram by properly scaling the

R  =  4 � XL  =  8 �

ZT

FIG. 15.21

Example 15.7.

+ 90°

j

– 90°

XL ∠ 90°

XC ∠ 90°

R ∠ 0° +

FIG. 15.19

Impedance diagram.



XL  =  8 �

j

Z T

+R  =  4 �

vT

FIG. 15.22

Impedance diagram for Example 15.7.

+

j

ZT

Tθ

R = 6 Ω

XL = 10 Ω

XC – XL = 2 Ω

XC = 12 Ω

SERIES CONFIGURATION  637

real and imaginary axes and finding the length of the resultant vector ZT

and angle vT. Or, by using vector algebra, we obtain

ZT � Z1 � Z2

� R �0° � XL �90°
� R � jXL � 4 � � j8 �

ZT � 8.944 � �63.43°

EXAMPLE 15.8 Determine the input impedance to the series network
of Fig. 15.23. Draw the impedance diagram.

Solution:

ZT � Z1 � Z2 � Z3

� R �0° � XL �90° � XC ��90°
� R � jXL � jXC

� R � j(XL � XC) � 6 � � j(10 � � 12 �) � 6 � � j2 �
ZT � 6.325 � ��18.43°

The impedance diagram appears in Fig. 15.24. Note that in this
example, series inductive and capacitive reactances are in direct oppo-
sition. For the circuit of Fig. 15.23, if the inductive reactance were
equal to the capacitive reactance, the input impedance would be purely
resistive. We will have more to say about this particular condition in a
later chapter.

For the representative series ac configuration of Fig. 15.25 having
two impedances, the current is the same through each element (as it
was for the series dc circuits) and is determined by Ohm’s law:

ZT � Z1 � Z2

and (15.5)

The voltage across each element can then be found by another applica-
tion of Ohm’s law:

(15.6a)

(15.6b)

Kirchhoff’s voltage law can then be applied in the same manner as it
is employed for dc circuits. However, keep in mind that we are now
dealing with the algebraic manipulation of quantities that have both
magnitude and direction.

E � V1 � V2 � 0

or (15.7)

The power to the circuit can be determined by

(15.8)

where vT is the phase angle between E and I.

P � EI cos vT

E � V1 � V2

V2 � IZ2

V1 � IZ1

I � �
Z
E

T
�

a c

ZT

Z1

R  =  6 �

Z2

XL  =  10 �

Z3

XC  =  12 �

FIG. 15.23

Example 15.8

FIG. 15.24

Impedance diagram for Example 15.8.

I

Z2

Z1

+

V2

–

V1 –+

E

+

ZT–

FIG. 15.25

Series ac circuit.



+

j

R = 3 �

XL = 4 Ω

Z 
= 

5 
�

Tθ = 53.13°

+

–

I

R = 3 � XL = 4 Ω

VR+ – VL+ –

E = 100 V � 0°
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Now that a general approach has been introduced, the simplest of
series configurations will be investigated in detail to further emphasize
the similarities in the analysis of dc circuits. In many of the circuits to
be considered, 3 � j4 � 5 �53.13° and 4 � j3 � 5 �36.87° will be
used quite frequently to ensure that the approach is as clear as possible
and not lost in mathematical complexity. Of course, the problems at 
the end of the chapter will provide plenty of experience with random 
values.

R-L

Refer to Fig. 15.26.

Phasor Notation

e � 141.4 sin qt ⇒ E � 100 V �0°

Note Fig. 15.27.

a c

R  =  3 � XL  =  4 �

vL –+vR –+

–

+

e  =  141.4 sin qt i

FIG. 15.26

Series R-L circuit.

FIG. 15.27

Applying phasor notation to the network of Fig. 15.26.

FIG. 15.28

Impedance diagram for the series R-L circuit
of Fig. 15.26.

ZT

ZT � Z1 � Z2 � 3 � �0° � 4 � �90° � 3 � �j4 �

and ZT � 5 � �53.13°

Impedance diagram: See Fig. 15.28.

I

I � � � 20 A ��53.13°

VR and VL

Ohm’s law:

VR � IZR � (20 A ��53.13°)(3 � �0°)
� 60 V��53.13°

VL � IZL � (20 A ��53.13°)(4 � �90°)
� 80 V �36.87°

Kirchhoff’s voltage law:

V � E � VR � VL � 0

or E � VR � VL

�

100 V �0°
��
5 � �53.13°

E
�
ZT



+

j

80 V

60 V

VR

I
53.13° E

VL

36.87°
100 V
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In rectangular form,

VR � 60 V ��53.13° � 36 V � j 48 V

VL � 80 V ��36.87° � 64 V � j 48 V

and

E � VR � VL � (36 V � j 48 V) � (64 V � j 48 V) � 100 V � j 0
� 100 V �0°

as applied.
Phasor diagram: Note that for the phasor diagram of Fig. 15.29, I

is in phase with the voltage across the resistor and lags the voltage
across the inductor by 90°.

Power: The total power in watts delivered to the circuit is

PT � EI cos vT

� (100 V)(20 A) cos 53.13° � (2000 W)(0.6)
� 1200 W

where E and I are effective values and vT is the phase angle between E
and I, or

PT � I2R
� (20 A)2(3 �) � (400)(3)
� 1200 W

where I is the effective value, or, finally,

PT � PR � PL � VRI cos vR � VLI cos vL

� (60 V)(20 A) cos 0° � (80 V)(20 A) cos 90°
� 1200 W � 0
� 1200 W

where vR is the phase angle between VR and I, and vL is the phase angle
between VL and I.

Power factor: The power factor Fp of the circuit is cos 53.13° �
0.6 lagging, where 53.13° is the phase angle between E and I.

If we write the basic power equation P � EI cos v as follows:

cos v �

where E and I are the input quantities and P is the power delivered to
the network, and then perform the following substitutions from the
basic series ac circuit:

cos v � � � � �

we find (15.9)

Reference to Fig. 15.28 also indicates that v is the impedance angle
vT as written in Eq. (15.9), further supporting the fact that the imped-
ance angle vT is also the phase angle between the input voltage and cur-
rent for a series ac circuit. To determine the power factor, it is necessary

Fp � cos vT � �
Z
R

T
�

R
�
ZT

R
�
E/I

IR
�
E

I2R
�
EI

P
�
EI

P
�
EI

a c

FIG. 15.29

Phasor diagram for the series R-L circuit of
Fig. 15.26.
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30
 V

VR

E

VC

53.13°
36.87°

I 50 V

j

40 V

+

j

Tθ = 53.13°

R = 6 �

Z
T  = 10 ΩXC = 8 Ω

R = 6 �

VR+ –

XC = 8 Ω

VC+ –I = 5 �53.13°

I E
+

–

ZT
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only to form the ratio of the total resistance to the magnitude of the
input impedance. For the case at hand,

Fp � cos v � � � 0.6 lagging

as found above.

R-C

Refer to Fig. 15.30.

Phasor Notation

i � 7.07 sin(qt � 53.13°) ⇒ I � 5 A �53.13°

Note Fig. 15.31.

3 �
�
5 �

R
�
ZT

a c

FIG. 15.31

Applying phasor notation to the circuit of Fig. 15.30.

ZT

ZT � Z1 � Z2 � 6 � �0° � 8 � ��90° � 6 � � j8 �

and ZT � 10 � ��53.13°

Impedance diagram: As shown in Fig. 15.32.

E

E � IZT � (5 A �53.13°)(10 � ��53.13°) � 50 V �0°

VR and VC

VR � IZR � (I �v)(R �0°) � (5 A �53.13°)(6 � �0°)
� 30 V �53.13°

VC � IZC � (I �v)(XC ��90°) � (5 A �53.13°)(8 � ��90°)
� 40 V ��36.87°

Kirchhoff’s voltage law:

V � E � VR � VC � 0

or E � VR � VC

which can be verified by vector algebra as demonstrated for the R-L
circuit.

Phasor diagram: Note on the phasor diagram of Fig. 15.33 that the
current I is in phase with the voltage across the resistor and leads the
voltage across the capacitor by 90°.

�

FIG. 15.32

Impedance diagram for the series R-C circuit
of Fig. 15.30.

FIG. 15.33

Phasor diagram for the series R-C circuit 
of Fig. 15.30.

R  =  6 � XC  =  8 �

vC –+vR –+

i  =  7.07 sin(qt  +  53.13°)

FIG. 15.30

Series R-C ac circuit.
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a c

70.70 V

56.56 V

42.42 V
vR

e

vC

36.87°

90°

i
�0   t�

�2
�

2
3

�
2

�
2

–

Power: The total power in watts delivered to the circuit is

PT � EI cos vT � (50 V)(5 A) cos 53.13°
� (250)(0.6) � 150 W

or PT � I2R � (5 A)2(6 �) � (25)(6)
� 150 W

or, finally,

PT � PR � PC � VRI cos vR � VCI cos vC

� (30 V)(5 A) cos 0° � (40 V)(5 A) cos 90°
� 150 W � 0
� 150 W

Power factor: The power factor of the circuit is

Fp � cos v � cos 53.13° � 0.6 leading

Using Eq. (15.9), we obtain

Fp � cos v � �

� 0.6 leading

as determined above.

6 �
�
10 �

R
�
ZT

FIG. 15.34

Waveforms for the series R-C circuit of Fig. 15.30.

Time domain: In the time domain,

e � �2�(50) sin qt � 70.70 sin qt

vR � �2�(30) sin(qt � 53.13°) � 42.42 sin(qt � 53.13°)

vC � �2�(40) sin(qt � 36.87°) � 56.56 sin(qt � 36.87°)

A plot of all of the voltages and the current of the circuit appears
in Fig. 15.34. Note again that i and vR are in phase and that vC lags i
by 90°.



+

j

XL = 7 Ω

XL – XC = 4 Ω

XC = 3 Ω

R = 3 Ω

Z T
 =

 5
 Ω

θT  = 53.13°
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R-L-C

Refer to Fig. 15.35.

a c

R  =  3 � XC  =  3 �

VC –+VR –+

E  =  50 V ∠  0°

VL –+

XL  =  7 �

–

+

I

ZT

ZT � Z1 � Z2 � Z3� R �0° � XL �90° � XC ��90°
� 3 � � j 7 � � j 3 � � 3 � � j 4 �

and ZT � 5 � �53.13°

Impedance diagram: As shown in Fig. 15.37.

I

I � � � 10 A ��53.13°

VR, VL, and VC

VR � IZR � (I �v)(R �0°) � (10 A ��53.13°)(3 � �0°)
� 30 V ��53.13°

VL � IZL � (I �v)(XL �90°) � (10 A ��53.13°)(7 � �90°)
� 70 V �36.87°

VC � IZC � (I �v)(XC ��90°) � (10 A ��53.13°)(3 � ��90°)
� 30 V ��143.13°

Kirchhoff’s voltage law:

V � E � VR � VL � VC � 0�

50 V �0°
��
5 � �53.13°

E
�
ZT

FIG. 15.36

Applying phasor notation to the circuit of Fig. 15.35.

FIG. 15.37

Impedance diagram for the series R-L-C
circuit of Fig. 15.35.

R   =  3 � XC  =  3 �

vC –+vR –+

e =  70.7 sin qt

vL –+

XL  =  7 �

–

+

i

FIG. 15.35

Series R-L-C ac circuit.

Phasor Notation As shown in Fig. 15.36.
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FIG. 15.38

Phasor diagram for the series R-L-C circuit of
Fig. 15.35.

or E � VR � VL � VC

which can also be verified through vector algebra.
Phasor diagram: The phasor diagram of Fig. 15.38 indicates that

the current I is in phase with the voltage across the resistor, lags the
voltage across the inductor by 90°, and leads the voltage across the
capacitor by 90°.

Time domain:

i � �2�(10) sin(qt � 53.13°) � 14.14 sin(qt � 53.13°)

vR � �2�(30) sin(qt �53.13°) � 42.42 sin(qt � 53.13°)

vL � �2�(70) sin(qt � 36.87°) � 98.98 sin(qt � 36.87°)

vC � �2�(30) sin(qt � 143.13°) � 42.42 sin(qt � 143.13°)

A plot of all the voltages and the current of the circuit appears in Fig.
15.39.

FIG. 15.39

Waveforms for the series R-L circuit of Fig. 15.35.

98.98 V

70.70 V

42.42 V

vL

vC

53.13°
90°

�0

36.87°

e

vR

i

  t��3�
2
5�2�

2
3�

2
�
2

–

Power: The total power in watts delivered to the circuit is

PT � EI cos vT � (50 V)(10 A) cos 53.13° � (500)(0.6) � 300 W

or PT � I2R � (10 A)2(3 �) � (100)(3) � 300 W

or

PT � PR � PL � PC

� VRI cos vR � VLI cos vL � VC I cos vC

� (30 V)(10 A) cos 0° � (70 V)(10 A) cos 90° � (30 V)(10 A) cos 90°
� (30 V)(10 A) � 0 � 0 � 300 W

Power factor: The power factor of the circuit is

Fp � cos vT � cos 53.13° � 0.6 lagging

Using Eq. (15.9), we obtain

Fp � cos v � � � 0.6 lagging
3 �
�
5 �

R
�
ZT



a c

15.4 VOLTAGE DIVIDER RULE
The basic format for the voltage divider rule in ac circuits is exactly
the same as that for dc circuits:

(15.10)

where Vx is the voltage across one or more elements in series that have
total impedance Zx, E is the total voltage appearing across the series
circuit, and ZT is the total impedance of the series circuit.

EXAMPLE 15.9 Using the voltage divider rule, find the voltage across
each element of the circuit of Fig. 15.40.

Solution:

VC � � �

� � 80 V ��36.87°

VR � � �

� 60 V ��53.13°

EXAMPLE 15.10 Using the voltage divider rule, find the unknown
voltages VR, VL, VC, and V1 for the circuit of Fig. 15.41.

300 �0°
��
5 ��53.13°

(3 � �0°)(100 V �0°)
���

5 � ��53.13°

ZRE
�
ZC � ZR

400 ��90°
��
5 ��53.13°

400 ��90°
��

3 � j 4
(4 � ��90°)(100 V �0°)
���

4 � ��90° � 3 � �0°

ZCE
�
ZC � ZR

Vx � �
Z
Z

x

T

E
�
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R  =  6 � XC  =  17 �

VC –+VR –+

E  =  50 V ∠  30°
–

+

V1

XL  =  9 �

VL –+

Solution:

VR � �

� �

� � 30 V �83.13°

Calculator The above calculation provides an excellent opportunity
to demonstrate the power of today’s calculators. Using the notation of
the TI-86 calculator, the above calculation and the result are as follows:

300 �30°
��
10 ��53.13°

300 �30°
��

6 � j 8
300 �30°

��
6 � j 9 � j 17

(6 � �0°)(50 V �30°)
����
6 � �0° � 9 � �90° � 17 � ��90°

ZRE
��
ZR � ZL � ZC

FIG. 15.41

Example 15.10.

R  =  3 � XC  =  4 �

VC –+VR –+

E  =  100 V ∠  0°
–

+

FIG. 15.40

Example 15.9.
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CALC. 15.1

VL � � �

� 45 V �173.13°

VC � � �

� 85 V ��6.87°

V1 � �

�

� � 40 V ��6.87°

EXAMPLE 15.11 For the circuit of Fig. 15.42:

400 ��60°
��
10 ��53.13°

(8 ��90°)(50 �30°)
���

10 ��53.13°

(9 � �90° � 17 � ��90°)(50 V �30°)
�����

10 � ��53.13°

(ZL � ZC)E
��

ZT

850 V��60°
��

10 ��53°

(17 � ��90°)(50 V �30°)
���

10 � ��53.13°

ZCE
�
ZT

450 V�120°
��
10 ��53.13°

(9 � �90°)(50 V �30°)
���

10 � ��53.13°

ZLE
�
ZT

a c

R1  =  6 � L2  =  0.05 H

vC
–+–+

e  =  �2(20) sin 377t

–

+ vL
–+

L1  =  0.05 H

vR

R2  =  4 �

C2  =  200 mFC1  =  200 mF

i

FIG. 15.42

Example 15.11.

a. Calculate I, VR, VL, and VC in phasor form.
b. Calculate the total power factor.
c. Calculate the average power delivered to the circuit.
d. Draw the phasor diagram.
e. Obtain the phasor sum of VR, VL, and VC, and show that it equals the

input voltage E.
f. Find VR and VC using the voltage divider rule.

Solutions:

a. Combining common elements and finding the reactance of the
inductor and capacitor, we obtain

RT � 6 � � 4 � � 10 �

LT � 0.05 H � 0.05 H � 0.1 H

CT � � 100 mF
200 mF
�

2

(6�0)*(50�30)/((6�0)�(9�90)�(17��90))

(3.588E0,29.785E0)
Ans � Pol

(30.000E0�83.130E0)
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a c

XL � qL � (377 rad/s)(0.1 H) � 37.70 �

XC � � � � 26.53 �

Redrawing the circuit using phasor notation results in Fig. 15.43.

106 �
�
37,700

1
���
(377 rad/s)(100 � 10�6 F)

1
�
qC

FIG. 15.44

Phasor diagram for the circuit of Fig. 15.42.

FIG. 15.43

Applying phasor notation to the circuit of  Fig. 15.42.

R  =  10 � XC  =  26.53 �

VC –+VR –+

E  =  20 V ∠  0°
–

+

I

XL  =  37.70 �

VL –+

For the circuit of Fig. 15.43,

ZT � R �0° � XL �90° � XC ��90°
� 10 � � j 37.70 � � j 26.53 �
� 10 � � j 11.17 � � 15 � �48.16°

The current I is

I � � � 1.33 A ��48.16°

The voltage across the resistor, inductor, and capacitor can be found
using Ohm’s law:

VR � IZR � (I �v)(R �0°) � (1.33 A ��48.16°)(10 � �0°)
� 13.30 V ��48.16°

VL � IZL � (I �v)(XL �90°) � (1.33 A ��48.16°)(37.70 � �90°)
� 50.14 V �41.84°

VC � IZC � (I �v)(XC ��90°) � (1.33A ��48.16°)(26.53 ���90°)
� 35.28 V ��138.16°

b. The total power factor, determined by the angle between the applied
voltage E and the resulting current I, is 48.16°:

Fp � cos v � cos 48.16° � 0.667 lagging

or Fp � cos v � � � 0.667 lagging

c. The total power in watts delivered to the circuit is

PT � EI cos v � (20 V)(1.33 A)(0.667) � 17.74 W

d. The phasor diagram appears in Fig. 15.44.
e. The phasor sum of VR, VL, and VC is

E � VR � VL � VC

� 13.30 V ��48.16° � 50.14 V �41.84° � 35.28 V ��138.16°
E � 13.30 V ��48.16° � 14.86 V �41.84°

10 �
�
15 �

R
�
ZT

20 V �0°
��
15 � �48.16°

E
�
ZT
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Therefore,

E � �(1�3�.3�0� V�)2� �� (�1�4�.8�6� V�)2� � 20 V

and vE � 0° (from phasor diagram)

and E � 20 �0°

f. VR � � �

� 13.3 V ��48.16°

VC � � �

� 35.37 V ��138.16°

15.5 FREQUENCY RESPONSE OF THE
R-C CIRCUIT

Thus far, the analysis of series circuits has been limited to a particular
frequency. We will now examine the effect of frequency on the response
of an R-C series configuration such as that in Fig. 15.45. The magnitude
of the source is fixed at 10 V, but the frequency range of analysis will
extend from zero to 20 kHz.

530.6 V��90°
��

15 �48.16°
(26.5 � ��90°)(20 V �0°)
���

15 � �48.16°
ZCE
�
ZT

200 V�0°
��
15 �48.16°

(10 � �0°)(20 V �0°)
���

15 � �48.16°
ZRE
�
ZT

a c

5 k�

ZTE  =  10 V ∠  0°
–

+

R

C 0.01 mF

–

+

VC

f : 0 to 20 kHz

FIG. 15.45

Determining the frequency response of a series R-C circuit.

ZT Let us first determine how the impedance of the circuit ZT will
vary with frequency for the specified frequency range of interest.
Before getting into specifics, however, let us first develop a sense for
what we should expect by noting the impedance-versus-frequency
curve of each element, as drawn in Fig. 15.46.

At low frequencies the reactance of the capacitor will be quite high
and considerably more than the level of the resistance R, suggesting that
the total impedance will be primarily capacitive in nature. At high fre-
quencies the reactance XC will drop below the R � 5-k� level, and the
network will start to shift toward one of a purely resistive nature (at
5 k�). The frequency at which XC � R can be determined in the fol-
lowing manner:

XC � � R

and
XC � R

(15.11)f1 � �
2p

1
RC
�

1
�
2pf1C
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which for the network of interest is

f1 � � 3183.1 Hz

For frequencies less than f1, XC > R, and for frequencies greater than f1,
R > XC, as shown in Fig. 15.46.

Now for the details. The total impedance is determined by the fol-
lowing equation:

ZT � R � j XC

and (15.12)

The magnitude and angle of the total impedance can now be found
at any frequency of interest by simply substituting into Eq. (15.12). The
presence of the capacitor suggests that we start from a low frequency
(100 Hz) and then open the spacing until we reach the upper limit of
interest (20 kHz).

f � 100 Hz

XC � � � 159.16 k�

and ZT � �R�2��� X�2
C� � �(5� k���)2� �� (�1�5�9�.1�6� k���)2� � 159.24 k�

with vT � �tan�1 � �tan�1 � �tan�1 31.83

� �88.2°

and ZT � 159.24 k� ��88.2°

which compares very closely with ZC � 159.16 k� ��90° if the cir-
cuit were purely capacitive (R � 0 �). Our assumption that the circuit
is primarily capacitive at low frequencies is therefore confirmed.

159.16 k�
��

5 k�

XC�
R

1
���
2p(100 Hz)(0.01 mF)

1
�
2pfC

ZT � ZT �vT � �R�2��� X�2
C� ��tan�1 �

X
R

C�

1
���
2p(5 k�)(0.01 mF)

a c

0

R = 5 k�

ZT XC = 1
2   fC

f

5 k�

R

XC

5 k�

R < XC     R > XC

0 f

�

 f1

FIG. 15.46

The frequency response of the individual elements of a series R-C circuit.
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f � 1 kHz

XC � � � 15.92 k�

and ZT � �R�2��� X�2
C� � �(5� k���)2� �� (�1�5�.9�2� k���)2� � 16.69 k�

with vT � �tan�1 � �tan�1

� �tan�1 3.18 � �72.54°

and ZT � 16.69 k� ��72.54°

A noticeable drop in the magnitude has occurred, and the impedance
angle has dropped almost 17° from the purely capacitive level.

Continuing:

f � 5 kHz: ZT � 5.93 k� ��32.48°

f � 10 kHz: ZT � 5.25 k� ��17.66°

f � 15 kHz: ZT � 5.11 k� ��11.98°

f � 20 kHz: ZT � 5.06 k� ��9.04°

Note how close the magnitude of ZT at f � 20 kHz is to the resistance
level of 5 k�. In addition, note how the phase angle is approaching that
associated with a pure resistive network (0°).

A plot of ZT versus frequency in Fig. 15.47 completely supports our
assumption based on the curves of Fig. 15.46. The plot of vT versus fre-
quency in Fig. 15.48 further suggests the fact that the total impedance
made a transition from one of a capacitive nature (vT � �90°) to one
with resistive characteristics (vT � 0°).

15.92 k�
��

5 k�

XC�
R

1
���
2p(1 kHz)(0.01 mF)

1
�
2pfC

a c

50 101 15 20 f (kHz)

Circuit resistive

Circuit capacitive

5

10

15

20
ZT (k�)

R  =  5 k�

ZT ( f )

FIG. 15.47

The magnitude of the input impedance versus frequency for the circuit of 
Fig. 15.45.
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Applying the voltage divider rule to determine the voltage across the
capacitor in phasor form yields

VC �

� �

�

or VC �VC �vC � /�90° � tan�1(XC/R)

The magnitude of VC is therefore determined by

VC � (15.13)

and the phase angle vC by which VC leads E is given by

(15.14)

To determine the frequency response, XC must be calculated for each
frequency of interest and inserted into Eqs. (15.13) and (15.14).

To begin our analysis, it makes good sense to consider the case of 
f � 0 Hz (dc conditions).

vC � �90° � tan�1 �
X
R

C
� � �tan�1 �

X
R

C
�

XCE
��
�R�2��� X�2

C�

XC E
��
�R�2��� X�2

C�

XC E ��90°
���
�R�2��� X�2

C� /�tan�1 XC/R

XC E ��90°
��

R � j XC

(XC ��90°)(E �0°)
���

R � j XC

ZCE
�
ZR � ZC

a c

5

0°

101 15 20 f (kHz)

Circuit capacitive

–45°

–30°

–60°

–90°

Circuit resistive

  Tθ

  T ( f )θ

FIG. 15.48

The phase angle of the input impedance versus frequency for the circuit of 
Fig. 15.45.
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f � 0 Hz

XC � � ⇒ very large value

Applying the open-circuit equivalent for the capacitor based on the
above calculation will result in the following:

VC � E � 10 V �0°

If we apply Eq. (15.13), we find

X2
C >> R2

and �R�2��� X�2
C� � �X�2

C� � XC

and VC � � � E

with vC � �tan�1 � �tan�1 0 � 0°

verifying the above conclusions.

f � 1 kHz Applying Eq. (15.13):

XC � � � 15.92 k�

�R�2��� X�2
C� � �(5� k���)2� �� (�1�5�.9�2� k���)2� � 16.69 k�

and VC � � � 9.54 V

Applying Eq. (15.14):

vC � �tan�1 � �tan�1

� �tan�1 0.314 � �17.46°

and VC � 9.53 V ��17.46°

As expected, the high reactance of the capacitor at low frequencies has
resulted in the major part of the applied voltage appearing across the
capacitor.

If we plot the phasor diagrams for f � 0 Hz and f � 1 kHz, as shown
in Fig. 15.49, we find that VC is beginning a clockwise rotation with an
increase in frequency that will increase the angle vC and decrease the
phase angle between I and E. Recall that for a purely capacitive net-

5 k�
�
15.9 k�

R
�
XC

(15.92 k�)(10)
��

16.69 k�

XCE
��
�R�2��� X�2

C�

1
����
(2p)(1 � 103 Hz)(0.01 � 10�6 F)

1
�
2pfC

R
�
XC

XCE
�
XC

XCE
��
�R�2��� X�2

C�

1
�
0

1
�
2p(0)C

a c

I  =  0 A

f  =  0 Hz

E
VC

E

I

VR

f  =  1 kHz

–17.46°

VC

  Cθ

  Iθ

  C  =  0°θ
  I  =  90°θ

FIG. 15.49

The phasor diagram for the circuit of Fig. 15.45 for f � 0 Hz and 1 kHz.
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work, I leads E by 90°. As the frequency increases, therefore, the
capacitive reactance is decreasing, and eventually R >> XC with vC �
�90°, and the angle between I and E will approach 0°. Keep in mind
as we proceed through the other frequencies that vC is the phase angle
between VC and E and that the magnitude of the angle by which I leads
E is determined by

(15.15)

f � 5 kHz Applying Eq. (15.13):

XC � � � 3.18 k�

Note the dramatic drop in XC from 1 kHz to 5 kHz. In fact, XC is now
less than the resistance R of the network, and the phase angle deter-
mined by tan�1(XC /R) must be less than 45°. Here,

VC � � � 5.37 V

with vC � �tan�1 � �tan�1

� �tan�1 1.56 � �57.38°

f � 10 kHz

XC � 1.59 k� VC � 3.03 V vC � �72.34°

f � 15 kHz

XC � 1.06 k� VC � 2.07 V vC � �78.02°

f � 20 kHz

XC � 795.78 � VC � 1.57 V vC � �80.96°

The phasor diagrams for f � 5 kHz and f � 20 kHz appear in Fig.
15.50 to show the continuing rotation of the VC vector.

5 k�
�
3.2 k�

R
�
XC

(3.18 k�)(10 V)
���
�(5� k���)2� �� (�3�.1�8� k���)2�

XCE
��
�R�2��� X�2

C�

1
����
(2p)(5 � 103 Hz)(0.01 � 10�6 F)

1
�
2pfC

 vI � 90° �  vC

a c

I

IVR

f  =  20 kHz

VR

E

VC

f  =  5 kHz

E

VC

  C  =  –80.96°θ  C  =  –57.38°θ

FIG. 15.50

The phasor diagram for the circuit of Fig. 15.45 for f � 5 kHz and 20 kHz.

Note also from Figs. 15.49 and 15.50 that the vector VR and the cur-
rent I have grown in magnitude with the reduction in the capacitive
reactance. Eventually, at very high frequencies XC will approach zero



FREQUENCY RESPONSE OF THE R-C CIRCUIT  653
a c

VC  ≅   0 V E
VR

vI  ≅   0°
vC  ≅   –90°

f  =  very high frequencies

FIG. 15.51

The phasor diagram for the circuit of Fig.
15.45 at very high frequencies.

50 101 15 20 f (kHz)

Network resistive

Network capacitive

4

9

10

VC

VC ( f )

8

7

6

5

3

2

1

ohms and the short-circuit equivalent can be applied, resulting in VC �
0 V and vC � �90°, and producing the phasor diagram of Fig. 15.51.
The network is then resistive, the phase angle between I and E is essen-
tially zero degrees, and VR and I are their maximum values.

A plot of VC versus frequency appears in Fig. 15.52. At low fre-
quencies XC >> R, and VC is very close to E in magnitude. As the

FIG. 15.52

The magnitude of the voltage VC versus frequency for the circuit of Fig. 15.45.

FIG. 15.53

The phase angle between E and VC versus frequency for the circuit of 
Fig. 15.45.

50 10 15 20 f (kHz)

Network capacitive–30°

–60°

–90°

Network resistive

1

  C ( f )θ

  C (phase angle between E and VC)θ

applied frequency increases, XC decreases in magnitude along with VC

as VR captures more of the applied voltage. A plot of vC versus fre-
quency is provided in Fig. 15.53. At low frequencies the phase angle
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between VC and E is very small since VC � E. Recall that if two pha-
sors are equal, they must have the same angle. As the applied frequency
increases, the network becomes more resistive and the phase angle
between VC and E approaches 90°. Keep in mind that, at high frequen-
cies, I and E are approaching an in-phase situation and the angle
between VC and E will approach that between VC and I, which we
know must be 90° (IC leading VC).

A plot of VR versus frequency would approach E volts from zero
volts with an increase in frequency, but remember VR � E � VC due to
the vector relationship. The phase angle between I and E could be plot-
ted directly from Fig. 15.53 using Eq. (15.15).

In Chapter 23, the analysis of this section will be extended to a much
wider frequency range using a log axis for frequency. It will be demon-
strated that an R-C circuit such as that in Fig. 15.45 can be used as a fil-
ter to determine which frequencies will have the greatest impact on the
stage to follow. From our current analysis, it is obvious that any net-
work connected across the capacitor will receive the greatest potential
level at low frequencies and be effectively “shorted out” at very high
frequencies.

The analysis of a series R-L circuit would proceed in much the same
manner, except that XL and VL would increase with frequency and the
angle between I and E would approach 90° (voltage leading the cur-
rent) rather than 0°. If VL were plotted versus frequency, VL would
approach E, and XL would eventually attain a level at which the open-
circuit equivalent would be appropriate.

15.6 SUMMARY: SERIES ac CIRCUITS

The following is a review of important conclusions that can be derived
from the discussion and examples of the previous sections. The list is
not all-inclusive, but it does emphasize some of the conclusions that
should be carried forward in the future analysis of ac systems.

For series ac circuits with reactive elements:
1. The total impedance will be frequency dependent.
2. The impedance of any one element can be greater than the total

impedance of the network.
3. The inductive and capacitive reactances are always in direct

opposition on an impedance diagram.
4. Depending on the frequency applied, the same circuit can be

either predominantly inductive or predominantly capacitive.
5. At lower frequencies the capacitive elements will usually have the

most impact on the total impedance, while at high frequencies the
inductive elements will usually have the most impact.

6. The magnitude of the voltage across any one element can be
greater than the applied voltage.

7. The magnitude of the voltage across an element compared to the
other elements of the circuit is directly related to the magnitude
of its impedance; that is, the larger the impedance of an
element, the larger the magnitude of the voltage across the
element.

8. The voltages across a coil or capacitor are always in direct
opposition on a phasor diagram.

9. The current is always in phase with the voltage across the
resistive elements, lags the voltage across all the inductive

a c
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elements by 90°, and leads the voltage across all the capacitive
elements by 90°.

10. The larger the resistive element of a circuit compared to the net
reactive impedance, the closer the power factor is to unity.

PARALLEL ac CIRCUITS

15.7 ADMITTANCE AND SUSCEPTANCE

The discussion for parallel ac circuits will be very similar to that for
dc circuits. In dc circuits, conductance (G) was defined as being equal
to 1/R. The total conductance of a parallel circuit was then found by
adding the conductance of each branch. The total resistance RT is sim-
ply 1/GT.

In ac circuits, we define admittance (Y) as being equal to 1/Z. The
unit of measure for admittance as defined by the SI system is siemens,
which has the symbol S. Admittance is a measure of how well an ac cir-
cuit will admit, or allow, current to flow in the circuit. The larger its
value, therefore, the heavier the current flow for the same applied
potential. The total admittance of a circuit can also be found by finding
the sum of the parallel admittances. The total impedance ZT of the cir-
cuit is then 1/YT; that is, for the network of Fig. 15.54:

(15.16)YT � Y1 � Y2 � Y3 � ⋅ ⋅ ⋅ � YN

a c

Y1  =
1
Z1

Y2  =
1
Z2

Y3  =
1
Z3

YN  =
1
ZN

YT

ZT

FIG. 15.54

Parallel ac network.

or, since Z � 1/Y,

(15.17)

For two impedances in parallel,

� �

If the manipulations used in Chapter 6 to find the total resistance of two
parallel resistors are now applied, the following similar equation will
result:

(15.18)ZT � �
Z1

Z
�
1Z2

Z2
�

1
�
Z2

1
�
Z1

1
�
ZT

�
Z
1

T
� � �

Z
1

1
� � �

Z
1

2
� � �

Z
1

3
� � ⋅ ⋅ ⋅ � �

Z
1

N
�
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For three parallel impedances,

ZT � (15.19)

As pointed out in the introduction to this section, conductance is the
reciprocal of resistance, and

(15.20)

The reciprocal of reactance (1/X) is called susceptance and is a mea-
sure of how susceptible an element is to the passage of current through
it. Susceptance is also measured in siemens and is represented by the
capital letter B.

For the inductor,

(15.21)

Defining (siemens, S) (15.22)

we have (15.23)

Note that for inductance, an increase in frequency or inductance will
result in a decrease in susceptance or, correspondingly, in admittance.

For the capacitor,

(15.24)

Defining (siemens, S) (15.25)

we have (15.26)

For the capacitor, therefore, an increase in frequency or capacitance
will result in an increase in its susceptibility.

For parallel ac circuits, the admittance diagram is used with the
three admittances, represented as shown in Fig. 15.55.

Note in Fig. 15.55 that the conductance (like resistance) is on the
positive real axis, whereas inductive and capacitive susceptances are in
direct opposition on the imaginary axis.

For any configuration (series, parallel, series-parallel, etc.), the angle
associated with the total admittance is the angle by which the source
current leads the applied voltage. For inductive networks, vT is
negative, whereas for capacitive networks, vT is positive.

YC � BC �90°

BC � �
X
1

C
�

YC � �
Z
1

C
� � �

XC �

1
�90°
� � �

X
1

C
� �90°

YL � BL ��90°

BL � �
X
1

L
�

YL � �
Z
1

L
� � �

XL �

1
90°
� � �

X
1

L
� ��90°

YR � �
Z
1

R
� � �

R �

1
0°

� � G �0°

Z1Z2Z3���
Z1Z2 � Z2Z3 � Z1Z3

a c

 j

BC ∠ 90°

BL ∠ –90°

G ∠ 0°
+

FIG. 15.55

Admittance diagram.



XC 20 �
YT

ZT
R 5 � XL 8 �

XL 10 �

YT

ZT
R 20 �
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EXAMPLE 15.12 For the network of Fig. 15.56:
a. Find the admittance of each parallel branch.
b. Determine the input admittance.
c. Calculate the input impedance.
d. Draw the admittance diagram.

Solutions:

a. YR � G �0° � �0° � �0°

� 0.05 S �0° � 0.05 S � j 0

YL � BL ��90° � ��90° � ��90°

� 0.1 S ��90° � 0 � j 0.1 S

b. YT � YR � YL � (0.05 S � j 0) � (0 � j 0.1 S)

� 0.05 S � j 0.1 S � G � j BL

c. ZT � � �

� 8.93 � �63.43°

or Eq. (15.17):

ZT � �

� � 8.93 � �63.43°

d. The admittance diagram appears in Fig. 15.57.

200 � �90°
��
22.36 �26.57°

(20 � �0°)(10 � �90°)
���

20 � � j 10 �
ZRZL�

ZR � ZL

1
��
0.112 S ��63.43°

1
��
0.05 S � j 0.1 S

1
�
YT

1
�
10 �

1
�
XL

1
�
20 �

1
�
R

a c

FIG. 15.56

Example 15.12.

 j

YT

+

YL  =  0.1 S ∠  – 90°

0.112 S

–63.43°

YR  =  0.05 S ∠ 0°

FIG. 15.57

Admittance diagram for the network of 
Fig. 15.56.

FIG. 15.58

Example 15.13.

EXAMPLE 15.13 Repeat Example 15.12 for the parallel network of
Fig. 15.58.

Solutions:

a. YR � G �0° � �0° � �0°

� 0.2 S �0° � 0.2 S � j 0

1
�
5 �

1
�
R
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YL � BL ��90° � ��90° � ��90°

� 0.125 S ��90° � 0 � j 0.125 S

YC � BC �90° � �90° � �90°

� 0.050 S ��90° � 0 � j 0.050 S
b. YT � YR � YL � YC

� (0.2 S � j 0) � (0 � j 0.125 S) � (0 � j 0.050 S)

� 0.2 S � j 0.075 S � 0.2136 S ��20.56°

c. ZT � � 4.68 � �20.56°

or

ZT �

�

� (5 � �0°)(20 � ��90°)

�

� �

�

� 4.68 � �20.56°

d. The admittance diagram appears in Fig. 15.59.

On many occasions, the inverse relationship YT � 1/ZT or ZT �
1/YT will require that we divide the number 1 by a complex number
having a real and an imaginary part. This division, if not performed in
the polar form, requires that we multiply the numerator and denomina-
tor by the conjugate of the denominator, as follows:

YT � � � � � � � �

and YT � S � j S

To avoid this laborious task each time we want to find the reciprocal
of a complex number in rectangular form, a format can be developed
using the following complex number, which is symbolic of any imped-
ance or admittance in the first or fourth quadrant:

� � � � � �

or (15.27)

Note that the denominator is simply the sum of the squares of each
term. The sign is inverted between the real and imaginary parts. A few
examples will develop some familiarity with the use of this equation.

�
a1 �

1
j b1
� � �

a2
1

a
�

1

b2
1

� � j �
a2

1

b
�

1

b2
1

�

a1 � j b1
�
a2

1 � b2
1

a1 � j b1
�
a1 � j b1

1
�
a1 � j b1

1
�
a1 � j b1

6
�
52

4
�
52

4 � j 6
�
42 � 62

(4 � � j 6 �)
��
(4 � � j 6 �)

1
��
4 � � j 6 �

1
��
4 � � j 6 �

1
�
ZT

800 �
��
170.88 ��20.56°

800 �
��
160 � j 60

800 �
��
160 � j 40 � j 100

800 � �0°
����
40 �90° � 160 �0° � 100 ��90°

(5 � �0°)(8 � �90°)(20 � ��90°)
������
(5 � �0°)(8 � �90°) � (8 � �90°)(20 � ��90°)

ZRZLZC
���
ZRZL � ZLZC � ZRZC

1
���
0.2136 S ��20.56°

1
�
20 �

1
�
XC

1
�
8 �

1
�
XL

a c

20.56°

YR

YC

YL  –  YC

YT

0.2136 S

+

YL

 j

FIG. 15.59

Admittance diagram for the network of 
Fig. 15.58.



R 6 �

XC 8 �

Y

(a)

R 10 �

XC 0.1 �

Y

(b)

XL 4 �
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a c

I

Z2E
ZT,

 
YT

Z1

I1 I2

EXAMPLE 15.14 Find the admittance of each set of series elements
in Fig. 15.60.

FIG. 15.60

Example 15.14.

FIG. 15.61

Parallel ac network.

Solutions:

a. Z � R � j XC � 6 � �j 8 �

Eq. (15.27):

Y � � � j

� S � j S

b. Z � 10 � � j 4 � � (�j 0.1 �) � 10 � � j 3.9 �

Eq. (15.27):

Y � � � � j

� � j � 0.087 S � j 0.034 S

15.8 PARALLEL ac NETWORKS

For the representative parallel ac network of Fig. 15.61, the total imped-
ance or admittance is determined as described in the previous section,
and the source current is determined by Ohm’s law as follows:

(15.28)

Since the voltage is the same across parallel elements, the current
through each branch can then be found through another application of
Ohm’s law:

(15.29a)

(15.29b)I2 � �
Z
E

2
� � EY2

I1 � �
Z
E

1
� � EY1

I � �
Z
E

T
� � EYT

3.9
�
115.21

10
�
115.21

3.9
��
(10)2 � (3.9)2

10
��
(10)2 � (3.9)2

1
��
10 � � j 3.9 �

1
�
Z

8
�
100

6
�
100

8
��
(6)2 � (8)2

6
��
(6)2 � (8)2

1
��
6 � � j 8 �
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Kirchhoff’s current law can then be applied in the same manner as
employed for dc networks. However, keep in mind that we are now
dealing with the algebraic manipulation of quantities that have both
magnitude and direction.

I � I1 � I2 � 0

or (15.30)

The power to the network can be determined by

(15.31)

where vT is the phase angle between E and I.
Let us now look at a few examples carried out in great detail for the

first exposure.

R-L

Refer to Fig. 15.62.

P � EI cos vT

I � I1 � I2

a c

YT and ZT

YT � YR � YL

� G �0° � BL ��90° � �0° � ��90°

� 0.3 S �0° � 0.4 S ��90° � 0.3 S � j 0.4 S

� 0.5 S ��53.13°

ZT � � � 2 � �53.13°
1

��
0.5 S ��53.13°

1
�
YT

1
�
2.5 �

1
�
3.33 �

R 3.33 �

a

iLiR

2.5 �XL

i

e  =  �2(20) sin(qt  +  53.13°)

+

–

FIG. 15.62

Parallel R-L network.

R 3.33 �

a

ILIR

2.5 �XL

I  =  10 A ∠  0°

E  =  20 V ∠  53.13°

+

–

YT

ZT

FIG. 15.63

Applying phasor notation to the network of Fig. 15.62.

Phasor Notation As shown in Fig. 15.63.
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Admittance diagram: As shown in Fig. 15.64.

a c

53.13° +

j

YT  =  0.5 S ∠ –53.13°

G ∠ 0°  =  0.3 S ∠  0°

BL ∠  –90°  =  0.4 S ∠  –90°

I

I � � EYT � (20 V �53.13°)(0.5 S ��53.13°) � 10 A �0°

IR and IL

IR � � (E �v)(G �0°)

� (20 V �53.13°)(0.3 S �0°) � 6 A �53.13°

IL � � (E �v)(BL ��90°)

� (20 V �53.13°)(0.4 S ��90°)

� 8 A ��36.87°

Kirchhoff’s current law: At node a,

I � IR � IL � 0

or

I � IR � IL

10 A �0° � 6 A �53.13° � 8 A ��36.87°

10 A �0° � (3.60 A � j 4.80 A) � (6.40 A � j 4.80 A) � 10 A � j 0

and 10 A �0° � 10 A �0° (checks)

Phasor diagram: The phasor diagram of Fig. 15.65 indicates that
the applied voltage E is in phase with the current IR and leads the cur-
rent IL by 90°.

Power: The total power in watts delivered to the circuit is

PT � EI cos vT

� (20 V)(10 A) cos 53.13° � (200 W)(0.6)
� 120 W

or PT � I 2R � � V2
RG � (20 V)2(0.3 S) � 120 W

V2
R

�
R

E �v
�
XL �90°

E �v
�
R �0°

E
�
ZT

FIG. 15.64

Admittance diagram for the parallel R-L network of Fig. 15.62.

36.87° +

j

I

53.13°

IL

IR

E

FIG. 15.65

Phasor diagram for the parallel R-L network
of Fig. 15.62.
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or, finally,

PT � PR � PL � EIR cos vR � EIL cos vL

� (20 V)(6 A) cos 0° � (20 V)(8 A) cos 90° � 120 W � 0
� 120 W

Power factor: The power factor of the circuit is

Fp � cos vT � cos 53.13° � 0.6 lagging

or, through an analysis similar to that employed for a series ac circuit,

cos vT � � � � �

and (15.32)

where G and YT are the magnitudes of the total conductance and admit-
tance of the parallel network. For this case,

Fp � cos vT � � 0.6 lagging

Impedance approach: The current I can also be found by first find-
ing the total impedance of the network:

ZT � �

� � 2 � �53.13°

And then, using Ohm’s law, we obtain

I � � � 10 A �0°

R-C

Refer to Fig. 15.66.

20 V �53.13°
��
2 � �53.13°

E
�
ZT

8.325 �90°
��
4.164 �36.87°

(3.33 � �0°)(2.5 � �90°)
���
3.33 � �0° � 2.5 � �90°

ZRZL
�
ZR � ZL

0.3 S
�
0.5 S

Fp � cos vT � �
Y
G

T
�

G
�
YT

G
�
I/V

EG
�

I
E2/R
�

EI
P
�
EI

a c

R 1.67 �

a

iCiR

1.25 �XCi  =  14.14 sin qt

+

–

e

FIG. 15.66

Parallel R-C network.

Phasor Notation As shown in Fig. 15.67.

YT and ZT

YT � YR � YC � G �0° � BC �90° � �0° � �90°

� 0.6 S �0° � 0.8 S �90° � 0.6 S � j 0.8 S � 1.0 S �53.13°

ZT � � � 1 � ��53.13°
1

��
1.0 S �53.13°

1
�
YT

1
�
1.25 �

1
�
1.67 �
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a c

IC

I

36.87°

53.13°

j

+

IR

E

Admittance diagram: As shown in Fig. 15.68.

E

E � IZT � � � 10 V ��53.13°

IR and IC

IR � (E �v)(G �0°)
� (10 V ��53.13°)(0.6 S �0°) � 6 A ��53.13°

IC � (E �v)(BC �90°)
� (10 V ��53.13°)(0.8 S �90°) � 8 A �36.87°

Kirchhoff’s current law: At node a,

I � IR � IC � 0

or I � IR � IC

which can also be verified (as for the R-L network) through vector
algebra.

Phasor diagram: The phasor diagram of Fig. 15.69 indicates that
E is in phase with the current through the resistor IR and lags the capac-
itive current IC by 90°.

Time domain:

e � �2�(10) sin(qt � 53.13°) � 14.14 sin(qt � 53.13°)

iR � �2�(6) sin(qt � 53.13°) � 8.48 sin(qt � 53.13°)

iC � �2�(8) sin(qt � 36.87°) � 11.31 sin(qt � 36.87°)

10 A �0°
��
1 S �53.13°

I
�
YT

R 1.67 �

a

ICIR

1.25 �XC
I  =  10 A ∠  0°

+

–

E

FIG. 15.67

Applying phasor notation to the network of Fig. 15.66.

53.13°

+

j

G ∠ 0°  =  0.6 S ∠  0°

BC ∠  90°  =  0.8 S ∠  90°
YT  =  1 S ∠  53.13°

FIG. 15.68

Admittance diagram for the parallel R-C network of Fig. 15.66.

FIG. 15.69

Phasor diagram for the parallel R-C network 
of Fig. 15.66.
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a c

A plot of all of the currents and the voltage appears in Fig. 15.70.
Note that e and iR are in phase and e lags iC by 90°.

Power:

PT � EI cos v � (10 V)(10 A) cos 53.13° � (10)2(0.6)
� 60 W

or PT � E2G � (10 V)2(0.6 S) � 60 W

or, finally,

PT � PR � PC � EIR cos vR � EIC cos vC

� (10 V)(6 A) cos 0° � (10 V)(8 A) cos 90°
� 60 W

Power factor: The power factor of the circuit is

Fp � cos 53.13° � 0.6 leading

Using Eq. (15.32), we have

Fp � cos vT � � � 0.6 leading

Impedance approach: The voltage E can also be found by first
finding the total impedance of the circuit:

ZT � �

� � 1 � ��53.19°

and then, using Ohm’s law, we find

E � IZT � (10 A �0°)(1 � ��53.19°) � 10 V ��53.19°

R-L-C

Refer to Fig. 15.71.

2.09 ��90°
��
2.09 ��36.81°

(1.67 � �0°)(1.25 � ��90°)
����
1.67 � �0° � 1.25 � ��90°

ZRZC
�
ZR � ZC

0.6 S
�
1.0 S

G
�
YT

90°

36.87°

iR

�0

e

�
2

– �
2 �

2
3

iC

i
14.14 A

11.31 A

8.48 A

  t�  �2

FIG. 15.70

Waveforms for the parallel R-C network of Fig. 15.66.
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a c

Phasor notation: As shown in Fig. 15.72.

YT and ZT

YT � YR � YL � YC � G �0° � BL ��90° � BC �90°

� �0° � ��90° � �90°

� 0.3 S �0° � 0.7 S ��90° � 0.3 S �90°
� 0.3 S � j 0.7 S � j 0.3 S
� 0.3 S � j 0.4 S � 0.5 S ��53.13°

ZT � � � 2 � �53.13°

Admittance diagram: As shown in Fig. 15.73.

I

I � � EYT � (100 V �53.13°)(0.5 S ��53.13°) � 50 A �0°

IR, IL , and IC

IR � (E �v)(G �0°)
� (100 V �53.13°)(0.3 S �0°) � 30 A �53.13°

IL � (E �v)(BL ��90°)
� (100 V �53.13°)(0.7 S ��90°) � 70 A ��36.87°

IC � (E �v)(BC �90°)
� (100 V �53.13°)(0.3 S ��90°) � 30 A �143.13°

Kirchhoff’s current law: At node a,

I � IR � IL � IC � 0

E
�
ZT

1
��
0.5 S ��53.13°

1
�
YT

1
�
3.33 �

1
�
1.43 �

1
�
3.33 �

R 3.33 �

a

iLiR

1.43 �XL

i  =  70.7 sin qt

e  =  �2(100) sin(qt  +  53.13°)

+

–

iC

3.33 �XC

FIG. 15.71

Parallel R-L-C ac network.

R 3.33 �

a

ILIR

1.43 �XL

I  =  50 A ∠  0°

E  =  100 V ∠  53.13°

+

–

IC

3.33 �XC

FIG. 15.72

Applying phasor notation to the network of Fig. 15.71.

53.13°

BC
 ∠  90°  =  0.3 S ∠  90°

+

 j

G ∠  0°  =  0.3 S ∠  0°

BL
 ∠  –90°  =  0.7 S ∠  –90°

YT  =  0.5 S ∠  –53.13°

BL  –  BC

FIG. 15.73

Admittance diagram for the parallel R-L-C
network of Fig. 15.71.
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90°

36.87°

iL

0

e

�
2

– �
2

i

53.13°

90°

iR

�–

iC

  t�2��
�

2
3

FIG. 15.75

Waveforms for the parallel R-L-C network of Fig. 15.71.

or I � IR � IL � IC

Phasor diagram: The phasor diagram of Fig. 15.74 indicates that
the impressed voltage E is in phase with the current IR through the
resistor, leads the current IL through the inductor by 90°, and lags the
current IC of the capacitor by 90°.

Time domain:

i � �2�(50) sin qt � 70.70 sin qt

iR � �2�(30) sin(qt � 53.13°) � 42.42 sin(qt � 53.13°)

iL � �2�(70) sin(qt � 36.87°) � 98.98 sin(qt � 36.87°)

iC � �2�(30) sin(qt � 143.13°) � 42.42 sin(qt � 143.13°)

A plot of all of the currents and the impressed voltage appears in
Fig. 15.75.

36.87°

53.13°

j

+

IC

I

IR

E

IL  –  IC

IL

FIG. 15.74

Phasor diagram for the parallel R-L-C
network of Fig. 15.71.

Power: The total power in watts delivered to the circuit is

PT � EI cos v � (100 V)(50 A) cos 53.13° � (5000)(0.6)
� 3000 W

or PT � E2G � (100 V)2(0.3 S) � 3000 W

or, finally,

PT � PR � PL � PC

� EIR cos vR � EIL cos vL � ELC cos vC

� (100 V)(30 A) cos 0° � (100 V)(70 A) cos 90°
� (100 V)(30 A) cos 90°

� 3000 W � 0 � 0
� 3000 W

Power factor: The power factor of the circuit is

Fp � cos vT � cos 53.13° � 0.6 lagging
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IT  =  5 A  30°

R

1 �

XL

8 �

XC

2 �

XL 4 ��

I  =  20 A        0°
IL

R 3 

IR

Using Eq. (15.32), we obtain

Fp � cos vT � � � 0.6 lagging

Impedance approach: The input current I can also be determined
by first finding the total impedance in the following manner:

ZT � � 2 � �53.13°

and, applying Ohm’s law, we obtain

I � �
Z
E

T
� � � 50 A �0°

15.9 CURRENT DIVIDER RULE

The basic format for the current divider rule in ac circuits is exactly
the same as that for dc circuits; that is, for two parallel branches with
impedances Z1 and Z2 as shown in Fig. 15.76,

(15.33)

EXAMPLE 15.15 Using the current divider rule, find the current
through each impedance of Fig. 15.77.

Solution:

IR � � �

� 16 A �36.87°

IL � � �

� 12 A ��53.13°

EXAMPLE 15.16 Using the current divider rule, find the current
through each parallel branch of Fig. 15.78.

60 A�0°
��
5 �53.13°

(3 � �0°)(20 A �0°)
���

5 � �53.13°
ZRIT
�
ZR � ZL

80 A�90°
��
5 �53.13°

(4 � �90°)(20 A �0°)
���
3 � �0° � 4 � �90°

ZLIT
�
ZR � ZL

I1 � �
Z1

Z
�
2IT

Z2
� or I2 � �

Z1

Z
�
1IT

Z2
�

100 V �53.13°
��

2 � �53.13°

ZRZLZC
���
ZRZL � ZLZC � ZRZC

0.3 S
�
0.5 S

G
�
YT

Solution:

IR-L � � �

� � 1.644 A ��140.54°
10 A��60°
��
6.083 �80.54°

10 A��60°
��

1 � j 6
(2 � ��90°)(5 A �30°)
���

�j 2 � � 1 � � j 8 �

ZC IT
��
ZC � ZR-L

IT

Z1

Z2

IT

I1

I2

FIG. 15.76

Applying the current divider rule.

FIG. 15.77

Example 15.15.

FIG. 15.78

Example 15.16.
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IC � �

� �

� 6.625 A �32.33°

15.10 FREQUENCY RESPONSE OF THE
PARALLEL R-L NETWORK

In Section 15.5 the frequency response of a series R-C circuit was ana-
lyzed. Let us now note the impact of frequency on the total impedance
and inductive current for the parallel R-L network of Fig. 15.79 for a
frequency range of zero through 40 kHz.

40.30 A�112.87°
��

6.083 �80.54°
(8.06 �82.87°)(5 A�30°)
���

6.08 �80.54°

(1 � � j 8 �)(5 A �30°)
���

6.08 � �80.54°

ZR-LIT
��
ZR-L � ZC

ZT Before getting into specifics, let us first develop a “sense” for the
impact of frequency on the network of Fig. 15.79 by noting the imped-
ance-versus-frequency curves of the individual elements, as shown in
Fig. 15.80. The fact that the elements are now in parallel requires that
we consider their characteristics in a different manner than occurred for
the series R-C circuit of Section 15.5. Recall that for parallel elements,
the element with the smallest impedance will have the greatest impact

R 220 � L 4 mHVs

+

–

ZT
IL

I  =  100 mA ∠ 0°

f : 0 to 20 kHz

FIG. 15.79

Determining the frequency response of a parallel R-L network.

R 220 � L
L  =  4 mH

ZT

R

220 �

0 f

XL

0 ff2

220 Ω

XL < R XL > R

XL  =  2   fL�

FIG. 15.80

The frequency response of the individual elements of a parallel R-L network.
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on the total impedance at that frequency. In Fig. 15.80, for example, XL

is very small at low frequencies compared to R, establishing XL as the
predominant factor in this frequency range. In other words, at low fre-
quencies the network will be primarily inductive, and the angle associ-
ated with the total impedance will be close to 90°, as with a pure induc-
tor. As the frequency increases, XL will increase until it equals the
impedance of the resistor (220 �). The frequency at which this situation
occurs can be determined in the following manner:

XL � 2pf2L � R

and (15.34)

which for the network of Fig. 15.79 is

f 2 � �

� 8.75 kHz

which falls within the frequency range of interest.
For frequencies less than f2, XL < R, and for frequencies greater than

f2, XL > R, as shown in Fig. 15.80. A general equation for the total
impedance in vector form can be developed in the following manner:

ZT �

� � 

and ZT � /90° �tan�1 XL /R

so that (15.35)

and (15.36)

The magnitude and angle of the total impedance can now be found
at any frequency of interest simply by substituting Eqs. (15.35) and
(15.36).

f � 1 kHz

XL � 2pf L � 2p(1 kHz)(4 � 10�3 H) � 25.12 �

and

ZT � � � 24.96 �

with vT � tan�1 � tan�1

� tan�1 8.76 � 83.49°

220 �
�
25.12 �

R
�
XL

(220 �)(25.12 �)
���
�(2�2�0� ��)2� �� (�2�5�.1�2� ��)2�

RXL
��
�R�2��� X�2

L�

vT � 90° � tan�1 �
X

R
L
� � tan�1 �

X

R

L
�

ZT � �
�R�

R
2

X

���
L

X�2
L�

�

RXL
��
�R�2��� X�2

L�

RXL �90°
���
�R�2��� X�2

L� �tan�1 XL /R

(R �0°)(XL �90°)
��

R � j XL

ZRZL
�
ZR � ZL

220 �
��
2p(4 � 10�3 H)

R
�
2pL

f2 � �
2p

R
L

�
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and ZT � 24.96 � �83.49°

This value compares very closely with XL � 25.12 � �90°, which it
would be if the network were purely inductive (R � ∞ �). Our assump-
tion that the network is primarily inductive at low frequencies is there-
fore confirmed.

Continuing:

f � 5 kHz: ZT � 109.1 � �60.23°

f � 10 kHz: ZT � 165.5 � �41.21°

f � 15 kHz: ZT � 189.99 � �30.28°

f � 20 kHz: ZT � 201.53 � �23.65°

f � 30 kHz: ZT � 211.19 � �16.27°

f � 40 kHz: ZT � 214.91 � �12.35°

At f � 40 kHz, note how closely the magnitude of ZT has ap-
proached the resistance level of 220 � and how the associated angle
with the total impedance is approaching zero degrees. The result is a
network with terminal characteristics that are becoming more and more
resistive as the frequency increases, which further confirms the earlier
conclusions developed by the curves of Fig. 15.80.

Plots of ZT versus frequency in Fig. 15.81 and vT in Fig. 15.82
clearly reveal the transition from an inductive network to one that
has resistive characteristics. Note that the transition frequency of
8.75 kHz occurs right in the middle of the knee of the curves for
both ZT and vT.

ZT (v)

Network inductive

XL < R (ZT  ≅   XL)

100

200
R  =  220 �

ZT (�)

0 1 5 10 20 30 40 f (kHz)

XL > R (ZT  ≅   R)

Network resistive

XL  =  R

8.75

FIG. 15.81

The magnitude of the input impedance versus frequency for the network of 
Fig. 15.79.

A review of Figs. 15.47 and 15.81 will reveal that a series R-C and
a parallel R-L network will have an impedance level that approaches
the resistance of the network at high frequencies. The capacitive cir-
cuit approaches the level from above, whereas the inductive network
does the same from below. For the series R-L circuit and the parallel
R-C network, the total impedance will begin at the resistance level and
then display the characteristics of the reactive elements at high fre-
quencies.
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IL Applying the current divider rule to the network of Fig. 15.79 will
result in the following:

IL �

� �

and IL � IL �vL � /�tan�1 XL /R

The magnitude of IL is therefore determined by

(15.37)

and the phase angle vL, by which IL leads I, is given by

(15.38)

Because vL is always negative, the magnitude of vL is, in actuality,
the angle by which IL lags I.

To begin our analysis, let us first consider the case of f � 0 Hz (dc
conditions).

f � 0 Hz

XL � 2pfL � 2p(0 Hz)L � 0 �

Applying the short-circuit equivalent for the inductor in Fig. 15.79
would result in

IL � I � 100 mA �0°

vL � �tan�1 �
X

R
L
�

IL � �
�R�

R
2�

I

�� X�2
L�

�

RI
��
�R�2��� X�2

L�

RI �0°
���
�R�2��� X�2

L� /tan�1 XL /R

(R �0°)(I �0°)
��

R � j XL

ZRI
�
ZR � ZL

5 f (kHz)1 10 20 30 40

0°

30°

45°

60°

90°

Inductive (XL < R)

Resistive (XL > R)

  Tθ

  T ( f )θ

FIG. 15.82

The phase angle of the input impedance versus frequency for the network of
Fig. 15.79.
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as appearing in Figs. 15.83 and 15.84.

f � 1 kHz Applying Eq. (15.37):

XL � 2pfL � 2p(1 kHz)(4 mH) � 25.12 �

and �R�2��� X�2
L� � �(2�2�0� ��)2� �� (�2�5�.1�2� ��)2� � 221.43 �

and IL � � � 99.35 mA

with

vL � tan�1 � �tan�1 � �tan�1 0.114 � �6.51°

and IL � 99.35 mA ��6.51°

The result is a current IL that is still very close to the source current I
in both magnitude and phase.

Continuing:

f � 5 kHz: IL � 86.84 mA ��29.72°
f � 10 kHz: IL � 65.88 mA ��48.79°
f � 15 kHz: IL � 50.43 mA ��59.72°
f � 20 kHz: IL � 40.11 mA ��66.35°
f � 30 kHz: IL � 28.02 mA ��73.73°
f � 40 kHz: IL � 21.38 mA ��77.65°

The plot of the magnitude of IL versus frequency is provided in Fig.
15.83 and reveals that the current through the coil dropped from its
maximum of 100 mA to almost 20 mA at 40 kHz. As the reactance of
the coil increased with frequency, more of the source current chose the

25.12 �
�
220 �

XL
�
R

(220 �)(100 mA)
��

221.43 �

RI
��
�R�2��� X�2

L�

FIG. 15.83

The magnitude of the current IL versus frequency for the parallel R-L network
of Fig. 15.79.

IL (mA)

5 f (kHz)1 10 20 30 400

25

Network inductive

IL ( f )

50

75

100
XL < R (IL  ≅  Is)

Network resistive

XL > R (IL  => 0 mA)
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FIG. 15.84

The phase angle of the current IL versus frequency for the parallel R-L network
of Fig. 15.79.

Network inductive

5 10 20 30 40 f (kHz)0°

–30°

–45°

–60°

–90°

Network resistive

  L ( f )θ

  L of  ILθ

  L  =    sθ θ

  R  ≅     s  ≅   0°θ θ

83.49°

Vs

IR

IL

I

–6.51°

12.35° Vs
IR

I–77.65°IL

FIG. 15.85

The phasor diagram for the parallel R-L net-
work of Fig. 15.79 at f � 1 kHz.

FIG. 15.86

The phasor diagram for the parallel R-L net-
work of Fig. 15.79 at f � 40 kHz.

lower-resistance path of the resistor. The magnitude of the phase angle
between IL and I is approaching 90° with an increase in frequency, as
shown in Fig. 15.84, leaving its initial value of zero degrees at f � 0 Hz
far behind.

At f � 1 kHz, the phasor diagram of the network appears as shown
in Fig. 15.85. First note that the magnitude and the phase angle of IL are
very close to those of I. Since the voltage across a coil must lead the
current through a coil by 90°, the voltage Vs appears as shown. The
voltage across a resistor is in phase with the current through the resis-
tor, resulting in the direction of IR shown in Fig. 15.85. Of course, at
this frequency R > XL, and the current IR is relatively small in magni-
tude.

At f � 40 kHz, the phasor diagram changes to that appearing in Fig.
15.86. Note that now IR and I are close in magnitude and phase because
XL > R. The magnitude of IL has dropped to very low levels, and the
phase angle associated with IL is approaching �90°. The network is
now more “resistive” compared to its “inductive” characteristics at low
frequencies.

The analysis of a parallel R-C or R-L-C network would proceed in
much the same manner, with the inductive impedance predominating at
low frequencies and the capacitive reactance predominating at high fre-
quencies.

15.11 SUMMARY: PARALLEL ac NETWORKS

The following is a review of important conclusions that can be derived
from the discussion and examples of the previous sections. The list is
not all-inclusive, but it does emphasize some of the conclusions that
should be carried forward in the future analysis of ac systems.



674  SERIES AND PARALLEL ac CIRCUITS
a c

For parallel ac networks with reactive elements:

1. The total admittance (impedance) will be frequency
dependent.

2. The impedance of any one element can be less than the total
impedance (recall that for dc circuits the total resistance must
always be less than the smallest parallel resistor).

3. The inductive and capacitive susceptances are in direct
opposition on an admittance diagram.

4. Depending on the frequency applied, the same network can be
either predominantly inductive or predominantly capacitive.

5. At lower frequencies the inductive elements will usually have
the most impact on the total impedance, while at high
frequencies the capacitive elements will usually have the most
impact.

6. The magnitude of the current through any one branch can be
greater than the source current.

7. The magnitude of the current through an element, compared
to the other elements of the network, is directly related to the
magnitude of its impedance; that is, the smaller the impedance
of an element, the larger the magnitude of the current through
the element.

8. The current through a coil is always in direct opposition with
the current through a capacitor on a phasor diagram.

9. The applied voltage is always in phase with the current
through the resistive elements, leads the voltage across all the
inductive elements by 90°, and lags the current through all
capacitive elements by 90°.

10. The smaller the resistive element of a network compared to the
net reactive susceptance, the closer the power factor is to
unity.

15.12 EQUIVALENT CIRCUITS

In a series ac circuit, the total impedance of two or more elements in
series is often equivalent to an impedance that can be achieved with
fewer elements of different values, the elements and their values being
determined by the frequency applied. This is also true for parallel cir-
cuits. For the circuit of Fig. 15.87(a),

ZT � � �

� 10 � ��90°

50 �0°
�
5 �90°

(5 � ��90°)(10 � �90°)
���
5 � ��90° � 10 � �90°

ZCZL
�
ZC � ZL

5 �XC
ZT 10 �XL

(a)

10 �XC
ZT

(b)

FIG. 15.87

Defining the equivalence between two networks at a specific frequency.
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Rs

Zs = Zp

Ys = Yp

Xs

(b)

(a)

Rp
Zp

Yp

XP

The total impedance at the frequency applied is equivalent to a capaci-
tor with a reactance of 10 �, as shown in Fig. 15.87(b). Always keep in
mind that this equivalence is true only at the applied frequency. If the
frequency changes, the reactance of each element changes, and the
equivalent circuit will change—perhaps from capacitive to inductive in
the above example.

Another interesting development appears if the impedance of a par-
allel circuit, such as the one of Fig. 15.88(a), is found in rectangular
form. In this case,

ZT � �

� � 2.40 � �36.87°

� 1.920 � � j 1.440 �

which is the impedance of a series circuit with a resistor of 1.92 � and
an inductive reactance of 1.44 �, as shown in Fig. 15.88(b).

The current I will be the same in each circuit of Fig. 15.87 or Fig.
15.88 if the same input voltage E is applied. For a parallel circuit of one
resistive element and one reactive element, the series circuit with the
same input impedance will always be composed of one resistive and
one reactive element. The impedance of each element of the series cir-
cuit will be different from that of the parallel circuit, but the reactive
elements will always be of the same type; that is, an R-L circuit and an
R-C parallel circuit will have an equivalent R-L and R-C series circuit,
respectively. The same is true when converting from a series to a paral-
lel circuit. In the discussion to follow, keep in mind that

the term equivalent refers only to the fact that for the same applied
potential, the same impedance and input current will result.

To formulate the equivalence between the series and parallel circuits,
the equivalent series circuit for a resistor and reactance in parallel can
be found by determining the total impedance of the circuit in rectangu-
lar form; that is, for the circuit of Fig. 15.89(a),

Yp � � � � j

and

Zp � �

� � j

Multiplying the numerator and denominator of each term by R2
pX2

p

results in

Zp � � j

� Rs � j Xs [Fig. 15.89(b)]

and (15.39)Rs � �
X

R
2
p

p

�

X

R

2
p

2
p

�

R2
pXp

�
X2

p � R2
p

RpX2
p

�
X2

p � R2
p

1/Xp
��
(1/Rp)

2 � (1/Xp)
2

1/Rp
��
(1/Rp)

2 � (1/Xp)
2

1
��
(1/Rp) � j (1/Xp)

1
�
Yp

1
�
Xp

1
�
RP

1
�
�j Xp

1
�
Rp

12 �90°
��
5 �53.13°

(4 � �90°)(3 � �0°)
���
4 � �90° � 3 � �0°

ZLZR
�
ZL � ZR

4 � R 3 �XL

I

ZT

E

+

–

(a)

XL  =  1.44 �I

ZT

E

+

–

(b)

R  =  1.92 �

FIG. 15.88

Finding the series equivalent circuit 
for a parallel R-L network.

FIG. 15.89

Defining the parameters of equivalent series
and parallel networks.
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with (15.40)

For the network of Fig. 15.88,

Rs � � � � 1.920 �

and

Xs � � � � 1.440 �

which agrees with the previous result.
The equivalent parallel circuit for a circuit with a resistor and reac-

tance in series can be found by simply finding the total admittance of
the system in rectangular form; that is, for the circuit of Fig. 15.89(b),

Zs � Rs � j Xs

Ys � � � � j 

� Gp � j Bp � � j [Fig. 15.89(a)]

or (15.41)

with (15.42)

For the above example,

Rp � � � � 3.0 �

and Xp � � � 4.0 �

as shown in Fig. 15.88(a).

EXAMPLE 15.17 Determine the series equivalent circuit for the net-
work of Fig. 15.90.

5.76 �
�

1.44

R2
s � X2

s
�

Xs

5.76 �
�

1.92

(1.92 �)2 � (1.44 �)2

���
1.92 �

R2
s � X2

s
�

Rs

Xp � �
R2

s

X

�

s

X2
s

�

Rp � �
R2

s

R

�

s

X2
s

�

1
�
Xp

1
�
Rp

Xs
�
R2

s � X2
s

Rs
�
R2

s � X2
s

1
�
Rs � j Xs

1
�
Zs

36 �
�

25

(3 �)2(4 �)
��
(4 �)2 � (3 �)2

R2
p Xp

�
X2

p � R2
p

48 �
�

25

(3 �)(4 �)2

��
(4 �)2 � (3 �)2

RpX2
p

�
X2

p � R2
p

Xs � �
X2

p

R

�

2
pX

R
p

2
p

�

4 k�

R 8 k�

XC

9 k�XL

Rp

Xp

FIG. 15.90

Example 15.17.
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Solution:

Rp � 8 k�

Xp (resultant) �  XL � XC �  9 k� � 4 k�
� 5 k�

and

Rs � � � � 2.247 k�

with

Xs � � �

� 3.596 k� (inductive)

The equivalent series circuit appears in Fig. 15.91.

EXAMPLE 15.18 For the network of Fig. 15.92:

320 k�
�

89

(8 k�)2(5 k�)
��
(5 k�)2 � (8 k�)2

R2
p Xp

�
X2

p � R2
p

200 k�
�

89

(8 k�)(5 k�)2

��
(5 k�)2 � (8 k�)2

RpX2
p

�
X2

p � R2
p

3.596 k�2.247 k�

XsRs

FIG. 15.91

The equivalent series circuit for the parallel
network of Fig. 15.90.

R1 10 � R2 40 � L1 6 mH L2 12 mH
C1

80 mF
C2

20 mF

iL

i  =  �2 (12) sin 1000t

+

YT

ei
–

ZT

FIG. 15.92

Example 15.18.

a. Determine YT.
b. Sketch the admittance diagram.
c. Find E and IL.
d. Compute the power factor of the network and the power delivered to

the network.
e. Determine the equivalent series circuit as far as the terminal charac-

teristics of the network are concerned.
f. Using the equivalent circuit developed in part (e), calculate E, and

compare it with the result of part (c).
g. Determine the power delivered to the network, and compare it with

the solution of part (d).
h. Determine the equivalent parallel network from the equivalent series

circuit, and calculate the total admittance YT. Compare the result
with the solution of part (a).

Solutions:

a. Combining common elements and finding the reactance of the
inductor and capacitor, we obtain

RT � 10 � � 40 � � 8 �

LT � 6 mH � 12 mH � 4 mH

CT � 80 mF � 20 mF � 100 mF



678  SERIES AND PARALLEL ac CIRCUITS
a c

XL � qL � (1000 rad/s)(4 mH) � 4 �

XC � � � 10 �

The network is redrawn in Fig. 15.93 with phasor notation. The total
admittance is

YT � YR � YL � YC

� G �0° � BL ��90° � BC ��90°

� �0° � ��90° � ��90°

� 0.125 S �0° � 0.25 S ��90° � 0.1 S ��90°
� 0.125 S � j 0.25 S � j 0.1 S
� 0.125 S � j 0.15 S � 0.195 S ��50.194°

1
�
10 �

1
�
4 �

1
�
8 �

1
��
(1000 rad/s)(100 mF)

1
�
qC

b. See Fig. 15.94.

c. E � IZT � � � 61.538 V �50.194°

IL � � � � 15.385 A ��39.81°

d. Fp � cos v � � � 0.641 lagging (E leads I)

P � EI cos v � (61.538 V)(12 A) cos 50.194°

� 472.75 W

e. ZT � � � 5.128 � ��50.194°

� 3.283 � � j 3.939 �
� R � j XL

XL � 3.939 � � qL

L � � � 3.939 mH

The series equivalent circuit appears in Fig. 15.95.

f. E � IZT � (12 A �0°)(5.128 � �50.194°)

� 61.536 V �50.194° (as above)

g. P � I2R � (12 A)2(3.283 �) � 472.75 W (as above)

h. Rp � � � 8 �
(3.283 �)2 � (3.939 �)2

���
3.283 �

R2
s � X2

s
�

Rs

3.939 �
��
1000 rad/s

3.939 �
�

q

1
���
0.195 S ��50.194°

1
�
YT

0.125 S
�
0.195 S

G
�
YT

61.538 V �50.194°
���

4 � �90°

E
�
ZL

VL
�
ZL

12 A �0°
���
0.195 S ��50.194°

I
�
YT

R 8 � 4 �XL XC
10 �

YT
IL

+

–

EI  =  12 A ∠  0°

FIG. 15.93

Applying phasor notation to the network of Fig. 15.92.

G ∠  0°

–50.194°

0.195 S

YT

BL ∠  –90°

BL – BC

BC  ∠  90°

j

+–

FIG. 15.94

Admittance diagram for the parallel R-L-C
network of Fig. 15.92.
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Xp � � � 6.675 �

The parallel equivalent circuit appears in Fig. 15.96.

(3.283 �)2 � (3.939 �)2

���
3.939 �

R2
s � X2

s
�

Xs

YT � G �0° � BL ��90° � �0° � ��90°

� 0.125 S �0° � 0.15 S ��90°

� 0.125 S � j 0.15 S � 0.195 S ��50.194° (as above)

15.13 PHASE MEASUREMENTS
(DUAL-TRACE OSCILLOSCOPE)

The phase shift between the voltages of a network or between the volt-
ages and currents of a network can be found using a dual-trace (two sig-
nals displayed at the same time) oscilloscope. Phase-shift measure-
ments can also be performed using a single-trace oscilloscope by
properly interpreting the resulting Lissajous patterns obtained on the
screen. This latter approach, however, will be left for the laboratory
experience.

In Fig. 15.97, channel 1 of the dual-trace oscilloscope is hooked up
to display the applied voltage e. Channel 2 is connected to display the
voltage across the inductor vL. Of particular importance is the fact that
the ground of the scope is connected to the ground of the oscilloscope
for both channels. In other words, there is only one common ground for
the circuit and oscilloscope. The resulting waveforms may appear as
shown in Fig. 15.98.

1
�
6.675 �

1
�
8 �

FIG. 15.95

Series equivalent circuit for the parallel R-L-C network of Fig. 15.92 with 
q � 1000 rad/s.

L

R

3.283 �

3.939 mHE

+

–

I  =  12 A ∠  0°

LR 8 � 6.675 �I  =  12 A ∠  0°

YT

FIG. 15.96

Parallel equivalent of the circuit of Fig. 15.95.
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R

Le

+

–

vL

+

–

21

Oscilloscope

FIG. 15.97

Determining the phase relationship between e and vL.

v

θ
1.6 div.

e

T  =  8 div.

FIG. 15.98

Determining the phase angle between e and vL.

For the chosen horizontal sensitivity, each waveform of Fig. 15.98
has a period T defined by eight horizontal divisions, and the phase angle
between the two waveforms is defined by 1�

1
2

� divisions. Using the fact
that each period of a sinusoidal waveform encompasses 360°, the fol-
lowing ratios can be set up to determine the phase angle v:

�
8
36

d
0
iv
°
.

� � �
1.6

v

div.
�

and v � � �360° � 72°

In general,

(15.43)

If the phase relationship between e and vR is required, the oscillo-
scope must not be hooked up as shown in Fig. 15.99. Points a and b
have a common ground that will establish a zero-volt drop between the
two points; this drop will have the same effect as a short-circuit con-
nection between a and b. The resulting short circuit will “short out” the
inductive element, and the current will increase due to the drop in
impedance for the circuit. A dangerous situation can arise if the induc-
tive element has a high impedance and the resistor has a relatively low

v � �
(
(
d
d
i
i
v
v
.
.
f
f
o
o
r
r

T
v)
)

� � 360°

1.6
�
8
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impedance. The current, controlled solely by the resistance R, could
jump to dangerous levels and damage the equipment.

The phase relationship between e and vR can be determined by sim-
ply interchanging the positions of the coil and resistor or by introduc-
ing a sensing resistor, as shown in Fig. 15.100. A sensing resistor is
exactly that: introduced to “sense” a quantity without adversely affect-
ing the behavior of the network. In other words, the sensing resistor
must be small enough compared to the other impedances of the network
not to cause a significant change in the voltage and current levels or
phase relationships. Note that the sensing resistor is introduced in a way
that will result in one end being connected to the common ground of the
network. In Fig. 15.100, channel 2 will display the voltage vRs

, which is
in phase with the current i. However, the current i is also in phase with
the voltage vR across the resistor R. The net result is that the voltages
vRs

and vR are in phase and the phase relationship between e and vR can
be determined from the waveforms e and vRs

. Since vRs
and i are in

phase, the above procedure will also determine the phase angle between
the applied voltage e and the source current i. If the magnitude of Rs is
sufficiently small compared to R or XL, the phase measurements of Fig.
15.97 can be performed with Rs in place. That is, channel 2 can be con-
nected to the top of the inductor and to ground, and the effect of Rs can
be ignored. In the above application, the sensing resistor will not reveal
the magnitude of the voltage vR but simply the phase relationship
between e and vR.

R

Le

+

–

21

vR –+

Oscilloscope

a

b

FIG. 15.99

An improper phase-measurement connection.

R

L

e

+

–

21

vR –+

vRs

+

–
Rs

i

i

Oscilloscope

FIG. 15.100

Determining the phase relationship between e and vR or e and i using a sensing
resistor.
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For the parallel network of Fig. 15.101, the phase relationship
between two of the branch currents, iR and iL, can be determined using
a sensing resistor, as shown in the figure. Channel 1 will display the
voltage vR, and channel 2 will display the voltage vRs

. Since vR is in
phase with iR, and vRs

is in phase with the current iL, the phase rela-
tionship between vR and vRs

will be the same as that between iR and iL.
In this case, the magnitudes of the current levels can be determined
using Ohm’s law and the resistance levels R and Rs, respectively.

FIG. 15.101

Determining the phase relationship between iR and iL.

L

e
+

–

21

iR
iL

vRs
Rs

+

–

vR

+

–
R C

Oscilloscope

e
+

–

2

1

is

vRs
+–

R

isRs

FIG. 15.102

Determining the phase relationship between e 
and is.

If the phase relationship between e and is of Fig. 15.101 is required,
a sensing resistor can be employed, as shown in Fig. 15.102.

In general, therefore, for dual-trace measurements of phase relation-
ships, be particularly careful of the grounding arrangement, and fully
utilize the in-phase relationship between the voltage and current of a
resistor.

15.14 APPLICATIONS

Home Wiring

An expanded view of house wiring is provided in Fig. 15.103 to permit
a discussion of the entire system. The house panel has been included
with the “feed” and the important grounding mechanism. In addition, a
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number of typical circuits found in the home have been included to pro-
vide a sense for the manner in which the total power is distributed.

First note how the copper bars in the panel are laid out to provide
both 120 V and 208 V. Between any one bar and ground is the single-
phase 120-V supply. However, the bars have been arranged so that
208 V can be obtained between two vertical adjacent bars using a
double-gang circuit breaker. When time permits, examine your own
panel (but do not remove the cover), and note the dual circuit breaker
arrangement for the 208-V supply.

For appliances such as fixtures and heaters that have a metal casing,
the ground wire is connected to the metal casing to provide a direct path
to ground path for a “shorting” or errant current as described in Section
7.7. For outlets and such that do not have a conductive casing, the
ground lead is connected to a point on the outlet that distributes to all
important points of the outlet.

Note the series arrangement between the thermostat and the heater
but the parallel arrangement between heaters on the same circuit. In
addition, note the series connection of switches to lights in the upper-
right corner but the parallel connection of lights and outlets. Due to
high current demand the air conditioner, heaters, and electric stove have
30-A breakers. Keep in mind that the total current does not equal the
product of the two (or 60 A) since each breaker is in a line and the same
current will flow through each breaker.

In general, you now have a surface understanding of the general
wiring in your home. You may not be a qualified, licensed electrician,

Neutral Line 1 Line 2

Main
breaker
200 A Copper bus-bars

Lighting Series switches20 A

40 A

40 A

30 A

30 A

15 A

15 A

30 A

30 A

30 A

30 A

#14

#14

#10

#10

#10
#10

Parallel
lamps

120 V

+

–

120 V
+

–

Washing
machine

400 W

Electric dryer

4.8 kW
208 V

+

–

208 V
+

–
Thermostat

2′ section 4′ section 8′ section

2300 W

Parallel electric
baseboard heaters

Neutral bus-bar

Ground bus bar

MAIN PANEL

#12

#8

#8

#10

#10

Switched outlets Parallel outlets

12.2-kW
electric range

Air conditioner

860 W

208 V
+

–

208 V
+

–

120
V

+

–
60 W 40 W 60 W60 W

575 W 1150 W

FIG. 15.103

Home wiring diagram.
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but at least you should now be able to converse with some intelligence
about the system.

Speaker Systems

The best reproduction of sound is obtained using a different speaker for
the low-, mid-, and high-frequency regions. Although the typical audio
range for the human ear is from about 100 Hz to 20 kHz, speakers are
available from 20 Hz to 40 kHz. For the low-frequency range usually
extending from about 20 Hz to 300 Hz, a speaker referred to as a
woofer is used. Of the three speakers, it is normally the largest. The
mid-range speaker is typically smaller in size and covers the range from
about 100 Hz to 5 kHz. The tweeter, as it is normally called, is usually
the smallest of the three speakers and typically covers the range from
about 2 kHz to 25 kHz. There is an overlap of frequencies to ensure that
frequencies aren’t lost in those regions where the response of one drops
off and the other takes over. A great deal more about the range of each
speaker and their dB response (a term you may have heard when dis-
cussing speaker response) will be covered in detail in Chapter 23.

One popular method for hooking up the three speakers is the cross-
over configuration of Fig. 15.104. Note that it is nothing more than a
parallel network with a speaker in each branch and full applied voltage
across each branch. The added elements (inductors and capacitors)
were carefully chosen to set the range of response for each speaker.
Note that each speaker is labeled with an impedance level and associ-
ated frequency. This type of information is typical when purchasing a
quality speaker. It immediately identifies the type of speaker and reveals
at which frequency it will have its maximum response. A detailed
analysis of the same network will be included in Section 23.15. For
now, however, it should prove interesting to determine the total imped-
ance of each branch at specific frequencies to see if indeed the response
of one will far outweigh the response of the other two. Since an ampli-
fier with an output impedance of 8 � is to be employed, maximum

8 �
Llow = 3.3 mH

Vi

+

–

8 �

8 �

Cmid = 47   F� Lmid = 270   H�

Chigh = 3.9   F�

Woofer

Tweeter

Midrange

FIG. 15.104

Crossover speaker system.
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transfer of power (see Section 18.5 for ac networks) to the speaker will
result when the impedance of the branch is equal to or very close to 8 �.

Let us begin by examining the response of the frequencies to be car-
ried primarily by the mid-range speaker since it represents the greatest
portion of the human hearing range. Since the mid-range speaker
branch is rated at 8 � at 1.4 kHz, let us test the effect of applying 1.4 kHz
to all branches of the crossover network.

For the mid-range speaker:

XC � �
2p

1
fC
� � � 2.42 �

XL � 2pfL � 2p(1.4 kHz)(270 mH) � 2.78 �

R � 8 �

and Zmid-range � R � j (XL � XC) � 8 � � j (2.78 � � 2.42 �)

� 8 � � j 0.36 �

� 8.008 � ��2.58° � 8 � �0° � R

In Fig. 15.105(a), the amplifier with the output impedance of 8 �
has been applied across the mid-range speaker at a frequency of
1.4 kHz. Since the total reactance offered by the two series reactive ele-
ments is so small compared to the 8-� resistance of the speaker, we can
essentially replace the series combination of the coil and capacitor by a
short circuit of 0 �. We are then left with a situation where the load
impedance is an exact match with the output impedance of the ampli-
fier, and maximum power will be delivered to the speaker. Because of
the equal series impedances, each will capture half the applied voltage
or 6 V. The power to the speaker is then V2/R � (6 V)2/8 � � 4.5 W.

At a frequency of 1.4 kHz we would expect the woofer and tweeter
to have minimum impact on the generated sound. We will now test the
validity of this statement by determining the impedance of each branch
at 1.4 kHz.

For the woofer:

XL � 2pfL � 2p(1.4 kHz)(3.3 mH) � 29.03 �

and Zwoofer � R � j XL � 8 � � j 29.03 �

� 30.11 � �74.59°

which is a poor match with the output impedance of the amplifier. The
resulting network is shown in Fig. 15.105(b).

The total load on the source of 12 V is

ZT � 8 � � 8 � � j 29.03 � � 16 � � j 29.03 �

� 33.15 � �61.14°

and the current is

I � �

� 362 mA ��61.14°

The power to the 8-� speaker is then

Pwoofer � I2R � (362 mA)28 � � 1.048 W

or about 1 W.
Consequently, the sound generated by the mid-range speaker will far

outweigh the response of the woofer (as it should).

12 V �0°
��
33.15 � �61.14°

E
�
ZT

1
���
2p(1.4 kHz)(47 mF)
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For the tweeter:

XC � � � 29.15 �

and Ztweeter � R � j XC � 8 � � j 29.15 �

� 30.23 � ��74.65°

which, as for the woofer, is a poor match with the output impedance of
the amplifier. The current

I � �

� 397 mA �74.65°

The power to the 8-� speaker is then

Ptweeter � I2R � (397 mA)2(8 �) � 1.261 W

or about 1.3 W.

12 V �0°
���
30.23 � ��74.65°

E
�
ZT

1
���
2p(1.4 kHz)(3.9 	F)

1
�
2pfC

8 �

8 �
2.42 � 2.38 �

Midrange

XL

+

–

Vspeaker
= 6 V

Amplifier

+

–

12 V

(a)

(–jXC + jXL = –j 0.04 �)

XC

8 �

8 � 29.03 �

Woofer

XL

Ispeaker
= 362 mA

Amplifier

+

–

12 V

(b)

8 �

8 �
29.15 �

Tweeter

Amplifier

+

–

12 V

(c)

XC

ZT

Zwoofer

Ztweeter

Ispeaker
= 397 mA

ZT

Zmidrange

FIG. 15.105

Crossover network: (a) mid-range speaker at 1.4 kHz; (b) woofer at 1.4 kHz;
(c) tweeter.
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Consequently, the sound generated by the mid-range speaker will far
outweigh the response of the tweeter also.

All in all, the mid-range speaker predominates at a frequency of
1.4 kHz for the crossover network of Fig. 15.104.

Just for interest sake, let us now determine the impedance of the
tweeter at 20 kHz and the impact of the woofer at this frequency.

For the tweeter:

XC � � � 2.04 �

with Ztweeter � 8 � � j 2.04 � � 8.26 � ��14.31°

Even though the magnitude of the impedance of the branch is not
exactly 8 �, it is very close, and the speaker will receive a high level of
power (actually 4.43 W).

For the woofer:

XL � 2pf L � 2p(20 kHz)(3.3 mH) � 414.69 �

with Zwoofer � 8 � � j 414.69 � � 414.77 � �88.9°

which is a terrible match with the output impedance of the amplifier.
Therefore, the speaker will receive a very low level of power (6.69 mW �
0.007 W).

For all the calculations, note that the capacitive elements predomi-
nate at low frequencies, and the inductive elements at high frequen-
cies. For the low frequencies, the reactance of the coil will be quite
small, permitting a full transfer of power to the speaker. For the high-
frequency tweeter, the reactance of the capacitor is quite small, pro-
viding a direct path for power flow to the speaker.

Phase-Shift Power Control

In Chapter 12 the internal structure of a light dimmer was examined and
its basic operation described. We can now turn our attention to how the
power flow to the bulb is controlled.

If the dimmer were composed of simply resistive elements, all the
voltages of the network would be in phase as shown in Fig. 15.106(a).
If we assume that 20 V are required to turn on the triac of Fig. 12.49,
then the power will be distributed to the bulb for the period highlighted
by the blue area of Fig. 15.106(a). For this situation, the bulb is close to
full brightness since the applied voltage is available to the bulb for
almost the entire cycle. To reduce the power to the bulb (and therefore
reduce its brightness), the controlling voltage would have to have a
lower peak voltage as shown in Fig. 15.106(b). In fact, the waveform of
Fig. 15.106(b) is such that the turn-on voltage is not reached until the
peak value occurs. In this case power is delivered to the bulb for only
half the cycle, and the brightness of the bulb will be reduced. The prob-
lem with using only resistive elements in a dimmer now becomes
apparent: The bulb can be made no dimmer than the situation depicted
by Fig. 15.106(b). Any further reduction in the controlling voltage
would reduce its peak value below the trigger level, and the bulb would
never turn on.

This dilemma can be resolved by using a series combination of ele-
ments such as shown in Fig. 15.107(a) from the dimmer of Fig. 12.49.
Note that the controlling voltage is the voltage across the capacitor,

1
���
2p(20 kHz)(3.9 mF)

1
�
2pfC

170

20

0

V (volts)

t

Applied
voltage

(b)

Controlling
voltage

(a)

170

20

0

V (volts)

t

Applied
voltage

Lamp
voltage

FIG. 15.106

Light dimmer: (a) with purely resistive
elements; (b) half-cycle power distribution.
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while the full line voltage of 120 V rms, 170 V peak, is across the entire
branch. To describe the behavior of the network, let us examine the case
defined by setting the potentiometer (used as a rheostat) to 1/10 its
maximum value, or 33 k�. Combining the 33 k� with the fixed resis-
tance of 47 k� will result in a total resistance of 80 k� and the equiv-
alent network of Fig. 15.107(b).

At 60 Hz, the reactance of the capacitor is

XC � �
2p

1
fC
� � � 42.78 k�

Applying the voltage divider rule:

Vcontrol � �
ZR

Z
�
CV

Z
s

C
�

� �

� 0.472Vs ��61.86°

Using a peak value of 170 V:

Vcontrol � 0.472(170 V) ��61.86°

� 80.24 V ��61.86°

producing the waveform of Fig. 15.108(a). The result is a waveform
with a phase shift of 61.86° (lagging the applied line voltage) and a rel-
atively high peak value. The high peak value will result in a quick tran-
sition to the 20-V turn-on level, and power will be distributed to the
bulb for the major portion of the applied signal. Recall from the dis-
cussion of Chapter 12 that the response in the negative region is a
replica of that achieved in the positive region. If we reduced the poten-
tiometer resistance further, the phase angle would be reduced, and the
bulb would burn brighter. The situation is now very similar to that
described for the response of Fig. 15.106(a). In other words, nothing
has been gained thus far by using the capacitive element in the control
network. However, let us now increase the potentiometer resistance to
200 k� and note the effect on the controlling voltage.

42.78 k� Vs ��90°
���
90.72 k� ��28.14°

(42.78 k� ��90°)(Vs �0°)
���

80 k� � j 42.78 k�

1
��
2p(60 Hz)(62 mF)

+

–

G

K

A

TRIACDIAC

0.068 µFVcontrol

330-k�
rheostat

47 k�

+

–

Vline = 170 V ∠ 0°
(peak)

(a)

+

–

170 V ∠ 0°

0.068 µFC

(b)

Vcontrol

+

–

80 k�R

FIG. 15.107

Light dimmer: (a) from Fig. 12.49; (b) with rheostat set at 33 k�.
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That is,

RT � 200 k� � 47 k� � 247 k�

Vcontrol � �
ZR

Z
�
CV

Z
s

C
�

� �

� 0.171Vs ��80.2°

and using a peak value of 170 V, we have

Vcontrol � 0.171(170 V) ��80.2°

� 29.07 V ��80.2°

The peak value has been substantially reduced to only 29.07 V, and the
phase-shift angle has increased to 80.2°. The result, as depicted by Fig.
15.108(b), is that the firing potential of 20 V is not reached until near
the end of the positive region of the applied voltage. Power is delivered
to the bulb for only a very short period of time, causing the bulb to be
quite dim, significantly dimmer than obtained from the response of Fig.
15.106(b).

A conduction angle less than 90° is therefore possible due only to
the phase shift introduced by the series R-C combination. Thus, it is
possible to construct a network of some significance with a rather sim-
ple pair of elements.

15.15 COMPUTER ANALYSIS

PSpice

Series  R-L-C Circuit The R-L-C network of Fig. 15.35 will now be
analyzed using OrCAD Capture. Since the inductive and capacitive

42.78 k� Vs ��90°
���
250.78 k� ��9.8°

(42.78 k� ��90°)(Vs �0°)
���

247 k� � j 42.78 k�

170

80.24

20

0° 90° 360°
61.86°

V(volts)

Vlamp

Vcontrol

Vapplied

θ

(a)

180°

170

29.07
20

0° 90° 360°

80.2°

V(volts)

Vlamp

Vcontrol

Vapplied

θ

(b)

180°

FIG. 15.108

Light dimmer of Fig. 12.49: (a) rheostat set at 33 k�; (b) rheostat set at 200 k�.
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reactances cannot be entered onto the screen, the associated inductive
and capacitive levels were first determined as follows:

XL � 2pf L ⇒ L � � � 1.114 mH

XC � ⇒ C � � � 53.05 mF

The values were then entered into the schematic as shown in Fig. 15.109.
For the ac source, the sequence is Place part icon-SOURCE-VSIN-
OK with VOFF set at 0 V, VAMPL set at 70.7 V (the peak value of
the applied sinusoidal source in Fig. 15.35), and FREQ � 1 kHz. If we
double-click on the source symbol, the Property Editor will appear,
confirming the above choices and showing that DF � 0 s, PHASE � 0°,
and TD � 0 s as set by the default levels. We are now ready to do an
analysis of the circuit for the fixed frequency of 1 kHz.

1
��
2p(1 kHz)3 �

1
�
2pf XC

1
�
2pfC

7 �
��
2p(1 kHz)

XL
�
2pf

FIG. 15.109

Using PSpice to analyze a series R-L-C ac circuit.

The simulation process is initiated by first selecting the New Simu-
lation Profile icon and inserting SeriesRLC as the Name followed by
Create. The Simulation Settings dialog will now appear, and since we
are continuing to plot the results against time, the Time Domain(Tran-
sient) option is selected under Analysis type. Since the period of each
cycle of the applied source is 1 ms, the Run to time will be set at 5 ms
so that five cycles will appear. The Start saving data after will be left
at 0 s even though there will be an oscillatory period for the reactive
elements before the circuit settles down. The Maximum step size will
be set at 5 ms/1000 � 5 ms. Finally OK is selected followed by the
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Run PSpice key. The result will be a blank screen with an x-axis
extending from 0 s to 5 ms.

The first quantity of interest is the current through the circuit, so
Trace-Add-Trace is selected followed by I(R) and OK. The resulting
plot of Fig. 15.110 clearly shows that there is a period of storing and
discharging of the reactive elements before a steady-state level is estab-
lished. It would appear that after 3 ms, steady-state conditions have
been essentially established. Select the Toggle cursor key, and left-
click the mouse; a cursor will result that can be moved along the axis
near the maximum value around 1.4 ms. In fact, the cursor reveals a
maximum value of 16.4 A which exceeds the steady-state solution by
over 2 A. A right click of the mouse will establish a second cursor on
the screen that can be placed near the steady-state peak around 4.4 ms.
The resulting peak value is about 14.15 A which is a match with the
longhand solution for Fig. 15.35. We will therefore assume that steady-
state conditions have been established for the circuit after 4 ms.

FIG. 15.110

A plot of the current for the circuit of Fig. 15.109 showing the transition from the transient state to
the steady-state response.

Let us now add the source voltage through Trace-Add Trace-
V(Vs:+)-OK to obtain the multiple plot at the bottom of Fig. 15.111.
For the voltage across the coil, the sequence Plot-Add Plot to Window-
Trace-Add Trace-V(L:1)-V(L:2) will result in the plot appearing at
the top of Fig. 15.111. Take special note of the fact that the Trace
Expression is V(L:1)�V(L:2) rather than just V(L:1) because V(L:1)
would be the voltage from that point to ground which would include the
voltage across the capacitor. In addition, the � sign between the two
comes from the Functions or Macros list at right of the Add Traces
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dialog box. Finally, since we know that the waveforms are fairly steady
after 3 ms, let us cut away the waveforms before 3 ms with Plot-Axis
Settings-X axis-User Defined-3ms to 5ms-OK to obtain the two
cycles of Fig. 15.111. Now you can clearly see that the peak value of
the voltage across the coil is 100 V to match the analysis of Fig. 15.35.
It is also clear that the applied voltage leads the input current by an
angle that can be determined using the cursors. First activate the cursor
option by selecting the cursor key (a red plot through the origin) in the
second toolbar down from the menu bar. Then select V(Vs:+) at the
bottom left of the screen with a left click of the mouse, and set it at that
point where the applied voltage passes through the horizontal axis with
a positive slope. The result is A1 � 4 ms at �4.243 mV � 0 V. Then
select I(R) at the bottom left of the screen with a right click of the
mouse, and place it at the point where the current waveform passes
through the horizontal axis with a positive slope. The result is A2 �
4.15 ms at �55.15 mA � 0.55 A � 0 A (compared to a peak value of
14.14 A). At the bottom of the Probe Cursor dialog box, the time dif-
ference is 147.24 ms.

Now set up the ratio

�

v � 52.99°

The phase angle by which the applied voltage leads the source is 52.99°
which is very close to the theoretical solution of 53.13° obtained in Fig.
15.39. Increasing the number of data points for the plot would have
increased the accuracy level and brought the results closer to 53.13°.

v
�
360°

147.24 ms
��

1000 ms

FIG. 15.111

A plot of the steady-state response (t � 3 ms) for vL, vs, and i  for the circuit of Fig. 15.109.
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Electronics Workbench

We will now examine the response of a network versus frequency rather
than time using the network of Fig. 15.79 which now appears on the
schematic of Fig. 15.112. The ac current source appears as AC–CUR-
RENT–SOURCE in the Sources tool bin next to the ac voltage source. 
Note that the current source was given an amplitude of 1 A to establish
a magnitude match between the response of the voltage across the net-
work and the impedance of the network. That is,

� ZT � � � � � � � � � Vs �

Before applying computer methods, we should develop a rough idea
of what to expect so that we have something to which to compare the
computer solution. At very high frequencies such as 1 MHz, the imped-
ance of the inductive element will be about 25 k� which when placed
in parallel with the 220 � will look like an open circuit. The result is
that as the frequency gets very high, we should expect the impedance of
the network to approach the 220-� level of the resistor. In addition,
since the network will take on resistive characteristics at very high fre-
quencies, the angle associated with the input impedance should also
approach 0 �. At very low frequencies the reactance of the inductive
element will be much less than the 220 � of the resistor, and the net-
work will take on inductive characteristics. In fact, at, say, 10 Hz, the
reactance of the inductor is only about 0.25 � which is very close to a
short-circuit equivalent compared to the parallel 220-� resistor. The
result is that the impedance of the network is very close to 0 � at very
low frequencies. Again, since the inductive effects are so strong at low

Vs�
1 A

Vs�
Is

FIG. 15.112

Obtaining an impedance plot for a parallel R-L network using Electronics Workbench.
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frequencies, the phase angle associated with the input impedance
should be very close to 90°.

Now for the computer analysis. The current source, the resistor ele-
ment, and the inductor are all placed and connected using procedures
described in detail in earlier chapters. However, there is one big differ-
ence this time that the user must be aware of: Since the output will be
plotted versus frequency, the Analysis Setup heading must be selected
in the AC Current dialog box for the current source. When selected,
the AC Magnitude must be set to the value of the ac source. In this
case, the default level of 1A matches that of the applied source, so we
were set even if we failed to check the setting. In the future, however, a
voltage or current source may be used that does not have an amplitude
of 1, and proper entries must be made to this listing.

For the simulation the sequence Simulate-Analyses-AC Analysis is
first applied to obtain the AC Analysis dialog box. The Start fre-
quency will be set at 10 Hz so that we have entries at very low fre-
quencies, and the Stop frequency will be set at 1MHz so that we have
data points at the other end of the spectrum. The Sweep type can
remain Decade, but the number of points per decade will be 1000 so
that we obtain a detailed plot. The Vertical scale will be set on Linear.
Within Output variables we find that only one node, 1, is defined.
Shifting it over to the Selected variables for analysis column using the
Plot during simulation key pad and then hitting the Simulate key will
result in the two plots of Fig. 15.112. The Show/Hide Grid key was
selected to place the grid on the graph, and the Show/Hide Cursors
key was selected to place the AC Analysis dialog box appearing in Fig.
15.112. Since two graphs are present, we must define the one we are
working on by clicking on the Voltage or Phase heading on the left side
of each plot. A small red arrow will appear when selected to keep us
aware of the active plot. When setting up the cursors, be sure that you
have activated the correct plot. When the red cursor is moved to 10 Hz
(x1), we find that the voltage across the network is only 0.251 V (y1),
resulting in an input impedance of only 0.25 �—quite small and
matching our theoretical prediction. In addition, note that the phase
angle is essentially at 90° in the other plot, confirming our other
assumption above—a totally inductive network. If we set the blue cur-
sor near 100 kHz (x2 � 102.3 kHz), we find that the impedance at
219.2 � (y2) is closing in on the resistance of the parallel resistor of
220 �, again confirming the preliminary analysis above. As noted in the
bottom of the AC Analysis box, the maximum value of the voltage is
219.99 � or essentially 220 � at 1 MHz. Before leaving the plot, note
the advantages of using a log axis when you want a response over a
wide frequency range.
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PROBLEMS

SECTION 15.2 Impedance and the Phasor Diagram

1. Express the impedances of Fig. 15.113 in both polar and
rectangular forms.

   = 157 rad/sω  f  = 10 kHz

R = 6.8 Ω

L = 2 H

   = 377 rad/sω

L = 0.05 H

 f  = 50 Hz

   = 377 rad/sω

C = 10    Fµ C = 0.05    Fµ R = 200 Ω

(a) (b) (c)

(d) (e) (f)

FIG. 15.113

Problem 1.

2. Find the current i for the elements of Fig. 15.114 using
complex algebra. Sketch the waveforms for v and i on the
same set of axes.

i

R 3 �

(a)

v  =  21 sin(qt + 10°)

i

XL 7 �

(b)

v  =  49 sin(qt + 70°)

i

XC 100 �

(c)

v  =  25 sin(qt – 20°)

+

–

+

–

+

–

i

R  =  5.1 k�

(d)

v  =  4 � 10–3 sin(qt – 120°)

i

L  =  0.1 H

(e)

v  =  16 sin(377t + 60°)

i

C  =  2 mF

(f)

v  =  120 sin qt

+

–

+

–

+

–
f  =  5 kHz

FIG. 15.114

Problem 2.

3. Find the voltage v for the elements of Fig. 15.115 using
complex algebra. Sketch the waveforms of v and i on the
same set of axes.

FIG. 15.115

Problem 3.

0.016 H

i  =  1.5 sin(377t + 60°)

v

+

–

i  =  4 � 10–3 sin qt

R 22 �

(a)

v L

(b)

i  =  0.02 sin(157t + 40°)

C 0.05 mF

(c)

v

+

–

+

–

a c



696  SERIES AND PARALLEL ac CIRCUITS
a c

SECTION 15.3 Series Configuration

4. Calculate the total impedance of the circuits of Fig.
15.116. Express your answer in rectangular and polar
forms, and draw the impedance diagram.

XL2
  =  7 k�

4 k�

R1  =  1 k�

R2

(c)

XL1  =  3 k�

ZT

R  =  6.8 �

XL 6.8 �

(a)

ZT
8 �

R1  =  2 �

R2

(b)

XC  =  6 �

ZT

FIG. 15.116

Problem 4.

L2  =  0.2 H

C  =  10 mF

R  =  47 �

(c)

L1  =  0.06 H

ZT

R  =  3 �

XL 4 �

(a)

ZT
5 k�

R  =  0.5 k�

XL2

(b)

ZT

XC  =  7 � XC  =  4 k�

XL1
  =  2 k�

f  =  1 kHz

FIG. 15.117

Problem 5.

5. Calculate the total impedance of the circuits of Fig.
15.117. Express your answer in rectangular and polar
forms, and draw the impedance diagram.

6. Find the type and impedance in ohms of the series circuit
elements that must be in the closed container of Fig.
15.118 for the indicated voltages and currents to exist at
the input terminals. (Find the simplest series circuit that
will satisfy the indicated conditions.)

I  =  60 A ∠  70°

E  =  120 V ∠  0° ?

(a)

+

–

I  =  20 mA ∠  40°

E  =  80 V ∠  320° ?

(b)

+

–

I  =  0.2 A ∠  –60°

E  =  8 kV ∠  0° ?

(c)

+

–

FIG. 15.118

Problems 6 and 26.
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7. For the circuit of Fig. 15.119:
a. Find the total impedance ZT in polar form.
b. Draw the impedance diagram.
c. Find the current I and the voltages VR and VL in pha-

sor form.
d. Draw the phasor diagram of the voltages E, VR, and

VL, and the current I.
e. Verify Kirchhoff’s voltage law around the closed loop.
f. Find the average power delivered to the circuit.
g. Find the power factor of the circuit, and indicate

whether it is leading or lagging.
h. Find the sinusoidal expressions for the voltages and

current if the frequency is 60 Hz.
i. Plot the waveforms for the voltages and current on the

same set of axes.

8. Repeat Problem 7 for the circuit of Fig. 15.120, replacing
VL with VC in parts (c) and (d).

E  =  100 V ∠  0°

R  =  8 �

VR
+ – VL

+ –

XL  =  6 �

I

+

–
ZT

FIG. 15.119

Problems 7 and 47.

E  =  120 V ∠  20°

R  =  10 �

VR
+ –

VC
+ –

XC  =  30 �

I

+

–
ZT

FIG. 15.120

Problem 8.

+

–
ZT

vC+ –

0.1 mF

C

0.47 k�

vR+ –

Ri

e  =  20 sin qt
f  =  1 kHz

FIG. 15.121

Problems 9 and 49.

9. Given the network of Fig. 15.121:
a. Determine ZT.
b. Find I.
c. Calculate VR and VL.
d. Find P and Fp.

10. For the circuit of Fig. 15.122:
a. Find the total impedance ZT in polar form.
b. Draw the impedance diagram.
c. Find the value of C in microfarads and L in henries.
d. Find the current I and the voltages VR, VL, and VC in

phasor form.
e. Draw the phasor diagram of the voltages E, VR, VL,

and VC, and the current I.
f. Verify Kirchhoff’s voltage law around the closed loop.
g. Find the average power delivered to the circuit.
h. Find the power factor of the circuit, and indicate

whether it is leading or lagging.
i. Find the sinusoidal expressions for the voltages and

current.
j. Plot the waveforms for the voltages and current on the

same set of axes.

FIG. 15.122

Problem 10.

+

–
ZT

vL+ –

XC  =  10 �

vR+ –

R  =  2 �

e  =  70.7 sin 377t

vC
+ –

XL  =  6 �

i



+

–
ZT

vL+ –

XC  =  1 k�

vR+ –

R  =  3 k�

e  =  6 sin(314t + 60°)

vC
+ –

XL  =  2 k�

i

FIG. 15.123

Problem 11.
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E = 20 V(rms) 80 � Scope = 45.27 V( p -p)

+

–

R+

–

FIG. 15.124

Problem 12.

Scope = 21.28 V( p -p)

+

–

R+

–

29.94 mA(rms)

L

I

E = 10 V(rms)
f = 1 kHz

FIG. 15.125

Problem 13.

*13. Using the DMM current reading and the oscilloscope
measurement of Fig. 15.125:
a. Determine the inductance L.
b. Find the resistance R.

11. Repeat Problem 10 for the circuit of Fig. 15.123.

12. Using the oscilloscope reading of Fig. 15.124, determine
the resistance R.

*14. Using the oscilloscope reading of Fig. 15.126, determine
the capacitance C.

E = 12 V(rms)

Scope = 8.27 V( p -p)
+

+

–

C

R

10 k�

–

f = 40 kHz

FIG. 15.126

Problem 14.

+

–

V1
+ –

9 �6.8 �

E  =  60 V ∠  5°
V2

+ –

40 �

(b)

+

–

V2
+ –

2 k�

E  =  120 V ∠  20°

6 k�

(a)

V1
+ –

FIG. 15.127

Problem 15.

SECTION 15.4 Voltage Divider Rule

15. Calculate the voltages V1 and V2 for the circuit of Fig.
15.127 in phasor form using the voltage divider rule.
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+

–
V1

3.3 k�4.7 k�

E  =  120 V ∠  0°

30 k�

(b)

+

–

V2
+ –

20 �

E  =  20 V ∠  70°

20 �

(a)

V1
+ –

60 �

V2 10 k�

FIG. 15.128

Problem 16.

vC+ –

+

–

30 �

e  =  �2(20) sin(377t + 40°)

L  = 0.2 H

i
C  =  4 mFL  = 0.2 H

vR+ –

FIG. 15.129

Problems 17, 18, and 50.

*17. For the circuit of Fig. 15.129:
a. Determine I, VR, and VC in phasor form.
b. Calculate the total power factor, and indicate whether

it is leading or lagging.
c. Calculate the average power delivered to the circuit.
d. Draw the impedance diagram.
e. Draw the phasor diagram of the voltages E, VR, and

VC, and the current I.
f. Find the voltages VR and VC using the voltage divider

rule, and compare them with the results of part (a)
above.

g. Draw the equivalent series circuit of the above as far
as the total impedance and the current i are concerned.

16. Calculate the voltages V1 and V2 for the circuit of Fig.
15.128 in phasor form using the voltage divider rule.

*18. Repeat Problem 17 if the capacitance is changed to 
1000 mF.

19. An electrical load has a power factor of 0.8 lagging. It
dissipates 8 kW at a voltage of 200 V. Calculate the
impedance of this load in rectangular coordinates.
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*23. For the series R-L-C circuit of Fig. 15.133:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz in increments of 1 kHz.
b. Plot VC (magnitude only) versus frequency for the

same frequency range of part (a).
c. Plot I (magnitude only) versus frequency for the same

frequency range of part (a).

ZT C

R

E  =  120 V ∠ 0° VC

+

–

L

8 nF

1 k� 20 mH

I

FIG. 15.133

Problem 23.

SECTION 15.5 Frequency Response of the 

R-C Circuit

*21. For the circuit of Fig. 15.131:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz.
b. Plot VL versus frequency for the frequency range of

part (a).
c. Plot vL versus frequency for the frequency range of

part (a).
d. Plot VR versus frequency for the frequency range of

part (a).

L 20 mH VL

–

+
ZT

1 k�

R
VR –+

+

–

e  =  7.07 sin qt
E  =  5 V ∠  0°

FIG. 15.131

Problem 21.

*22. For the circuit of Fig. 15.132:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 10 kHz.
b. Plot VC versus frequency for the frequency range of

part (a).
c. Plot vC versus frequency for the frequency range of

part (a).
d. Plot VR versus frequency for the frequency range of

part (a).

C 0.5 mF VC

–

+ZT

100 �

R
VR –+

+

–
e  =  �2(10) sin qt

FIG. 15.132

Problem 22.

*20. Find the series element or elements that must be in the
enclosed container of Fig. 15.130 to satisfy the following
conditions:
a. Average power to circuit � 300 W.
b. Circuit has a lagging power factor.

+

–

2 �

E  =  120 V ∠  0°

I  =  3 A ∠  v

?

FIG. 15.130

Problem 20.
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SECTION 15.7 Admittance and Susceptance

24. Find the total admittance and impedance of the circuits of
Fig. 15.134. Identify the values of conductance and sus-
ceptance, and draw the admittance diagram.

22 �

ZT

YT

(d)

10 � 60 �

ZT

YT

(e)

22 � 6 � 9 k�

ZT

YT

(f)

3 k� 6 k�

ZT

YT

(a)

R  =  47 �

ZT

YT

(b)

XL  =  200 �

ZT

YT

(c)

XC  =  0.6 �

25. Find the total admittance and impedance of the circuits of
Fig. 15.135. Identify the values of conductance and sus-
ceptance, and draw the admittance diagram.

FIG. 15.134

Problem 24.

26. Repeat Problem 6 for the parallel circuit elements that
must be in the closed container for the same voltage and
current to exist at the input terminals. (Find the simplest
parallel circuit that will satisfy the conditions indicated.)

0.6 k�

(c)

0.5 k�R  =  3 �

XL  =  8 �

(a)

ZT

20 �

40 �

(b)

70 �

YT

ZT

YT

0.2 k�

ZT

YT

FIG. 15.135

Problem 25.
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SECTION 15.8 Parallel ac Networks

27. For the circuit of Fig. 15.136:
a. Find the total admittance YT in polar form.
b. Draw the admittance diagram.
c. Find the voltage E and the currents IR and IL in pha-

sor form.
d. Draw the phasor diagram of the currents Is, IR, and IL,

and the voltage E.
e. Verify Kirchhoff’s current law at one node.
f. Find the average power delivered to the circuit.
g. Find the power factor of the circuit, and indicate

whether it is leading or lagging.
h. Find the sinusoidal expressions for the currents and

voltage if the frequency is 60 Hz.
i. Plot the waveforms for the currents and voltage on the

same set of axes.

28. Repeat Problem 27 for the circuit of Fig. 15.137, replac-
ing IL with IC in parts (c) and (d).

29. Repeat Problem 27 for the circuit of Fig. 15.138, replac-
ing E with Is in part (c).

E 20 k�XC

+

–

R 10 k�

IR

Is  =  2 mA ∠  20°

IC

FIG. 15.137

Problem 28.

10 �XL

+

–

R 12 �

IR

Is

IL

YT

E  =  60 V ∠  0°

FIG. 15.138

Problems 29 and 48.

30. For the circuit of Fig. 15.139:
a. Find the total admittance YT in polar form.
b. Draw the admittance diagram.
c. Find the value of C in microfarads and L in henries.
d. Find the voltage E and currents IR, IL, and IC in pha-

sor form.
e. Draw the phasor diagram of the currents Is, IR, IL, and

IC, and the voltage E.
f. Verify Kirchhoff’s current law at one node.
g. Find the average power delivered to the circuit.
h. Find the power factor of the circuit, and indicate

whether it is leading or lagging.
i. Find the sinusoidal expressions for the currents and

voltage.
j. Plot the waveforms for the currents and voltage on the

same set of axes.

is  =  3 sin(377t + 60°) R 1.2 � 2 �XL XC 5 �

+

–

iR iL iC

e

FIG. 15.139

Problem 30.

E 5 �XL

+

–

YT
R 2 �

IR

Is  =  2 A ∠  0°

IL

FIG. 15.136

Problem 27.
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31. Repeat Problem 30 for the circuit of Fig. 15.140.

32. Repeat Problem 30 for the circuit of Fig. 15.141, replac-
ing e with is in part (d).

is  =  5 � 10–3 sin(377t – 20°) R 3 k� 4 k�XL XC 2 k�

+

–

iR iL iC

e

FIG. 15.140

Problem 31.

e  =  35.4 sin(314t + 60°) XC 5 � 22 �R XL 10 �

+

–

iC iR iL
YT

is

FIG. 15.141

Problem 32.

SECTION 15.9 Current Divider Rule

33. Calculate the currents I1 and I2 of Fig. 15.142 in phasor
form using the current divider rule.

I  =  20 A ∠  40°

R 33 �

60 �XL1

10 �XL2

I1

I2

I  =  6 A ∠  30°

I1

R

3 �

XL

4 �

I2
XC

6 �

(b)(a)

FIG. 15.142

Problem 33.

SECTION 15.10 Frequency Response of the Parallel

R-L Network

*34. For the parallel R-C network of Fig. 15.143:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz.
b. Plot VC versus frequency for the frequency range of

part (a).
c. Plot IR versus frequency for the frequency range of

part (a).

VC2 mFC

+

–

R 40 �

IR

ZT

I  =  50 mA ∠ 0°

FIG. 15.143

Problems 34 and 36.



704  SERIES AND PARALLEL ac CIRCUITS
a c

*35. For the parallel R-L network of Fig. 15.144:
a. Plot ZT and vT versus frequency for a frequency range

of zero to 10 kHz.
b. Plot IL versus frequency for the frequency range of

part (a).
c. Plot IR versus frequency for the frequency range of

part (a).

36. Plot YT and vT (of YT � YT �vT) for a frequency range of
zero to 20 kHz for the network of Fig. 15.143.

37. Plot YT and vT (of YT � YT �vT) for a frequency range of
zero to 10 kHz for the network of Fig. 15.144.

38. For the parallel R-L-C network of Fig. 15.145:
a. Plot YT and vT (of YT � YT �vT) for a frequency range

of zero to 20 kHz.
b. Repeat part (a) for ZT and vT (of ZT � ZT �vT).
c. Plot VC versus frequency for the frequency range of

part (a).
d. Plot IL versus frequency for the frequency range of

part (a).

200 mHL

+

–

R 5 k�

IR

ZT

E  =  40 V ∠ 0°

IL

FIG. 15.144

Problems 35 and 37.

I  =  10 mA ∠ 0° R 1 k�
100 mH

L C 4 nF

ZT

IL

VC

+

–
YT

FIG. 15.145

Problem 38.

SECTION 15.12 Equivalent Circuits

39. For the series circuits of Fig. 15.146, find a parallel cir-
cuit that will have the same total impedance (ZT).

22 �

(a)

40 �

ZT

2 k�

(b)

8 k�

ZT

6 k�

FIG. 15.146

Problem 39.

40. For the parallel circuits of Fig. 15.147, find a series cir-
cuit that will have the same total impedance.

4.7 k�

R 20 k�XC
ZT

(a)

60 �
68 �RZT

(b)

XL

20 �XC

FIG. 15.147

Problem 40.
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41. For the network of Fig. 15.148:
a. Calculate E, IR, and IL in phasor form.
b. Calculate the total power factor, and indicate whether

it is leading or lagging.
c. Calculate the average power delivered to the circuit.
d. Draw the admittance diagram.
e. Draw the phasor diagram of the currents Is, IR, and IL,

and the voltage E.
f. Find the current IC for each capacitor using only

Kirchhoff’s current law.
g. Find the series circuit of one resistive and reactive

element that will have the same impedance as the
original circuit.

*42. Repeat Problem 41 if the inductance is changed to 1 H.

43. Find the element or elements that must be in the closed
container of Fig. 15.149 to satisfy the following condi-
tions. (Find the simplest parallel circuit that will satisfy
the indicated conditions.)
a. Average power to the circuit � 3000 W.
b. Circuit has a lagging power factor.

e R

220 �

1 mFC C 1 mF

+

–

iR iL

is  =  �2 sin 2p 1000t

L  =  10 mH

FIG. 15.148

Problems 41 and 42.

E  =  100 V ∠  0° ?20 �

I  =  40 A ∠  v

FIG. 15.149

Problem 43.

SECTION 15.13 Phase Measurements 

(Dual-Trace Oscilloscope)

44. For the circuit of Fig. 15.150, determine the phase rela-
tionship between the following using a dual-trace oscillo-
scope. The circuit can be reconstructed differently for
each part, but do not use sensing resistors. Show all con-
nections on a redrawn diagram.
a. e and vC

b. e and is
c. e and vL

is

C

R

e vC

+

–

L

vR –+

+

–

vL –+

FIG. 15.150

Problem 44.

45. For the network of Fig. 15.151, determine the phase rela-
tionship between the following using a dual-trace oscillo-
scope. The network must remain as constructed in Fig.
15.151, but sensing resistors can be introduced. Show all
connections on a redrawn diagram.
a. e and vR2
b. e and is
c. iL and iC

is

C

R1

e

+

–

iCvR2

+

–

iL
L

R2

FIG. 15.151

Problem 45.
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46. For the oscilloscope traces of Fig. 15.152:
a. Determine the phase relationship between the wave-

forms, and indicate which one leads or lags.
b. Determine the peak-to-peak and rms values of each

waveform.
c. Find the frequency of each waveform.

Vertical sensitivity = 0.5 V/div.
Horizontal sensitivity = 0.2 ms/div.

v1

v2

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 10    s/div.

v1

v2

�

(II)(I)

FIG. 15.152

Problem 46.

SECTION 15.15 Computer Analysis

PSpice or Electronics Workbench

47. For the network of Fig. 15.119 (use f � 1 kHz):
a. Determine the rms values of the voltages VR and VL

and the current I.
b. Plot vR, vL, and i versus time on separate plots.
c. Place e, vR, vL, and i on the same plot, and label

accordingly.

48. For the network of Fig. 15.138:
a. Determine the rms values of the currents Is, IR, and IL.
b. Plot is, iR, and iL versus time on separate plots.
c. Place e, is, iR, and iL on the same plot, and label

accordingly.

49. For the network of Fig. 15.121:
a. Plot the impedance of the network versus frequency

from 0 to 10 kHz.
b. Plot the current i versus frequency for the frequency

range zero to 10 kHz.

*50. For the network of Fig. 15.129:
a. Find the rms values of the voltages vR and vC at a fre-

quency of 1 kHz.
b. Plot vC versus frequency for the frequency range zero

to 10 kHz.
c. Plot the phase angle between e and i for the frequency

range zero to 10 kHz.

Programming Language (C��, QBASIC, Pascal, etc.)

51. Write a program to generate the sinusoidal expression for
the current of a resistor, inductor, or capacitor given the
value of R, L, or C and the applied voltage in sinusoidal
form.

52. Given the impedance of each element in rectangular
form, write a program to determine the total impedance
in rectangular form of any number of series elements.

53. Given two phasors in polar form in the first quadrant,
write a program to generate the sum of the two phasors in
polar form.
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GLOSSARY

Admittance A measure of how easily a network will
“admit” the passage of current through that system. It is
measured in siemens, abbreviated S, and is represented by
the capital letter Y.

Admittance diagram A vector display that clearly depicts
the magnitude of the admittance of the conductance,
capacitive susceptance, and inductive susceptance, and
the magnitude and angle of the total admittance of the
system.

Current divider rule A method by which the current
through either of two parallel branches can be determined
in an ac network without first finding the voltage across the
parallel branches.

Equivalent circuits For every series ac network there is a
parallel ac network (and vice versa) that will be “equiva-
lent” in the sense that the input current and impedance are
the same.

Impedance diagram A vector display that clearly depicts
the magnitude of the impedance of the resistive, reactive,

and capacitive components of a network, and the magnitude
and angle of the total impedance of the system.

Parallel ac circuits A connection of elements in an ac net-
work in which all the elements have two points in common.
The voltage is the same across each element.

Phasor diagram A vector display that provides at a glance
the magnitude and phase relationships among the various
voltages and currents of a network.

Series ac configuration A connection of elements in an ac
network in which no two impedances have more than one
terminal in common and the current is the same through
each element.

Susceptance A measure of how “susceptible” an element is to
the passage of current through it. It is measured in siemens,
abbreviated S, and is represented by the capital letter B.

Voltage divider rule A method through which the voltage
across one element of a series of elements in an ac network
can be determined without first having to find the current
through the elements.
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16.1 INTRODUCTION

In this chapter, we shall utilize the fundamental concepts of the previ-
ous chapter to develop a technique for solving series-parallel ac net-
works. A brief review of Chapter 7 may be helpful before considering
these networks since the approach here will be quite similar to that
undertaken earlier. The circuits to be discussed will have only one
source of energy, either potential or current. Networks with two or more
sources will be considered in Chapters 17 and 18, using methods previ-
ously described for dc circuits.

In general, when working with series-parallel ac networks, consider
the following approach:

1. Redraw the network, employing block impedances to combine
obvious series and parallel elements, which will reduce the
network to one that clearly reveals the fundamental structure of
the system.

2. Study the problem and make a brief mental sketch of the overall
approach you plan to use. Doing this may result in time- and
energy-saving shortcuts. In some cases a lengthy, drawn-out
analysis may not be necessary. A single application of a
fundamental law of circuit analysis may result in the desired
solution.

3. After the overall approach has been determined, it is usually best
to consider each branch involved in your method independently
before tying them together in series-parallel combinations. In most
cases, work back from the obvious series and parallel combi-
nations to the source to determine the total impedance of the
network. The source current can then be determined, and the path
back to specific unknowns can be defined. As you progress back to
the source, continually define those unknowns that have not been
lost in the reduction process. It will save time when you have to
work back through the network to find specific quantities.

Series-Parallel 
ac Networks
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4. When you have arrived at a solution, check to see that it is
reasonable by considering the magnitudes of the energy source
and the elements in the circuit. If not, either solve the network
using another approach, or check over your work very carefully.
At this point a computer solution can be an invaluable asset in the
validation process.

16.2 ILLUSTRATIVE EXAMPLES

EXAMPLE 16.1 For the network of Fig. 16.1:

a. Calculate ZT.
b. Determine Is.
c. Calculate VR and VC.

d. Find IC.
e. Compute the power delivered.
f. Find Fp of the network.

Solutions:

a. As suggested in the introduction, the network has been redrawn
with block impedances, as shown in Fig. 16.2. The impedance Z1

is simply the resistor R of 1 �, and Z2 is the parallel combination
of XC and XL. The network now clearly reveals that it is funda-
mentally a series circuit, suggesting a direct path toward the total
impedance and the source current. As noted in the introduction,
for many such problems you must work back to the source to find
first the total impedance and then the source current. When the
unknown quantities are found in terms of these subscripted imped-
ances, the numerical values can then be substituted to find the
magnitude and phase angle of the unknown. In other words, try to
find the desired solution solely in terms of the subscripted imped-
ances before substituting numbers. This approach will usually
enhance the clarity of the chosen path toward a solution while
saving time and preventing careless calculation errors. Note also
in Fig. 16.2 that all the unknown quantities except IC have been
preserved, meaning that we can use Fig. 16.2 to determine these
quantities rather than having to return to the more complex net-
work of Fig. 16.1.

R

1 �
+

–

E  =  120 V ∠  0°

VR+ –

VC+ –
XC

XL

Is

ZT

IC 2 �

3 �

FIG. 16.1

Example 16.1.

+

–

Is

ZTE  =  120 V ∠  0°

Z1 Z2

FIG. 16.2

Network of Fig. 16.1 after assigning the block 
impedances.
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The total impedance is defined by

ZT � Z1 � Z2

with

Z1 � R �0° � 1 � �0°

Z2 � ZC � ZL � �
(2 � ��90°)(3 � �90°)
���

�j 2 � � j 3 �
(XC ��90°)(XL �90°)
���

�j XC � j XL

� � � 6 � ��90°

and

ZT � Z1 � Z2 � 1 � � j 6 � � 6.08 � ��80.54°

b. Is � � � 19.74 A �80.54°

c. Referring to Fig. 16.2, we find that VR and VC can be found by a
direct application of Ohm’s law:

VR � IsZ1 � (19.74 A �80.54°)(1 � �0°) � 19.74 V �80.54°

VC � IsZ2 � (19.74 A �80.54°)(6 � ��90°)

� 118.44 V ��9.46°

d. Now that VC is known, the current IC can also be found using Ohm’s
law.

IC � � � 59.22 A �80.54°

e. Pdel � I2
sR � (19.74 A)2(1 �) � 389.67 W

f. Fp � cos v � cos 80.54° � 0.164 leading

The fact that the total impedance has a negative phase angle (reveal-
ing that Is leads E) is a clear indication that the network is capacitive in
nature and therefore has a leading power factor. The fact that the net-
work is capacitive can be determined from the original network by first
realizing that, for the parallel L-C elements, the smaller impedance pre-
dominates and results in an R-C network.

EXAMPLE 16.2 For the network of Fig. 16.3:
a. If I is 50 A �30°, calculate I1 using the current divider rule.
b. Repeat part (a) for I2.
c. Verify Kirchhoff’s current law at one node.

Solutions:

a. Redrawing the circuit as in Fig. 16.4, we have

Z1 � R � j XL � 3 � � j 4 � � 5 � �53.13°

Z2 � �j XC � �j 8 � � 8 � ��90°

Using the current divider rule yields

I1 � � �

� � 80 A ��6.87°
400 ��60°
��
5 ��53.13°

400 ��60°
��

3 � j 4

(8 � ��90°)(50 A �30°)
���
(�j 8 �) � (3 � � j 4 �)

Z2I
�
Z2 � Z1

118.44 V ��9.46°
���

2 � ��90°

VC
�
ZC

120 V �0°
���
6.08 � ��80.54°

E
�
ZT

6 � �0°
�
1 �90°

6 � �0°
�

j 1

R 3 �

XL

XC 8 �
4 �

I

I1 I2

FIG. 16.3

Example 16.2.

I

I1 I2

Z2Z1

FIG. 16.4

Network of Fig. 16.3 after assigning the block 
impedances.
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b. I2 � � �

� 50 A �136.26°

c. I � I1 � I2

50 A �30° � 80 A ��6.87° � 50 A �136.26°
� (79.43 � j 9.57) � (�36.12 � j 34.57)
� 43.31 � j 25.0

50 A �30° � 50 A �30° (checks)

EXAMPLE 16.3 For the network of Fig. 16.5:
a. Calculate the voltage VC using the voltage divider rule.
b. Calculate the current Is.

Solutions:

a. The network is redrawn as shown in Fig. 16.6, with

Z1 � 5 � � 5 � �0°

Z2 � �j 12 � � 12 � ��90°

Z3 � �j 8 � � 8 � �90°

Since VC is desired, we will not combine R and XC into a single
block impedance. Note also how Fig. 16.6 clearly reveals that E is
the total voltage across the series combination of Z1 and Z2, permit-
ting the use of the voltage divider rule to calculate VC. In addition,
note that all the currents necessary to determine Is have been pre-
served in Fig. 16.6, revealing that there is no need to ever return to
the network of Fig. 16.5—everything is defined by Fig. 16.6.

VC � � �

� 18.46 V ��2.62°

b. I1 � � � 2.5 A ��70°

I2 � � � 1.54 A �87.38°

and

Is � I1 � I2

� 2.5 A ��70° � 1.54 A �87.38°
� (0.86 �j 2.35) � (0.07 � j 1.54)

Is � 0.93 � j 0.81 � 1.23 A ��41.05°

EXAMPLE 16.4 For Fig. 16.7:
a. Calculate the current Is.
b. Find the voltage Vab.

Solutions:

a. Redrawing the circuit as in Fig. 16.8, we obtain

Z1 � R1 � j XL � 3 � � j 4 � � 5 � �53.13°

Z2 � R2 � j XC � 8 � � j 6 � � 10 � ��36.87°

In this case the voltage Vab is lost in the redrawn network, but the
currents I1 and I2 remain defined for future calculations necessary

20 V �20°
��
13 � ��67.38°

E
�
Z1 � Z2

20 V �20°
��
8 � �90°

E
�
Z3

240 V ��70°
��
13 ��67.38°

(12 � ��90°)(20 V �20°)
���

5 � � j 12 �

Z2E
�
Z1 � Z2

250 �83.13°
��
5 ��53.13°

(5 � �53.13°)(50 A �30°)
���

5 � ��53.13°

Z1I
�
Z2 � Z1

R

5 �
+

–
20 V ∠  20°

+

–
XC

XL

Is

12 �8 � VCE

FIG. 16.5

Example 16.3.

E

I1 I2

Z1

Z3

Z2

Is

+

–

VC

+

–

FIG. 16.6

Network of Fig. 16.5 after assigning the block 
impedances.

R1 3 �

XL
XC 6 �4 �

I1 I2

Vaba b

R2 8 �

Is

+

–

E  =  100 V ∠  0°

FIG. 16.7

Example 16.4.
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to determine Vab. Figure 16.8 clearly reveals that the total imped-
ance can be found using the equation for two parallel impedances:

ZT � �

� �

� 4.472 � �26.56°

and Is � � � 22.36 A ��26.56°

b. By Ohm’s law,

I1 � � � 20 A ��53.13°

I2 � � � 10 A �36.87°

Returning to Fig. 16.7, we have

VR1
� I1ZR1

� (20 A ��53.13°)(3 � �0°) � 60 V ��53.13°

VR2
� I1ZR2

� (10 A ��36.87°)(8 � �0°) � 80 V ��36.87°

Instead of using the two steps just shown, we could have determined
VR1

or VR2
in one step using the voltage divider rule:

VR1
� � � 60 V ��53.13°

To find Vab, Kirchhoff’s voltage law must be applied around the
loop (Fig.16.9) consisting of the 3-� and 8-� resistors. By Kirch-
hoff’s voltage law,

Vab � VR1
� VR2

� 0

or Vab � VR2 � VR1

� 80 V �36.87° � 60 V �� 53.13°
� (64 � j 48) � (36 � j 48)
� 28 � j 96

Vab � 100 V �73.74°

EXAMPLE 16.5 The network of Fig. 16.10 is frequently encountered
in the analysis of transistor networks. The transistor equivalent circuit
includes a current source I and an output impedance Ro. The resistor
RC is a biasing resistor to establish specific dc conditions, and the
resistor Ri represents the loading of the next stage. The coupling
capacitor is designed to be an open circuit for dc and to have as low
an impedance as possible for the frequencies of interest to ensure that
VL is a maximum value. The frequency range of the example includes
the entire audio (hearing) spectrum from 100 Hz to 20 kHz. The pur-
pose of the example is to demonstrate that, for the full audio range,
the effect of the capacitor can be ignored. It performs its function as a
dc blocking agent but permits the ac to pass through with little distur-
bance.

300 V �0°
��
5 �53.13°

(3 � �0°)(100 V �0°)
���
3 � �0° � 4 � �90°

100 V �0°
��
10 � ��36.87°

E
�
Z2

100 V �0°
��
5 � �53.13°

E
�
Z1

100 V �0°
��
4.472 � �26.56°

E
�
ZT

50 � �16.26°
��
11.18 ��10.30°

50 � �16.26°
��

11 � j 2

(5 � �53.13°)(10 � ��36.87°)
����
(3 � � j 4 �) � (8 � � j 6 �)

Z1Z2
�
Z1 � Z2

I1 I2

Z2Z1

I

YT

+

–

E  =  100 V ∠  0°

FIG. 16.8

Network of Fig. 16.7 after assigning the block 
impedances.

3 �

Vaba b

VR2
8 �

+

–
VR1

+

–

+ –

FIG. 16.9

Determining the voltage Vab for the network
of Fig. 16.7.
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a. Determine VL for the network of Fig. 16.10 at a frequency of 
100 Hz.

b. Repeat part (a) at a frequency of 20 kHz.
c. Compare the results of parts (a) and (b).

Solutions:

a. The network is redrawn with subscripted impedances in Fig.
16.11.

Z1 � 50 k� �0° � 3.3 k� �0° � 3.096 k� �0°

Z2 � Ri � j XC

At f � 100 Hz: XC � � � 159.16 �

and Z2 � 1 k� � j 159.16 �

Current divider rule:

IL � �

� �

� 3.021 mA �2.225°

and VL � ILZR

� (3.021 mA �2.225°)(1 k� �0°)
� 3.021 V �2.225°

b. At f � 20 kHz: XC � � � 0.796 �

Note the dramatic change in XC with frequency. Obviously, the
higher the frequency, the better the short-circuit approximation for
XC for ac conditions.

Z2 � 1 k� � j 0.796 �

Current divider rule:

IL � �

� �

� 3.023 mA �0.011°

12.384 A �0°
��
4096 ��0.011°

12.384 A �0°
��
4096 � j 0.796 �

(3.096 k� �0°)(4 mA �0°)
����
3.096 k� � 1 k� �j 0.796 �

Z1I
�
Z1 � Z2

1
���
2p(20 kHz)(10 mF)

1
�
2pfC

12.384 A �0°
��
4099 ��2.225°

12.384 A �0°
��
4096 � j 159.16

(3.096 k� �0°)(4 mA �0°)
����
3.096 k� � 1 k� � j 159.16 �

Z1I
�
Z1 � Z2

1
��
2p(100 Hz)(10 mF)

1
�
2pfC

10 �F
Ro

50 k� RC 3.3 k�

Next stage
Coupling
capacitor

Ri 1 k� VL

+

–

Transistor equivalent
network

Biasing
network

I 4 mA ∠ 0°

�

FIG. 16.10

Basic transistor amplifier.

Z2Z1

IL

VL

+

–

I 4 mA ∠ 0°

FIG. 16.11

Network of Fig. 16.10 following the assign-
ment of the block impedances.
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and VL � ILZR

� (3.023 mA �0.011°)(1 k� �0°)
� 3.023 V �0.011°

c. The results clearly indicate that the capacitor had little effect on the
frequencies of interest. In addition, note that most of the supply cur-
rent reached the load for the typical parameters employed.

EXAMPLE 16.6 For the network of Fig. 16.12:

I

I1
6 mA
∠ 20° V

+

–

I2
4 mA
∠ 0°R1 2 k� R3 6.8 k�

R2 10 k�

20 k�XC

FIG. 16.12

Example 16.6.

a. Determine the current I.
b. Find the voltage V.

Solutions:

a. The rules for parallel current sources are the same for dc and ac net-
works. That is, the equivalent current source is their sum or differ-
ence (as phasors). Therefore,

IT � 6 mA �20° � 4 mA �0°
� 5.638 mA � j 2.052 mA � 4 mA
� 1.638 mA � j 2.052 mA
� 2.626 mA �51.402°

Redrawing the network using block impedances will result in the
network of Fig. 16.13 where

Z1 � 2 k� �0° � 6.8 k� �0° � 1.545 k� �0°

and Z2 � 10 k� � j 20 k� � 22.361 k� ��63.435°

Note that I and V are still defined in Fig. 16.13.
Current divider rule:

I � �

� �

� 0.176 mA �111.406°

b. V � IZ2

� (0.176 mA �111.406°)(22.36 k� ��63.435°)
� 3.936 V �47.971°

4.057 A �51.402°
���
23.093 � 103��60.004°

4.057 A �51.402°
���
11.545 � 103 � j 20 � 103

(1.545 k� �0°)(2.626 mA �51.402°)
����

1.545 k� � 10 k� � j 20 k�

Z1IT
�
Z1 � Z2

Z2Z1

I

IT 2.626 mA ∠ 51.402° V

+

–

FIG. 16.13

Network of Fig. 16.12 following the
assignment of the subscripted impedances.
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a. Compute I.
b. Find I1, I2, and I3.
c. Verify Kirchhoff’s current law by showing that

I � I1 � I2 � I3

d. Find the total impedance of the circuit.

Solutions:

a. Redrawing the circuit as in Fig. 16.15 reveals a strictly parallel net-
work where

Z1 � R1 � 10 � �0°

Z2 � R2 � j XL1
� 3 � � j 4 �

Z3 � R3 � j XL2
� j XC � 8 � � j 3 � � j 9 � � 8 � � j 6 �

R2 3 �

XL1

XC 9 �

4 �

I1 I2

R1 10 �

ZT

+

–

E  =  200 V ∠  0°

I3

YT

R3  =  8 � XL2
  =  3 �I

FIG. 16.14

Example 16.7.

I1 I2

Z1

I

+

–

E  =  200 V ∠  0° Z2

I3

Z3

FIG. 16.15

Network of Fig. 16.14 following the assignment of the subscripted impedances.

The total admittance is

YT � Y1 � Y2 � Y3

� � � � � �

� 0.1 S � �

� 0.1 S � 0.2 S ��53.13° � 0.1 S �36.87°

� 0.1 S � 0.12 S � j 0.16 S � 0.08 S � j 0.06 S

� 0.3 S � j 0.1 S � 0.316 S ��18.435°

Calculator The above mathematical exercise presents an excellent
opportunity to demonstrate the power of some of today’s calculators.
Using the TI-86, the above operation would appear as follows on the
display:

1
��
10 � ��36.87°

1
��
5 � �53.13°

1
��
8 � � j 6 �

1
��
3 � � j 4 �

1
�
10 �

1
�
Z3

1
�
Z2

1
�
Z1

EXAMPLE 16.7 For the network of Fig. 16.14:
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with the result:

Converting to polar form:

The current I:

I � EYT � (200 V �0°)(0.316 S ��18.435°)

� 63.2 A ��18.435°

b. Since the voltage is the same across parallel branches,

I1 � � � 20 A �0°

I2 � � � 40 A ��53.13°

I3 � � � 20 A ��36.87°

c. I � I1 � I2 � I3

60 � j 20 � 20 �0° � 40 ��53.13° � 20 ��36.87°
� (20 � j 0) � (24 � j 32) � (16 � j 12)

60 � j 20 � 60 � j 20 (checks)

d. ZT � �

� 3.165 � �18.435°

EXAMPLE 16.8 For the network of Fig. 16.16:

1
���
0.316 S ��18.435°

1
�
YT

200 V �0°
��
10 � ��36.87°

E
�
Z3

200 V �0°
��
5 � �53.13°

E
�
Z2

200 V �0°
��
10 � �0°

E
�
Z1

(300.000E�3,�100.000E�3)

1/(10,0)�1/(3,4)�1/(8,�6)

Ans � Pol

(316.228E�3��18.435E0)

I1I

ZT

+

–

E  =  100 V ∠  0°

R2 9 �

R1

4 �

XC 7 �

I2

R3 8 �

XL  =  6 �

FIG. 16.16

Example 16.8.

a. Calculate the total impedance ZT.
b. Compute I.
c. Find the total power factor.
d. Calculate I1 and I2.
e. Find the average power delivered to the circuit.
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Solutions:

a. Redrawing the circuit as in Fig. 16.17, we have

Z1 � R1 � 4 � �0°

Z2 � R2 � j XC � 9 � � j 7 � � 11.40 � ��37.87°

Z3 � R3 � j XL � 8 � � j 6 � � 10 � ��36.87°

I1

Z1
I

ZT

+

–

E  =  100 V ∠  0° Z2

I2

Z3ZT1

FIG. 16.17

Network of Fig. 16.16 following the assignment of the subscripted impedances.

Notice that all the desired quantities were conserved in the redrawn
network. The total impedance:

ZT � Z1 � ZT1

� Z1 �

�

� 4 � � � 4 � � 6.69 � �2.37°

� 4 � � 6.68 � � j 0.28 � � 10.68 � � j 0.28 �

ZT � 10.684 � �1.5°

Mathcad Solution: The complex algebra just presented in detail
provides an excellent opportunity to practice our Mathcad skills with
complex numbers. Remember that the j must follow the numerical value
of the imaginary part and is not multiplied by the numerical value.
Simply type in the numerical value and then j. Also recall that unless
you make a global change in the format, an i will appear with the imag-
inary part of the solution. As shown in Fig. 16.18, each impedance is
first defined with Shift:. Then each impedance is entered in sequence
on the same line or succeeding lines. Next, the equation for the total
impedance is defined using the brackets to ensure that the bottom sum-
mation is carried out before the division and also to provide the same
format to the equation as appearing above. Then enter ZT, select the
equal sign key, and the rectangular form for the total impedance will
appear as shown.

The polar form can be obtained by first going to the Calculator
toolbar to obtain the magnitude operation and inserting ZT as shown in
Fig. 16.18. Then selecting the equal sign will result in the magnitude
of 10.693 �. The angle is obtained by first going to the Greek toolbar
and picking up theta, entering T, and defining the variable. The �
comes from the Calculator toolbar, and the arg( ) from Insert-f(x)-

114 � ��1.00°
��
17.03 ��3.37°

4 � � (11.4 � ��37.87°)(10 � �36.87°)
�����

(9 � � j 7 �) � (8 � � j 6 �)

Z2Z3
�
Z2 � Z3
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(4,0)�((9,�7)�(8,6))�1* (11.4��37.87)(10�36.87)  ENTER

(10.689E0,276.413E�3)

Ans � Pol ENTER

(10.692E0�1.481E0)

b. I � � � 9.36 A ��1.5°

c. Fp � cos vT � � � 1

(essentially resistive, which is interesting, considering the complex-
ity of the network)

10.68 �
��
10.684 �

R
�
ZT

100 V �0°
��
10.684 � �1.5°

E
�
ZT

Function Name-arg. Finally the variable is written again and the
equal sign selected to obtain an angle of 1.478°. The computer solu-
tion of 10.693 � �1.478° is an excellent verification of the theoreti-
cal solution of 10.684 � �1.5°.

Calculator Another opportunity to demonstrate the versatility of the
calculator! For the above operation, however, one must be aware of the
priority of the mathematical operations, as demonstrated in the calcula-
tor display below. In most cases, the operations are performed in the
same order they would be performed longhand.

FIG. 16.18

Using Mathcad to determine the total impedance for the network of Fig.16.16.
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d. Current divider rule:

I2 � �

� �

I2 � 6.27 A ��36°

Applying Kirchhoff’s current law (rather than another application of
the current divider rule) yields

I1 � I � I2

or I � I1 � I2

� (9.36 A ��1.5°) � (6.27 A ��36°)
I � (9.36 A � j 0.25 A) � (5.07 A � j 3.69 A)

I1 � 4.29 A � j 3.44 A � 5.5 A �38.72°

e. PT � EI cos vT

� (100 V)(9.36 A) cos 1.5°
� (936)(0.99966)

PT � 935.68 W

16.3 LADDER NETWORKS

Ladder networks were discussed in some detail in Chapter 7. This sec-
tion will simply apply the first method described in Section 7.3 to the gen-
eral sinusoidal ac ladder network of Fig. 16.19. The current I6 is desired.

106.7 A ��39.37°
���

17.03 ��3.37°
106.7 A ��39.37°
���

17 � j 1

(11.40 � ��37.87°)(9.36 A ��1.5°)
����

(9 � � j 7 �) � (8 � � j 6 �)

Z2I
�
Z2 � Z3

Z2

+

–

E  =  120 V ∠  0° Z4

I6

Z6

Z1 Z3 Z5

FIG. 16.19

Ladder network.

Impedances ZT, Z′T, and Z″T and currents I1 and I3 are defined in
Fig. 16.20:

Z″T � Z5 � Z6

and Z′T � Z3 � Z4 � Z″T

with ZT � Z1 � Z2 � Z′T

Then I �

and I3 �

with I6 �
Z4I3

��
Z4 � Z″T

Z2I
�
Z2 � Z′T

E
�
ZT
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Z2

+

–

E  =  120 V ∠  0° Z4

I6

Z6

Z1 Z3 Z5

I

Z�TZ�TZT

I3

FIG. 16.20

Defining an approach to the analysis of ladder networks.

16.4 APPLICATIONS

The vast majority of the applications appearing throughout the text have
been of the series-parallel variety. The following are simply two more
that include series-parallel combinations of elements and systems to
perform important everyday tasks. The ground fault interrupter (GFI)
outlet employs series protective switches and sensing coils and a paral-
lel control system, while the ideal equivalent circuit for the coax cable
employs a series-parallel combination of inductors and capacitors.

GFI (Ground Fault Interrupter)

The National Electric Code, the “bible” for all electrical contractors,
now requires that ground fault interrupter (GFI) outlets be used in any
area where water and dampness could result in serious injury, such as
in bathrooms, pools, marinas, and so on. The outlet looks like any other
except that it has a reset button and a test button in the center of the unit
as shown in Fig. 16.21(a). Its primary difference between an ordinary
outlet is that it will shut the power off much more quickly than the
breaker all the way down in the basement could. You may still feel a
shock with a GFI outlet, but the current will cut off so quickly (in a few
milliseconds) that a person in normal health should not receive a seri-
ous electrical injury. Whenever in doubt about its use, remember that
the cost is such that it should be installed. It works just as a regular out-
let does, but it provides an increased measure of safety.

The basic operation is best described by the simple network of Fig.
16.21(b). The protection circuit separates the power source from the
outlet itself. Note in Fig. 16.21(b) the importance of grounding the pro-
tection circuit to the central ground of the establishment (a water pipe,
ground bar, and so on, connected to the main panel). In general, the out-
let will be grounded to the same connection. Basically, the network
shown in Fig. 16.21(b) senses both the current entering (Ii) and the cur-
rent leaving (Io) and provides a direct connection to the outlet when
they are equal. If a fault should develop such as caused by someone
touching the hot leg while standing on a wet floor, the return current
will be less than the feed current (just a few milliamperes is enough).
The protection circuitry will sense this difference, establish an open cir-
cuit in the line, and cut off the power to the outlet.

In Fig. 16.22(a) you can see the feed and return lines passing
through the sensing coils. The two sensing coils are separately con-
nected to the printed circuit board. There are two pulse control switches
in the line and a return to establish an open circuit under errant condi-
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tions. The two contacts in Fig. 16.22(a) are the contacts that provide
conduction to the outlet. When a fault develops, another set of similar
contacts in the housing will slide away, providing the desired open-
circuit condition. The separation is created by the solenoid appearing
in Fig. 16.22(b). When the solenoid is energized due to a fault condi-
tion, it will pull the plunger toward the solenoid, compressing the
spring. At the same time, the slots in the lower plastic piece (connected
directly to the plunger) will shift down, causing a disconnect by mov-
ing the structure inserted in the slots. The test button is connected to the
brass bar across the unit in Fig. 16.22(c) below the reset button. When
pressed, it will place a large resistor between the line and ground to
“unbalance” the line and cause a fault condition. When the button is
released, the resistor will be separated from the  line, and the unbalance
condition will be removed. The resistor is actually connected directly to
one end of the bar and moves down with pressure on the bar as shown
in Fig. 16.22(d). Note in Fig. 16.22(c) how the metal ground connection
passes right through the entire unit and how it is connected to the
ground terminal of an applied plug. Also note how it is separated from
the rest of the network with the plastic housing. Although this unit

���

120 V

Ii

+

–
Io

Sensing
coils

Op-Amp

Op-Amp

Pulse solenoid switch Mechanical
reset

Test
button

Outlet

(c)

GFI
logic
Chip

GFI

GFI
protection
network

L1 (hot, feed)

GND

L2 (return, neutral)

Ii

Io

(b)

FIG. 16.21

GFI outlet: (a) wall-mounted appearance; (b) basic operation; (c) schematic.



FIG. 16.22

GFI construction: (a) sensing coils; (b) solenoid control (bottom view); 
(c) grounding (top view); (d) test bar.
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appears simple on the outside and is relatively small in size, it is beau-
tifully designed and contains a great deal of technology and innovation.

Before leaving the subject, note the logic chip in the center of Fig.
16.22(a) and the various sizes of capacitors and resistors. Note also the
four diodes in the upper left region of the circuit board used as a bridge
rectifier for the ac-to-dc conversion process. The transistor is the black
element with the half-circle appearance. It is part of the driver circuit for
the controlling solenoid. Because of the size of the unit, there wasn’t a lot
of room to provide the power to quickly open the circuit. The result is the
use of a pulse circuit to control the motion of the controlling solenoid. In
other words, the solenoid is pulsed for a short period of time to cause the
required release. If the design used a system that would hold the circuit
open on a continuing basis, the power requirement would be greater and
the size of the coil larger. A small coil can handle the required power
pulse for a short period of time without any long-term damage.

As mentioned earlier, if unsure, then install a GFI. It provides a mea-
sure of safety—at a very reasonable cost—that should not be ignored.

Coax Cable

In recent years it appears that coax cable is everywhere, from TV con-
nections to medical equipment, from stereos to computer connections.
What makes this type of connection so special? What are its advantages
over the standard two-wire connection?

The primary purpose of coax cable is to provide a channel for com-
munication between two points without picking up noise from the sur-
rounding medium—a direct link in its purest form. You may wonder
whether noise pollution is really that bad and whether this concern is
overkill, but simply think of all the signals passing through the air that we
cannot see, for example, for cellular phones, pagers, and radio and TV
stations. Then you start to realize that there is a lot going on out there that
we can’t see. None of us would like our EKG signal from our heart to be
disturbed by extraneous noise or to have our stereo pick up channels
other than those of interest. It is a real problem that must be solved, and
it appears that the best solution is to use coax cable. Compared to stan-
dard conductors, coax displays a lower loss of signal in transmission and
has much improved high-frequency transmission characteristics.

It is the construction that offers the protection we desire. The basic
construction of a 75-� coax cable as typically used in the home appears
in Fig. 16.23(a) with its terminal connection in Fig. 16.23(b). It has a

FIG. 16.23

75-� coax cable: (a) construction; (b) terminal connection.
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solid inner conductor surrounded by a polyethylene dielectric (insula-
tor). Copper or aluminum braid woven over the dielectric forms the
outer conductor. Finally, a waterproof jacket placed over the braided
wire provides protection against moisture. Since the entire outer surface
of the braided wire is at the same potential, it completely isolates the
solid conductor in the center of the coax cable from the outside sig-
nals—an isolation referred to as shielding. The question is sometimes
asked, Why is the outside wire braided rather than just a flat sheet of
conducting material? It is braided to reduce the effects of the fields
established by any currents that pass through the outside conductor. In
Fig. 16.24(a), a current in the outer conductor has established circular
magnetic fields that can be additive and can create transmission prob-
lems. However, as shown in Fig. 16.24(b), if the wire is braided, the
magnetic field established by one wire in the braid may be canceled by
a neighboring conductor crossing the conductor on an angle. Note the
opposite direction of the fields in the region between the two braided
wires. Of course, the total magnetic flux may not be canceled, but the
situation is certainly improved compared to that with a solid flat con-
ductor. For added protection, a duofoil covering is sometimes added as
shown in Fig. 16.23(a) to ensure 100% shielding.

Because a coax cable is most commonly referred to as an RF (radio-
frequency) transmission line, most people associate the use of coax
cables with high frequencies. However, this is certainly not the case, as
evidenced by medical technology that deals with static dc levels and
low-voltage (in microvolts or millivolts), “slow” (less than 5 Hz) ac. In
general, coax cables should be used wherever there is a need to ensure
that the transmitted signal is undisturbed by any surrounding noise.
Coax cables are acceptable for the full range of frequencies from 0 Hz
to a few hundred gigahertz, with sound frequencies extending from
about 15 Hz to 20 kHz, radio frequencies from 20 kHz to 300 MHz,
and microwave frequencies from 300 MHz to 300 GHz. Our discussion
thus far has centered on protecting the transmitted signal from external
noise. It is important to realize also that when a coax cable is used, it
will not act as a transmitter for the signal that it is carrying. This fact is
very important as we hook up electronic appliances such as VCRs to
our TVs. If we simply used a twin lead wire between the VCR and TV,
not only would the wire pick up signals by acting like an antenna, but
it would also transmit channel 3 (or 4) to the surrounding medium

FIG. 16.24

Shielding: (a) solid outside inductor; (b) braided outside conductor.

Continuous
conductive shield

Opposing fields

Noise suppression

I

Noise enhancement

(a)

I

(Noise suppression)
Opposing fields

Braided
outer conductor

Opposing
fields

(Noise suppression)
(b)
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(a)

L L L

C C CZcharacteristic

L L L

(a)

(b)

Zc

RG-58U

50 ΩZc

RG-59U

75 Ω

FIG. 16.25

Coax cable: (a) electrical equivalent (lossless line); (b) characteristic
impedance.

which would affect not only your TV’s response but also that of any
other TV or receiver in the area.

For the coupling between the systems in which coax cable is typi-
cally used, it is not the level of voltage or current that is the primary
concern but whether there is a good “match” between components and
the cable. Every transmission line composed of two parallel conductors
will have capacitance between the conductors, and every conductor that
is carrying current has a certain level of inductance. For a transmission
line an equivalent model can be composed of the lumped series-parallel
combination of Fig. 16.25(a), where each capacitor or inductor is for a
short length of the wire. For an infinitely long chain of the elements of
Fig. 16.25(a), the combination has an input impedance called the char-
acteristic impedance that is proportional to �L�/C� where L and C are
the inductance and capacitance of a unit length of the transmission line.
Although Figure 16.25(a) suggests that a transmission line is purely
reactive, there is resistance in the line because of the resistance of the
wire, and this resistance will absorb power. It is therefore important to
realize when hooking up coax cable that the TV farthest from the
source will receive the least amount of signal power, and if it is very
distant, the resulting loss may be sufficient to affect the picture quality.
Rearranging the equations for vL and IC and substituting as follows will
reveal that the characteristic impedance is purely resistive and is mea-
sured in ohms:

vL � L �
d
d
i
t
L� ⇒ L � vL �

d
d
i
t

L
�

iC � C �
d
d
v
t
C� ⇒ C � iC �

d
d
v
t

C
�

so that

��
C
L

�� � ��� ��
v
iC

�L�� �� �
d�d
v�iL

C�� � ��� �� �� � ���2� � �

vL �
d
d
i
t

L
�

—
iC �

d
d
v
t

C
�
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The most common coax cables have characteristic impedances of
either 50 � or 75 �, as shown in Fig. 16.25(b). In actuality they may
be 53.5-� and 73.5-� lines, respectively, but they are usually grouped
in the category of 50- or 75-� lines. The 75-� line is typically used for
applications such as cable TV and RF equipment, while the 50-� line
is typically used for test equipment, ham radio stations, and medical
equipment. Two of the most common coax cables are listed in Table
16.1 with specific information about their characteristics.

TABLE 16.1

Characteristics of two frequently used coax cables.

RG-59U 75 � (actually 73.5 �) RG-58U 50 � (actually 53.5 �)

Core wire: 20 AWG, 40% aluminum 20 AWG, 95% tinned 
Resistance: 44.5 �/1000 ft 10 �/1000 ft
Coating: Duofoil, 100% shield coverage Polyethylene
PVC jacket: 0.237-in. outside diameter 0.193-in. outside diameter
Capacitance: 16.2 pF/ft 28.5 pF/ft
Losses: 1 MHz, 0.8 dB/100 ft 1 MHz, 0.3 dB/100 ft

10 MHz, 1 dB/100 ft 10 MHz, 1.1 dB/100 ft
50 MHz, 1.8 dB/100 ft 50 MHz, 2.5 dB/100 ft
100 MHz, 2.5 dB/100 ft 100 MHz, 3.8 dB/100 ft
1 GHz, 7.9 dB/100 ft 1 GHz, 14.5 dB/100 ft

In reality, a transmission line will not be infinite in length as required
for the definition of characteristic impedance. The result is that a 20-ft
length of 75-� cable will not have an input impedance of 20 � but
rather one that is determined by the load applied to the cable. However,
if the transmission line is terminated by a resistance of 75 �, the char-
acteristic impedance of 75 � will appear at the source. In other words,
terminating a coax cable by its characteristic impedance will make it
appear as an infinite line to the source. When the applied load equals
the characteristic impedance of the line, the line is said to be matched.
An applied load equal to the characteristic impedance also results in
maximum power transfer to the load as established by the maximum
power theorem. Any loading other than the characteristic impedance
will result in a “reflection of power” back to the source. Matching the
load to the line is therefore a major concern when using coax cables.
For instance, take the folded-dipole antenna referred to as a yagi that
was a common sight on roof tops before cable came along. The twin
line cable running from the antenna to the TV had a characteristic
impedance of 300 �. Today, most TVs have an input impedance of
75 �, and thus such antennas would have to be connected to the TV
with a matching transformer (called a Balun transformer) that would
make the 75-� load look like 300 � to the antenna for maximum power
transfer, as shown in Fig. 16.26. In today’s world, TVs are referred to
as cable ready if they have a coax connection and an input impedance
of 75 � to match the cable system.

One of the mistakes frequently made when installing a coax system
is to hook up a splitter and fail to terminate all the output terminals. In
Fig. 16.27(a), a three-way splitter is connected to two TVs with the
third terminal left open for any possible future additions. The open third
terminal will cause a mismatch on the incoming line, and less power

FIG. 16.26

Balun matching transformer.

��� �

�� �
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will get to the connected TVs. This situation is corrected by terminat-
ing the unused terminal with a commercially available connector as
shown in Fig. 16.27(b), which simply has a 75-� resistor inside. It is
also important to realize that each time you split the signal, you lose
power to each of the TVs connected to the system. In fact, you lose
3 dB for each split as shown in Fig. 16.28(a). Splitting the signal in two
will result in a loss of 3 dB for each TV, while splitting it three ways
will result in a 6-dB loss for each TV. The concept of decibels will be
covered in Chapter 24, but be aware for the moment that a 3-dB drop
represents a drop in power of one-half—certainly a significant amount.
A TV can still respond pretty well with a drop of 3 dB or 6 dB, but any-
thing approaching a 12-dB drop will probably result in a poor image
and should be avoided. Whenever using a splitter, it is always best to
connect an amplifier before the splitter as shown in Fig. 16.28(b). In
essence, the amplifier compensates for the loss introduced by splitters
and also (if well designed) will permit leaving a terminal open without
disturbing the resulting signal power flow. In other words, a good

Unterminated
connection

75-Ω cable

Output
Three-way

splitter

Input

75-Ω cable

75-Ω cable

(a)

���

FIG. 16.27

Signal splitting: (a) three-way splitter; (b) F-type 75-� coax terminator.

(a)

(b)

Input

Three-way
splitter

–6 dB

–6 dB

–6 dB

Output

Input

Two-way
splitter

Output

–3 dB

–3 dB

Input

Three-way
splitter

Amplifier

120 V ac

Minimal
loss

FIG. 16.28

Coax splitting losses: (a) dB losses introduced by two-way and three-way
splitters; (b) using an amplifier.
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amplifier knows how to compensate for a terminal that is improperly
terminated.

Table 16.1 reveals that there is a measurable loss in power (dB) for
every 100 ft of cable. For each cable, about 3 dB are lost for every 100 ft
at 100 MHz, primarily because of the resistance of the center conduc-
tor (44.5 �/1000 ft for the 75-� line and 10 �/1000 ft for the 50-�
line). This is one reason why it is not recommended to first split the sig-
nal and apply the amplifier at the location of the TV. In Fig. 16.29(a),
the signal-to-noise (unwanted signals) ratio is quite high, and the recep-
tion will be quite good. However, as shown in Fig. 16.29(b), if the sig-
nal is sent down a 100-ft cable to a room distant from the source, there
will be a drop in signal, and even if the noise component does not
increase, the signal-to-noise ratio at the TV will be much higher. If an
amplifier is connected at this point, it will amplify both the signal and
the unwanted noise, and the poorer signal-to-noise ratio will be fed to
the TV, resulting in a poorer reception. In general, therefore, amplifiers
should be applied where the signal-to-noise ratio is the highest.

Signal

Noise

V

0
t

Source

Signal/noise ratio (SNR)
excellent Signal

Noise

V

0
t

Source

SNR
deteriorating

100′+

(a) (b)

Wall
outlet

Wall
outlet

FIG. 16.29

Signal-to-noise ratios: (a) negligible line loss; (b) measurable line loss.

The discussion of coax cables and their proper use could go on for a
number of pages. Priorities, however, require that any further investiga-
tion be left to the reader. Simply be aware that the matching process is
an important one and that coax cables are not ideal systems and do have
an internal resistance that can affect transmission—especially over long
distances.

16.5 COMPUTER ANALYSIS

PSpice

ac Bridge Network We will be using Example 16.4 to demonstrate
the power of the VPRINT option in the SPECIAL library. It permits a
direct determination of the magnitude and angle of any voltage in an ac
network. Similarly the IPRINT option does the same for ac currents. In
Example 16.4, the ac voltages across R1 and R2 were first determined,
and then Kirchhoff’s voltage law was applied to determine the voltage
between the two known points. Since PSpice is designed primarily to
determine the voltage at a point with respect to ground, the network of
Fig. 16.7 is entered as shown in Fig. 16.30 to permit a direct calculation
of the voltages across R1 and R2.

The source and network elements are entered using a procedure that
has been demonstrated several times in previous chapters, although for
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the AC Sweep analysis to be performed in this example, the source
mustcarryanAC levelalso.Fortunately, it is thesameasVAMPLasshown
in Fig. 16.30. It is introduced into the source description by double-
clicking on the source symbol to obtain the Property Editor dialog
box. The AC column is selected and the 100 V entered in the box
below. Then Display is selected and Name and Value chosen. Click
OK followed by Apply, and you can exit the dialog box. The result is
AC � 100 V added to the source description on the diagram and in the
system. Using the reactance values of Fig. 16.7, the values for L and C
were determined using a frequency of 1 kHz. The voltage across R1 and
R2 can be determined using the Trace command in the same manner as
described in the previous chapter or by using the VPRINT option. Both
approaches will be discussed in this section because they have applica-
tion to any ac network.

The VPRINT option is under the SPECIAL library in the Place
Part dialog box. Once selected, the printer symbol will appear on the
screen next to the cursor, and it can be placed near the point of interest.
Once the printer symbol is in place, a double-click on it will result in
the Property Editor dialog box. Scrolling from left to right, type the
word ok under AC, MAG, and PHASE. When each is active, the Dis-
play key should be selected and the option Name and Value chosen
followed by OK. When all the entries have been made, choose Apply
and exit the dialog box. The result appears Fig. 16.30 for the two appli-
cations of the VPRINT option. If you prefer, VPRINT1 and VPRINT2
can be added to distinguish between the two when you review the out-
put data. This is accomplished by returning to the Property Editor dia-
log box for each by double-clicking on the printer symbol of each and

FIG. 16.30

Determining the voltage across R
1

and R
2

using the VPRINT option of a
PSpice analysis.
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selecting Value and then Display followed by Value Only. We are now
ready for the simulation.

The simulation is initiated by selecting the New Simulation Profile
icon and entering ACSweep as the Name. Then select Create to bring
up the Simulation Settings dialog box. This time, we want to analyze
the network at 1 kHz but are not interested in plots against time. Thus,
the AC Sweep/Noise option will be selected under Analysis type in the
Analysis section. An AC Sweep Type region will then appear in the
dialog asking for the Start Frequency. Since we are interested in the
response at only one frequency, the Start and End Frequency will be
the same: 1 kHz. Since we need only one point of analysis, the
Points/Decade will be 1. Click OK, and the Run PSpice icon can be
selected. The SCHEMATIC1 screen will appear, and the voltage across
R1 can be determined by selecting Trace followed by Add Trace and
then V(R1:1). The result is the bottom display of Fig. 16.31 with only
one plot point at 1 kHz. Since we fixed the frequency of interest at 1
kHz, this is the only frequency with a response. The magnitude of the
voltage across R1 is 60 V to match the longhand solution of Example
16.4. The phase angle associated with the voltage can be determined by
the sequence Plot-Add Plot to Window-Trace-Add Trace-P( ) from
the Functions or Macros list and then V(R1:1) to obtain P(V(R1:1))
in the Trace Expression box. Click OK, and the resulting plot shows
that the phase angle is near just less than �50° which is certainly a
close match with the �53.13° obtained in Example 16.4.

The above process made no use of the new VPRINT option just
introduced. We will now see what this option provides. When the
SCHEMATIC1 window appears after the simulation, the window
should be exited using the X, and PSpice should be selected on the top

FIG. 16.31

The resulting magnitude and phase angle for the voltage VR1
of Fig. 16.30.
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menu bar of the resulting screen. A list will appear of which View Out-
put File is an option. Selecting this option will result in a long list of
data about the construction of the network and the results obtained from
the simulation. In Fig. 16.32 the portion of the output file listing the
resulting magnitude and phase angle for the voltages defined by
VPRINT1 and VPRINT2 is provided. Note that the voltage across R1

defined by VPRINT1 is 60 V at an angle of 53.13°. The voltage across
R2 as defined by VPRINT2 is 80 V at an angle of 36.87°. Both are
exact matches of the solutions of Example 16.4. In the future, therefore,
if the VPRINT option is used, the results will appear in the output file.

Now we will determine the voltage across the two branches from
point a to point b. Return to SCHEMATIC1, and select Trace fol-
lowed by Add Trace to obtain the list of Simulation Output Vari-
ables. Then, by applying Kirchhoff’s voltage law around the closed
loop, we find that the desired voltage is V(R1:1)-V(R2:1) which when
followed by OK will result in the plot point in the screen in the bot-
tom of Fig. 16.33. Note that it is exactly 100 V as obtained in the
longhand solution. The phase angle can then be determined through
Plot-Add Plot to Window-Trace-Add Trace and creating the expres-
sion P(V(R1:1)-V(R2:1)). Remember that the expression can be gen-
erated using the lists of Output variables and Functions, but it can

FIG. 16.32

The VPRINT1 (VR1
) and VPRINT2 (VR2

) response for the network of Fig. 16.30.
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also be simply typed in from the keyboard. However, always be sure
that there are as many left parentheses as there are right. Click OK, and
a solution near �105° appears. A better reading can be obtained by
using Plot-Axis Settings-Y Axis-User Defined and changing the scale
to �100° to �110°. The result is the top screen of Fig. 16.33 with an
angle closer to �106.5° or 73.5° which is very close to the theoretical
solution of 73.74°.

Finally, the last way to find the desired bridge voltage is to remove
the VPRINT2 option and place the ground at that point as shown in
Fig. 16.34. Now the voltage generated from a point above R1 to ground
will be the desired voltage. Repeating a full simulation will then result
in the plot of Fig. 16.35 with the the same results as Fig. 16.33. Note,
however, that even though the two figures look the same, the quantities
listed in the bottom left of each plot are different.

Electronics Workbench

Electronics Workbench will now be used to determine the voltage
across the last element of the ladder network of Fig. 16.36. The mathe-
matical content of this chapter would certainly suggest that this analy-
sis would be a lengthy exercise in complex algebra, with one mistake (a
single sign or an incorrect angle) enough to invalidate the results. How-
ever, it will take only a few minutes to “draw” the network on the
screen and only a few seconds to generate the results—results you can
usually assume are correct if all the parameters were entered correctly.
The results are certainly an excellent check against a longhand solution.

FIG. 16.33

The PSpice reponse for the voltage between the two points above resistors 
R1 and R2.
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FIG. 16.34

Determining the voltage between the two points above resistors R1 and R2 by
moving the ground connection of Fig. 16.30 to the position of VPRINT2.

FIG. 16.35

PSpice response to the simulation of the network of Fig. 16.34.
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Our first approach will be to use an oscilloscope to measure the
amplitude and phase angle of the output voltage as shown in Fig. 16.36.
Note that five nodes are defined, with node 5 the desired voltage. The
oscilloscope settings include a Time base of 20 ms/div. since the period
of the 10-kHz signal is 100 ms. Channel A was set on 10 V/div. so that
the full 20 V of the applied signal will have a peak value encompassing
two divisions. Note that Channel A in Fig. 16.36 is connected directly
to the source Vs and to the Trigger input for synchronization. Expect-
ing the output voltage to have a smaller amplitude resulted in a vertical
sensitivity of 1 V/div. for Channel B. The analysis was initiated by
placing the Simulation switch in the 1 position. It is important to real-
ize that

when simulation is initiated, it will take time for networks with
reactive elements to settle down and for the response to reach its
steady-state condition. It is therefore wise to let a system run for a
while after simulation before selecting Single on the oscilloscope to
obtain a steady waveform for analysis.

The resulting plots of Fig. 16.37 clearly show that the applied voltage
has an amplitude of 20 V and a period of 100 ms (5 div. at 20 ms/div).
The cursors sit ready for use at the left and right edges of the screen.
Clicking on the small red arrow (with number 1) at the top of the oscil-
loscope screen will permit you to drag it to any location on the hori-
zontal axis. As you move the cursor, the magnitude of each waveform
will appear in the T1 box below. By comparing positive slopes through
the origin, you should see that the applied voltage is leading the output
voltage by an angle that is more than 90°. Setting the cursor at the

FIG. 16.36

Using the oscilloscope of Electronics Workbench to determine the voltage
across the capacitor C2.



736  SERIES-PARALLEL ac NETWORKS

point where the output voltage on channel B passes through the origin
with a positive slope, we find that we cannot achieve exactly 0 V; but
�313.4 mV � �0.313 mV (VB1) is certainly very close at 39.7 ms
(T1).

Knowing that the applied voltage passed through the origin at 0 ms
permits the following claculation for the phase angle:

�
v

�
360°

39.7 ms
�
100 ms

FIG. 16.37

Using Electronics Workbench to display the applied voltage and voltage across
the capacitor C2 for the network of Fig. 16.36.

v � 142.92°

with the result that the output voltage has an angle of �142.92° associ-
ated with it. The second cursor is found at the right edge of the screen
and has a blue color. Selecting it and moving it to the peak value of the
output voltage results in VB2 � 1.2 V at 65.7 ms (T2). The result of all
the above is 

VC2
� 1.2 V ��142.92°.

Our second approach will be to use the AC Analysis option under
the Simulate heading. First, realize that when we were using the oscil-
loscope as we did above, there was no need to pass through the
sequence of dialog boxes to choose the desired analysis. All that was
necessary was to simulate using either the switch or the PSpice-Run
sequence—the oscilloscope was there to measure the output voltage.
Remember that the source defined the magnitude of the applied voltage,
the frequency, and the phase shift. This time we will use the sequence
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Simulate-Analyses-AC Analysis to obtain the AC Analysis dialog box
in which the Start and Stop frequencies will be 10 kHz and the
Selected variable for analysis will be node 5 only. Selecting Simulate
will then result in a magnitude-phase plot with no apparent indicators at
10 kHz. However, this is easily corrected by first selecting one of the
plots by clicking on the Voltage label at the left of the plot. Then select
the Show/Hide Grid, Show/Hide Legend, and Show/Hide Cursors
keys to obtain the cursors, legend, and AC Analysis dialog box. Hook on
the red cursor and move it to 10 kHz. At that location, and that location
only, x1 will appear as 10 kHz in the dialog box, and y1 will be 1.1946
as shown in Fig. 16.38. In other words, the cursor has defined the mag-
nitude of the voltage across the output capacitor as 1.1946 V or approx-
imately 1.2 V as obtained above. If you then select the Phase curve and
repeat the procedure, you will find that at 10 kHz (x1) the angle is
�142.15° (y1) which is very close to the �142.92° obtained above.

FIG. 16.38

Using the AC Analysis option under Electronics Workbench to determine 
the magnitude and phase angle for the voltage VC2

for the network of 
Fig. 16.36.

In total, therefore, we have two methods to obtain an ac voltage in a
network—one by instrumentation and the other through the computer
methods. Both are valid, although, as expected, the computer approach
has a higher level of accuracy.
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PROBLEMS

SECTION 16.2 Illustrative Examples

1. For the series-parallel network of Fig. 16.39:
a. Calculate ZT.
b. Determine I.
c. Determine I1.
d. Find I2 and I3.
e. Find VL.

I

+ –

E  =  12 V ∠ 0°

8 �

ZT

VL XC1

12 �XC2

I1 I2

I3

+

–

XL  =  6 �

FIG. 16.39

Problems 1 and 19.

2. For the network of Fig. 16.40:
a. Find the total impedance ZT.
b. Determine the current Is.
c. Calculate IC using the current divider rule.
d. Calculate VL using the voltage divider rule.

R2

2 �+ –

E  =  30 V ∠ 0° 8 �

ZT

VL

XCIs

IC

+

–

XL  =  6 �

R1

3 �

FIG. 16.40

Problems 2 and 15.

3. For the network of Fig. 16.41:
a. Find the total impedance ZT and the total admittance

YT.
b. Find the current Is.
c. Calculate I2 using the current divider rule.
d. Calculate VC.
e. Calculate the average power delivered to the network.

Is

+

–

E  =  60 V ∠ 3 0° R1 4.7 �

R2 9.1 �

XC  =  12 �VC

+

–

ZT

YT

I2

FIG. 16.41

Problems 3 and 20.
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4. For the network of Fig. 16.42:
a. Find the total impedance ZT.
b. Calculate the voltage V2 and the current IL.
c. Find the power factor of the network.

5. For the network of Fig. 16.43:
a. Find the current I.
b. Find the voltage VC.
c. Find the average power delivered to the network.

+  V2  –

R2  =  8 �

I  =  5 A ∠ 0°

4 �

ZT

XC

IL

+

–

 6 �

R1

2 � R3  =  8 �

XL2
  =  3 �

XL1

FIG. 16.42

Problem 4.

R1 560 �
+

–

E  =  100 V ∠  0°
+

–

XL

I

560 � VC

R2 200 �

XC2
  =  400 �XC1

  =  400 �

FIG. 16.43

Problems 5 and 21.

*6. For the network of Fig. 16.44:
a. Find the current I1.
b. Calculate the voltage VC using the voltage divider rule.
c. Find the voltage Vab.

*7. For the network of Fig. 16.45:
a. Find the current I1.
b. Find the voltage V1.
c. Calculate the average power delivered to the network.

FIG. 16.44

Problem 6.

R1 3 �

XL1
4 �

I1

Vaba b

XC 13 �
+

–

E  =  120 V ∠  60°

XL2
7 �

VC

+

–

FIG. 16.45

Problems 7 and 16.

V1

XC

60 �

XL  =  80 �

I1

R2

20 �+

–

E  =  40 V ∠  0°
+

–

R1

10 �
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8. For the network of Fig. 16.46:
a. Find the total impedance ZT and the admittance YT.
b. Find the currents I1, I2, and I3.
c. Verify Kirchhoff’s current law by showing that Is �

I1 � I2 � I3.
d. Find the power factor of the network, and indicate

whether it is leading or lagging.

*9. For the network of Fig. 16.47:
a. Find the total admittance YT.
b. Find the voltages V1 and V2.
c. Find the current I3.

I1Is

ZT
+

–

E  =  60 V ∠  0°

1 �

XC 7 �

I2

R2 3 �

XL1

YT

R3 16 �

R1 2 �

15 �

XL2

I3

FIG. 16.46

Problem 8.

*10. For the network of Fig. 16.48:
a. Find the total impedance ZT and the admittance YT.
b. Find the source current Is in phasor form.
c. Find the currents I1 and I2 in phasor form.
d. Find the voltages V1 and Vab in phasor form.
e. Find the average power delivered to the network.
f. Find the power factor of the network, and indicate

whether it is leading or lagging.

+

–
I  =  3 A ∠ 3 0°

I3 –  V1  +

R1  =  6.8 �

R3

3 �

4 �

XC1

R4

3 �

4 �

XC2

7 � XL   V2 R2  =  8.2 �

YT

FIG. 16.47

Problem 9.

is

ZT
+

–

e  =  �2(50) sin 2p 1000t

L1  =  0.1 H

i1

YT

R1

300 �
a

b

vab

i2

C 1 mF v1

+

–
L2  =  0.2 H

FIG. 16.48

Problem 10.
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*11. Find the current I for the network of Fig. 16.49.

XC1

9 �

XL

I

R3 10 �

+

–

E  =  50 V ∠  0°

R1

2 �

6 �

XC2

2 �

R2

3 �

FIG. 16.49

Problems 11 and 17.

SECTION 16.3 Ladder Networks

12. Find the current I5 for the network of Fig. 16.50. Note
the effect of one reactive element on the resulting calcu-
lations.

13. Find the average power delivered to R4 in Fig. 16.51.

I5

E  =  100 V ∠  0° XC 20 �R4 20 �R2 20 �

R1

12 �

R3

12 �

R5

12 �

+

–

FIG. 16.50

Problem 12.

I  =  20 mA ∠  0°

XC

10 �

R1 40 k�

R3

2.7 k�

R2 3 k� R4 4.3 k�

FIG. 16.51

Problem 13.

I  =  0.5 A ∠  0° XC1
2 �

8 �

R1 1 �XC2
2 �

XL2

8 �

XL1

I1

FIG. 16.52

Problems 14 and 18.

14. Find the current I1 for the network of Fig. 16.52.
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SECTION 16.5 Computer Analysis

PSpice or Electronics Workbench

For Problems 15 through 18, use a frequency of 1 kHz to
determine the inductive and capacitive levels required for the
input files. In each case write the required input file.

*15. Repeat Problem 2 using PSpice or EWB.

*16. Repeat Problem 7, parts (a) and (b), using PSpice or
EWB.

*17. Repeat Problem 11 using PSpice or EWB.

*18. Repeat Problem 14 using PSpice or EWB.

Programming Language (C��, QBASIC, Pascal, etc.)

19. Write a program to provide a general solution to Problem
1; that is, given the reactance of each element, generate a
solution for parts (a) through (e).

20. Given the network of Fig. 16.41, write a program to gen-
erate a solution for parts (a) and (b) of Problem 2. Use
the values given.

21. Generate a program to obtain a general solution for the
network of Fig. 16.43 for the questions asked in parts (a)
through (c) of Problem 2. That is, given the resistance
and reactance of the elements, determine the requested
current, voltage, and power.

GLOSSARY

Ladder network A repetitive combination of series and par-
allel branches that has the appearance of a ladder.

Series-parallel ac network A combination of series and par-
allel branches in the same network configuration. Each
branch may contain any number of elements whose imped-
ance is dependent on the applied frequency.
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17.1 INTRODUCTION

For networks with two or more sources that are not in series or parallel,
the methods described in the last two chapters cannot be applied.
Rather, methods such as mesh analysis or nodal analysis must be
employed. Since these methods were discussed in detail for dc circuits
in Chapter 8, this chapter will consider the variations required to apply
these methods to ac circuits. Dependent sources will also be introduced
for both mesh and nodal analysis.

The branch-current method will not be discussed again because it
falls within the framework of mesh analysis. In addition to the methods
mentioned above, the bridge network and �-Y, Y-� conversions will
also be discussed for ac circuits.

Before we examine these topics, however, we must consider the sub-
ject of independent and controlled sources.

17.2 INDEPENDENT VERSUS DEPENDENT
(CONTROLLED) SOURCES

In the previous chapters, each source appearing in the analysis of dc or
ac networks was an independent source, such as E and I (or E and I)
in Fig. 17.1.

N
A

FIG. 17.1

Independent sources.

E

+

–

E

+

–

I I

Methods of Analysis and
Selected Topics (ac)
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The term independent specifies that the magnitude of the source is
independent of the network to which it is applied and that the source
displays its terminal characteristics even if completely isolated.

A dependent or controlled source is one whose magnitude is
determined (or controlled) by a current or voltage of the system in
which it appears.

Currently two symbols are used for controlled sources. One simply
uses the independent symbol with an indication of the controlling ele-
ment, as shown in Fig. 17.2. In Fig. 17.2(a), the magnitude and phase
of the voltage are controlled by a voltage V elsewhere in the system,
with the magnitude further controlled by the constant k1. In Fig.

NA

k1V

+

–

I

(a)

V+ –

k2I

(b)

FIG. 17.2

Controlled or dependent sources.

Possible combinations for controlled sources are indicated in Fig.
17.4. Note that the magnitude of current sources or voltage sources can
be controlled by a voltage and a current, respectively. Unlike with the
independent source, isolation such that V or I � 0 in Fig. 17.4(a) will
result in the short-circuit or open-circuit equivalent as indicated in Fig.
17.4(b). Note that the type of representation under these conditions is
controlled by whether it is a current source or a voltage source, not by
the controlling agent (V or I).

k1V

+

–

I

(a)

V+ –

k2I

(b)

FIG. 17.3

Special notation for controlled or dependent sources.

17.2(b), the magnitude and phase of the current source are controlled by
a current I elsewhere in the system, with the magnitude further con-
trolled by the constant k2. To distinguish between the dependent and
independent sources, the notation of Fig. 17.3 was introduced. In recent
years many respected publications on circuit analysis have accepted the
notation of Fig. 17.3, although a number of excellent publications in the
area of electronics continue to use the symbol of Fig. 17.2, especially in
the circuit modeling for a variety of electronic devices such as the tran-
sistor and FET. This text will employ the symbols of Fig. 17.3.
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17.3 SOURCE CONVERSIONS

When applying the methods to be discussed, it may be necessary to
convert a current source to a voltage source, or a voltage source to a
current source. This source conversion can be accomplished in much
the same manner as for dc circuits, except now we shall be dealing with
phasors and impedances instead of just real numbers and resistors.

Independent Sources

In general, the format for converting one type of independent source to
another is as shown in Fig. 17.5.

EXAMPLE 17.1 Convert the voltage source of Fig. 17.6(a) to a current
source.

NA

V

+

–

k1V +–

k2V

I

k3I +–

k4I

(a) (b)

FIG. 17.4

Conditions of V � 0 V and I � 0 A for a controlled source.

+

–

Voltage source

a

E  =  IZ

a�

I  =  E
Z

Z

Z

a

a�

Current source

FIG. 17.5

Source conversion.

I  =  20 A  ∠  –53.13°

E  =  100 V  ∠   0°
+

–

(a)

a

R 3 �

a�

XL 4 �

a

a�

XL 4 �

R 3 �

Z

Z

Source conversion

(b)

FIG. 17.6

Example 17.1.
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Solution:

I � � 

� 20 A ��53.13° [Fig. 17.6(b)]

EXAMPLE 17.2 Convert the current source of Fig. 17.7(a) to a voltage
source.

100 V �0°
��
5 � �53.13°

E
�
Z

NA

XL 4 �I  =  10 A  ∠   60°

a�

a

(a)

6 �

Z

E  =  120 V  ∠   –30°

a�

a

(b)

XC  =  12 �

Z

+

–

XC

FIG. 17.7

Example 17.2.

Solution:

Z � �
Z

Z

C

C

�

Z
Z
L

L
� � 

(XC ��90°)(XL �90°)
���

�j XC � j XL

�  � 

� 12 � ��90° [Fig. 17.7(b)]

E � IZ � (10 A �60°)(12 � ��90°)
� 120 V��30° [Fig. 17.7(b)]

Dependent Sources

For dependent sources, the direct conversion of Fig. 17.5 can be applied
if the controlling variable (V or I in Fig. 17.4) is not determined by a
portion of the network to which the conversion is to be applied. For
example, in Figs. 17.8 and 17.9, V and I, respectively, are controlled by
an external portion of the network. Conversions of the other kind,
where V and I are controlled by a portion of the network to be con-
verted, will be considered in Sections 18.3 and 18.4.

24 � � 0°
��

2 � 90°

(4 � ��90°)(6 � �90°)
���

�j 4 � � j 6 �



MESH ANALYSIS  747
NA

20 V

+

–
V  =  V  ∠   0°

+

–

(a)

Z  =  5 k�

(4 �  10–3 V) A  ∠   0°

+

–
V  =  V  ∠   0°

+

–
Z 5 k�

(b)

FIG. 17.8

Source conversion with a voltage-controlled voltage source.

(4  �  106I) V  ∠   0°

+

–

(b)

40 k�

(100I) Α  ∠   0° Z 40 k�

 I  =  I  ∠   0°  I     I  ∠   0°

(a)

Z

FIG. 17.9

Source conversion with a current-controlled current source.

Solution:

I � �
E
Z

� �

� (4 � 10�3 V) A �0° [Fig. 17.8(b)]

EXAMPLE 17.4 Convert the current source of Fig. 17.9(a) to a voltage
source.

(20V) V �0°
��

5 k� �0°

Solution:

E � IZ � [(100I) A �0°][40 k� �0°]
� (4 � 106I) V �0° [Fig. 17.9(b)]

17.4 MESH ANALYSIS

General Approach

Independent Voltage Sources Before examining the application
of the method to ac networks, the student should first review the appro-
priate sections on mesh analysis in Chapter 8 since the content of this
section will be limited to the general conclusions of Chapter 8.

The general approach to mesh analysis for independent sources
includes the same sequence of steps appearing in Chapter 8. In fact,
throughout this section the only change from the dc coverage will be to
substitute impedance for resistance and admittance for conductance in
the general procedure.

EXAMPLE 17.3 Convert the voltage source of Fig. 17.8(a) to a current
source.
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1. Assign a distinct current in the clockwise direction to each
independent closed loop of the network. It is not absolutely
necessary to choose the clockwise direction for each loop current.
However, it eliminates the need to have to choose a direction for
each application. Any direction can be chosen for each loop
current with no loss in accuracy as long as the remaining steps are
followed properly.

2. Indicate the polarities within each loop for each impedance as
determined by the assumed direction of loop current for that loop.

3. Apply Kirchhoff’s voltage law around each closed loop in the
clockwise direction. Again, the clockwise direction was chosen to
establish uniformity and to prepare us for the format approach to
follow.
a. If an impedance has two or more assumed currents through it,

the total current through the impedance is the assumed current
of the loop in which Kirchhoff’s voltage law is being applied,
plus the assumed currents of the other loops passing through in
the same direction, minus the assumed currents passing
through in the opposite direction.

b. The polarity of a voltage source is unaffected by the direction of
the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the assumed
loop currents.

The technique is applied as above for all networks with independent
sources or for networks with dependent sources where the controlling
variable is not a part of the network under investigation. If the control-
ling variable is part of the network being examined, a method to be
described shortly must be applied.

EXAMPLE 17.5 Using the general approach to mesh analysis, find the
current I1 in Fig. 17.10.

NA

I1 R  =  4 �

XL  =  2 �

E1  =  2 V  ∠   0°
+

–

XC  =  1 �

+

–
E2  =  6 V  ∠   0°

FIG. 17.10

Example 17.5.

Solution: When applying these methods to ac circuits, it is good
practice to represent the resistors and reactances (or combinations
thereof) by subscripted impedances. When the total solution is found in
terms of these subscripted impedances, the numerical values can be
substituted to find the unknown quantities.

The network is redrawn in Fig. 17.11 with subscripted impedances:

Z1 � �j XL � �j 2 � E1 � 2 V �0°

Z2 � R � 4 � E2 � 6 V �0°
Z3 � �j XC � �j 1 �

Steps 1 and 2 are as indicated in Fig. 17.11.

Z1

E1

+

–

+

–
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 17.11

Assigning the mesh currents and subscripted
impedances for the network of Fig. 17.10.
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Step 3:

�E1 � I1Z1 � Z2(I1 � I2) � 0
�Z2(I2 � I1) � I2Z3 � E2 � 0

or E1� I1Z1 � I1Z2 � I2Z2 � 0
�I2Z2 � I1Z2 � I2Z3 � E2 � 0

so that I1(Z1 � Z2) � I2Z2 � E1

I2(Z2 � Z3) � I1Z2 � �E2

which are rewritten as

I1(Z1 � Z2) � I2Z2 � E1

�I1Z2 � I2(Z2 � Z3) � �E2

Step 4: Using determinants, we obtain

 E1 �Z2 
 �E2 Z2 � Z3I1 � ––––––––––––––––––
 Z1 � Z2 �Z2 
 �Z2 Z2 � Z3

� 

� 

Substituting numerical values yields

I1 � 

� � � 

� 3.61 A ��236.30° or 3.61 A �123.70°

Dependent Voltage Sources For dependent voltage sources, the
procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for independent volt-
age sources.

2. Step 3 is modified as follows: Treat each dependent source like an
independent source when Kirchhoff’s voltage law is applied to
each independent loop. However, once the equation is written,
substitute the equation for the controlling quantity to ensure that
the unknowns are limited solely to the chosen mesh currents.

3. Step 4 is as before.

EXAMPLE 17.6 Write the mesh currents for the network of Fig. 17.12
having a dependent voltage source.

Solution:

Steps 1 and 2 are defined on Fig. 17.12.

Step 3: E1 � I1R1 � R2(I1 � I2) � 0

R2(I2 � I1) � mVx � I2R3 � 0

Then substitute Vx � (I1 � I2)R2

16.12 A ��172.87°
���

4.47 �63.43°
�16 �j 2
��

2 � j 4
�16�j 2

��
j 8 � j 22 � j 4

(2 V � 6 V)(4 �) � (2 V)(�j 1 �)
������
(�j 2 �)(4 �) � (�j 2 �)(�j 2 �) � (4 �)(�j 2 �)

(E1 � E2)Z2 � E1Z3
���
Z1Z2 � Z1Z3 � Z2Z3

E1(Z2 � Z3) � E2(Z2)
���
(Z1 � Z2)(Z2 � Z3) � (Z2)

2

NA

R1

R3
R2

�Vx

+

–

+–

E1 Vx

+

–
I1 I2

�

FIG. 17.12

Applying mesh analysis to a network with a
voltage-controlled voltage source.
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The result is two equations and two unknowns.

E1 � I1R1 � R2(I � I2) � 0
R2(I2 � I1) � mR2(I1 � I2) � I2R3 � 0

Independent Current Sources For independent current sources,
the procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for independent
sources.

2. Step 3 is modified as follows: Treat each current source as an
open circuit (recall the supermesh designation of Chapter 8), and
write the mesh equations for each remaining independent path.
Then relate the chosen mesh currents to the dependent sources to
ensure that the unknowns of the final equations are limited sim-
ply to the mesh currents.

3. Step 4 is as before.

EXAMPLE 17.7 Write the mesh currents for the network of Fig. 17.13
having an independent current source.

Solution:

Steps 1 and 2 are defined on Fig. 17.13.

Step 3: E1 � I1Z1 � E2 � I2Z2 � 0 (only remaining independent
path)

with I1 � I � I2

The result is two equations and two unknowns.

Dependent Current Sources For dependent current sources, the
procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for independent
sources.

2. Step 3 is modified as follows: The procedure is essentially the
same as that applied for independent current sources, except now
the dependent sources have to be defined in terms of the chosen
mesh currents to ensure that the final equations have only mesh
currents as the unknown quantities.

3. Step 4 is as before.

EXAMPLE 17.8 Write the mesh currents for the network of Fig. 17.14
having a dependent current source.

Solution:

Steps 1 and 2 are defined on Fig. 17.14.

Step 3: E1 � I1Z1 � I2Z2 � E2 � 0

and kI � I1 � I2

Now I � I1 so that kI1 � I1 � I2 or I2 � I1(1 � k)

The result is two equations and two unknowns.

NA

E2 +–

E1

+

–

I1 I2
Z2

Z1

I

FIG. 17.13

Applying mesh analysis to a network with an
independent current source.

E2

+

E1

+

–
I1 I2

Z1

kI

–

Z2

I

FIG. 17.14

Applying mesh analysis to a network with a
current-controlled current source.
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Format Approach

The format approach was introduced in Section 8.9. The steps for
applying this method are repeated here with changes for its use in ac
circuits:

1. Assign a loop current to each independent closed loop (as in the
previous section) in a clockwise direction.

2. The number of required equations is equal to the number of
chosen independent closed loops. Column 1 of each equation is
formed by simply summing the impedance values of those
impedances through which the loop current of interest passes and
multiplying the result by that loop current.

3. We must now consider the mutual terms that are always subtracted
from the terms in the first column. It is possible to have more than
one mutual term if the loop current of interest has an element in
common with more than one other loop current. Each mutual
term is the product of the mutual impedance and the other loop
current passing through the same element.

4. The column to the right of the equality sign is the algebraic sum of
the voltage sources through which the loop current of interest
passes. Positive signs are assigned to those sources of voltage
having a polarity such that the loop current passes from the
negative to the positive terminal. Negative signs are assigned to
those potentials for which the reverse is true.

5. Solve the resulting simultaneous equations for the desired loop
currents.

The technique is applied as above for all networks with independent
sources or for networks with dependent sources where the controlling vari-
able is not a part of the network under investigation. If the controlling
variable is part of the network being examined, additional care must be
taken when applying the above steps.

EXAMPLE 17.9 Using the format approach to mesh analysis, find the
current I2 in Fig. 17.15.

NA

Solution 1: The network is redrawn in Fig. 17.16:

Z1 � R1 � j XL1
� 1 � � j 2 � E1 � 8 V �20°

Z2 � R2 � j XC � 4 � � j 8 � E2 � 10 V �0°

Z3 � �j XL 2
� �j 6 �

I2

4 �

E1  =  8 V  ∠   20°
+

–

8 �

–

+
E2  =  10 V  ∠   0°

R2

XC

XL1
  =  2 �

1 �R1

XL2
6 �

FIG. 17.15

Example 17.9.

Z1

E1

+

–

–

+
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 17.16

Assigning the mesh currents and subscripted
impedances for the network of Fig. 17.15.
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Note the reduction in complexity of the problem with the substitution of
the subscripted impedances.

Step 1 is as indicated in Fig. 17.16.

Steps 2 to 4:

I1(Z1 � Z2) � I2Z2 � E1 � E2

I2(Z2 � Z3) � I1Z2 � �E2

which are rewritten as

I1(Z1 � Z2) � I2Z2 � E1 � E2

�I1Z2 � I2(Z2 � Z3) � �E2

Step 5: Using determinants, we have

 Z1 � Z2 E1 � E2 
 �Z2 �E2 

I2 � ––––––––––––––––––
 Z1 � Z2 �Z2 
 �Z2 Z2 � Z3

� 

� 

Substituting numerical values yields

Z2E1 � Z1E2
���
Z1Z2 � Z1Z3 � Z2Z3

�(Z1 � Z2)E2 � Z2(E1 � E2)
����

(Z1 � Z2)(Z2 � Z3) � Z2
2

NA

((4,�8)*8(�20)�(1,2)*(10�0))/((1,2)*(4,�8)�(1,2)*(0,6)�(4,�8)*(0,6)) ENTER

(67.854E�3,�1.272E0)
Ans � Pol
(1.274E0��86.956E0)

CALC. 17.1

I2 � 

�

� � � 

� 1.27 A ��86.92°

80.95 A ��58.74°
���

63.53 �28.18°
42.0 � j 69.20
��

56 � j 30
(52.0 � j 49.20) � (10 � j 20)
����

56 � j 30

(4 � j 8)(7.52 � j 2.74) � (10 � j 20)
����

20 � ( j 6 � 12) � ( j 24 � 48)

(4 � � j 8 �)(8 V � 20°) � (1 � � j 2 �)(10 V �0°)
���������
(1 � � j 2 �)(4 � � j 8 �) � (1 � � j 2 �)(� j 6 �) � (4 � � j 8 �)(�j 6 �)

Mathcad Solution: This example provides an excellent opportunity
to demonstrate the power of Mathcad. First the impedances and para-
meters are defined for the equations to follow as shown in Fig. 17.17.
Then the guess values of the mesh currents I1 and I2 are entered. The
label Given must then be entered followed by the equations for the net-

Calculator The calculator (TI-86 or equivalent) can be an effective tool
in performing the long, laborious calculations involved with the final
equation appearing above. However, you must be very careful to use the
correct number of brackets and to define by brackets the order of the arith-
metic operations.
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work. Note that in this example, we are not continuing with the analy-
sis until the matrix is defined—we are working directly from the net-
work equations. Once the equations have been properly entered,
Find(I1,I2) is entered. Then selecting the equal sign will result in the
single-column matrix with the results in rectangular form. Conversion
to polar form requires defining a variable A and then calling for the
magnitude and angle using the definitions entered earlier in the list-
ing and both the Calculator and Greek toolbars. The result for I2 is
1.274 A ��86.94° which is an excellent match with the theoretical
solution.

EXAMPLE 17.10 Write the mesh equations for the network of Fig.
17.18. Do not solve.

NA

FIG. 17.17

Using Mathcad to verify the results of Example 17.9.

E1

+

–

–

+
E2

R2

R1

XL2

XL1

XC1

R3

XC2

R4

FIG. 17.18

Example 17.10.
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Solution: The network is redrawn in Fig. 17.19. Again note the
reduced complexity and increased clarity provided by the use of sub-
scripted impedances:

Z1 � R1 � j XL1
Z4 � R3 � j XC2

Z2 � R2 � j XL2
Z5 � R4

Z3 � j XC1

and I1(Z1 � Z2) � I2Z2 � E1

I2(Z2 � Z3 � Z4) � I1Z2 � I3Z4 � 0
I3(Z4 � Z5) � I2Z4 � E2

or I1(Z1 � Z2) � I2(Z2) � 0 � E1

I1Z2 � I2(Z2 � Z3 � Z4) � I3(Z4) � 0
0 � I2(Z4) � I3(Z4 � Z5) � E2

NA

Z2

+

–

–

+

Z1

E1

+

–

–

+
E2

+ –

I1 I2

Z4

+

–

–

+

Z3
+ –

Z5
+ –

I3

FIG. 17.19

Assigning the mesh currents and subscripted impedances for the network of
Fig. 17.18.

EXAMPLE 17.11 Using the format approach, write the mesh equa-
tions for the network of Fig. 17.20.

Solution: The network is redrawn as shown in Fig. 17.21, where

Z1 � R1 � j XL 1
Z3 � j XL2

Z2 � R2 Z4 � j XL3

and I1(Z2 � Z4) � I2Z2 � I3Z4 � E1

I2(Z1 � Z2 � Z3) � I1Z2 � I3Z3 � 0

I3(Z3 � Z4) � I2Z3 � I1Z4 � E2

or

Note the symmetry about the diagonal axis; that is, note the location of
�Z2, �Z4, and �Z3 off the diagonal.

17.5 NODAL ANALYSIS

General Approach

Independent Sources Before examining the application of the
method to ac networks, a review of the appropriate sections on nodal

I1(Z2 � Z4) � I2Z2 � I3Z4 � E1

�I1Z2 � I2(Z1 � Z2 � Z3) � I3Z3 � 0
�I1Z4 � I2Z3 � I3(Z3 � Z4) � E2

E1

+

–

–

+
E2

R1

XL3

XL1

R2
XL2

FIG. 17.20

Example 17.11

Z2

E1

+

–

–

+
E2

I1

Z4

I2

I3

Z3

Z1

FIG. 17.21

Assigning the mesh currents and subscripted
impedances for the network of Fig. 17.20.
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analysis in Chapter 8 is suggested since the content of this section will
be limited to the general conclusions of Chapter 8.

The fundamental steps are the following:

1. Determine the number of nodes within the network.
2. Pick a reference node and label each remaining node with a

subscripted value of voltage: V1, V2, and so on.
3. Apply Kirchhoff’s current law at each node except the reference.

Assume that all unknown currents leave the node for each
application of Kirchhoff’s current law.

4. Solve the resulting equations for the nodal voltages.

A few examples will refresh your memory about the content of
Chapter 8 and the general approach to a nodal-analysis solution.

EXAMPLE 17.12 Determine the voltage across the inductor for the
network of Fig. 17.22.

NA

E  =
12 V  ∠ 0°

+

–

R1

XL XC

0.5 k�

10 k�

R2

2 k�

5 k� I  =
4 mA  ∠ 0°

FIG. 17.22

Example 17.12.

Z2E

+

–

Z1Z1 Z3

Z4 I

V2V1

FIG. 17.23

Assigning the nodal voltages and subscripted impedances to the network of 
Fig. 17.22.

Solution 1:

Steps 1 and 2 are as indicated in Fig. 17.23.

Z2E

+

–

Z1Z1 Z3

V2V1

I1 I3

I2

FIG. 17.24

Applying Kirchhoff’s current law to the node
V1 of Fig. 17.23.

Step 3: Note Fig. 17.24 for the application of Kirchhoff’s current law
to node V1:

	 Ii � 	 Io

0 � I1 � I2 � I3

� � � 0
V1 � V2
�

Z3

V1
�
Z2

V1 � E
�

Z1
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Rearranging terms:

V1� � � � � V2� � � (17.1)

Note Fig. 17.25 for the application of Kirchhoff’s current law to
node V2.

0 � I3 � I4 � I

� � I � 0

Rearranging terms:

V2� � � � V1� � � �I (17.2)

Grouping equations:

V1� � � �� V2� � � 

V1� � � V2� � � � I

� � � � � � 2.5 mS ��2.29°

� � � � 0.539 mS �21.80°

and

V1[2.5 mS ��2.29°] � V2[0.5 mS �0°] � 24 mA �0°
V1[0.5 mS �0°] � V2[0.539 mS �21.80°] � 4 mA �0°

with

 24 mA �0° �0.5 mS �0° 
 4 mA �0° �0.539 mS �21.80°

V1 � —————————————————–
 2.5 mS ��2.29° �0.5 mS �0° 
 0.5 mS �0° �0.539 mS �21.80°

1
�
�j 5 k�

1
�
2 k�

1
�
Z4

1
�
Z3

1
�
2 k�

1
�
j 10 k�

1
�
0.5 k�

1
�
Z3

1
�
Z2

1
�
Z1

1
�
Z4

1
�
Z3

1
�
Z3

E
�
Z1

1
�
Z3

1
�
Z3

1
�
Z2

1
�
Z1

1
�
Z3

1
�
Z4

1
�
Z3

V2
�
Z4

V2 � V1
�

Z3

E1�
Z1

1
�
Z3

1
�
Z3

1
�
Z2

1
�
Z1

FIG. 17.25

Applying Kirchhoff’s current law to the node
V2 of Fig. 17.23.

Z3

Z4 I

V2V1

I3

I4

� 

� 

� 

� � 

V1 � 9.95 V �1.88°

11.106 V ��154.33°
���

1.116 ��156.21°

�10.01 V � j 4.81 V
���

�1.021 � j 0.45

�(12.01 � j 4.81) � 10�6 V � 2 � 10�6 V
�����
�(1.271 � j 0.45) � 10�6 � 0.25 � 10�6

�12.94 � 10�6 V �21.80° � 2 � 10�6 V �0°
�����
�1.348 � 10�6 �19.51° � 0.25 � 10�6 �0°

(24 mA �0°)(�0.539 mS �21.80°) � (0.5 mS �0°)(4 mA �0°)
��������
(2.5 mS ��2.29°)(�0.539 mS �21.80°) � (0.5 mS �0°)(0.5 mS �0°)

Mathcad Solution: The length and the complexity of the above
mathematical development strongly suggest the use of an alternative
approach such as Mathcad. The printout of Fig. 17.26 first defines the
letters k and m to specific numerical values so that the power-of-ten
format did not have to be included in the equations. Thus, the results are
cleaner and easier to review. When entering the equations, remember
that the j is entered as 1j without the multiplication sign  between the
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FIG. 17.26

Using Mathcad to verify the results of Example 17.12.

1 and the j. A multiplication sign between the two will define the j as
another variable. Also be sure that the multiplication process is inserted
between the nodal variables and the brackets. If an error signal contin-
ues to surface, it is often best to simply reenter the entire listing—errors
are often not easy to spot simply by looking at the resulting equations.

Finally the results are obtained and converted to polar form for com-
parison with the theoretical solution. The solution of 9.949 A �1.837°
is a very close confirmation of the longhand solution.

Before leaving this example, let’s look at another method for obtain-
ing the polar form of the solution. The method appears in the bottom of
Fig. 17.26. First deg is defined as shown, and then arg is picked up
from the Insert-f(x)-Insert Function-arg sequence. Next V1 is
entered; the result will be in radian form but with a small black rectan-
gle in the place where the units normally appear. Click on that black
rectangle, and the bracket will appear and deg can be typed. When the
equal sign is selected, the angle in degrees will appear.

Dependent Current Sources For dependent current sources, the
procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for independent
sources.

2. Step 3 is modified as follows: Treat each dependent current source
like an independent source when Kirchhoff’s current law is applied
to each defined node. However, once the equations are established,
substitute the equation for the controlling quantity to ensure that
the unknowns are limited solely to the chosen nodal voltages.

3. Step 4 is as before.



Solution:

Steps 1 and 2 are as defined in Fig. 17.27.

Step 3: At node V1,

I � I1 � I2

� � I � 0

and V1� � � � V2� � � I

At node V2,

I2 � I3 � kI� � 0 

� � k � � � 0

and V1� � � V2� � �� 0

resulting in two equations and two unknowns.

1
�
Z3

1 � k
�

Z2

1 � k
�

Z2

V1 � V2
�

Z2

V2
�
Z3

V2 � V1
�

Z2

1
�
Z2

1
�
Z2

1
�
Z1

V1 � V2
�

Z2

V1
�
Z1
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EXAMPLE 17.13 Write the nodal equations for the network of Fig.
17.27 having a dependent current source.

Z1I

Z2

Z3 kI′

V2V1

I′

FIG. 17.27

Applying nodal analysis to a network with a current-controlled current source.

Independent Voltage Sources between Assigned Nodes For
independent voltage sources between assigned nodes, the procedure is
modified as follows:

1. Steps 1 and 2 are the same as those applied for independent sources.
2. Step 3 is modified as follows: Treat each source between defined

nodes as a short circuit (recall the supernode classification of
Chapter 8), and write the nodal equations for each remaining
independent node. Then relate the chosen nodal voltages to the
independent voltage source to ensure that the unknowns of the
final equations are limited solely to the nodal voltages.

3. Step 4 is as before.
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EXAMPLE 17.14 Write the nodal equations for the network of Fig.
17.28 having an independent source between two assigned nodes.

Z1I1 Z2 I2

V2V1
E1

+–

FIG. 17.28

Applying nodal analysis to a network with an independent voltage source
between defined nodes.

Solution:

Steps 1 and 2 are defined in Fig. 17.28.

Step 3: Replacing the independent source E with a short-circuit equiv-
alent results in a supernode that will generate the following equation
when Kirchhoff’s current law is applied to node V1:

I1 � � � I2

with V2 � V1 � E

and we have two equations and two unknowns.

Dependent Voltage Sources between Defined Nodes For
dependent voltage sources between defined nodes, the procedure is
modified as follows:

1. Steps 1 and 2 are the same as those applied for independent volt-
age sources.

2. Step 3 is modified as follows: The procedure is essentially the
same as that applied for independent voltage sources, except now
the dependent sources have to be defined in terms of the chosen
nodal voltages to ensure that the final equations have only nodal
voltages as their unknown quantities.

3. Step 4 is as before.

EXAMPLE 17.15 Write the nodal equations for the network of Fig.
17.29 having a dependent voltage source between two defined nodes.

Solution:

Steps 1 and 2 are defined in Fig. 17.29.

Step 3: Replacing the dependent source mVx with a short-circuit equiv-
alent will result in the following equation when Kirchhoff’s current law
is applied at node V1:

I � I1 � I2

� � I � 0
(V1 � V2)
��

Z2

V1
�
Z1

V2
�
Z2

V1
�
Z1

V2V1

Vx
+ –

+

–

Z2

I

�Vx� Z3Z1

FIG. 17.29

Applying nodal analysis to a network with a
voltage-controlled voltage source.
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and V2 � mVx � m[V1 � V2]

or V2 � V1

resulting in two equations and two unknowns. Note that because the
impedance Z3 is in parallel with a voltage source, it does not appear in
the analysis. It will, however, affect the current through the dependent
voltage source.

Format Approach

A close examination of Eqs. (17.1) and (17.2) in Example 17.12 will
reveal that they are the same equations that would have been obtained
using the format approach introduced in Chapter 8. Recall that the
approach required that the voltage source first be converted to a current
source, but the writing of the equations was quite direct and minimized
any chances of an error due to a lost sign or missing term.

The sequence of steps required to apply the format approach is the
following:

1. Choose a reference node and assign a subscripted voltage label to
the (N � 1) remaining independent nodes of the network.

2. The number of equations required for a complete solution is equal
to the number of subscripted voltages (N � 1). Column 1 of each
equation is formed by summing the admittances tied to the node of
interest and multiplying the result by that subscripted nodal voltage.

3. The mutual terms are always subtracted from the terms of the first
column. It is possible to have more than one mutual term if the
nodal voltage of interest has an element in common with more
than one other nodal voltage. Each mutual term is the product of
the mutual admittance and the other nodal voltage tied to that
admittance.

4. The column to the right of the equality sign is the algebraic sum of
the current sources tied to the node of interest. A current source is
assigned a positive sign if it supplies current to a node, and a
negative sign if it draws current from the node.

5. Solve resulting simultaneous equations for the desired nodal
voltages. The comments offered for mesh analysis regarding
independent and dependent sources apply here also.

EXAMPLE 17.16 Using the format approach to nodal analysis, find
the voltage across the 4-� resistor in Fig. 17.30.

m
�
1 � m

NA

I2  =  4 A  ∠   0°I1  =  6 A  ∠   0° R

XL  =  5 �

XC
4 � 2 �

FIG. 17.30

Example 17.16.
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V1(Y1 � Y2) � V2(Y2) � �I1

V2(Y3 � Y2) � V1(Y2) � �I2

or V1(Y1 � Y2) � V2(Y2) � �I1

�V1(Y2) � V2(Y3 � Y2) � �I2

Y1 � Y2 � Y3 � 

Using determinants yields

 �I1 �Y2 
 �I2 Y3 � Y2V1 � ––––––––––––––––––
 Y1 � Y2 �Y2 
 �Y2 Y3 � Y2

� 

� 

Substituting numerical values, we have

V1 �

� 

� 

� 

� 

V1 � 20.80 V��126.87°

Mathcad Solution: For this example we will use the matrix format
to find the nodal voltage V1. First the various parameters of the network
are defined including the factor deg so that the phase angle will be dis-
played in degrees. Next the numerator is defined by n, and the Matrix

2.6 V ��90°
��
0.125 �36.87°

�1.8 �90° � 0.8 ��90°
���

0.1 � j 0.075

(�0.3 �90°)(6 �0°) � (4 �0°)(0.2 ��90°)
�����

j 0.125 � 0.1 � j 0.05

�(�j 0.5 � j 0.2)6 �0° � 4 �0°(�j 0.2)
�����

(1/�j 8) � (1/10) � (1/j 20)

�[(1/�j 2 �) � (1/j 5 �)]6 A �0° � 4 A �0°(1/j 5 �)
�������
(1/4 �)(1/�j 2 �) � (1/j 5 �)(1/�j 2 �) � (1/4 �)(1/j 5 �)

�(Y3 � Y2)I1 � I2Y2
���
Y1Y3 � Y2Y3 � Y1Y2

�(Y3 � Y2)I1 � I2Y2
���
(Y1 � Y2)(Y3 � Y2) � Y2

2

1
�
Z3

1
�
Z2

1
�
Z1

NA

Z1

Z2

I2

V2V1

I1 Z3

Reference

FIG. 17.31

Assigning the nodal voltages and subscripted impedances for the network of
Fig. 17.30.

Solution 1: Choosing nodes (Fig. 17.31) and writing the nodal equa-
tions, we have

Z1 � R � 4 � Z2 � j XL � j 5 � Z3 � �j XC � �j 2 �
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icon is selected from the Matrix toolbar. Within the Insert Matrix dia-
log box, the Rows and Columns are set as 2 followed by an OK to
place the 2 � 2 matrix on the screen. The parameters are than entered
as shown in Fig. 17.32 using a left click of the mouse to select the
parameter to be entered. Once the numerator is set, the process is
repeated to define the numerator. Finally the equation for V1 is defined,
and the result in rectangular form will appear when the equal sign is
selected. The magnitude and the angle are then found in polar form as
described in earlier sections of this chapter. The results are again a clear
confirmation of the theoretical result.

NA

FIG. 17.32

Using Mathcad to verify the results of Example 17.16.

EXAMPLE 17.17 Using the format approach, write the nodal equa-
tions for the network of Fig. 17.33.

I1  =  10 A  ∠   20°E1  =  20 V  ∠   0°

R2

XC  =  10 �

4 �+

– XL2
5 �

XL1

8 �

R1

7 �

R3 8 �

FIG. 17.33

Example 17.17.
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Write the nodal equations:

V1(Y1 � Y2 � Y3) � V2(Y3) � �I2

V2(Y3 � Y4) � V1(Y3) � �I1

Y1 � Y2 � Y3 � Y4 � 

which are rewritten as

V1(Y1 � Y2 � Y3) � V2(Y3) � �I2

�V1(Y3) � V2(Y3 � Y4) � �I1

EXAMPLE 17.18 Write the nodal equations for the network of Fig.
17.36. Do not solve.

Solution: Choose nodes (Fig. 17.37):

Z1 � R1 Z2 � j XL1
Z3 � R2 � j XC2

Z4 � �j XC1
Z5 � R3 Z6 � j XL2

1
�
Z4

1
�
Z3

1
�
Z2

1
�
Z1

NA

Z2

+

–
E1

Z1 Z3

I1

a

Z4

a�

FIG. 17.34

Assigning the subscripted impedances for the network of Fig. 17.33.

Z1

Z3

I1

V2V1

I2  =  E1
Z1

Z2

Reference

Z4

a�

a

FIG. 17.35

Converting the voltage source of Fig. 17.34 to a current source and defining the
nodal voltages.

Solution: The circuit is redrawn in Fig. 17.34, where

Z1 � R1 � j XL1
� 7 � � j 8 � E1 � 20 V �0°

Z2 � R2 � j XL2
� 4 � � j 5 � I1 � 10 A �20°

Z3 � �j XC � �j 10 �
Z4 � R3 � 8 �

Converting the voltage source to a current source and choosing nodes,
we obtain Fig. 17.35. Note the “neat” appearance of the network using
the subscripted impedances. Working directly with Fig. 17.33 would be
more difficult and could produce errors.
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R2
XL2

XL1

R1I1

XC2

XC1

R3

I2

FIG. 17.36

Example 17.18.

FIG. 17.37

Assigning the nodal voltages and subscripted impedances for the network of
Fig. 17.36.

Z1

Z2

V2V1

I1 Z3 Z5 Z6

Z4

V3

I2

and write the nodal equations:

V1(Y1 � Y2) � V2(Y2) � �I1

V2(Y2 � Y3 � Y4) � V1(Y2) � V3(Y4) � �I2

V3(Y4 � Y5 � Y6) � V2(Y4) � �I2

which are rewritten as

V1(Y1 � Y2) � V2(Y2) � 0 � �I1

�V1(Y2) � V2(Y2 � Y3 � Y4) � V3(Y4) � �I2

0 � V2(Y4) � V3(Y4 � Y5 � Y6) � �I2

Y1 � Y2 � Y3 � 

Y4 � Y5 � Y6 � 

Note the symmetry about the diagonal for this example and those
preceding it in this section.

1
�
j XL2

1
�
R3

1
�
�j XC1

1
��
R2 � j XC2

1
�
j XL1

1
�
R1
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Solution: In this case there is no need for a source conversion. The
network is redrawn in Fig. 17.39 with the chosen nodal voltage and
subscripted impedances.

Apply the format approach:

Y1 � � � 0.25 mS �0° � G1 �0°

Y2 � � � 1 mS �0° � G2 �0°

Y3 � � � 0.5 mS ��90°

� �j 0.5 mS � �j BL

V1: (Y1 � Y2 � Y3)V1 � �100I

and V1 � 

� 

� � 

� �74.28 � 103I �21.80°

� �74.28 � 103� � �21.80°

V1 � VL � �(74.28Vi) V�21.80°

17.6 BRIDGE NETWORKS (ac)

The basic bridge configuration was discussed in some detail in Section
8.11 for dc networks. We now continue to examine bridge networks by
considering those that have reactive components and a sinusoidal ac
voltage or current applied.

We will first analyze various familiar forms of the bridge network
using mesh analysis and nodal analysis (the format approach). The bal-
ance conditions will be investigated throughout the section.

Vi
�
1 k�

�100 � 103I
��
1.3463 ��21.80°

�100 � 103I
��
1.25 � j 0.5

�100I
���
0.25 mS � 1 mS � j 0.5 mS

�100I
��
Y1 � Y2 � Y3

1
��
2 k� �90°

1
�
Z3

1
�
1 k�

1
�
Z2

1
�
4 k�

1
�
Z1

NA

Vi  =  Vi  ∠   0°

+

–
2 k� VLRC

100I1 k�

I B

E E

C

+

–
4 k� RL 1 k�

Transistor
equivalent
network

XL

IL

(   I)β

FIG. 17.38

Example 17.19.

Y1

IL

V1

Y3 VL100I Y2

+

–

FIG. 17.39

Assigning the nodal voltage and subscripted
impedances for the network of Fig. 17.38.

EXAMPLE 17.19 Apply nodal analysis to the network of Fig. 17.38.
Determine the voltage VL.
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Applying the format approach:

(Z1 � Z3)I1 � (Z1)I2 � (Z3)I3 � E
(Z1 � Z2 � Z5)I2 � (Z1)I1 � (Z5)I3 � 0
(Z3 � Z4 � Z5)I3 � (Z3)I1 � (Z5)I2 � 0

which are rewritten as

I1(Z1 � Z3) � I2Z1 � I3Z3 � E
�I1Z1 � I2(Z1 � Z2 � Z5) � I3Z5 � 0
�I1Z3 � I2Z5 � I3(Z3 � Z4 � Z5) � 0

Note the symmetry about the diagonal of the above equations. For
balance, IZ5

� 0 A, and

IZ5
� I2 � I3 � 0

From the above equations,

 Z1 � Z3 E �Z3 
 �Z1 0 �Z5 
 �Z3 0 (Z3 � Z4 � Z5)I2 � –––––––––––––––––––––––––––––––––––––––
 Z1 � Z3 �Z1 �Z3 
 �Z1 (Z1 � Z2 � Z5) �Z5 
 �Z3 �Z5 (Z3 � Z4 � Z5)

� 

where � signifies the determinant of the denominator (or coefficients).
Similarly,

I3 � 

and IZ5
� I2 � I3 � 

E(Z1Z4 � Z3Z2)
��

�

E(Z1Z3 � Z3Z2 � Z1Z5 � Z3Z5)
����

�

E(Z1Z3 � Z1Z4 � Z1Z5 � Z3Z5)
����

�

NA

I1

–

Z5

Z1

Z4

Z2

Z3

+

–
E

I2

I3

FIG. 17.41

Assigning the mesh currents and subscripted impedances for the network of
Fig. 17.40.

R1

+

–

E

C1

R2

R5

R3

R4

L4

FIG. 17.40

Maxwell bridge.

Apply mesh analysis to the network of Fig. 17.40. The network is
redrawn in Fig. 17.41, where

Z1 � � � � j 

Z2 � R2 Z3 � R3 Z4 � R4 � j XL Z5 � R5

BC
�
G2

1 � B2
C

G1
�
G2

1 � B2
C

1
�
G1 �j BC

1
�
Y1
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For IZ5
� 0, the following must be satisfied (for a finite � not equal to

zero):

IZ5
� 0 (17.3)

This condition will be analyzed in greater depth later in this section.
Applying nodal analysis to the network of Fig. 17.42 will result in

the configuration of Fig. 17.43, where

Y1 � � Y2 � � 

Y3 � � Y4 � � Y5 � 

and (Y1 � Y2)V1 � (Y1)V2 � (Y2)V3 � I
(Y1 � Y3 � Y5)V2 � (Y1)V1 � (Y5)V3 � 0
(Y2 � Y4 � Y5)V3 � (Y2)V1 � (Y5)V2 � 0

which are rewritten as

V1(Y1 � Y2) � V2Y1 � V3Y2 � I
�V1Y1 � V2(Y1 � Y3 � Y5) � V3Y5 � 0
�V1Y2 � V2Y5 � V3(Y2 � Y4 � Y5) � 0

Again, note the symmetry about the diagonal axis. For balance, 
VZ5

� 0 V, and

VZ5
� V2 � V3 � 0

From the above equations,

 Y1 � Y2 I �Y2 
 �Y1 0 �Y5 
 �Y2 0 (Y2 � Y4 � Y5) 

V2 � ––––––––––––––––––––––––––––––––––––––––
 Y1 � Y2 �Y1 �Y2 
 �Y1 (Y1 � Y3 � Y5) �Y5 
 �Y2 �Y5 (Y2 � Y4 � Y5 

� 

Similarly,

V3 � 

Note the similarities between the above equations and those obtained
for mesh analysis. Then

VZ5
� V2 � V3 � 

For VZ5
� 0, the following must be satisfied for a finite � not equal to

zero:

VZ5
� 0 (17.4)Y1Y4 � Y3Y2

I(Y1Y4 � Y3Y2)
��

�

I(Y1Y3 � Y3Y2 � Y1Y5 � Y3Y5)
����

�

I(Y1Y3 � Y1Y4 � Y1Y5 � Y3Y5)
����

�

1
�
R5

1
�
R4 � j XL

1
�
Z4

1
�
R3

1
�
Z3

1
�
R2

1
�
Z2

1
��
R1 � j XC

1
�
Z1

Z1Z4 � Z3Z2

NA

R1

I

C1
R2

R5

R3

R4

L4

V2
–

Z5

Z1

Z4

Z2

Z3

I
V3

V1

FIG. 17.42

Hay bridge.

FIG. 17.43

Assigning the nodal voltages and subscripted
impedances for the network of Fig. 17.42.
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However, substituting Y1 � 1/Z1, Y2 � 1/Z2, Y3 � 1/Z3, and Y4 �
1/Z4, we have

� 

or VZ5
� 0

corresponding with Eq. (17.3) obtained earlier.
Let us now investigate the balance criteria in more detail by consid-

ering the network of Fig. 17.44, where it is specified that I and V � 0.
Since I � 0,

(17.5a)

and (17.5b)

In addition, for V � 0,

(17.5c)

and (17.5d)

Substituting the preceding current relations into Eq. (17.5d), we have

I1Z3 � I2Z4

and I2 � I1

Substituting this relationship for I2 into Eq. (17.5c) yields

I1Z1 � � I1�Z2

and Z1Z4 � Z2Z3

as obtained earlier. Rearranging, we have

(17.6)

corresponding with Eq. (8.4) for dc resistive networks.
For the network of Fig. 17.42, which is referred to as a Hay bridge

when Z5 is replaced by a sensitive galvanometer,

Z1 � R1 � j XC

Z2 � R2

Z3 � R3

Z4 � R4 � j XL

This particular network is used for measuring the resistance and induc-
tance of coils in which the resistance is a small fraction of the reactance
XL.

�
Z
Z

1

3
� � �

Z
Z

2

4
�

Z3�
Z4

Z3�
Z4

I3Z3 � I4Z4

I1Z1 � I2Z2

I2 � I4

I1 � I3

Z1Z4 � Z3Z2

1
�
Z3Z2

1
�
Z1Z4

I1

–

Z1

Z4

Z2

Z3

+

–
E

+
I4

I2

I3 V  =  0

I  =  0

–

FIG. 17.44

Investigating the balance criteria for an ac
bridge configuration.
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Substitute into Eq. (17.6) in the following form:

Z2Z3 � Z4Z1

R2R3 � (R4 � j XL)(R1 � j XC)

or R2R3 � R1R4 � j (R1XL � R4XC) � XC XL

so that

R2R3 � j 0 � (R1R4 � XC XL) � j (R1XL � R4XC)

For the equations to be equal, the real and imaginary parts must be
equal. Therefore, for a balanced Hay bridge,

(17.7a)

and (17.7b)

or substituting XL � qL and XC � 

we have XC XL � � �(qL) � 

and R2R3 � R1R4 �

with R1qL � 

Solving for R4 in the last equation yields

R4 � q2LCR1

and substituting into the previous equation, we have

R2R3 � R1(q
2LCR1) �

Multiply through by C and factor:

CR2R3 � L(q2C2R2
1 � 1)

and (17.8a)

With additional algebra this yields:

(17.8b)

Equations (17.7) and (17.8) are the balance conditions for the Hay
bridge. Note that each is frequency dependent. For different frequen-
cies, the resistive and capacitive elements must vary for a particular coil
to achieve balance. For a coil placed in the Hay bridge as shown in Fig.
17.42, the resistance and inductance of the coil can be determined by
Eqs. (17.8a) and (17.8b) when balance is achieved.

R4 � �
1
q2

�

C2

q

R
2
1

C
R2

2
R
R

3
2
1

�

L � �
1 �

CR

q

2
2

R

C
3
2R2

1
�

L
�
C

R4�
qC

L
�
C

L
�
C

1
�
qC

1
�
qC

0 � R1XL � R4XC

R2R3 � R1R4 � XC XL

NA
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The bridge of Fig. 17.40 is referred to as a Maxwell bridge when Z5

is replaced by a sensitive galvanometer. This setup is used for induc-
tance measurements when the resistance of the coil is large enough not
to require a Hay bridge.

Application of Eq. (17.6) in the form:

Z2Z3 � Z4Z1

and substituting

Z1 � R1 �0° � XC1
��90° � 

� � 

Z2 � R2

Z3 � R3

and Z4 � R4 � j XL4

we have (R2)(R3) � (R4 � j XL4
)� �

R2R3 � 

or (R2R3)(R1 � j XC1
) � R1XC1

XL4
� j R1R4XC1

and R1R2R3� j R2R3XC1
� R1XC1

XL4
� j R1R4XC1

so that for balance

R1R2R3 � R1XC1
XL4

R2R3 � � �(2 pf L
4
)

and (17.9)

and R2R3XC1
� R1R4XC1

so that (17.10)

Note the absence of frequency in Eqs. (17.9) and (17.10).
One remaining popular bridge is the capacitance comparison

bridge of Fig. 17.45. An unknown capacitance and its associated resis-
tance can be determined using this bridge. Application of Eq. (17.6)
will yield the following results:

(17.11)

(17.12)

The derivation of these equations will appear as a problem at the end of
the chapter.

R4 � �
R

R
2R

1

3
�

C4 � C3�
R

R
1

2
�

R4 � �
R

R
2R

1

3
�

L4 � C1R2R3

1
�
2pfC

1

�j R1R4XC1
� R1XC1

XL4
���

R1�j XC1

�j R1XC1
��
R1 �j XC1

�j R1XC1
��
R1 �j XC1

R1XC1
��90°

��
R1 � j XC1

(R1 �0°)(XC1
��90°)

���
R1 � j XC1

NA

R1

E

C3

R2

Galvanometer

R3 R4

C4

+

–

FIG. 17.45

Capacitance comparison bridge.
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ZC

Z3

Z1 Z2

ZB ZA

a b

c

FIG. 17.46

�-Y configuration.

Z3

Z1 Z2

ZB ZA

ZC

FIG. 17.47

The T and p configurations.

17.7 �-Y, Y-� CONVERSIONS

The �-Y, Y-� (or p-T, T-p as defined in Section 8.12) conversions for
ac circuits will not be derived here since the development corresponds
exactly with that for dc circuits. Taking the �-Y configuration shown
in Fig. 17.46, we find the general equations for the impedances of the Y
in terms of those for the �:

(17.13)

(17.14)

(17.15)

For the impedances of the � in terms of those for the Y, the equations are

ZB � (17.16)

ZA � (17.17)

ZC � (17.18)

Note that each impedance of the Y is equal to the product of the
impedances in the two closest branches of the �, divided by the sum
of the impedances in the �.

Further, the value of each impedance of the � is equal to the sum of the
possible product combinations of the impedances of theY, divided by the
impedances of theY farthest from the impedance to be determined.

Drawn in different forms (Fig. 17.47), they are also referred to as the T
and p configurations.

Z1Z2 � Z1Z3 � Z2Z3
���

Z3

Z1Z2 � Z1Z3 � Z2Z3
���

Z1

Z1Z2 � Z1Z3 � Z2Z3
���

Z2

Z3 � �
ZA �

Z
Z
AZ

B

B

� ZC
�

Z2 � �
ZA �

Z
Z
AZ

B

C

� ZC
�

Z1 � �
ZA �

Z
Z
BZ

B

C

� ZC
�
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In the study of dc networks, we found that if all of the resistors of
the � or Y were the same, the conversion from one to the other could
be accomplished using the equation

R� � 3RY or RY � 

For ac networks,

(17.19)

Be careful when using this simplified form. It is not sufficient for all the
impedances of the � or Y to be of the same magnitude: The angle asso-
ciated with each must also be the same.

EXAMPLE 17.20 Find the total impedance ZT of the network of Fig.
17.48.

Z� � 3ZY or ZY � �
Z
3

�
�

R�
�
3

NA

4 �
ZT

4 �

3 � 4 �

2 � 3 �

1 3

2

ZC1 3

2

ZB ZA

1 3

2

Z1

Z3

Z2

FIG. 17.48

Converting the upper � of a bridge configuration to a Y.

Solution:

ZB � �j 4 ZA � �j 4 ZC � 3 � j 4

Z1 � � 

� � 

� 4 � �16.13° � 3.84 � � j 1.11 �

Z2 � � 

� 4 � �16.13° � 3.84 � � j 1.11 �

Recall from the study of dc circuits that if two branches of the Y or �
were the same, the corresponding � or Y, respectively, would also have

(�j 4 �)(3 � � j 4 �)
���

5 � ��53.13°
ZAZC��

ZA � ZB � ZC

20 ��36.87°
��
5 ��53.13°

(4 ��90°)(5 �53.13°)
���

3 � j 4

(�j 4 �)(3 � � j 4 �)
����
(�j 4 �) � (�j 4 �) � (3 � � j 4 �)

ZBZC��
ZA � ZB � ZC
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two similar branches. In this example, ZA � ZB. Therefore, Z1 � Z2,
and

Z3 � � 

� � 3.2 � ��126.87° � �1.92 � � j 2.56 �

Replace the � by the Y (Fig. 17.49):

Z1 � 3.84 � � j 1.11 � Z2 � 3.84 � � j 1.11 �

Z3 � �1.92 � � j 2.56 � Z4 � 2 �

Z5 � 3 �

Impedances Z1 and Z4 are in series:

ZT1
� Z1 � Z4 � 3.84 � � j 1.11 � � 2 � � 5.84 � � j 1.11 �
� 5.94 � �10.76°

Impedances Z2 and Z5 are in series:

ZT2
� Z2 � Z5 � 3.84 � � j 1.11 � � 3 � � 6.84 � � j 1.11 �
� 6.93 � �9.22°

Impedances ZT1
and ZT2

are in parallel:

ZT3
� � 

� � � 3.198 � �10.05°

� 3.15 � � j 0.56 �

Impedances Z3 and ZT3
are in series. Therefore,

ZT � Z3 � ZT3
� �1.92 � � j 2.56 � � 3.15 � � j 0.56 �
� 1.23 � � j 2.0 � � 2.35 � ��58.41°

EXAMPLE 17.21 Using both the �-Y and Y-� transformations, find
the total impedance ZT for the network of Fig. 17.50.

41.16 � �19.98°
��

12.87 �9.93°

41.16 � �19.98°
��

12.68 � j 2.22

(5.94 � �10.76°)(6.93 � �9.22°)
�����
5.84 � � j 1.11 � � 6.84 � � j 1.11 �

ZT1
ZT2

��
ZT1

� ZT2

16 � ��180°
��

5 ��53.13°

(�j 4 �)(�j 4 �)
��

5 � ��53.13°
ZAZB��

ZA � ZB � ZC

NA

Z3

2

ZT

Z1 Z2

Z5Z4

1 3

FIG. 17.49

The network of Fig. 17.48 following the
substitution of the Y configuration.

6 �

ZT 3 �

2 �

2 �

3 �1 3

2

6 �

3 �

1 �

2 � 1 �1 �

6 � d

FIG. 17.50

Example 17.21.
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Solution: Using the �-Y transformation, we obtain Fig. 17.51. In
this case, since both systems are balanced (same impedance in each
branch), the center point d ′ of the transformed � will be the same as
point d of the original Y:

ZY � � � 1 � � j 2 �
3 � � j 6 �
��

3
Z��
3

NA

ZT

1 3

2

d,d�

2 �

1 �

2 �

1 �

1 �

1 �

2 �

2 �

1 �

1 �
2 �

2 �

FIG. 17.52

Substituting the Y configuration of Fig. 17.51 into the network of Fig. 17.50.

and (Fig. 17.52)

ZT � 2� � � 1 � � j 2 �
1 � � j 2 �
��

2

Using the Y-� transformation (Fig. 17.53), we obtain

Z∆ � 3ZY � 3(1 � � j 2 �) � 3 � � j 6 �

6 �

3 �

2 �

2 �

3 �1 3

2

6 �

3 �

1 �

2 �

1 �1 �

6 � d�

1 3

2

FIG. 17.51

Converting a � configuration to a Y configuration.
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Each resulting parallel combination in Fig. 17.54 will have the fol-
lowing impedance:

Z′ � � 1.5 � � j 3 �
3 � � j 6 �
��

2

NA

6 �

3 �

3 �1 3

2

6 �

3 �

6 �

2 �

2 �

1 �

2 �

1 �1 �

d

1 3

2

FIG. 17.53

Converting the Y configuration of Fig. 17.50 to a �.

6 �

ZT
3 �

1 3

2

6 �
3 �

6 � 6 �

3 �

3 �

6 �

3 �

6 �3 �

FIG. 17.54

Substituting the � configuration of Fig. 17.53 into the network of Fig. 17.50.

and ZT � � � 

� � 1 � � j 2 �

which compares with the above result.

17.8 COMPUTER ANALYSIS

PSpice

Nodal Analysis The first application of PSpice will be to determine
the nodal voltages for the network of Example 17.16 and compare solu-
tions. The network will appear as shown in Fig. 17.55 using elements

2(1.5 � � j 3 �)
��

3

2Z′
�

3
2(Z′)2

�
3Z′

Z′(2Z′)
�
Z′ � 2Z′
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that were determined from the reactance level at a frequency of 1 kHz.
There is no need to continually use 1 kHz. Any frequency will do, but
remember to use the chosen frequency to find the network components
and when setting up the simulation.

For the current sources, ISIN was chosen so that the phase angle
could be specified (even though it is 0°), although the symbol does not
have the arrow used in the text material. The direction must be recog-
nized as pointing from the � to � sign of the source. That requires that
the sources I1 and I2 be set as shown in Fig. 17.55. The source I2 is
reversed by using the Mirror Vertically option obtained by right-
clicking the source symbol on the screen. Setting up the ISIN source is
the same as that employed with the VSIN source. It can be found under
the SOURCE library, and its attributes are the same as for the VSIN
source. For each source, IOFF is set to 0 A, and the amplitude is the
peak value of the source current. The frequency will be the same for
each source. Then VPRINT1 is selected from the SPECIAL library
and placed to generate the desired nodal voltages. Finally the remaining
elements are added to the network as shown in Fig. 17.55. For each
source the symbol is double-clicked to generate the Property Editor
dialog box. AC is set at the 6-A level for the I1 source and at 4 A for
the I2 source, followed by Display and Name and Value for each. It
will appear as shown in Fig. 17.55. A double-click on each VPRINT1
option will also provide the Property Editor, so OK can be added
under AC, MAG, and PHASE. For each quantity, Display is selected
followed by Name and Value and OK. Then Value is selected and
VPRINT1 is displayed as Value only. Selecting Apply and leaving the
dialog box will result in the listing next to each source in Fig. 17.55.
For VPRINT2 the listing on Value must first be changed from
VPRINT1 to VPRINT2 before selecting Display and Apply.

NA

FIG. 17.55

Using PSpice to verify the results of Example 17.16.
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Now the New Simulation Profile icon is selected and ACNodal
entered as the Name followed by Create. In the Simulation Settings
dialog box, AC Sweep is selected, and the Start Frequency and End
Frequency are set at 1 kHz with 1 for the Points/Decade. Click OK,
and select the Run PSpice icon; a SCHEMATIC1 screen will result.
Exiting (X) will bring us back to the Orcad Capture window. Select-
ing PSpice followed by View Output File will result in the display of
Fig. 17.56, providing exactly the same results as obtained in Example
17.16 with V1 � 20.8 V ��126.9°. The other nodal voltage is 8.617 V
��15.09°.

NA

FIG. 17.56

Output file for the nodal voltages for the network of Fig. 17.55.

Current-Controlled Current Source (CCCS) Our interest will
now turn to controlled sources in the PSpice environment. Controlled
sources are not particularly difficult to apply once a few important ele-
ments of their use are understood. The network of Fig. 17.14 has a
current-controlled current source in the center leg of the configuration.
The magnitude of the current source is k times the current through resis-
tor R1, where k can be greater or less than 1. The resulting schematic,
appearing in Fig. 17.57, seems quite complex in the area of the con-
trolled source, but once the role of each component is understood, it
will not be that difficult to understand. First, since it is the only new
element in the schematic, let us concentrate on the controlled source.
Current-controlled current sources (CCCS) are called up under the
ANALOG library as F and appear as shown in the center of Fig. 17.57.
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Take special note of the direction of the current in each part of the sym-
bol. In particular, note that the sensing current of F has the same direc-
tion as the defining controlling current in Fig. 17.14. In addition, note
that the controlled current source also has the same direction as the
source in Fig. 17.14. If we double-click on the CCCS symbol, the
Property Editor dialog box will appear with the GAIN (k as described
above) set at 1. In this example the gain must be set at 0.7, so click on
the region below the GAIN label and enter 0.7. Then select Display
followed by Name and Value-OK. Exit the Property Editor, and
GAIN � 0.7 will appear with the CCCS as shown in Fig. 17.57.

The other new component in this schematic is IPRINT; it can be
found in the SPECIAL library. It is used to tell the program to list the
current in the branch of interest in the output file. If you fail to tell the
program which output data you would like, it will simply run through
the simulation and list specific features of the network but will not pro-
vide any voltages or currents. In this case the current I2 through the
resistor R2 is desired. Double-clicking on the IPRINT component will
result in the Property Editor dialog box with a number of elements
that need to be defined—much like that for VPRINT. First enter OK
beneath AC and follow with Display-Name and Value-OK. Repeat for
MAG and PHASE, and then select Apply before leaving the dialog
box. The OK is designed simply to tell the software program that these
are the quantities that it is “ok” to generate and provide. The purpose of
the Apply at the end of each visit to the Property Editor dialog box is
to “apply” the changes made to the network under investigation. When
you exit the Property Editor, the three chosen parameters will appear
on the schematic with the OK directive. You may find that the labels

FIG. 17.57

Using PSpice to verify the results of Example 17.8.
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will appear all over the IPRINT symbol. No problem—just click on
each, and move to a more convenient location.

The remaining components of the network should be fairly familiar,
but don’t forget to Mirror Vertically the voltage source E2. In addi-
tion, do not forget to call up the Property Editor for each source and
set the level of AC, FREQ, VAMPL, and VOFF and be sure that the
PHASE is set on the default value of 0°. The value appears with each
parameter in Fig. 17.57 for each source. Always be sure to select Apply
before leaving the Property Editor. After placing all the components
on the screen, you must connect them with a Place wire selection. Nor-
mally, this is pretty straightforward. However, with controlled sources
there is often the need to cross over wires without making a connec-
tion. In general, when you’re placing a wire over another wire and you
don’t want a connection to be made, click a spot on one side of the wire
to be crossed to create the temporary red square. Then cross the wire,
and make another click to establish another red square. If the connec-
tion is done properly, the crossed wire should not show a connection
point (a small red dot). In this example the top of the controlling cur-
rent was connected first from the E1 source. Then a wire was connected
from the lower end of the sensing current to the point where a 90° turn
up the page was to be made. The wire was clicked in place at this point
before crossing the original wire and clicked again before making the
right turn to resistor R1. You will not find a small red dot where the
wires cross.

Now for the simulation. In the Simulation Settings dialog box,
select AC Sweep/Noise with a Start and End Frequency of 1 kHz.
There will be 1 Point/Decade. Click OK, and select the Run Spice
key; a SCHEMATIC1 will result that should be exited to obtain the
Orcad Capture screen. Select PSpice followed by View Output File,
and scroll down until you read AC ANALYSIS such as appearing in
Fig. 17.58. The magnitude of the desired current is 1.615 mA with a
phase angle of 0°, a perfect match with the theoretical analysis to fol-
low. One would expect a phase angle of 0° since the network is com-
posed solely of resistive elements.

The equations obtained earlier using the supermesh approach were 

E � I1Z1 � I2Z2 � E2 � 0 or I1Z1 � I2Z2 � E1 � E2

NA

FIG. 17.58

The output file for the mesh current I2 of Fig. 17.14.



3. Convert the current sources of Fig. 17.60 to voltage
sources.
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and kI � kI1 � I1 � I2

resulting in I1 � � � � 3.333I2

so that I1(1 k�) � I2(1 k�) � 7 V (from above)

becomes (3.333I2)1 k� � I2(1 k�) � 7 V

or (4.333 k�)I2 � 7 V

and I2 � � 1.615 mA �0°

confirming the computer solution.

7 V
��
4.333 k�

I2�
0.3

I2�
1 � 0.7

I2
�
1 � k

5.6 �

E  =  20 V  ∠  2 0°

8.2 �

(a)

2 �

E  =  60 V  ∠  3 0°
5 �

(b)

+

–

+

–

FIG. 17.59

Problem 2.

(a) (b)

6 � 2 A � 120°10 � I
15 �

16 �

I = 0.5 A � 60°

FIG. 17.60

Problem 3.

PROBLEMS

SECTION 17.2 Independent versus Dependent

(Controlled) Sources

1. Discuss, in your own words, the difference between a con-
trolled and an independent source.

SECTION 17.3 Source Conversions

2. Convert the voltage sources of Fig. 17.59 to current
sources.
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(a) (b)

R

4 k�

+

–
V
+

–
hI R 50 k�I

(h = 50)

V�

(� = 16)�

FIG. 17.61

Problem 4.

4. Convert the voltage source of Fig. 17.61(a) to a current
source and the current source of Fig. 17.61(b) to a volt-
age source.

+
E1  =  10 V ∠ 0°

–

R

4 � 8 �

6 �

+

–
E2  =  40 V  ∠  6 0°

(b)(a)

+

–

R 50 � 20 �

E1  =  5 V  ∠  3 0°
+

–
E2 20 V  ∠  0°

60 �

FIG. 17.62

Problems 5 and 34.

+
E1  =
20  V  ∠  5 0°

–

R1

12 �
1 �

E3  =  40 V  ∠  0°

(a)

12 � 3 �

E2

+

–

+

–
60 V  ∠ 7 0°

(b)

20 �
10 �

E  =  30 V  ∠  0°

10 �2 � +

–

20 �

I  =
6 A  ∠  0°

R1

FIG. 17.63

Problems 6 and 16.

SECTION 17.4 Mesh Analysis

5. Write the mesh equations for the networks of Fig. 17.62.
Determine the current through the resistor R.

6. Write the mesh equations for the networks of Fig. 17.63.
Determine the current through the resistor R1.



9. Using mesh analysis, determine the current IL (in terms
of V) for the network of Fig. 17.66.
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*7. Write the mesh equations for the networks of Fig. 17.64.
Determine the current through the resistor R1.

R1

6 �

E1  =  20 V ∠  0°

8 �

5 � 4 �

5 �

6 � 4 �

+

–

+

–

E2  =  40 V ∠  60°

(a)
5 �

E1  =  25 V ∠  0°

5 �

20 �

15 �+

–

(b)

R1

10 �

+

–
E2  =  75 V ∠  20°

6 �

20 �

10 � 20 �

80 �

FIG. 17.65

Problems 8, 18, and 19.

XL 4 k�

+

–
28 V

+

–

5 k�

10 k�

rp

Rp

1 k�RL

VL

IL

+

–
V

FIG. 17.66

Problem 9.

3 �

(b)

10 �

15 �
+

–

4 �

R1

+

E1  =  60 V  ∠  0°
–

4 �

(a)

3 �

1 �

+

–
E2  =  120 V  ∠  12 0°

R1

8 �

6 �

2 �

+

–
E1  =  220 V  ∠  0° E2  =  100 V  ∠  9 0°

15 �

FIG. 17.64

Problems 7, 17, and 35.

*8. Write the mesh equations for the networks of Fig. 17.65.
Determine the current through the resistor R1.
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XL 4 k�

+

–

50I 40 k�

0.2 k�

R VL

I

XC

R1 8 k�

IL

FIG. 17.67

Problem 10.

10 V∠ 0° 2 k� Vx

+

–

1 k�

6 Vx

+

–

4 k�
+

–

FIG. 17.68

Problems 11 and 36.

5 V∠ 0° 10 k�

2.2 k�

5 k�

+

–

4 mA ∠ 0°

+
20 V∠ 0°

–

FIG. 17.69

Problems 12 and 37.

*11. Write the mesh equations for the network of Fig. 17.68,
and determine the current through the 1-k� and 2-k�
resistors.

6 mA ∠ 0° 6 k�

4 k�

1 k�

+

–

0.1 Vs

+
10 V ∠ 0°

–

Vs

FIG. 17.70

Problems 13 and 38.

*13. Write the mesh equations for the network of Fig. 17.70,
and determine the current through the inductive element.

*10. Using mesh analysis, determine the current IL (in terms
of I) for the network of Fig. 17.67.

*12. Write the mesh equations for the network of Fig. 17.69,
and determine the current through the 10-k� resistor.



SECTION 17.5 Nodal Analysis

14. Determine the nodal voltages for the networks of Fig.
17.71.
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I2

5 �

3 A ∠  150°
4 �

1 �

8 �

4 �

I1  =  2 A ∠  30°

(a)

6 �

I2  =  6 A ∠  90°

4 �

5 � 4 �

4 A ∠  0°

(b)

8 �

2 �I1

FIG. 17.73

Problem 20.

15. Determine the nodal voltages for the networks of Fig.
17.72.

16. Determine the nodal voltages for the network of Fig.
17.63(b).

17. Determine the nodal voltages for the network of Fig.
17.64(b).

*18. Determine the nodal voltages for the network of Fig.
17.65(a).

*19. Determine the nodal voltages for the network of Fig.
17.65(b).

*20. Determine the nodal voltages for the networks of Fig.
17.73.

I1  =  3 A ∠  0° 4 �

5 �

(a)

I2  =  5 A ∠  30°

2 �

(b)

I2  =  4 A ∠  80°

3 �

2 �

4 �

6 � 8 �

I1  =  0.6 A ∠  20°

FIG. 17.71

Problems 14 and 39.

4 �+

–
E  =  30 V ∠  50°

6 �

4 �

2 �

5 �

(a)

I  =  0.04 A ∠  90°

+

–
E  =  50 V ∠  120°

10 �

8 �

2 �

(b)

I  =  0.8 A ∠  70°
10 �

FIG. 17.72

Problem 15.



PROBLEMS  785
NA

5 mA ∠ 0°

2 k�

1 k�

Ix

8 mA ∠ 0°4 k�

4Ix

FIG. 17.74

Problems 21 and 40.

12 mA ∠ 0°

2 k�

1 k� 4 mA ∠ 0°3 k�

10 V ∠ 0°
+–

FIG. 17.75

Problems 22 and 41.

*21. Write the nodal equations for the network of Fig. 17.74,
and find the voltage across the 1-k� resistor.

12 mA ∠ 0°

1 k�

2 k�

2 mA ∠ 0°

+ –Vx

3.3 k�

6Vx

+

–

FIG. 17.76

Problems 23 and 42.

5 mA ∠ 0°

1 k�

2 k�

+–

I1

1 k�

2Vx

Vx

+

–

3I1

FIG. 17.77

Problems 24 and 43.

*22. Write the nodal equations for the network of Fig. 17.75,
and find the voltage across the capacitive element.

*23. Write the nodal equations for the network of Fig. 17.76,
and find the voltage across the 2-k� resistor.

*24. Write the nodal equations for the network of Fig. 17.77,
and find the voltage across the 2-k� resistor.



R1

1 k�

E

+

–

Lx

0.1 k�

1 mF IG  =  0

CRs 1 k�
R2

R3

q  =  1000

Rx

0.1 k�

FIG. 17.81

Problem 28.

R1

4 k�

Es  =  10 V ∠  0°

+

–

XL

4 k� 4 k�

4 k�
XC

Rs 1 k�
R2

4 k�
R3

FIG. 17.80

Problem 27.

*25. For the network of Fig. 17.78, determine the voltage VL

in terms of the voltage Ei.

786  METHODS OF ANALYSIS AND SELECTED TOPICS (ac) NA

SECTION 17.6 Bridge Networks (ac)

26. For the bridge network of Fig. 17.79:
a. Is the bridge balanced?
b. Using mesh analysis, determine the current through

the capacitive reactance.
c. Using nodal analysis, determine the voltage across the

capacitive reactance.

27. For the bridge network of Fig. 17.80:
a. Is the bridge balanced?
b. Using mesh analysis, determine the current through

the capacitive reactance.
c. Using nodal analysis, determine the voltage across the

capacitive reactance.

28. The Hay bridge of Fig. 17.81 is balanced. Using Eq.
(17.3), determine the unknown inductance Lx and resis-
tance Rx.

R1 1 k�

I1

Ei

+

–
R250 k�50I1 RL 50 k�50I2

R3

1 k�

VL

+

–

I2

FIG. 17.78

Problem 25.

R1

5 k�

Es  =  10 V ∠  0°

+

–

XL1

2.5 k�

XL2

4 k�

5 k�

XC

Rs 1 k�
R2

8 k�

FIG. 17.79

Problem 26.



R1  =  2 k�

E

+

– Lx

4 k�

3 mF

IG

C1

R2

R3q  =  1000
Rx

0.5 k�

1 k�

6 H

FIG. 17.82

Problem 29.

R1

E

+

–
L3 Lx

Rs

R2

R3 Rx

FIG. 17.83

Problem 31.
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29. Determine whether the Maxwell bridge of Fig. 17.82 is
balanced (q � 1000 rad/s).

8 �

E  =  120 V ∠  0°
+

–

8 �

5 �

I

YT

ZT

4 �

6 �

(a)

9 �

E  =  60 V ∠  0°
+

– 9 �12 �

I

YT

ZT

12 �

3 �

(b)

3 �

12 �

2 �

9 �

FIG. 17.84

Problem 32.

30. Derive the balance equations (17.11) and (17.12) for the
capacitance comparison bridge.

31. Determine the balance equations for the inductance
bridge of Fig. 17.83.

SECTION 17.7 �-Y, Y-� Conversions

32. Using the �-Y or Y-� conversion, determine the current
I for the networks of Fig. 17.84.
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SECTION 17.8 Computer Analysis

PSpice or Electronics Workbench

34. Determine the mesh currents for the network of Fig.
17.62(a).

35. Determine the mesh currents for the network of Fig.
17.64(a).

*36. Determine the mesh currents for the network of Fig.
17.68.

*37. Determine the mesh currents for the network of Fig.
17.69.

*38. Determine the mesh currents for the network of Fig.
17.70.

39. Determine the nodal voltages for the network of Fig.
17.71(b).

*40. Determine the nodal voltages for the network of Fig.
17.74.

*41. Determine the nodal voltages for the network of Fig.
17.75.

*42. Determine the nodal voltages for the network of Fig.
17.76.

*43. Determine the nodal voltages for the network of Fig.
17.77.

Programming Language (C��, QBASIC, Pascal, etc.)

44. Write a computer program that will provide a general
solution for the network of Fig. 17.10. That is, given the
reactance of each element and the parameters of the
source voltages, generate a solution in phasor form for
both mesh currents.

45. Repeat Problem 35 for the nodal voltages of Fig. 17.30.

46. Given a bridge composed of series impedances in each
branch, write a program to test the balance condition as
defined by Eq. (17.6).

33. Using the �-Y or Y-� conversion, determine the current
I for the networks of Fig. 17.85. (E � 100 V �0° in each
case.)

FIG. 17.85

Problem 33.

E

+

–
12 �

I

YT

ZT

16 �

(a)

3 �3 �

12 � 12 �
3 �

16 � 16 �

E

+

–

I

YT

ZT

(b)

5 �

5 �

6 �

5 � 5 �

5 �
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GLOSSARY

Bridge network A network configuration having the appear-
ance of a diamond in which no two branches are in series or
parallel.

Capacitance comparison bridge A bridge configuration
having a galvanometer in the bridge arm that is used to deter-
mine an unknown capacitance and associated resistance.

Delta (�) configuration A network configuration having the
appearance of the capital Greek letter delta.

Dependent (controlled) source A source whose magnitude
and/or phase angle is determined (controlled) by a current
or voltage of the system in which it appears.

Hay bridge A bridge configuration used for measuring the
resistance and inductance of coils in those cases where the
resistance is a small fraction of the reactance of the coil.

Independent source A source whose magnitude is indepen-
dent of the network to which it is applied. It displays its ter-
minal characteristics even if completely isolated.

NA

Maxwell bridge A bridge configuration used for inductance
measurements when the resistance of the coil is large
enough not to require a Hay bridge.

Mesh analysis A method through which the loop (or mesh)
currents of a network can be determined. The branch cur-
rents of the network can then be determined directly from
the loop currents.

Nodal analysis A method through which the nodal voltages
of a network can be determined. The voltage across each
element can then be determined through application of
Kirchhoff’s voltage law.

Source conversion The changing of a voltage source to a
current source, or vice versa, which will result in the same
terminal behavior of the source. In other words, the external
network is unaware of the change in sources.

Wye (Y) configuration A network configuration having the
appearance of the capital letter Y.





Network Theorems (ac)

Th18

18.1 INTRODUCTION

This chapter will parallel Chapter 9, which dealt with network theorems
as applied to dc networks. It would be time well spent to review each
theorem in Chapter 9 before beginning this chapter because many of the
comments offered there will not be repeated.

Due to the need for developing confidence in the application of the
various theorems to networks with controlled (dependent) sources,
some sections have been divided into two parts: independent sources
and dependent sources.

Theorems to be considered in detail include the superposition theo-
rem, Thévenin’s and Norton’s theorems, and the maximum power theo-
rem. The substitution and reciprocity theorems and Millman’s theorem
are not discussed in detail here because a review of Chapter 9 will
enable you to apply them to sinusoidal ac networks with little difficulty.

18.2 SUPERPOSITION THEOREM

You will recall from Chapter 9 that the superposition theorem elimi-
nated the need for solving simultaneous linear equations by considering
the effects of each source independently. To consider the effects of each
source, we had to remove the remaining sources. This was accom-
plished by setting voltage sources to zero (short-circuit representation)
and current sources to zero (open-circuit representation). The current
through, or voltage across, a portion of the network produced by each
source was then added algebraically to find the total solution for the
current or voltage.

The only variation in applying this method to ac networks with inde-
pendent sources is that we will now be working with impedances and
phasors instead of just resistors and real numbers.

The superposition theorem is not applicable to power effects in ac
networks since we are still dealing with a nonlinear relationship. It can
be applied to networks with sources of different frequencies only if
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the total response for each frequency is found independently and the
results are expanded in a nonsinusoidal expression, as appearing in
Chapter 25.

One of the most frequent applications of the superposition theorem
is to electronic systems in which the dc and ac analyses are treated sep-
arately and the total solution is the sum of the two. It is an important
application of the theorem because the impact of the reactive elements
changes dramatically in response to the two types of independent
sources. In addition, the dc analysis of an electronic system can often
define important parameters for the ac analysis. Example 18.4 will
demonstrate the impact of the applied source on the general configura-
tion of the network.

We will first consider networks with only independent sources to
provide a close association with the analysis of Chapter 9.

Independent Sources

EXAMPLE 18.1 Using the superposition theorem, find the current I
through the 4-� reactance (XL2

) of Fig. 18.1.

Th

XL2
4 �

–

+

XC 3 �
I

E2  =  5 V ∠  0°E1  =  10 V ∠  0°

–

+

XL1
4 �

FIG. 18.1

Example 18.1.

Solution: For the redrawn circuit (Fig. 18.2),

Z1 � �j XL1
� j 4 �

Z2 � �j XL2
� j 4 �

Z3 � �j XC � �j 3 �

Considering the effects of the voltage source E1 (Fig. 18.3), we have

Z2�3 � � � � �j 12 �

� 12 � ��90°

Is1
� � �

� 1.25 A �90°

and

I′ � (current divider rule)

� � � 3.75 A ��90°
3.75 A
�

j 1
(�j 3 � )( j 1.25 A)
���

j 4 � � j 3 �

Z3Is1�
Z2 � Z3

10 V �0°
��
8 � ��90°

10 V �0°
��
�j 12 � � j 4 �

E1
�
Z2�3 � Z1

12 �
�

j

( j 4 �)(�j 3 �)
��

j 4 � � j 3 �

Z2Z3
�
Z2 � Z3

FIG. 18.2

Assigning the subscripted impedances to the 
network of Fig. 18.1.

–

+

I

E2E1

–

+

Z1

Z2

Z3
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Z1�2 � � � j 2 �

Is2
� � � � 5 A �90°

and I″ � � 2.5 A �90°

The resultant current through the 4-� reactance XL2
(Fig. 18.5) is

I � I′ � I″
� 3.75 A ��90° � 2.50 A �90° � �j 3.75 A � j 2.50 A
� �j 6.25 A

I � 6.25 A ��90°

EXAMPLE 18.2 Using superposition, find the current I through the
6-� resistor of Fig. 18.6.

Is2�
2

5 V �0°
��
1 � ��90°

5 V �0°
��
j 2 � � j 3 �

E2��
Z1�2 � Z3

j 4 �
�

2
Z1�
N

Th

I�

E1

–

+

Z1

Z2

Z3

E1

–

+

Z1

Z2�3

Is1
Is1

FIG. 18.3

Determining the effect of the voltage source E1 on the current I of the network of Fig. 18.1.

I�
E2

–

+

Z1

Z2

Z3

E2

–

+

Z3

Z1�2

Is2
Is2

FIG. 18.4

Determining the effect of the voltage source E2 on the current I of the network
of Fig. 18.1.

FIG. 18.5

Determining the resultant current for the 
network of Fig. 18.1.

XC  =  8 �

I

E1  =  20 V ∠  30°

–

+ R  =  6 �XL  =  6 �

I1 2 A ∠  0°

FIG. 18.6

Example 18.2.

Considering the effects of the voltage source E2 (Fig. 18.4), we have

XL2
4 � I

I′

I′′



R

6 �

V′′6Ω+ –

V′6Ω+ –

V6Ω+ –

I

I′

R

6 �
I′′

794  NETWORK THEOREMS (ac)

Solution: For the redrawn circuit (Fig. 18.7),

Z1 � j 6 � Z2 � 6 � j 8 �

Consider the effects of the current source (Fig. 18.8). Applying the cur-
rent divider rule, we have

I′ � � �

�

I′ � 1.9 A �108.43°

Consider the effects of the voltage source (Fig. 18.9). Applying Ohm’s
law gives us

I″ � � �

� 3.16 A �48.43°

The total current through the 6-� resistor (Fig. 18.10) is

I � I′ � I″
� 1.9 A �108.43° � 3.16 A �48.43°
� (�0.60 A � j 1.80 A) � (2.10 A � j 2.36 A)
� 1.50 A � j 4.16 A

I � 4.42 A �70.2°

EXAMPLE 18.3 Using superposition, find the voltage across the 6-�
resistor in Fig. 18.6. Check the results against V6� � I(6 �), where I
is the current found through the 6-� resistor in Example 18.2.

Solution: For the current source,

V′6� � I′(6 �) � (1.9 A �108.43°)(6 �) � 11.4 V �108.43°

For the voltage source,

V″6� � I″(6) � (3.16 A �48.43°)(6 �) � 18.96 V �48.43°

The total voltage across the 6-� resistor (Fig. 18.11) is

V6� � V′6� � V″6�

� 11.4 V �108.43° � 18.96 V �48.43°
� (�3.60 V � j 10.82 V) � (12.58 V � j 14.18 V)
� 8.98 V � j 25.0 V

V6� � 26.5 V �70.2°

Checking the result, we have

V6� � I(6 �) � (4.42 A �70.2°)(6 �)
� 26.5 V �70.2° (checks)

20 V �30°
��
6.32 � ��18.43°

E1�
Z1 � Z2

E1�
ZT

12 A �90°
��
6.32 ��18.43°

j 12 A
�
6 � j 2

( j 6 �)(2 A)
���
j 6 � � 6 � � j 8 �

Z1I1�
Z1 � Z2

Th

–

I

Z1 Z2

E1

+

I1

FIG. 18.7

Assigning the subscripted impedances to the
network of Fig. 18.6.

I�

Z1 Z2

I1

FIG. 18.8

Determining the effect of the current source I1

on the current I of the network of Fig. 18.6.

I�

Z1 Z2

–

E1

+

FIG. 18.9

Determining the effect of the voltage source
E1 on the current I of the network of 

Fig. 18.6.

FIG. 18.10

Determining the resultant current I for the
network of Fig. 18.6.

FIG. 18.11

Determining the resultant voltage V6� for the network of Fig. 18.6.
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Solution: For the dc source, recall that for dc analysis, in the steady
state the capacitor can be replaced by an open-circuit equivalent, and
the inductor by a short-circuit equivalent. The result is the network of
Fig. 18.13.

The resistors R1 and R3 are then in parallel, and the voltage V3 can
be determined using the voltage divider rule:

R′ � R1 � R3 � 0.5 k� � 3 k� � 0.429 k�

and V3 �

� �

V3 � 3.6 V

For ac analysis, the dc source is set to zero and the network is
redrawn, as shown in Fig. 18.14.

5.148 V
�

1.429
(0.429 k�)(12 V)
��
0.429 k� � 1 k�

R′E1
�
R′ � R2

Th

–

+

R2 1 k�

R1

0.5 k�

XL

2 k�

R3 3 k� v3XC 10 k�E2  =  4 V ∠ 0°
–

+

E1  =  12 V

FIG. 18.12

Example 18.4.

EXAMPLE 18.4 For the network of Fig. 18.12, determine the sinu-
soidal expression for the voltage v3 using superposition.

–

+

R2 1 k�

R1

0.5 k�

R3 3 k� V3

E1  =  12 V

FIG. 18.13

Determining the effect of the dc voltage source
E1 on the voltage v3 of the network of 

Fig. 18.12.

XC  =  10 k�
–

+
R2  =  1 k�

R1

0.5 k�

R3  =  3 k� V3

XL

2 k�

E2  =  4 V ∠ 0°
–

+

The block impedances are then defined as in Fig. 18.15, and series-
parallel techniques are applied as follows:

Z1 � 0.5 k� �0°

Z2 � (R2 �0° � (XC ��90°)

� �

� 0.995 k� ��5.71°

10 k� ��90°
��
10.05 ��84.29°

(1 k� �0°)(10 k� ��90°)
���

1 k� � j 10 k�

FIG. 18.14

Redrawing the network of Fig. 18.12 to determine the effect of the ac voltage
source E2.

–

Is

Z1

Z2E2

+

Z3

ZT

V3

–

+

I3

FIG. 18.15

Assigning the subscripted impedances to the 
network of Fig. 18.14.



(0.5,0)�((0.995��5.71)*(3.61�33.69))/((0.995��5.71)�(3.61�33.69)) Enter

(1.311E0,35.373E�3)
Ans � Pol

(1.312E0�1.545E0)
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Z3 � R3 � j XL � 3 k� � j 2 k� � 3.61 k� �33.69°

and

ZT � Z1 � Z2 � Z3

� 0.5 k� � (0.995 k� ��5.71°) � (3.61 k� �33.69°)
� 1.312 k� �1.57°

Calculator Performing the above on the TI-86 calculator gives the
following result:

Th

CALC. 18.1

Is � � � 3.05 mA ��1.57°

Current divider rule:

I3 � �

� 0.686 mA ��32.74°

with

V3 � (I3 �v)(R3 �0°)
� (0.686 mA ��32.74°)(3 k� �0°)
� 2.06 V ��32.74°

The total solution:

v3 � v3 (dc) � v3 (ac)
� 3.6 V � 2.06 V ��32.74°

v3 � 3.6 � 2.91 sin(qt � 32.74°)

The result is a sinusoidal voltage having a peak value of 2.91 V rid-
ing on an average value of 3.6 V, as shown in Fig. 18.16.

(0.995 k� ��5.71°)(3.05 mA ��1.57°)
�����
0.995 k� ��5.71° � 3.61 k� �33.69°

Z2Is�
Z2 � Z3

4 V �0°
��
1.312 k� �1.57°

E2�
ZT

6.51 V

3.6 V

0.69 V
0

v3
32.74°

qt

FIG. 18.16

The resultant voltage v3 for the network of Fig. 18.12.

Dependent Sources

For dependent sources in which the controlling variable is not deter-
mined by the network to which the superposition theorem is to be
applied, the application of the theorem is basically the same as for inde-



SUPERPOSITION THEOREM  797

pendent sources. The solution obtained will simply be in terms of the
controlling variables.

EXAMPLE 18.5 Using the superposition theorem, determine the cur-
rent I2 for the network of Fig. 18.17. The quantities m and h are con-
stants.

Th

–

+ R2 6 �

XL 8 �

hI

R1

4 �
I2I

–+ V

V�

FIG. 18.17

Example 18.5.

Solution: With a portion of the system redrawn (Fig. 18.18),

Z1 � R1 � 4 � Z2 � R2 � j XL � 6 � j 8 �

For the voltage source (Fig. 18.19),

I′ � � �

� � 0.078 mV/� ��38.66°

For the current source (Fig. 18.20),

I″ � � � 4(0.078)hI ��38.66°

� 0.312hI ��38.66°

The current I2 is

I2 � I′ � I″
� 0.078 mV/� ��38.66° � 0.312hI ��38.66°

For V � 10 V �0°, I � 20 mA �0°, m � 20, and h � 100,

I2 � 0.078(20)(10 V �0°)/� ��38.66°
� 0.312(100)(20 mA�0°)��38.66°

� 15.60 A ��38.66° � 0.62 A ��38.66°
I2 � 16.22 A ��38.66°

For dependent sources in which the controlling variable is deter-
mined by the network to which the theorem is to be applied, the depen-
dent source cannot be set to zero unless the controlling variable is also
zero. For networks containing dependent sources such as indicated in
Example 18.5 and dependent sources of the type just introduced above,
the superposition theorem is applied for each independent source and
each dependent source not having a controlling variable in the portions
of the network under investigation. It must be reemphasized that depen-

(4 �)(hI)
��
12.8 � �38.66°

Z1(hI)
�
Z1 � Z2

mV
��
12.8 � �38.66°

mV
��
10 � � j 8 �

mV
���
4 � � 6 � � j 8 �

mV
�Z1 � Z2

–

Z1

+

Z2

I2

hI V�

FIG. 18.18

Assigning the subscripted impedances to the
network of Fig. 18.17.

–

Z1

  V

+

Z2

I�

�

FIG. 18.19

Determining the effect of the 
voltage-controlled voltage source on the
current I2 for the network of Fig. 18.17.

Z1

Z2

I�

hI1

FIG. 18.20

Determining the effect of the 
current-controlled current source on the
current I2 for the network of Fig. 18.17.
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dent sources are not sources of energy in the sense that, if all indepen-
dent sources are removed from a system, all currents and voltages must
be zero.

EXAMPLE 18.6 Determine the current IL through the resistor RL of
Fig. 18.21.

Solution: Note that the controlling variable V is determined by the
network to be analyzed. From the above discussions, it is understood
that the dependent source cannot be set to zero unless V is zero. If we
set I to zero, the network lacks a source of voltage, and V � 0 with 
mV � 0. The resulting IL under this condition is zero. Obviously, there-
fore, the network must be analyzed as it appears in Fig. 18.21, with the
result that neither source can be eliminated, as is normally done using
the superposition theorem.

Applying Kirchhoff’s voltage law, we have

VL � V � mV � (1 � m)V

and IL � �

The result, however, must be found in terms of I since V and mV are
only dependent variables.

Applying Kirchhoff’s current law gives us

I � I1 � IL � �

and I � V� � �
or V �

Substituting into the above yields

IL � � � �
Therefore, IL �

18.3 THÉVENIN’S THEOREM

Thévenin’s theorem, as stated for sinusoidal ac circuits, is changed
only to include the term impedance instead of resistance; that is,

any two-terminal linear ac network can be replaced with an
equivalent circuit consisting of a voltage source and an impedance in
series, as shown in Fig. 18.22.

Since the reactances of a circuit are frequency dependent, the Thévenin
circuit found for a particular network is applicable only at one fre-
quency.

The steps required to apply this method to dc circuits are repeated
here with changes for sinusoidal ac circuits. As before, the only change

(1 � m)R1I
��
RL � (1 � m)R1

I
���
(1/R1) � [(1 � m)/RL]

(1 � m)
�

RL

(1 � m)V
�

RL

I
���
(1/R1) � [(1 � m)/RL ]

1 � m
�

RL

1
�
R1

(1 � m)V
�

RL

V
�
R1

(1 � m)V
�

RL

VL�
RL

Th

RL

mV– +

ILI1

R1 VI
–

+

FIG. 18.21

Example 18.6.

–

+

ZTh

ETh

FIG. 18.22

Thévenin equivalent circuit for ac networks.
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is the replacement of the term resistance with impedance. Again,
dependent and independent sources will be treated separately.

Example 18.9, the last example of the independent source section,
will include a network with dc and ac sources to establish the ground-
work for possible use in the electronics area.

Independent Sources

1. Remove that portion of the network across which the Thévenin
equivalent circuit is to be found.

2. Mark (�, ●, and so on) the terminals of the remaining two-terminal
network.

3. Calculate ZTh by first setting all voltage and current sources to
zero (short circuit and open circuit, respectively) and then finding
the resulting impedance between the two marked terminals.

4. Calculate ETh by first replacing the voltage and current sources
and then finding the open-circuit voltage between the marked
terminals.

5. Draw the Thévenin equivalent circuit with the portion of the
circuit previously removed replaced between the terminals of the
Thévenin equivalent circuit.

EXAMPLE 18.7 Find the Thévenin equivalent circuit for the network
external to resistor R in Fig. 18.23.

Th

R2 �

–

+

E  =  10 V ∠  0°

XL  =  8 �

XC

Thévenin

FIG. 18.23

Example 18.7.

Solution:

Steps 1 and 2 (Fig. 18.24):

E  =  10 V ∠  0°
–

+

Z1

Z2

Thévenin

FIG. 18.24

Assigning the subscripted impedances to the network of Fig. 18.23.

Z1 � j XL � j 8 � Z2 � �j XC � �j 2 �

Step 3 (Fig. 18.25):

Z1

Z2
ZTh

FIG. 18.25

Determining the Thévenin impedance for the 
network of Fig. 18.23.
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ZTh � � � �

� 2.67 � ��90°

Step 4 (Fig. 18.26):

ETh � (voltage divider rule)

� � � 3.33 V ��180°

Step 5: The Thévenin equivalent circuit is shown in Fig. 18.27.

�j 20 V
�

j 6

(�j 2 �)(10 V)
��
j 8 � � j 2 �

Z2E�
Z1 � Z2

16 �
�
6 �90°

�j 216 �
�

j 6

( j 8 �)(�j 2 �)
��

j 8 � � j 2 �

Z1Z2�
Z1 � Z2

Th

Z1

Z2 ETh

–

+

E

+

–

FIG. 18.26

Determining the open-circuit Thévenin
voltage for the network of Fig. 18.23.

–

+

ETh  =  3.33 V ∠  – 180°

ZTh

R

ZTh  =  2.67 � ∠  –90°

–

+

ETh  =  3.33 V ∠  – 180° R

XC  =  2.67 �

FIG. 18.27

The Thévenin equivalent circuit for the network of Fig. 18.23.

EXAMPLE 18.8 Find the Thévenin equivalent circuit for the network
external to branch a-a′ in Fig. 18.28.

–

+

R3

7 �

R1

6 �

E1

XL1

8 �

R2 3 �

XL2  
=  5 �

10 V ∠  0°
XC 4 �

a

–

+

E2 30 V ∠  15°

a� Thévenin

FIG. 18.28

Example 18.8.

Solution:

Steps 1 and 2 (Fig. 18.29): Note the reduced complexity with sub-
scripted impedances:

E1

–

+

Z1

Z2

Z3

10 V ∠  0°

a

a� Thévenin

FIG. 18.29

Assigning the subscripted impedances to the network of Fig. 18.28.
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Z1 � R1 � j XL1
� 6 � � j 8 �

Z2 � R2 � j XC � 3 � � j 4 �

Z3 � �j XL2
� j 5 �

Step 3 (Fig. 18.30):

ZTh � Z3 � � j 5 � �

� j 5 � � j 5 �

� j 5 � 5.08 ��23.96° � j 5 � 4.64 � j 2.06

ZTh � 4.64 � � j 2.94 � � 5.49 � �32.36°

50 �0°
��
9.85 �23.96°

50 �0°
�
9 � j 4

(10 � �53.13°)(5 � ��53.13°)
����
(6 � � j 8 �) � (3 � � j 4 �)

Z1Z2�
Z1 � Z2

Th

Z1

Z2

Z3
a

a�

ZTh

FIG. 18.30

Determining the Thévenin impedance for the network of Fig. 18.28.

Step 4 (Fig. 18.31): Since a-a′ is an open circuit, IZ3
� 0. Then ETh is

the voltage drop across Z2:

ETh � (voltage divider rule)

�

ETh � � 5.08 V ��77.09°
50 V ��53.13°
��

9.85 �23.96°

(5 � ��53.13°)(10 V �0°)
���

9.85 � �23.96°

Z2E�
Z2 � Z1

E1

–

+

Z1

Z2

Z3 a

a�

ETh

–

+
IZ3

  =  0

FIG. 18.31

Determining the open-circuit Thévenin voltage for the network of Fig. 18.28.



802  NETWORK THEOREMS (ac)

The next example demonstrates how superposition is applied to elec-
tronic circuits to permit a separation of the dc and ac analyses. The fact
that the controlling variable in this analysis is not in the portion of the net-
work connected directly to the terminals of interest permits an analysis of
the network in the same manner as applied above for independent sources.

EXAMPLE 18.9 Determine the Thévenin equivalent circuit for the
transistor network external to the resistor RL in the network of Fig.
18.33. Then determine VL.

Th

–

+

ETh

ZTh

R3

4.64 �  +  j2.94 �
7 �

5.08 V ∠   –77.09°
–

+

E2 30 V ∠   15°
–

+

ETh

4.64 � 7 �

5.08 V ∠   –77.09°

–

+

E2 30 V ∠   15°

2.94 �

R XLa

a′

a

a′

R3

FIG. 18.32

The Thévenin equivalent circuit for the network of Fig. 18.28.

–

+

RB 1 M�

RC 2 k�

Rs

0.5 k�

Ei

C1

10 �

12 V

C2

10 �

Transistor

RL  =  1 k�  VL

–

+

Thévenin

FIG. 18.33

Example 18.9.

Solution: Applying superposition.

dc Conditions Substituting the open-circuit equivalent for the cou-
pling capacitor C2 will isolate the dc source and the resulting currents
from the load resistor. The result is that for dc conditions, VL � 0 V.
Although the output dc voltage is zero, the application of the dc voltage
is important to the basic operation of the transistor in a number of
important ways, one of which is to determine the parameters of the
“equivalent circuit” to appear in the ac analysis to follow.

ac Conditions For the ac analysis, an equivalent circuit is substi-
tuted for the transistor, as established by the dc conditions above, that

Step 5: The Thévenin equivalent circuit is shown in Fig. 18.32.
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will behave like the actual transistor. A great deal more will be said
about equivalent circuits and the operations performed to obtain the net-
work of Fig. 18.34, but for now let us limit our attention to the manner
in which the Thévenin equivalent circuit is obtained. Note in Fig. 18.34
that the equivalent circuit includes a resistor of 2.3 k� and a controlled
current source whose magnitude is determined by the product of a fac-
tor of 100 and the current I1 in another part of the network.

Th

RB 1 M�

Rs

0.5 k�

–

+

I1

2.3 k� RC 2 k� RL 1 k�  VLEi
100I1

Transistor equivalent
circuit

–

+

Thévenin

FIG. 18.34

The ac equivalent network for the transistor amplifier of Fig. 18.33.

Note in Fig. 18.34 the absence of the coupling capacitors for the ac
analysis. In general, coupling capacitors are designed to be open cir-
cuits for dc analysis and short circuits for ac analysis. The short-circuit
equivalent is valid because the other impedances in series with the cou-
pling capacitors are so much larger in magnitude that the effect of the
coupling capacitors can be ignored. Both RB and RC are now tied to
ground because the dc source was set to zero volts (superposition) and
replaced by a short-circuit equivalent to ground.

For the analysis to follow, the effect of the resistor RB will be
ignored since it is so much larger than the parallel 2.3-k� resistor.

ZTh When Ei is set to zero volts, the current I1 will be zero amperes,
and the controlled source 100I1 will be zero amperes also. The result is
an open-circuit equivalent for the source, as appearing in Fig. 18.35.

It is fairly obvious from Fig. 18.35 that

ZTh � 2 k�

ETh For ETh, the current I1 of Fig. 18.34 will be

I1 � � �

and 100I1 � (100)� � � 35.71 � 10�3/� Ei

Referring to Fig. 18.36, we find that

ETh � �(100I1)RC

� �(35.71 � 10�3/� Ei)(2 � 103 �)
ETh � �71.42Ei

The Thévenin equivalent circuit appears in Fig. 18.37 with the orig-
inal load RL.

Ei�
2.8 k�

Ei�
2.8 k�

Ei��
0.5 k� � 2.3 k�

Ei��
Rs � 2.3 k�

RC 2 k� ZTh

FIG. 18.35

Determining the Thévenin impedance for the 
network of Fig. 18.34.

–

+

RC 2 k� ETh

–

+

100I1

FIG. 18.36

Determining the Thévenin voltage for the net-
work of Fig. 18.34.

–

+

ETh RL

RTh

2 k�

1 k�  VL

–

+

71.42Ei

FIG. 18.37

The Thévenin equivalent circuit for the net-
work of Fig. 18.34.
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Output Voltage VL

VL � �

and VL � �23.81Ei

revealing that the output voltage is 23.81 times the applied voltage with
a phase shift of 180° due to the minus sign.

Dependent Sources

For dependent sources with a controlling variable not in the network
under investigation, the procedure indicated above can be applied. How-
ever, for dependent sources of the other type, where the controlling vari-
able is part of the network to which the theorem is to be applied, another
approach must be employed. The necessity for a different approach will be
demonstrated in an example to follow. The method is not limited to depen-
dent sources of the latter type. It can also be applied to any dc or sinusoidal
ac network. However, for networks of independent sources, the method of
application employed in Chapter 9 and presented in the first portion of this
section is generally more direct, with the usual savings in time and errors.

The new approach to Thévenin’s theorem can best be introduced at
this stage in the development by considering the Thévenin equivalent
circuit of Fig. 18.38(a). As indicated in Fig. 18.38(b), the open-circuit
terminal voltage (Eoc) of the Thévenin equivalent circuit is the Thévenin
equivalent voltage; that is,

(18.1)

If the external terminals are short circuited as in Fig. 18.38(c), the
resulting short-circuit current is determined by

(18.2)

or, rearranged,

ZTh �

and (18.3)

Equations (18.1) and (18.3) indicate that for any linear bilateral dc or
ac network with or without dependent sources of any type, if the open-
circuit terminal voltage of a portion of a network can be determined
along with the short-circuit current between the same two terminals, the
Thévenin equivalent circuit is effectively known. A few examples will
make the method quite clear. The advantage of the method, which was
stressed earlier in this section for independent sources, should now be
more obvious. The current Isc, which is necessary to find ZTh, is in gen-
eral more difficult to obtain since all of the sources are present.

There is a third approach to the Thévenin equivalent circuit that is
also useful from a practical viewpoint. The Thévenin voltage is found
as in the two previous methods. However, the Thévenin impedance is

ZTh � �
E
Is

o

c

c�

ETh�
Isc

Isc � �
E
Z

T

T

h

h
�

Eoc � ETh

�(1 k�)(71.42Ei)��
1 k� � 2 k�

�RLETh�
RL � ZTh

–

+

ZTh

ETh

–

+

ZTh

ETh

–

+

ZTh

ETh

Eoc  =  ETh

–

+

Isc  =
ETh
ZTh

(a)

(b)

(c)

FIG. 18.38

Defining an alternative approach for
determining the Thévenin impedance.
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obtained by applying a source of voltage to the terminals of interest and
determining the source current as indicated in Fig. 18.39. For this
method, the source voltage of the original network is set to zero. The
Thévenin impedance is then determined by the following equation:

(18.4)

Note that for each technique, ETh � Eoc, but the Thévenin impedance is
found in different ways.

EXAMPLE 18.10 Using each of the three techniques described in this
section, determine the Thévenin equivalent circuit for the network of
Fig. 18.40.

Solution: Since for each approach the Thévenin voltage is found in
exactly the same manner, it will be determined first. From Fig. 18.40,
where IXC

� 0,

Due to the polarity for V and
defined terminal polarities

VR1
� ETh � Eoc � � � �

The following three methods for determining the Thévenin imped-
ance appear in the order in which they were introduced in this section.

Method 1: See Fig. 18.41.

ZTh � R1 � R2 � j XC

Method 2: See Fig. 18.42. Converting the voltage source to a current
source (Fig. 18.43), we have (current divider rule)

Isc � � 

� 

�
R

�

1

m

�

R2

R

V

2

�

——
(R1 � R2) � j XC

��
R1

R

�
1R2

R2
� ��

m

R

V

1

��
——
(R1 � R2) � j XC

�(R1 � R2)�
m

R

V

1

�

——
(R1 � R2) � j XC

mR2V
�R1 � R2

R2(mV)
�
R1 � R2

ZTh � �
E

Ig

g
�

Th

Ig

–

+

ZTh

Network Eg

FIG. 18.39

Determining ZTh using the approach 
ZTh � Eg / Ig.

–

+

R1

R2

Thévenin

XC

�V

–

+�

FIG. 18.40

Example 18.10.

R1

R2 ZTh

XC

–

+
R2

R1

�V

XC

Isc

Isc

�

R1 R2 Isc

XC

�V
R1

Isc

�

FIG. 18.41

Determining the Thévenin impedance for the 
network of Fig. 18.40.

FIG. 18.42

Determining the short-circuit current for the 
network of Fig. 18.40.

FIG. 18.43

Converting the voltage source of Fig. 18.42 to a current source.
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and

ZTh � � �

(R1 � R2) � j XC

� R1 � R2 � j XC

Method 3: See Fig. 18.44.

Ig �

and ZTh � � R1 � R2 � j XC

In each case, the Thévenin impedance is the same. The resulting
Thévenin equivalent circuit is shown in Fig. 18.45.

Eg
�
Ig

Eg
��
(R1 � R2) � j XC

1
––––
�
(R1 � R2

1

) � j XC

�

�
R

�

1

m

�

R2

R

V

2

�

––––

�
R

�

1

m

�

R2

R

V

2

�

Eoc�
Isc

R2

R1
XC Ig

+

–
Eg

ZTh

FIG. 18.44

Determining the Thévenin impedance for the 
network of Fig. 18.40 using the approach 

ZTh � Eg / Ig.

R1  +  R2
ETh  = Thévenin

–

+

�R2V

ZTh  =  R1 � R2  –  jXC

–

+

�

FIG. 18.45

The Thévenin equivalent circuit for the network of Fig. 18.40.

EXAMPLE 18.11 Repeat Example 18.10 for the network of Fig.
18.46.

Solution: From Fig. 18.46, ETh is

ETh � Eoc � �hI(R1 � R2) � �

Method 1: See Fig. 18.47.

ZTh � R1 � R2 � j XC

Note the similarity between this solution and that obtained for the pre-
vious example.

Method 2: See Fig. 18.48.

Isc �

and ZTh � � � R1 � R2 � j XC

�hI(R1 � R2)——
�
(R

�

1

(

�
R

R
1

2

�
)

R

�
2)

j

h

X

I

C
�

Eoc�
Isc

�(R1 � R2)hI
��
(R1 � R2) � j XC

hR1R2I
�
R1 � R2

hI R1 R2

XC

Thévenin

FIG. 18.46

Example 18.11.

R1 R2

XC

ZTh  =  R1 � R2  –  jXC

FIG. 18.47

Determining the Thévenin impedance for the 
network of Fig. 18.46.
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Method 3: See Fig. 18.49.

Ig �

and ZTh � � R1 � R2 � j XC

The following example has a dependent source that will not permit
the use of the method described at the beginning of this section for
independent sources. All three methods will be applied, however, so
that the results can be compared.

EXAMPLE 18.12 For the network of Fig. 18.50 (introduced in Exam-
ple 18.6), determine the Thévenin equivalent circuit between the indi-
cated terminals using each method described in this section. Compare
your results.

Eg
�
Ig

Eg
��
(R1 � R2) � j XC

Th

Solution: First, using Kirchhoff’s voltage law, ETh (which is the
same for each method) is written

ETh � V � mV � (1 � m)V

However, V � IR1

so ETh � (1 � m)IR1

ZTh

Method 1: See Fig. 18.51. Since I � 0, V and mV � 0, and

ZTh � R1 (incorrect)

Method 2: See Fig. 18.52. Kirchhoff’s voltage law around the indicated
loop gives us

V � mV � 0

and V(1 � m) � 0

Since m is a positive constant, the above equation can be satisfied
only when V � 0. Substitution of this result into Fig. 18.52 will yield
the configuration of Fig. 18.53, and

Isc � I

hI R1 R2

XC

Isc

Isc

FIG. 18.48

Determining the short-circuit current for the 
network of Fig. 18.46.

R1 R2

XC

Eg

Ig

–

+

ZTh

FIG. 18.49

Determining the Thévenin impedance using 
the approach ZTh � Eg / Ig.

I R1

�V

Thévenin

V
+

–

+– �

FIG. 18.50

Example 18.12.

R1

�V  =  0

V  =  0
+

–

+–

ZTh

�

FIG. 18.51

Determining ZTh incorrectly.

FIG. 18.52

Determining Isc for the network of Fig. 18.50.

I R1

�V

V
+

–

+–

Isc

Isc

�
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with

ZTh � � � (1 � m)R1 (correct)

Method 3: See Fig. 18.54.

Eg � V � mV � (1 � m)V

or V �

and Ig � �

and ZTh � � (1 � m)R1 (correct)

The Thévenin equivalent circuit appears in Fig. 18.55, and

IL �

which compares with the result of Example 18.6.

The network of Fig. 18.56 is the basic configuration of the transistor
equivalent circuit applied most frequently today (although most texts in
electronics will use the circle rather than the diamond outline for the
source). Obviously, it is necessary to know its characteristics and to be
adept in its use. Note that there are both a controlled voltage and a con-
trolled current source, each controlled by variables in the configuration.

(1 � m)R1I
��
RL � (1 � m)R1

Eg
�
Ig

Eg
�
(1 � m)R1

V
�
R1

Eg
�
1 � m

(1 � m)IR1��
I

Eoc�
Isc

Th

–

+
R1 V Eg

Ig
�V

+–

ZTh

�

FIG. 18.54

Determining ZTh using the approach ZTh �
Eg / Ig.

–

+

(1  +  m)R1

RL

IL

ETh  =  (1  +  m)IR1

FIG. 18.55

The Thévenin equivalent circuit for the
network of Fig. 18.50.

–

+

R2k2Ik1V2Vi

I

R1

Thévenin

–

+

V2

–

+

FIG. 18.56

Example 18.13: Transistor equivalent network.

EXAMPLE 18.13 Determine the Thévenin equivalent circuit for the
indicated terminals of the network of Fig. 18.56.

Solution: Apply the second method introduced in this section.

ETh

Eoc � V2

I � �

and Eoc � �k2IR2 � �k2R2� �
� �

k1k2R2Eoc
��

R1

�k2R2Vi
�

R1

Vi � k1Eoc
��

R1

Vi � k1Eoc
��

R1

Vi � k1V2
��

R1

I R1 V  =  0
+

–
Isc

I1  =  0 Isc

FIG. 18.53

Substituting V � 0 into the network of Fig. 
18.52.
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or Eoc�1 � � �

and Eoc� � �

so (18.5)

Isc For the network of Fig. 18.57, where

V2 � 0 k1V2 � 0 I �

and Isc � �k2I � 

so ZTh � � �

and (18.6)ZTh � 
R2

1 � �
k1k

R
2

1

R2�

R1R2——
R1�k1k2R2

�
R

�

1�

k2

k

R

1k
2V

2R
i

2
�

–––
�
�

R

k2

1

Vi
�

Eoc�
Isc

�k2Vi
�

R1

Vi
�
R1

Eoc � �
R1

�

�

k2

k
R

1

2

k
V

2R
i

2
� � ETh

�k2R2Vi
�

R1

R1 � k1k2R2��
R1

�k2R2Vi
�

R1

k1k2R2
�

R1

Th

Isc

–

+

R2k2IVi

I

R1

Isc

FIG. 18.57

Determining Isc for the network of Fig. 18.56.

Frequently, the approximation k1 � 0 is applied. Then the Thévenin
voltage and impedance are

k1 � 0 (18.7)

k1 � 0 (18.8)

Apply ZTh � Eg/Ig to the network of Fig. 18.58, where

I �

But V2 � Eg

so I �
�k1Eg
�

R1

�k1V2�
R1

ZTh � R2

ETh � �
�k

R
2R

1

2Vi�
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ZTh

–

+
Eg

Ig

R2k2Ik1V2

I

R1

–

+

FIG. 18.58

Determining ZTh using the procedure ZTh � Eg / Ig.

Applying Kirchhoff’s current law, we have

Ig � k2I � � k2�� � �

� Eg� � �
and �

or ZTh � �

as obtained above.

The last two methods presented in this section were applied only to
networks in which the magnitudes of the controlled sources were
dependent on a variable within the network for which the Thévenin
equivalent circuit was to be obtained. Understand that both of these
methods can also be applied to any dc or sinusoidal ac network con-
taining only independent sources or dependent sources of the other
kind.

18.4 NORTON’S THEOREM

The three methods described for Thévenin’s theorem will each be
altered to permit their use with Norton’s theorem. Since the Thévenin
and Norton impedances are the same for a particular network, certain
portions of the discussion will be quite similar to those encountered in
the previous section. We will first consider independent sources and the
approach developed in Chapter 9, followed by dependent sources and
the new techniques developed for Thévenin’s theorem.

You will recall from Chapter 9 that Norton’s theorem allows us to
replace any two-terminal linear bilateral ac network with an equiva-
lent circuit consisting of a current source and an impedance, as in
Fig. 18.59.

The Norton equivalent circuit, like the Thévenin equivalent circuit, is
applicable at only one frequency since the reactances are frequency
dependent.

R1R2
��
R1 � k1k2R2

Eg
�
Ig

R1 � k1k2R2
��

R1R2

Ig
�
Eg

k1k2
�
R1

1
�
R2

Eg
�
R2

k1Eg
�

R1

Eg
�
R2

ZNIN

FIG. 18.59

The Norton equivalent circuit for ac networks.
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Independent Sources

The procedure outlined below to find the Norton equivalent of a sinu-
soidal ac network is changed (from that in Chapter 9) in only one
respect: the replacement of the term resistance with the term imped-
ance.

1. Remove that portion of the network across which the Norton
equivalent circuit is to be found.

2. Mark (�, ●, and so on) the terminals of the remaining two-terminal
network.

3. Calculate ZN by first setting all voltage and current sources to
zero (short circuit and open circuit, respectively) and then
finding the resulting impedance between the two marked
terminals.

4. Calculate IN by first replacing the voltage and current sources and
then finding the short-circuit current between the marked
terminals.

5. Draw the Norton equivalent circuit with the portion of the circuit
previously removed replaced between the terminals of the Norton
equivalent circuit.

The Norton and Thévenin equivalent circuits can be found from each
other by using the source transformation shown in Fig. 18.60. The
source transformation is applicable for any Thévenin or Norton equiva-
lent circuit determined from a network with any combination of inde-
pendent or dependent sources.

–

+

ZTh

ETh  =  INZN
ZNIN  =

ETh
ZTh

ZN  =  ZTh

ZTh  =  ZN

FIG. 18.60

Conversion between the Thévenin and Norton equivalent circuits.

EXAMPLE 18.14 Determine the Norton equivalent circuit for the net-
work external to the 6-� resistor of Fig. 18.61.

–

+

RL 6 �

R1

3 �

E  =  20 V ∠  0°

XL

4 �

XC 5 �

Norton

FIG. 18.61

Example 18.14.
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Solution:

Steps 1 and 2 (Fig. 18.62):

Z1 � R1 � j XL � 3 � � j 4 � � 5 � �53.13°

Z2 � �j XC � �j 5 �

Step 3 (Fig. 18.63):

ZN � � �

� � 7.91 � ��18.44° � 7.50 � � j 2.50 �

Step 4 (Fig. 18.64):

IN � I1 � � � 4 A ��53.13°
20 V �0°

��
5 � �53.13°

E
�
Z1

25 � ��36.87°
��
3.16 ��18.43°

25 � ��36.87°
��

3 � j 1
(5 � �53.13°)(5 � ��90°)
���

3 � � j 4 � � j 5 �

Z1Z2
�
Z1 � Z2

Th

E
–

+

Z1

Z2

Norton

FIG. 18.62

Assigning the subscripted impedances to the 
network of Fig. 18.61.

Z1

Z2 ZN

FIG. 18.63

Determining the Norton impedance for the
network of Fig. 18.61.

E
–

+

Z1

Z2

I1

IN

IN

FIG. 18.64

Determining IN for the network of Fig. 18.61.

R 6 �ZNIN  =  4 A ∠   –  53.13° RL 6 �IN  =  4 A ∠   –  53.13°

R 7.50 �

XC 2.50 �

7.50 �  –  j2.50 �

Step 5: The Norton equivalent circuit is shown in Fig. 18.65.

FIG. 18.65

The Norton equivalent circuit for the network of Fig. 18.61.

EXAMPLE 18.15 Find the Norton equivalent circuit for the network
external to the 7-� capacitive reactance in Fig. 18.66.

R2

1 �
R1 2 �

XC1
4 �

I  =  3 A ∠  0°
XC2 

 =  7 �

XL

5 �

FIG. 18.66

Example 18.15.
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Solution:

Steps 1 and 2 (Fig. 18.67):

Z1 � R1 � j XC1
� 2 � � j 4 �

Z2 � R2 � 1 �

Z3 � �j XL � j 5 �

Th

I  =  3 A ∠  0° Z1

Z2

Z3

FIG. 18.67

Assigning the subscripted impedances to the network of Fig. 18.66.

Step 3 (Fig. 18.68):

ZN �

Z1 � Z2 � 2 � � j 4 � � 1 � � 3 � � j 4 � � 5 � ��53.13°

ZN � �

�

ZN � 7.91 � �18.44° � 7.50 � � j 2.50 �

25 � �36.87°
��
3.16 ��18.43°

25 � �36.87°
��

3 � j 1

(5 � �90°)(5 � ��53.13°)
���

j 5 � � 3 � � j 4 �

Z3(Z1 � Z2)
��
Z3 � (Z1 � Z2)

Z1

Z2

Z3

ZN

Z1

Z2

Z3 ZN

FIG. 18.68

Finding the Norton impedance for the network of Fig. 18.66.

Calculator Performing the above on the TI-86 calculator, we obtain
the following:

((0,5)*((2,�4)�(1,0)))/((0,5)�((2,�4)�(1,0)))

(7.500E0,2.500E0)
Ans � Pol

(7.906E0�18.435E0)

CALC. 18.2
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Step 4 (Fig. 18.69):

IN � I1 � (current divider rule)

� � �

IN � 2.68 A ��10.3°

13.4 A ��63.43°
��

5 ��53.13°

6 A � j 12 A
��
5 ��53.13°

(2 � � j 4 �)(3 A)
��

3 � � j 4 �

Z1I
�
Z1 � Z2

Th

I  =  3 A ∠  0°
Z1

Z2

Z3

I1

IN

FIG. 18.69

Determining IN for the network of Fig. 18.66.

Step 5: The Norton equivalent circuit is shown in Fig. 18.70.

XC2
7 �

7.50 �  +  j2.50 �

ZNIN  =  2.68 A ∠   – 10.3° IN  =  2.68 A ∠   – 10.3°

R 7.50 �

XL 2.50 �

XC2
7 �

FIG. 18.70

The Norton equivalent circuit for the network of Fig. 18.66.

EXAMPLE 18.16 Find the Thévenin equivalent circuit for the net-
work external to the 7-� capacitive reactance in Fig. 18.66.

Solution: Using the conversion between sources (Fig. 18.71), we
obtain

ZTh � ZN � 7.50 � � j 2.50 �

ETh � INZN � (2.68 A ��10.3°)(7.91 � �18.44°)

� 21.2 V �8.14°

The Thévenin equivalent circuit is shown in Fig. 18.72.

Dependent Sources

As stated for Thévenin’s theorem, dependent sources in which the con-
trolling variable is not determined by the network for which the Norton
equivalent circuit is to be found do not alter the procedure outlined
above.

For dependent sources of the other kind, one of the following proce-
dures must be applied. Both of these procedures can also be applied to
networks with any combination of independent sources and dependent
sources not controlled by the network under investigation.

FIG. 18.71

Determining the Thévenin equivalent circuit 
for the Norton equivalent of Fig. 18.70.

ZTh  =  ZN

INZNETh

+

–

ZTh

FIG. 18.72

The Thévenin equivalent circuit for the net-
work of Fig. 18.66.

21.2 V ∠  8.14°

R

7.50 �

ETh

+

–

XL

2.50 �

XC2
7 �
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The Norton equivalent circuit appears in Fig. 18.73(a). In Fig.
18.73(b), we find that

Th

IN

(a)

ZN IN

(b)

ZN

I  =  0

Isc IN

(c)

ZN

+

–

Eoc  =  INZN

FIG. 18.73

Defining an alternative approach for determining ZN.

(18.9)

and in Fig. 18.73(c) that

Eoc � INZN

Or, rearranging, we have

ZN �

and (18.10)

The Norton impedance can also be determined by applying a source
of voltage Eg to the terminals of interest and finding the resulting Ig, as
shown in Fig. 18.74. All independent sources and dependent sources not
controlled by a variable in the network of interest are set to zero, and

(18.11)

For this latter approach, the Norton current is still determined by the
short-circuit current.

EXAMPLE 18.17 Using each method described for dependent sources,
find the Norton equivalent circuit for the network of Fig. 18.75.

Solution:

IN For each method, IN is determined in the same manner. From Fig.
18.76, using Kirchhoff’s current law, we have

0 � I � hI � Isc

or Isc � �(1 � h)I

Applying Kirchhoff’s voltage law gives us

ZN � �
E
Ig

g
�

ZN � �
E
Is

o

c

c
�

Eoc�
IN

Isc � IN

+
Network ZN

Ig

Eg

–

FIG. 18.74

Determining the Norton impedance using the
approach ZN � Eg / Ig.

R2

+
hIE

–

Norton

R1

I

FIG. 18.75

Example 18.17.

R2

+
hIE

–
Isc

R1

I + –VR2

Isc

FIG. 18.76

Determining Isc for the network of Fig. 18.75.
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E � IR1 � Isc R2 � 0

and IR1 � Isc R2 � E

or I �

so Isc � �(1 � h)I � �(1 � h)� �
or R1Isc � �(1 � h)Isc R2 � (1 � h)E

Isc[R1 � (1 � h)R2] � (1 � h)E

Isc � � IN

ZN

Method 1: Eoc is determined from the network of Fig. 18.77. By
Kirchhoff’s current law,

0 � I � hI or I(h � 1) � 0

For h, a positive constant I must equal zero to satisfy the above.
Therefore,

I � 0 and hI � 0

and Eoc � E

with ZN � � �

Method 2: Note Fig. 18.78. By Kirchhoff’s current law,

Ig � I � hI � (1 � h)I

R1 � (1 � h)R2––––
(1 � h)

E
––––
�
R1 �

(1
(
�

1 �

h)E
h)R2

�

Eoc�
Isc

(1 � h)E
��
R1 � (1 � h)R2

Isc R2 � E
��

R1

Isc R2 � E
��

R1

Th

+
hIE

–
Eoc

R1

I
+
V  =  0

–

+

–

FIG. 18.77

Determining Eoc for the network of Fig. 18.75.

+
hI Eg

–

R1

I
+–

ZN

Ig

R2

+– VR1
VR2

FIG. 18.78

Determining the Norton impedance using the approach ZN � Eg / Eg.

By Kirchhoff’s voltage law,

Eg � IgR2 � IR1 � 0

or I �

Substituting, we have

Ig � (1 � h)I � (1 � h)� �
and IgR1 � (1 � h)Eg � (1 � h)IgR2

Eg � IgR2
��

R1

Eg � IgR2
��

R1
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so Eg(1 � h) � Ig[R1 � (1 � h)R2]

or ZN � �

which agrees with the above.

EXAMPLE 18.18 Find the Norton equivalent circuit for the network
configuration of Fig. 18.56.

Solution: By source conversion,

IN � �

and (18.12)

which is Isc as determined in Example 18.13, and

ZN � ZTh � (18.13)

For k1 � 0, we have

k1 � 0 (18.14)

k1 � 0 (18.15)

18.5 MAXIMUM POWER TRANSFER THEOREM

When applied to ac circuits, the maximum power transfer theorem
states that

maximum power will be delivered to a load when the load impedance
is the conjugate of the Thévenin impedance across its terminals.

That is, for Fig. 18.79, for maximum power transfer to the load,

(18.16)

or, in rectangular form,

(18.17)

The conditions just mentioned will make the total impedance of the cir-
cuit appear purely resistive, as indicated in Fig. 18.80:

RL � RTh and �j Xload � �j XTh

ZL � ZTh and vL � �vThZ

ZN � R2

IN � �
�

R
k2

1

Vi�

R2——
1 � �

k1k
R

2

1

R2�

IN � �
�

R
k2

1

Vi�

—
R1

�

�

k2

k

R

1

2

k

V

2R
i

2
—

——
—
R1 �

R1

k

R

1

2

k2R2
—

ETh
�
ZTh

R1 � (1 � h)R2
��

1 � h

Eg
�
Ig

Th
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ZT � (R � j X) � (R � j X)

and (18.18)

Since the circuit is purely resistive, the power factor of the circuit
under maximum power conditions is 1; that is,

(maximum power transfer) (18.19)

The magnitude of the current I of Fig. 18.80 is

I � �

The maximum power to the load is

Pmax � I2R � � �
2

R

and (18.20)

EXAMPLE 18.19 Find the load impedance in Fig. 18.81 for maxi-
mum power to the load, and find the maximum power.

Solution: Determine ZTh [Fig. 18.82(a)]:

Z1 � R � j XC � 6 � � j 8 � � 10 � ��53.13°

Z2 � �j XL � j 8 �

Pmax � �
E

4R

2
Th
�

ETh
�
2R

ETh
�
2R

ETh�
ZT

Fp � 1

ZT � 2R

Th

ETh  =  ETh ∠  vThs

ZTh

ZL

 ZTh ∠  vThz

 =  ZL ∠  vL

FIG. 18.79

Defining the conditions for maximum power transfer to a load.

ZTh  =  R  ±  jX

ZLETh  =  ETh ∠  vThs

+

– ZT

=  R

±

jX

I

FIG. 18.80

Conditions for maximum power transfer to ZL.
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ZTh � � �

� 13.33 � �36.87° � 10.66 � � j 8 �

and ZL � 13.3 � ��36.87° � 10.66 � � j 8 �

To find the maximum power, we must first find ETh [Fig. 18.82(b)],
as follows:

ETh � (voltage divider rule)

� � � 12 V �90°

Then Pmax � � � � 3.38 W

EXAMPLE 18.20 Find the load impedance in Fig. 18.83 for
maximum power to the load, and find the maximum power.

Solution: First we must find ZTh (Fig. 18.84).

Z1 � �j XL � j 9 � Z2 � R � 8 �

Converting from a D to a Y (Fig. 18.85), we have

Z′1 � � j 3 � Z2 � 8 �
Z1
�
3

144
�
42.64

(12 V)2

��
4(10.66 �)

E2
Th

�
4R

72 V �90°
��

6 �0°
(8 � �90°)(9 V �0°)
���
j 8 � � 6 � � j 8 �

Z2E
�
Z2 � Z1

80 � �36.87°
��

6 �0°
(10 � ��53.13°)(8 � �90°)
����

6 � � j 8 � � j 8 �

Z1Z2
�
Z1 � Z2

Th

E  =  9 V ∠  0°

R

6 �
+

–

XC

8 �

XL 8 � ZL

FIG. 18.81

Example 18.19.

(a)

Z2

Z1

ZTh

(b)

E

+
Z2

+

–
ETh

Z1

–

FIG. 18.82

Determining (a) ZTh and (b) ETh for the network external to the load in 
Fig. 18.81.

R

8 �
ZL

E  =
10 V ∠  0°

+

–

XL

9 �

XL

9 �
9 �

XL

FIG. 18.83

Example 18.20.
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The redrawn circuit (Fig. 18.86) shows

ZTh � Z′1 �

� j 3 � �

� j 3 �

� j 3 � � j 3 � 2.56 �73.69°

� j 3 � 0.72 � j 2.46

ZTh � 0.72 � � j 5.46 �

and ZL � 0.72 � � j 5.46 �

For ETh, use the modified circuit of Fig. 18.87 with the voltage
source replaced in its original position. Since I1 � 0, ETh is the voltage
across the series impedance of Z′1 and Z2. Using the voltage divider
rule gives us

ETh � �

�

ETh � 8.54 V ��16.31°

(8.54 �20.56°)(10 V �0°)
���

10 �36.87°

( j 3 � � 8 �)(10 V �0°)
���

8 � � j 6 �

(Z′1 � Z2)E
��
Z′1 � Z2 � Z′1

25.62 �110.56°
��

10 �36.87°

(3 �90°)(8.54 �20.56°)
���

10 �36.87°

3 � �90°( j 3 � � 8 �)
���

j 6 � � 8 �

Z′1(Z′1 � Z2)
��
Z′1 � (Z′1 � Z2)

ZTh

Z1

Z2

Z1

Z11

2

3

FIG. 18.84

Defining the subscripted impedances for the network of Fig. 18.83.

ZTh

Z2

1

2

3

Z�1

Z�1 Z�1

FIG. 18.85

Substituting the Y equivalent for the upper D configuration of Fig. 18.84.

ZTh
Z�1Z�1

Z2

Z�1

FIG. 18.86

Determining ZTh for the network of Fig. 18.83.

ETh

Z�1Z�1

Z2

Z�1
+

–

I1  =  0

E

+

–

FIG. 18.87

Finding the Thévenin voltage for the network
of Fig. 18.83.
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and Pmax � � � W

� 25.32 W

If the load resistance is adjustable but the magnitude of the load
reactance cannot be set equal to the magnitude of the Thévenin reac-
tance, then the maximum power that can be delivered to the load
will occur when the load reactance is made as close to the Thévenin
reactance as possible and the load resistance is set to the following
value:

(18.21)

where each reactance carries a positive sign if inductive and a negative
sign if capacitive.

The power delivered will be determined by

(18.22)

where (18.23)

The derivation of the above equations is given in Appendix G of the
text. The following example demonstrates the use of the above.

EXAMPLE 18.21 For the network of Fig. 18.88:

Rav � �
RTh

2

� RL
�

P � E2
Th/4Rav

RL � �R�2
Th� �� (�X�Th� �� X�lo�ad�)2�

72.93
�
2.88

(8.54 V)2

��
4(0.72 �)

E2
Th�

4R

Th

+

–

RTh

ETh  =  20 V ∠ 0°

XTh

RL

4 � 7 �

XC  =  4 �

FIG. 18.88

Example 18.21.

a. Determine the value of RL for maximum power to the load if the
load reactance is fixed at 4 �.

b. Find the power delivered to the load under the conditions of part (a).
c. Find the maximum power to the load if the load reactance is made

adjustable to any value, and compare the result to part (b) above.

Solutions:

a. Eq. (18.21): RL � �R�2
Th� �� (�X�Th� �� X�lo�ad�)2�

� �(4� ��)2� �� (�7� �� �� 4� ��)2�
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� �1�6� �� 9� � �2�5�
RL � 5 �

b. Eq. (18.23): Rav � �

� 4.5 �

Eq. (18.22): P �

� � W

� 22.22 W

c. For ZL � 4 � � j 7 �,

Pmax � �

� 25 W

exceeding the result of part (b) by 2.78 W.

18.6 SUBSTITUTION, RECIPROCITY,
AND MILLMAN’S THEOREMS

As indicated in the introduction to this chapter, the substitution and
reciprocity theorems and Millman’s theorem will not be considered
here in detail. A careful review of Chapter 9 will enable you to apply
these theorems to sinusoidal ac networks with little difficulty. A number
of problems in the use of these theorems appear in the problems section
at the end of the chapter.

18.7 APPLICATIONS

Soldering Gun

Soldering and welding are two operations that are best performed by
the application of heat that is unaffected by the thermal characteristics
of the materials involved. In other words, the heat applied should not be
sensitive to the changing parameters of the welding materials, the met-
als involved, or the welding conditions. The arc (a heavy current) estab-
lished in the welding process should remain fixed in magnitude to
ensure an even weld. This is best accomplished by ensuring a fixed cur-
rent through the system even though the load characteristics may
change—that is, by ensuring a constant current supply of sufficient
amperage to establish the required arc for the welding equipment or even
heating of the soldering iron tip. A further requirement for the soldering
process is that the heat developed be sufficient to raise the solder to its
melting point of about 800°F.

The soldering gun of Fig. 18.89(a) employs a unique approach to
establishing a fixed current through the soldering tip. The soldering tip
is actually part of a secondary winding of a transformer (Chapter 21)
having only one turn as its secondary as shown in Fig. 18.89(b).
Because of the heavy currents that will be established in this single-turn
secondary, it is quite large in size to ensure that it can handle the cur-
rent and to minimize its resistance level. The primary of the transformer

(20 V)2

�
4(4 �)

E2
Th

�
4RTh

400
�
18

(20 V)2

�
4(4.5 �)

E2
Th

�
4Rav

4 � � 5 �
��

2

RTh � RL
�

2
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has many turns of thinner wire to establish the turns ratio necessary to
establish the required current in the secondary. The Universal® unit of
Fig. 18.89 is rated 140 W/100 W, indicating that it has two levels of
power controlled by the trigger. As you pull the trigger, the first setting
will be at 140 W, and a fully depressed trigger will provide 100 W of
power. The inductance of the primary is 285 mH at the 140-W setting
and 380 mH at the 100-W setting, indicating that the switch controls
how many windings of the primary will be part of the transformer
action for each wattage rating, as shown in Fig. 18.89(c). Since induc-
tance is a direct function of the number of turns, the 140-W setting has
fewer turns than the 100-W setting. The dc resistance of the primary
was found to be about 11.2 � for the 140-W setting and 12.8 � for the
100-W setting, which makes sense also since more turns will require a
longer wire and the resistance should increase accordingly.

Under rated operating conditions, the primary current for each set-
ting can be determined using Ohm’s law in the following manner:

Th

���

���

�������

	
 ��
��

��� �

��� �

����	��

����

��
���	��

(c)

Primary

Is
Secondary

140 W 100 W

Ip

120 V ac

OFF

FIG. 18.89

Soldering gun: (a) appearance; (b) internal construction; 
(c) turns ratio control.
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For 140 W,

Ip � �
V

P

p
� � �

1

1

4

2

0

0

W

V
� � 1.17 A

For 100 W,

Ip � �
V

P

p
� � �

1

1

0

2

0

0

W

V
� � 0.83 A

As expected, the current demand is more for the 140-W setting than
for the 100-W setting. Using the measured values of input inductance
and resistance for the 140-W setting, the equivalent circuit of Fig.
18.90(a) will result. Using the applied 60 Hz to determine the reactance
of the coil and then determining the total impedance seen by the pri-
mary will result in the following for the source current:

XL � 2pf L � 2p(60 Hz)(285 mH) � 107.44 �

and ZT � R � j XL � 11.2 � � j 107.44 � � 108.02 � �84.05°

so that 	Ip	 � ��
Z

E

T
�� � �

10

1

8

2

.

0

02

V

�
� � 1.11 A

which is a close match with the rated level.
For the 100-W level of Fig. 18.90(b), the following analysis would

result:

XL � 2pf L � 2p(60 Hz)(380 mH) � 143.26 �

and ZT � R � j XL � 12.8 � � j 143.26 � � 143.83 � �84.89°

so that 	Ip	 � ��
Z

E

T
�� � �

14

1

3

2

.

0

83

V

�
� � 0.83 A

which is a match to hundredths place with the value calculated from
rated conditions.

Removing the tip and measuring the primary and secondary voltages
resulted in 120 V/0.38 V for the 140-W setting and 120 V/0.31 V for the
100-W setting, respectively. Since the voltages of a transformer are
directly related to the turns ratio, the number of turns in the primary
(Np) to that of the secondary (Ns) can be estimated by the following for
each setting:

For 140 W,

�
N

N
p

s
� � �

0

1

.

2

3

0

8

V

V
� � 316

For 100 W,

�
N

N
p

s
� � �

0

1

.

2

3

0

1

V

V
� � 387

Looking at the photograph of Fig. 18.89(b), it would certainly appear
that there are 300 or more turns in the primary winding.

The currents of a transformer are related by the turns ratio in the fol-
lowing manner, permitting a calculation of the secondary currents for
each setting:

For 140 W,

Is � �
N

N
p

s
�Ip � 316(1.17 A) � 370 A

Rp 12.8 �

Lp 380 mH

+

120 V
60 Hz

–

Ip

100 W
(b)

Rp 11.2 �

Lp 285 mH

+

120 V
60 Hz

–

Ip

140 W
(a)

FIG. 18.90

Equivalent circuits for the soldering iron of
Fig. 18.89(a): (a) at 140-W setting; (b) at

100-W setting.
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For 100 W,

Is � �
N

N
p

s
�Ip � 387(0.83 A) � 321 A

Quite clearly, the secondary current is much higher for the 140-W set-
ting. The resulting current levels are probably higher than you might
have expected, but keep in mind that the above analysis does not
include the effect of the reflected impedance from the secondary to the
primary that will reduce the primary current level (to be discussed in
Chapter 21). In addition, as the soldering tip heats up, its resistance
increases, further reducing the resulting current levels. Using an 
Amp-Clamp®, the current in the secondary was found to exceed 300 A
when the power was first applied and the soldering tip was cold. How-
ever, as the tip heated up because of the high current levels, the current
through the primary dropped to about 215 A for the 140-W setting and
to 180 A for the 100-W setting. These high currents are part of the rea-
son that the lifetime of most soldering tips on soldering guns is about
20 hours. Eventually, the tip will simply begin to melt. Using these
levels of current and the given power rating, the resistance of the sec-
ondary can be approximated as follows:

For 140 W,

R � �
I

P
2� � �

(2

1

1

4

5

0

A

W

)2� � 3 m�

For 100 W,

R � �
I

P
2� � �

(1

1

8

0

0

0

A

W

)2� � 3 m�

which is as low as expected when you consider the cross-sectional
area of the secondary and the fact that the tip is a short section of
low-resistance, tin-plated copper.

One of the obvious advantages of the soldering gun versus the iron
is that the iron is off when you release the trigger, thus reducing energy
costs and extending the life of the tip. Applying dc current rather than
ac to develop a constant current would be impractical because the high
current demand would require a series of large batteries in parallel.

The above investigation was particularly interesting because of the
manner in which the constant current characteristic was established, the
levels of current established, and the excellent manner in which some of
the theory introduced in the text was verified.

Electronic Systems

One of the blessings in the analysis of electronic systems is that the
superposition theorem can be applied so that the dc analysis and ac
analysis can be performed separately. The analysis of the dc system will
affect the ac response, but the analysis of each is a distinct, separate
process. Even though electronic systems have not been investigated in
this text, a number of important points can be made in the description
to follow that support some of the theory presented in this and recent
chapters, so inclusion of this description is totally valid at this point.
Consider the network of Fig. 18.91 with a transistor power amplifier, an
8-� speaker as the load, and a source with an internal resistance of 800 �.
Note that each component of the design was isolated by a color box

Th
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to emphasize the fact that each component must be carefully weighed
in any good design.

As mentioned above, the analysis can be separated into a dc and an
ac component. For the dc analysis the two capacitors can be replaced by
an open-circuit equivalent (Chapter 10), resulting in an isolation of the
amplifier network as shown in Fig. 18.92. Given the fact that VBE will
be about 0.7 V dc for any operating transistor, the base current IB can
be found as follows using Kirchhoff’s voltage law:

IB � �
V

R
R

B

B� � �
VCC

R

�

B

VBE
� � �

22 V

47

�

k�

0.7 V
� � 453.2 mA

For transistors, the collector current IC is related to the base current
by IC � bIB, and

IC � bIB � (200)(453.2 mA) � 90.64 mA

Finally, through Kirchhoff’s voltage law, the collector voltage (also
the collector-to-emitter voltage since the emitter is grounded) can be
determined as follows:

VC � VCE � VCC � ICRC � 22 V � (90.64 mA)(100 �) � 12.94 V

For the dc analysis, therefore,

IB � 453.2 mA IC � 90.64 mA VCE � 12.94 V

which will define a point of dc operation for the transistor. This is an
important aspect of electronic design since the dc operating point will
have an effect on the ac gain of the network.

Now, using superposition, we can analyze the network from an ac
viewpoint by setting all dc sources to zero (replaced by ground connec-
tions) and replacing both capacitors by short circuits as shown in Fig.
18.93. Substituting the short-circuit equivalent for the capacitors is
valid because at 10 kHz (the midrange for human hearing response), the
reactance of the capacitor is determined by XC � 1/2pfC � 15.92 �
which can be ignored when compared to the series resistors at the
source and load. In other words, the capacitor has played the important
role of isolating the amplifier for the dc response and completing the
network for the ac response.

Th

Rs

RB 47 k�

RC 100 �

+

–

Vs 1V(p-p)

Source

CC

0.1 µF

Amplifier Load

0.1 µF

VCC = 22 V

β = 200

E

B

C
CC

RL 8 �

FIG. 18.91

Transistor amplifier.

22 V

RB 47 k�
RC 100 �

VCC

B

E

IB
+

–
VBE

VCE

VCC 22 V

C

β = 200

–

+
IC

FIG. 18.92

dc equivalent of the transistor network of 
Fig. 18.91.

FIG. 18.93

ac equivalent of the transistor network of 
Fig. 18.91.
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800 �

RB 47 k�
RC 100 �

B

E

C

RL 8 �

β = 200

Vs 1V(p-p)
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Redrawing the network as shown in Fig. 18.94(a) will permit an ac
investigation of its reponse. The transistor has now been replaced by an
equivalent network that will represent the behavior of the device. This
process will be covered in detail in your basic electronics courses. This
transistor configuration has an input impedance of 200 � and a current
source whose magnitude is sensitive to the base current in the input cir-
cuit and to the amplifying factor for this transistor of 200. The 47-k�
resistor in parallel with the 200-� input impedance of the transistor can
be ignored, so the input current Ii and base current Ib are determined by

Ii � Ib � �
Rs

V

�
s

Ri
� � � �

1 V
1 k

(
�

p-p)
� � 1 mA (p-p)

The collector current IC is then

IC � bIb � (200)(1 mA ( p-p)) � 200 mA ( p-p)

and the current to the speaker is determined by the current divider rule
as follows:

IL � � 0.926IC � 0.926(200 mA (p-p))

� 185.2 mA (p-p)

with the voltage across the speaker being

VL � �ILRL � �(185.2 mA ( p-p))(8 �) � �1.48 V

The power to the speaker is then determined as follows:

Pspeaker � VLrms

 ILrms

� �
(VL( p-p)

8

)(IL( p-p))
� �

� 34.26 mW

which is relatively low. It would initially appear that the above was a
good design for distribution of power to the speaker because a majority

(1.48 V)(185.2 mA (p-p))
���

8

100 �(IC)
��
100 � � 8 �

1 V (p-p)
��
800 � � 200 �

(a)

RC 100 �

Rs

800 �

Ii

Vs 1V(p-p)

+

–

RL 8 �Ri 200 �RB

B

E
47 kΩ

I ≅  0 A Ib βIb
200Ib

C

IC

+

–
IL

VL

Transistor equivalent circuit

(b)

100 �

8 �
100 �

Impedance
matching
transformer

+

– 200 mA

100 �

100 �
100 mA

100 mA

VL

FIG. 18.94

(a) Network of Fig. 18.93 following the substitution of the transistor equivalent
network; (b) effect of the matching transformer.
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of the collector current went to the speaker. However, one must always
keep in mind that power is the product of voltage and current. A high
current with a very low voltage will result in a lower power level. In this
case, the voltage level is too low. However, if we introduce a matching
transformer that makes the 8-� resistive load “look like” 100 � as
shown in Fig. 18.94(b), establishing maximum power conditions, the
current to the load will drop to half of the previous amount because cur-
rent splits through equal resistors. But the voltage across the load will
increase to

VL � ILRL � (100 mA ( p-p))(100 �) � 10 V ( p-p)

and the power level to

Pspeaker ��
(VL( p-p)

8

)(IL( p-p))
���

(10 V)(1

8

00 mA)
�� 125 mW

which is 3.6 times the gain without the matching transformer.
For the 100-� load, the dc conditions are unaffected due to the iso-

lation of the capacitor CC, and the voltage at the collector is 12.94 V as
shown in Fig. 18.95(a). For the ac response with a 100-� load, the out-
put voltage as determined above will be 10 V peak-to-peak (5 V peak)
as shown in Fig. 18.95(b). Note the out-of-phase relationship with the
input due to the opposite polarity of VL. The full response at the collec-
tor terminal of the transistor can then be drawn by superimposing the ac
response on the dc response as shown in Fig. 18.95(c) (another appli-
cation of the superposition theorem). In other words, the dc level sim-
ply shifts the ac waveform up or down and does not disturb its shape.
The peak-to-peak value remains the same, and the phase relationship is
unaltered. The total waveform at the load will include only the ac
response of Fig. 18.95(b) since the dc component has been blocked out
by the capacitor.

(a)

0 2TT t

12.94

VC (volts) dc

(c)

0 2TT t

vc (volts) ac + dc

12.94

17.94

7.94

(b)

0 2TT t

5

vc (volts) ac

–5

FIG. 18.95

Collector voltage for the network of Fig. 18.91: (a) dc; (b) ac; (c) dc and ac.

The voltage at the source will appear as shown in Fig. 18.96(a),
while the voltage at the base of the transistor will appear as shown in
Fig. 18.96(b) because of the presence of the dc component.

A number of important concepts were presented in the above exam-
ple, with some probably leaving a question or two because of your lack
of experience with transistors. However, if nothing else is evident from
the above example, it should be the power of the superposition theorem
to permit an isolation of the dc and ac responses and the ability to com-
bine both if the total response is desired.
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(a)

0 T t

vb (volts)

0.2

0 –T3
2

1.2

0.7

0 TT/2 t

vs (volts)

0.5

0

–0.5

–T3
2

(b)

T/2

FIG. 18.96

Applied signal: (a) at the source; (b) at the base of the transistor.

18.8 COMPUTER ANALYSIS

PSpice

Superposition The analysis will begin with the network of Fig.
18.12 from Example 18.4 because it has both an ac and a dc source. You
will find that it is not necessary to specify an analysis for each, even
though one is essentially an ac sweep and the other is a bias point calcu-
lation. When AC Sweep is selected, the program will automatically per-
form the bias calculations and display the results in the output file.

The resulting schematic appears in Fig. 18.97 with VSIN and VDC
as the SOURCE voltages. The placement of all the R-L-C elements and

FIG. 18.97

Using PSpice to apply superposition to the network of Fig. 18.12.
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the dc source should be quite straightforward at this point. For the ac
source, be sure to double-click on the source symbol to obtain the
Property Editor dialog box. Then set AC to 4 V, FREQ to 1 kHz,
PHASE to 0°, VAMPL to 4 V, and VOFF to 0 V. In each case choose
Name and Value under the Display heading so that we have a review
of the parameters on the screen. Also, be sure to Apply before exiting
the dialog box. Obtain the VPRINT1 option from the SPECIAL
library, place it as shown, and then double-click to obtain its Property
Editor. The parameters AC, MAG, and PHASE must then recieve the
OK listing, and Name and Value must be applied to each under
Display before you choose Apply and OK. The network is then ready
for simulation.

After you have selected the New Simulation Profile icon, the New
Simulation dialog box will appear in which SuperpositionAC is
entered as the Name. Following the selection of Create, the Simulation
Settings dialog box will appear in which AC Sweep/Noise is selected.
The Start and End Frequencies are both set at 1 kHz, and 1 is entered
for the Points/Decade request. Click OK, and then select the Run
PSpice key; the SCHEMATIC1 screen will result with an axis extend-
ing from 0.5 kHz to 1.5 kHz. Through the sequence Trace-Add Trace-
V(R3:1)-OK, the plot point appearing in the bottom of Fig. 18.98 will
result. Its value is slightly above the 2-V level and could be read as
2.05 V which compares very nicely with the hand-calculated solution of
2.06 V. The phase angle can be obtained from Plot-Add Plot to Window-
Trace-Add Trace-P(V(R3:1)) to obtain a phase angle close to �33°.
Additional accuracy can be added to the phase plot through the sequence
Plot-Axis Settings-Y Axis-User Defined �40d to �30d-OK, resulting
in the �32.5° reading of Fig. 18.98— again, very close to the hand cal-

FIG. 18.98

The output results from the simulation of the network of Fig. 18.97.
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culation of �32.74° of Example 18.4. Now this solution is fine for the
ac signal, but it tells us nothing about the dc component.

By exiting the SCHEMATIC1 screen, we obtain the Orcad Cap-
ture window on which PSpice can be selected followed by View Out-
put File. The result is the printout of Fig. 18.99 which has both the dc
and the ac solutions. The SMALL SIGNAL BIAS SOLUTION in-
cludes the nodes of the network and their dc levels. The node numbers
are defined under the netlist starting on line 30. In particular, note the
dc level of 3.6 V at node N00676 which is at the top of resistor R3 in
Fig. 18.97. Also note that the dc level of both ends of the inductor is the
same value because of the substitution of a short-circuit equivalent for
the inductor for dc analysis. The ac solution appears under the AC
ANALYSIS heading as 2.06 V at �32.66°, which again is a great ver-
ification of the results of Example 18.4.

Th

FIG. 18.99

The output file for the dc (SMALL SIGNAL BIAS SOLUTION) and 
AC ANALYSIS for the network of Fig. 18.97.
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Finally, if a plot of the voltage across resistor R3 is desired, we must
return to the New Simulation Profile and enter a new Name such as
SuperpositionAC1 followed by Create fill in the Simulation Profile
dialog box. This time, however, we will choose the Time
Domain(Transient) option so that we can obtain a plot against time.
The fact that the source has a defined frequency of 1 kHz will tell the
program which frequency to apply. The Run to time will be 5 ms,
resulting in a five-cycle display of the 1-kHz signal. The Start saving
data after will remain at 0 s, and the Maximum step size will be
5 ms/1000 � 5 ms. Click OK, and select the Run PSpice icon; the
SCHEMATIC1 screen will result again. This time Trace-Add Trace-
V(R3:1)-OK will result in the plot of Fig. 18.100 which clearly shows
a dc level of 3.6 V. Setting a cursor at t � 0 s (A1) will result in 3.6 V
in the Probe Cursor display box. Placing the other cursor at the peak
value at 2.34 ms (A2) will result in a peak value of about 5.66 V. The
difference between the peak and the dc level provides the peak value of
the ac signal and is listed as 2.06 V in the same Probe Cursor display
box. A variety of options have now been introduced to find a particular
voltage or current in a network with both dc and ac sources. It is cer-
tainly satisfying that they all verify our theoretical solution.

Thévenin’s Theorem The next application will parallel the methods
employed to determine the Thévenin equivalent circuit for dc circuits.
The network of Fig. 18.28 will appear as shown in Fig. 18.101 when
the open-circuit Thévenin voltage is to be determined. The open circuit
is simulated by using a resistor of 1 T (1 million M�). The resistor is
necessary to establish a connection between the right side of inductor
L2 and ground—nodes cannot be left floating for Orcad simulations.

Th

FIG. 18.100

Using PSpice to display the voltage across R3 for the network of Fig. 18.97.
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FIG. 18.101

Using PSpice to determine the open-circuit Thévenin voltage.

Since the magnitude and the angle of the voltage are required,
VPRINT1 is introduced as shown in Fig 18.101. The simulation was an
AC Sweep simulation at 1 kHz, and when the Orcad Capture window
was obtained, the results appearing in Fig. 18.102 were taken from the
listing resulting from the PSpice-View Output File. The magnitude of
the Thévenin voltage is 5.187 V to compare with the 5.08 V of Exam-
ple 18.8, while the phase angle is �77.13° to compare with the
�77.09° of the same example—excellent results.

FIG. 18.102

The output file for the open-circuit Thévenin voltage for the network 
of Fig. 18.101.
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FIG. 18.103

Using PSpice to determine the short-circuit current.

Next, the short-circuit current will be determined using IPRINT as
shown in Fig. 18.103, to permit a determination of the Thévenin imped-
ance. The resistance Rcoil of 1 m� had to be introduced because induc-
tors cannot be treated as ideal elements when using PSpice; they must
all show some series internal resistance. Note that the short-circuit
current will pass directly through the printer symbol for IPRINT. Inci-
dentally, there is no need to exit the SCHEMATIC1 developed above
to determine the Thévenin voltage. Simply delete VPRINT and R3,
and insert IPRINT. Then run a new simulation to obtain the results of
Fig. 18.104. The magnitude of the short-circuit current is 0.936 A at an
angle of �108°. The Thévenin impedance is then defined by

ZTh � � � 5.54 � �30.87°

which is an excellent match with 5.49 �

�32.36° obtained in Example 18.8.

5.187 V ��77.13°
��
0.936 A ��108.0°

ETh�
Isc

VCVS The last application of this section will be to verify the results
of Example 18.12 and to gain some practice using controlled (depen-
dent) sources. The network of Fig. 18.50, with its voltage-controlled
voltage source (VCVS), will have the schematic appearance of Fig.
18.105. The VCVS appears as E in the ANALOG library, with the volt-
age E1 as the controlling voltage and E as the controlled voltage. In the
Property Editor dialog box, the GAIN must be changed to 20 while
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the rest of the columns can be left as is. After Display-Name and
Value, Apply can be selected and the dialog box exited to result in
GAIN � 20 near the controlled source. Take particular note of the sec-
ond ground inserted near E to avoid a long wire to ground that might
overlap other elements. For this exercise the current source ISRC will
be used because it has an arrow in its symbol, and frequency is not

Th

FIG. 18.104

The output file for the short-circuit current for the network of Fig. 18.103.

FIG. 18.105

Using PSpice to determine the open-circuit Thévenin voltage for the 
network of Fig. 18.50.
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important for this analysis since there are only resistive elements pre-
sent. In the Property Editor dialog box, the AC level is set to 5 mA,
and the DC level to 0 A; both were displayed using Display-Name and
value. VPRINT1 is set up as in past exercises. The resistor Roc (open
circuit) was given a very large value so that it would appear as an open
circuit to the rest of the network. VPRINT1 will provide the open cir-
cuit Thévenin voltage between the points of interest. Running the sim-
ulation in the AC Sweep mode at 1 kHz will result in the output file
appearing in Fig. 18.106, revealing that the Thévenin voltage is 210 V
�0°. Substituting the numerical values of this example into the equa-
tion obtained in Example 18.12 confirms the result:

ETh � (1 � m)IR1 � (1 � 20) (5 mA �0°)(2 k�)

� 210 V�0°

Th

FIG. 18.106

The output file for the open-circuit Thévenin voltage for the network 
of Fig. 18.105.

Next, the short-circuit current must be determined using the IPRINT
option. Note in Fig. 18.107 that the only difference between this net-
work and that of Fig. 18.106 is the replacement of Roc with IPRINT
and the removal of VPRINT1. There is therefore no need to completely
“redraw” the network. Just make the changes and run a new simulation.
The result of the new simulation as shown in Fig. 18.108 is a current of
5 mA at an angle of 0°.

The ratio of the two measured quantities will result in the Thévenin
impedance:

ZTh � � � � 42 k�

which also matches the longhand solution of Example 18.12:

ZTh � (1 � m)R1 � (1 � 20)2 k� � (21)2 k� � 42 k�

The analysis of the full transistor equivalent network of Fig. 18.56
with two controlled sources can be found in the PSpice section of
Chapter 26.

210 V �0°
��
5 mA �0°

ETh�
Isc

Eoc�
Isc



COMPUTER ANALYSIS  837Th

FIG. 18.108

The output file for the short-circuit current for the network of Fig. 18.107.

FIG. 18.107

Using PSpice to determine the short-circuit current for the network 
of Fig. 18.50.
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PROBLEMS

SECTION 18.2 Superposition Theorem

1. Using superposition, determine the current through the
inductance XL for each network of Fig. 18.109.

R 3 �

+
E1  =  30 V ∠ 3 0°

–

IL
XC 6 �

+
E2  =  60 V ∠ 1 0°

–

XL 8 �

(a)

I  =  0.3 A ∠ 6 0°

IL
XC 5 �

+
E  =  10 V ∠ 0°

–

XL 8 �

(b)

FIG. 18.109

Problem 1.

*2. Using superposition, determine the current IL for each
network of Fig. 18.110.

R 1 �

+
E1  =  20 V ∠ 0°

–

IL

+
E2  =  120 V ∠ 0°

–

XL 3 �

(a)

IL

XC2
7 �

I  =  0.5 A ∠ 6 0°

R

4 �

+
E  =  10 V ∠ 9 0°

–

XL

3 �

(b)

I  =  0.6 A ∠ 12 0°

XC1

6 �

FIG. 18.110

Problem 2.

*3. Using superposition, find the sinusoidal expression for
the current i for the network of Fig. 18.111.

4. Using superposition, find the sinusoidal expression for
the voltage vC for the network of Fig. 18.112.

FIG. 18.111

Problems 3, 15, 30, and 42.

R1 6 �

4 �

XL

2 �XCE2  =  4 V

+

–

+

–
E1  =  10 V ∠ 0°

R2 8 �

i

R2

3 �

1 �XC

+

–

 4 A ∠ 0°I vC

R1

6 �

12 V

FIG. 18.112

Problems 4, 16, 31, and 43.
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R 20 k�

+–
 E  =  10 V ∠ 0°

10 k�XL

IL

hI

 I  =  2 mA ∠ 0°

FIG. 18.114

Problems 6 and 20.

7. Using superposition, for the network of Fig. 18.115,
determine the voltage VL (m � 20).

FIG. 18.115

Problems 7, 21, and 35.

R2 4 k� V  =  2 V ∠ 0°  I  =  2 mA ∠ 0°mV
–

+–

+

R1

5 k�

XC

1 k�

–

+

VL

*5. Using superposition, find the current I for the network of
Fig. 18.113.

FIG. 18.113

Problems 5, 17, 32, and 44.

R1 10 k�

5 k�XC

+–

 I  =  5 mA ∠ 0°
R2 5 k�

 E  =  20 V ∠ 0°

5 k�XL

I

6. Using superposition, determine the current IL (h � 100)
for the network of Fig. 18.114.
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*8. Using superposition, determine the current IL for the net-
work of Fig. 18.116 (m � 20; h � 100).

 V  =  10 V ∠ 0°

mV
– +

–

+

R1 20 k�

R2

5 k�

5 k�XL

IL

 I  =  1 mA ∠ 0°

hI

FIG. 18.116

Problems 8, 22, and 36.

*9. Determine VL for the network of Fig. 18.117 (h � 50).

RL 2 k�

+

–

 E  =  20 V ∠ 53° VLhI

+

–

I

R1  =  2 k�

FIG. 18.117

Problems 9 and 23.

R2 5 k�

+ –

 I1  =  1 mA ∠ 0°

I

20V

R1 2 k�  I2  =  2 mA ∠ 0°
+

–
V

FIG. 18.118

Problems 10, 24, and 38.

*10. Calculate the current I for the network of Fig. 18.118.
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*13. Find the Thévenin equivalent circuit for the portions of
the networks of Fig. 18.121 external to the elements
between points a and b.

 I  =  0.1 A ∠ 0°

XL

20 �R1

20 �

XC 32 �

a

b

(a)

+

–

 E  =  50 V ∠ 0°

XC2

2 �

R1

6 �

XL

4 �

a

b

(b)

R2  =  68 �

XC1

8 �
R2

10 �

FIG. 18.121

Problems 13 and 27.

I

R2 2 �

+

R1 10 �Vx

–

10 V∠ 0°

–

E1

+

–

4Vx

+
5 A ∠ 0°

–

Vs

+

FIG. 18.119

Problem 11.

11. Find the voltage Vs for the network of Fig. 18.119.

+

–

 E  =  100 V ∠ 0° XL

3 �

R

4 � XC 2 �

a

b

(a)

+

–

 E  =  20 V ∠ 0°

XL

2 k�

R

6 k�

XC 3 k�

a

b

(b)

RL

FIG. 18.120

Problems 12 and 26.

SECTION 18.3 Thévenin’s Theorem

12. Find the Thévenin equivalent circuit for the portions of
the networks of Fig. 18.120 external to the elements
between points a and b.
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*15. a. Find the Thévenin equivalent circuit for the network
external to the resistor R2 in Fig. 18.111.

b. Using the results of part (a), determine the current i of
the same figure.

16. a. Find the Thévenin equivalent circuit for the network
external to the capacitor of Fig. 18.112.

b. Using the results of part (a), determine the voltage VC

for the same figure.

*17. a. Find the Thévenin equivalent circuit for the network
external to the inductor of Fig. 18.113.

b. Using the results of part (a), determine the current I of
the same figure.

18. Determine the Thévenin equivalent circuit for the net-
work external to the 5-k� inductive reactance of Fig.
18.123 (in terms of V).

19. Determine the Thévenin equivalent circuit for the net-
work external to the 4-k� inductive reactance of Fig.
18.124 (in terms of I).

–

+

R1 10 k�

R2 10 k� XL 5 k�

XC

1 k�

Th

20V

FIG. 18.123

Problems 18 and 33.

*14. Find the Thévenin equivalent circuit for the portions of
the networks of Fig. 18.122 external to the elements
between points a and b.

(a)

–

+

E1  =  120 V ∠  0°

R

10 �

XC

8 �

XL 8 �
I  =
0.5 A ∠  60° ZL

a

b

R2

10 �

XC

10 �
a

b

I  =  0.6 A ∠  90° E  =  20 V ∠  40°
–

+

R1 9 �
I2  =
0.8 ∠  60°

(b)

FIG. 18.122

Problems 14 and 28.

R1 40 k� R2 5 k�

Th

XL 4 k�100I

XC

0.2 k�

FIG. 18.124

Problems 19 and 34.
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20. Find the Thévenin equivalent circuit for the network
external to the 10-k� inductive reactance of Fig. 18.114.

21. Determine the Thévenin equivalent circuit for the net-
work external to the 4-k� resistor of Fig. 18.115.

*22. Find the Thévenin equivalent circuit for the network
external to the 5-k� inductive reactance of Fig. 18.116.

*23. Determine the Thévenin equivalent circuit for the net-
work external to the 2-k� resistor of Fig. 18.117.

*24. Find the Thévenin equivalent circuit for the network
external to the resistor R1 of Fig. 18.118.

*25. Find the Thévenin equivalent circuit for the network to
the left of terminals a-a� of Fig. 18.125.

SECTION 18.4 Norton’s Theorem

26. Find the Norton equivalent circuit for the network exter-
nal to the elements between a and b for the networks of
Fig. 18.120.

27. Find the Norton equivalent circuit for the network exter-
nal to the elements between a and b for the networks of
Fig. 18.121.

28. Find the Norton equivalent circuit for the network exter-
nal to the elements between a and b for the networks of
Fig. 18.122.

*29. Find the Norton equivalent circuit for the portions of the
networks of Fig. 18.126 external to the elements between
points a and b.

R1 2 k�

+

8 V∠ 0°
5Ix R3 3.3 k�

R2

1 k�

E
–

Thévenin
Ix

a

á

FIG. 18.125

Problem 25.

–

+
R2 9 �

R1

6 �

XC 12 �
b

a

XL

8 �

E I2  =  0.4 A ∠  20°

XL

4 �

–

+

E1  =  120 V ∠  30° R2 8 �

–

+

E2  =  108 V ∠  0°

R1  =  3 � XC 8 �

R3 68 �

R4 40 �

a

b

ZL20 V ∠  0°

(a) (b)

FIG. 18.126

Problem 29.

*30. a. Find the Norton equivalent circuit for the network
external to the resistor R2 in Fig. 18.111.

b. Using the results of part (a), determine the current I of
the same figure.

*31. a. Find the Norton equivalent circuit for the network
external to the capacitor of Fig. 18.112.

b. Using the results of part (a), determine the voltage VC

for the same figure.

*32. a. Find the Norton equivalent circuit for the network
external to the inductor of Fig. 18.113.

b. Using the results of part (a), determine the current I of
the same figure.

33. Determine the Norton equivalent circuit for the network
external to the 5-k� inductive reactance of Fig. 18.123.
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34. Determine the Norton equivalent circuit for the network
external to the 4-k� inductive reactance of Fig. 18.124.

35. Find the Norton equivalent circuit for the network exter-
nal to the 4-k� resistor of Fig. 18.115.

*36. Find the Norton equivalent circuit for the network exter-
nal to the 5-k� inductive reactance of Fig. 18.116.

*37. For the network of Fig. 18.127, find the Norton equiva-
lent circuit for the network external to the 2-k� resistor.

*38. Find the Norton equivalent circuit for the network exter-
nal to the I1 current source of Fig. 18.118.

SECTION 18.5 Maximum Power Transfer Theorem

39. Find the load impedance ZL for the networks of Fig.
18.128 for maximum power to the load, and find the
maximum power to the load.

R1 1 k�  V R2 3 k� R4 2 k�I  =  2 mA ∠  0°

R3

4 k�

– +

–

+

µ(    =  20)
µV

FIG. 18.127

Problem 37.

–

+

R1

3 �

XC 6 �

XL

4 �

E  =  120 V ∠  0° ZL

(a)

XL

4 �

I  =  2 A ∠  30°

ZL

(b)

R2 2 �R1 3 �

FIG. 18.128

Problem 39.
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*40. Find the load impedance ZL for the networks of Fig.
18.129 for maximum power to the load, and find the
maximum power to the load.

–

+

R

10 �

XC1
5 �

XL

4 �

E  =  60 V ∠  60°

(a)

XL1

4 �

ZL

(b)

R2 12 �R1 3 �

ZL

XC2
6 �

9 �

XC 8 �
E1  =  100 V ∠  0° E2  =  200 V ∠  90°

XL2

–

+

–

+

FIG. 18.129

Problem 40.

41. Find the load impedance RL for the network of Fig.
18.130 for maximum power to the load, and find the
maximum power to the load.

–

+

R1 1 k� R2 40 k� RL

I

50I

E  =  1 V ∠  0°

FIG. 18.130

Problem 41.

*42. a. Determine the load impedance to replace the resistor
R2 of Fig. 18.111 to ensure maximum power to the
load.

b. Using the results of part (a), determine the maximum
power to the load.

*43. a. Determine the load impedance to replace the capaci-
tor XC of Fig. 18.112 to ensure maximum power to the
load.

b. Using the results of part (a), determine the maximum
power to the load.

*44. a. Determine the load impedance to replace the inductor
XL of Fig. 18.113 to ensure maximum power to the
load.

b. Using the results of part (a), determine the maximum
power to the load.

45. a. For the network of Fig. 18.131, determine the value of
RL that will result in maximum power to the load.

b. Using the results of part (a), determine the maximum
power delivered.

–

+

R

2 k� LOAD

RL

XL 2 k�

XC

2 k�E  =  50 V ∠  0°

FIG. 18.131

Problem 45.
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*46. a. For the network of Fig. 18.132, determine the level of
capacitance that will ensure maximum power to the
load if the range of capacitance is limited to 1 nF to
5 nF.

b. Using the results of part (a), determine the value of RL

that will ensure maximum power to the load.
c. Using the results of parts (a) and (b), determine the

maximum power to the load.

–

+
RL

E  =  2 V ∠  0° R 1 k� C 3.98 nF

C (1  –  5 nF)

LOAD

31.8 mH

L

f  =  10 kHz

FIG. 18.132

Problem 46.

SECTION 18.6 Substitution, Reciprocity, and

Millman’s Theorems

47. For the network of Fig. 18.133, determine two equivalent
branches through the substitution theorem for the branch
a-b.

R1 4 k� R2 8 k�

a

b

I  =  4 mA ∠ 0°

FIG. 18.133

Problem 47.

–

+

R1

1 k�

R2

8 k�

R4

11 k�

R3

4 k�

R5

6 k�
E  =  20 V ∠  0°

I

R1

1 k�

R2

8 k�

R4

11 k�

R3

4 k�

R5  =  6 k�

E  =  20 V ∠  0°

I

(a) (b)

–

+

FIG. 18.134

Problem 48.

48. a. For the network of Fig. 18.134(a), find the current I.
b. Repeat part (a) for the network of Fig. 18.134(b).
c. Do the results of parts (a) and (b) compare?
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49. Using Millman’s theorem, determine the current through
the 4-k� capacitive reactance of Fig. 18.135.

–

+

XL 4 k�R1 2 k�
IC

4 k�

E1  =  100 V ∠  0° E2  =  50 V ∠  360°
XC

–

+

FIG. 18.135

Problem 49.

SECTION 18.8 Computer Analysis

PSpice or Electronics Workbench

50. Apply superposition to the network of Fig. 18.6. That is,
determine the current I due to each source, and then find
the resultant current.

*51. Determine the current IL for the network of Fig. 18.21
using schematics.

*52. Using schematics, determine V2 for the network of Fig.
18.56 if Vi � 1 V �0°, R1 � 0.5 k�, k1 � 3 � 10�4, 
k2 � 50, and R2 � 20 k�.

*53. Find the Norton equivalent circuit for the network of Fig.
18.75 using schematics.

*54. Using schematics, plot the power to the R-C load of Fig.
18.88 for values of RL from 1 � to 10 �.

Programming Language (C��, QBASIC, Pascal, etc.)

55. Given the network of Fig. 18.1, write a program to deter-
mine a general solution for the current I using superposi-
tion. That is, given the reactance of the same network ele-
ments, determine I for voltage sources of any magnitude
but the same angle.

56. Given the network of Fig. 18.23, write a program to
determine the Thévenin voltage and impedance for any
level of reactance for each element and any magnitude of
voltage for the voltage source. The angle of the voltage
source should remain at zero degrees.

57. Given the configuration of Fig. 18.136, demonstrate that
maximum power is delivered to the load when XC � XL

by tabulating the power to the load for XC varying from
0.1 k� to 2 k� in increments of 0.1 k�.

R2 2 k�

R1

2 k�

XC

ZL

1 k�

XL

E  =  10 V ∠  0°

+

–

FIG. 18.136

Problem 57.

GLOSSARY

Maximum power transfer theorem A theorem used to
determine the load impedance necessary to ensure maxi-
mum power to the load.

Millman’s theorem A method employing voltage-to-current
source conversions that will permit the determination of
unknown variables in a multiloop network.

Norton’s theorem A theorem that permits the reduction of
any two-terminal linear ac network to one having a single
current source and parallel impedance. The resulting config-
uration can then be employed to determine a particular cur-
rent or voltage in the original network or to examine the

effects of a specific portion of the network on a particular
variable.

Reciprocity theorem A theorem stating that for single-
source networks, the magnitude of the current in any branch
of a network, due to a single voltage source anywhere else
in the network, will equal the magnitude of the current
through the branch in which the source was originally
located if the source is placed in the branch in which the
current was originally measured.

Substitution theorem A theorem stating that if the voltage
across and current through any branch of an ac bilateral net-
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work are known, the branch can be replaced by any combi-
nation of elements that will maintain the same voltage
across and current through the chosen branch.

Superposition theorem A method of network analysis that
permits considering the effects of each source indepen-
dently. The resulting current and/or voltage is the phasor
sum of the currents and/or voltages developed by each
source independently.

Thévenin’s theorem A theorem that permits the reduction of
any two-terminal linear ac network to one having a single

voltage source and series impedance. The resulting configu-
ration can then be employed to determine a particular current
or voltage in the original network or to examine the effects of
a specific portion of the network on a particular variable.

Voltage-controlled voltage source (VCVS) A voltage
source whose parameters are controlled by a voltage else-
where in the system.



19

19.1 INTRODUCTION

The discussion of power in Chapter 14 included only the average power
delivered to an ac network. We will now examine the total power equa-
tion in a slightly different form and will introduce two additional types
of power: apparent and reactive.

For any system such as in Fig. 19.1, the power delivered to a load at
any instant is defined by the product of the applied voltage and the
resulting current; that is,

p �vi

In this case, since v and i are sinusoidal quantities, let us establish a
general case where

v � Vm sin(qt � v)

and i � Im sin qt

The chosen v and i include all possibilities because, if the load is purely
resistive, v � 0°. If the load is purely inductive or capacitive, v � 90°
or v � �90°, respectively. For a network that is primarily inductive, v
is positive (v leads i), and for a network that is primarily capacitive, v is
negative (i leads v).

P
q

s

Load
p v

+

–

i

FIG. 19.1

Defining the power delivered to a load.

Power (ac)
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Substituting the above equations for v and i into the power equation
will result in

p � Vm Im sin qt sin(qt � v)

If we now apply a number of trigonometric identities, the following
form for the power equation will result:

(19.1)

where V and I are the rms values. The conversion from peak values Vm

and Im to rms values resulted from the operations performed using the
trigonometric identities.

It would appear initially that nothing has been gained by putting the
equation in this form. However, the usefulness of the form of Eq. (19.1)
will be demonstrated in the following sections. The derivation of Eq.
(19.1) from the initial form will appear as an assignment at the end of
the chapter.

If Equation (19.1) is expanded to the form

there are two obvious points that can be made. First, the average power
still appears as an isolated term that is time independent. Second, both
terms that follow vary at a frequency twice that of the applied voltage
or current, with peak values having a very similar format.

In an effort to ensure completeness and order in presentation, each
basic element (R, L, and C) will be treated separately.

19.2 RESISTIVE CIRCUIT

For a purely resistive circuit (such as that in Fig. 19.2), v and i are in
phase, and v � 0°, as appearing in Fig. 19.3. Substituting v � 0° into
Eq. (19.1), we obtain

pR � VI cos(0°)(1 � cos 2qt) � VI sin(0°) sin 2qt

� VI(1 � cos 2qt) � 0

or (19.2)

where VI is the average or dc term and �VI cos 2qt is a negative cosine
wave with twice the frequency of either input quantity (v or i) and a
peak value of VI.

Plotting the waveform for pR (Fig. 19.3), we see that

T1 � period of input quantities

T2 � period of power curve pR

Note that in Fig. 19.3 the power curve passes through two cycles
about its average value of VI for each cycle of either v or i (T1 � 2T2

or f2 � 2f1). Consider also that since the peak and average values of the
power curve are the same, the curve is always above the horizontal axis.
This indicates that

the total power delivered to a resistor will be dissipated in the form of
heat.

pR � VI � VI cos 2qt

p  � VI cos v � VI cos v cos 2�t � VI sin v sin 2�t

PeakAverage 2x Peak 2x

p � VI cos v(1 � cos 2qt) � VI sin v(sin 2qt)

Pq
s

R

+ v –i

pR

FIG. 19.2

Determining the power delivered to a purely 
resistive load.
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The power returned to the source is represented by the portion of the
curve below the axis, which is zero in this case. The power dissipated by
the resistor at any instant of time t1 can be found by simply substituting
the time t1 into Eq. (19.2) to find p1, as indicated in Fig. 19.3. The aver-
age (real) power from Eq. (19.2), or Fig. 19.3, is VI; or, as a summary,

(watts, W) (19.3)

as derived in Chapter 14.
The energy dissipated by the resistor (WR) over one full cycle of the

applied voltage (Fig. 19.3) can be found using the following equation:

W � Pt

where P is the average value and t is the period of the applied voltage;
that is,

(joules, J) (19.4)

or, since T1 � 1/f1,

(joules, J) (19.5)

19.3 APPARENT POWER

From our analysis of dc networks (and resistive elements above), it
would seem apparent that the power delivered to the load of Fig. 19.4
is simply determined by the product of the applied voltage and current,
with no concern for the components of the load; that is, P � VI. How-
ever, we found in Chapter 14 that the power factor (cos v) of the load
will have a pronounced effect on the power dissipated, less pronounced
for more reactive loads. Although the product of the voltage and current
is not always the power delivered, it is a power rating of significant use-

WR � �
V
f1

I
�

WR � VIT1

P � VI � �
Vm

2

Im
� � I2R � �

V

R

2

�

Pq
s

Energy

dissipated

Energy

dissipated
(Average)

VI

VI

t

Power
delivered to
element by

source

Power
returned to
source by

element

T1

v

it10

p1

pR

T2

FIG. 19.3

Power versus time for a purely resistive load.

I

V

+

–

Z

FIG. 19.4

Defining the apparent power to a load.
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fulness in the description and analysis of sinusoidal ac networks and in
the maximum rating of a number of electrical components and systems.
It is called the apparent power and is represented symbolically by S.*

Since it is simply the product of voltage and current, its units are volt-
amperes, for which the abbreviation is VA. Its magnitude is determined
by

(volt-amperes, VA) (19.6)

or, since V � IZ and I �

then (VA) (19.7)

and (VA) (19.8)

The average power to the load of Fig. 19.4 is

P � VI cos v

However, S � VI

Therefore, (W) (19.9)

and the power factor of a system Fp is

(unitless) (19.10)

The power factor of a circuit, therefore, is the ratio of the average power
to the apparent power. For a purely resistive circuit, we have

P � VI � S

and Fp � cos v � �
P
S

� � 1

In general, power equipment is rated in volt-amperes (VA) or in kilo-
volt-amperes (kVA) and not in watts. By knowing the volt-ampere rat-
ing and the rated voltage of a device, we can readily determine the max-
imum current rating. For example, a device rated at 10 kVA at 200 V
has a maximum current rating of I � 10,000 VA/200 V � 50 A when
operated under rated conditions. The volt-ampere rating of a piece of
equipment is equal to the wattage rating only when the Fp is 1. It is
therefore a maximum power dissipation rating. This condition exists
only when the total impedance of a system Z �v is such that v � 0°.

The exact current demand of a device, when used under normal
operating conditions, could be determined if the wattage rating and
power factor were given instead of the volt-ampere rating. However, the
power factor is sometimes not available, or it may vary with the load.

Fp � cos v � �
P
S

�

P � S cos v

S � �
V
Z

2

�

S � I2Z

V
�
Z

S � VI

Pq
s

*Prior to 1968, the symbol for apparent power was the more descriptive Pa.
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The reason for rating some electrical equipment in kilovolt-amperes
rather than in kilowatts can be described using the configuration of Fig.
19.5. The load has an apparent power rating of 10 kVA and a current
rating of 50 A at the applied voltage, 200 V. As indicated, the current
demand of 70 A is above the rated value and could damage the load ele-
ment, yet the reading on the wattmeter is relatively low since the load
is highly reactive. In other words, the wattmeter reading is an indication
of the watts dissipated and may not reflect the magnitude of the current
drawn. Theoretically, if the load were purely reactive, the wattmeter
reading would be zero even if the load was being damaged by a high
current level.

Pq
s

[10 kVA = (200 V)(50 A)]

XL

R

(XL >> R )

Load

I = 70 A > 50 A

P = VI cos θθ

0 10

I

V

±

S = VI

±

200 V

+

–

Wattmeter
(kW)

19.4 INDUCTIVE CIRCUIT AND
REACTIVE POWER

For a purely inductive circuit (such as that in Fig. 19.6), v leads i by
90°, as shown in Fig. 19.7. Therefore, in Eq. (19.1), v � 90°. Substitut-
ing v � 90° into Eq. (19.1) yields

pL � VI cos(90°)(1 � cos 2qt) � VI sin(90°)(sin 2qt)

� 0 � VI sin 2qt

FIG. 19.5

Demonstrating the reason for rating a load in kVA rather than kW.

+ v –i

pL

FIG. 19.6

Defining the power level for a purely inductive 
load.

Energy
absorbed VI

�t

Power
delivered to
element by

source

Power
returned to
source by

element
T1

pL

T2

Energy
absorbed

Energy
returned

Energy
returned–VI

iv

θ = 90°
�

θ

FIG. 19.7

The power curve for a purely inductive load.
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or (19.11)

where VI sin 2qt is a sine wave with twice the frequency of either input
quantity (v or i) and a peak value of VI. Note the absence of an average
or constant term in the equation.

Plotting the waveform for pL (Fig. 19.7), we obtain

T1 � period of either input quantity

T2 � period of pL curve

Note that over one full cycle of pL (T2), the area above the horizontal
axis in Fig. 19.7 is exactly equal to that below the axis. This indicates
that over a full cycle of pL, the power delivered by the source to the
inductor is exactly equal to that returned to the source by the inductor.

The net flow of power to the pure (ideal) inductor is zero over a full
cycle, and no energy is lost in the transaction.

The power absorbed or returned by the inductor at any instant of time
t1 can be found simply by substituting t1 into Eq. (19.11). The peak
value of the curve VI is defined as the reactive power associated with
a pure inductor.

In general, the reactive power associated with any circuit is defined
to be VI sin v, a factor appearing in the second term of Eq. (19.1). Note
that it is the peak value of that term of the total power equation that pro-
duces no net transfer of energy. The symbol for reactive power is Q, and
its unit of measure is the volt-ampere reactive (VAR).* The Q is derived
from the quadrature (90°) relationship between the various powers, to
be discussed in detail in a later section. Therefore,

(volt-ampere reactive, VAR) (19.12)

where v is the phase angle between V and I.
For the inductor,

(VAR) (19.13)

or, since V � IXL or I � V/XL,

(VAR) (19.14)

or (VAR) (19.15)

The apparent power associated with an inductor is S � VI, and the
average power is P � 0, as noted in Fig. 19.7. The power factor is
therefore

Fp � cos v � �
P
S

� � �
V
0
I
� � 0

QL � �
X
V

L

2

�

QL � I2XL

QL � VI

Q � VI sin v

pL � VI sin 2qt

Pq
s

*Prior to 1968, the symbol for reactive power was the more descriptive Pq.
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If the average power is zero, and the energy supplied is returned
within one cycle, why is reactive power of any significance? The reason
is not obvious but can be explained using the curve of Fig. 19.7. At
every instant of time along the power curve that the curve is above the
axis (positive), energy must be supplied to the inductor, even though it
will be returned during the negative portion of the cycle. This power
requirement during the positive portion of the cycle requires that the
generating plant provide this energy during that interval. Therefore, the
effect of reactive elements such as the inductor can be to raise the
power requirement of the generating plant, even though the reactive
power is not dissipated but simply “borrowed.” The increased power
demand during these intervals is a cost factor that must be passed on to
the industrial consumer. In fact, most larger users of electrical energy
pay for the apparent power demand rather than the watts dissipated
since the volt-amperes used are sensitive to the reactive power require-
ment (see Section 19.6). In other words, the closer the power factor of
an industrial outfit is to 1, the more efficient is the plant’s operation
since it is limiting its use of “borrowed” power.

The energy stored by the inductor during the positive portion of the
cycle (Fig. 19.7) is equal to that returned during the negative portion
and can be determined using the following equation:

W � Pt

where P is the average value for the interval and t is the associated
interval of time.

Recall from Chapter 14 that the average value of the positive portion
of a sinusoid equals 2(peak value/p) and t � T2 /2. Therefore,

WL � � � � � �

and (J) (19.16)

or, since T2 � 1/f2, where f2 is the frequency of the pL curve, we have

(J) (19.17)

Since the frequency f2 of the power curve is twice that of the input
quantity, if we substitute the frequency f1 of the input voltage or current,
Equation (19.17) becomes

WL � �
p(

V
2
I
f1)
� �

However, V � IXL � Iq1L

so that WL � �
(Iq

q

1

1

L)I
�

and (J) (19.18)

providing an equation for the energy stored or released by the inductor
in one half-cycle of the applied voltage in terms of the inductance and
rms value of the current squared.

WL � LI2

VI
�
q1

WL � �
p

V
f
I

2
�

WL � �
VI

p

T2
�

T2
�
2

2VI
�
p

Pq
s
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19.5 CAPACITIVE CIRCUIT

For a purely capacitive circuit (such as that in Fig. 19.8), i leads v by
90°, as shown in Fig. 19.9. Therefore, in Eq. (19.1), v � �90°. Substi-
tuting v � �90° into Eq. (19.1), we obtain

pC � VI cos(�90°)(1 � cos 2qt) � VI sin(�90°)(sin 2qt)

� 0 � VI sin 2qt

or (19.19)

where �VI sin 2qt is a negative sine wave with twice the frequency of
either input (v or i) and a peak value of VI. Again, note the absence of
an average or constant term.

pC � �VI sin 2qt

Pq
s

+ v –
i

pC C

FIG. 19.8

Defining the power level for a purely 
capacitive load.

Energy
absorbedVI

�t

Power
delivered to
element by

source

Power
returned to
source by

element

T1

pC

T2

Energy
absorbed

Energy
returned

Energy
returned–VI

i v

θ = –90°

�

θ

Plotting the waveform for pC (Fig. 19.9) gives us

T1 � period of either input quantity

T2 � period of pC curve

Note that the same situation exists here for the pC curve as existed for the
pL curve. The power delivered by the source to the capacitor is exactly
equal to that returned to the source by the capacitor over one full cycle.

The net flow of power to the pure (ideal) capacitor is zero over a full
cycle, 

and no energy is lost in the transaction. The power absorbed or returned
by the capacitor at any instant of time t1 can be found by substituting t1
into Eq. (19.19).

The reactive power associated with the capacitor is equal to the peak
value of the pC curve, as follows:

(VAR) (19.20)

But, since V � IXC and I � V/XC, the reactive power to the capacitor
can also be written

(VAR) (19.21)QC � I2XC

QC � VI

FIG. 19.9

The power curve for a purely capacitive load.
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and QC � �
X

V

C

2

� (VAR) (19.22)

The apparent power associated with the capacitor is

(VA) (19.23)

and the average power is P � 0, as noted from Eq. (19.19) or Fig. 19.9.
The power factor is, therefore,

Fp � cos v � �
P
S

� � �
V
0
I
� � 0

The energy stored by the capacitor during the positive portion of the
cycle (Fig. 19.9) is equal to that returned during the negative portion
and can be determined using the equation W � Pt.

Proceeding in a manner similar to that used for the inductor, we can
show that

(J) (19.24)

or, since T2 � 1/f2, where f2 is the frequency of the pC curve,

(J) (19.25)

In terms of the frequency f1 of the input quantities v and i,

WC � � �

and (J) (19.26)

providing an equation for the energy stored or released by the capacitor
in one half-cycle of the applied voltage in terms of the capacitance and
rms value of the voltage squared.

19.6 THE POWER TRIANGLE

The three quantities average power, apparent power, and reactive
power can be related in the vector domain by

(19.27)

with

P � P �0° QL � QL �90° QC � QC ��90°

For an inductive load, the phasor power S, as it is often called, is
defined by

S � P � j QL

S � P � Q

WC � CV2

V(Vq1C )
��

q1

VI
�
q1

VI
�
p(2f1)

WC � �
p

V
f
I

2
�

WC � �
VI

p

T2
�

S � VI

Pq
s
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as shown in Fig. 19.10.
The 90° shift in QL from P is the source of another term for reactive

power: quadrature power.
For a capacitive load, the phasor power S is defined by

S � P � j QC

as shown in Fig. 19.11.
If a network has both capacitive and inductive elements, the reactive

component of the power triangle will be determined by the difference
between the reactive power delivered to each. If QL > QC, the resultant
power triangle will be similar to Fig. 19.10. If QC > QL, the resultant
power triangle will be similar to Fig. 19.11.

That the total reactive power is the difference between the reactive
powers of the inductive and capacitive elements can be demonstrated by
considering Eqs. (19.11) and (19.19). Using these equations, the reac-
tive power delivered to each reactive element has been plotted for a
series L-C circuit on the same set of axes in Fig. 19.12. The reactive
elements were chosen such that XL > XC. Note that the power curve for
each is exactly 180° out of phase. The curve for the resultant reactive
power is therefore determined by the algebraic resultant of the two at
each instant of time. Since the reactive power is defined as the peak
value, the reactive component of the power triangle is as indicated in
the figure: I2(XL � XC).

Pq
s

S

v

P

QL

FIG. 19.10

Power diagram for inductive loads.

S

P

QC

v

FIG. 19.11

Power diagram for capacitive loads.

An additional verification can be derived by first considering the
impedance diagram of a series R-L-C circuit (Fig. 19.13). If we multi-
ply each radius vector by the current squared (I2), we obtain the results
shown in Fig. 19.14, which is the power triangle for a predominantly
inductive circuit.

Since the reactive power and average power are always angled 90° to
each other, the three powers are related by the Pythagorean theorem;
that is,

(19.28)S2 � P2 � Q2

qtVC I

pC   =  –VC I sin 2qt QT

VL I

PL  =  VL I sin 2qt

QT  =  QL  –  QC  =  VL I  –  VC I  =  I(VL  –  VC)  =  I(IXL  –  IXC)

=  I 2XL  –  I 2XC  =  I 2 (XL  –  XC)

FIG. 19.12

Demonstrating why the net reactive power is the difference between that
delivered to inductive and capacitive elements.

+

XL

XC

XL  –  XC

Z

R

j

FIG. 19.13

Impedance diagram for a series R-L-C circuit.



4 �XL

+

–

I

V  =  10 V    0°

R

3 �

FIG. 19.15

Demonstrating the validity of Eq. (19.29).

THE POWER TRIANGLE  859

Therefore, the third power can always be found if the other two are
known.

It is particularly interesting that the equation

(19.29)

will provide the vector form of the apparent power of a system. Here,
V is the voltage across the system, and I* is the complex conjugate of
the current.

Consider, for example, the simple R-L circuit of Fig. 19.15, where

I � � � � 2 A ��53.13°

The real power (the term real being derived from the positive real axis
of the complex plane) is

P � I2R � (2 A)2(3 �) � 12 W

and the reactive power is

QL � I2XL � (2 A)2(4 �) � 16 VAR (L)

with S � P � j QL � 12 W � j 16 VAR (L) � 20 VA �53.13°

as shown in Fig. 19.16. Applying Eq. (19.29) yields

S � VI* � (10 V �0°)(2 A ��53.13°) � 20 VA �53.13°

as obtained above.
The angle v associated with S and appearing in Figs. 19.10, 19.11,

and 19.16 is the power-factor angle of the network. Since

P � VI cos v

or P � S cos v

then (19.30)Fp � cos v � �
P

S
�

10 V �0°
��
5 � �53.13°

10 V �0°
��
3 � � j 4 �

V
�
ZT

S � VI*

Pq
s

FIG. 19.14

The result of multiplying each vector of Fig. 19.13 by I2 for a series R-L-C
circuit.

Q (resultant)  =  QL  –  QC  =  I2(XL  –  XC)

j

I2XC  =  QC

I2XL  =  QL

S = I
2 Z

PR  =  I2R

S  =  20 VA

P  =  12 W

QL  =  16 VAR

v  =  53.13°

FIG. 19.16

The power triangle for the circuit of 
Fig. 19.15.
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19.7 THE TOTAL P, Q, AND S

The total number of watts, volt-amperes reactive, and volt-amperes, and
the power factor of any system can be found using the following pro-
cedure:

1. Find the real power and reactive power for each branch of the
circuit.

2. The total real power of the system (PT) is then the sum of the
average power delivered to each branch.

3. The total reactive power (QT) is the difference between the reactive
power of the inductive loads and that of the capacitive loads.

4. The total apparent power is ST � �P�2
T��� Q�2

T�.
5. The total power factor is PT/ST.

There are two important points in the above tabulation. First, the
total apparent power must be determined from the total average and
reactive powers and cannot be determined from the apparent powers of
each branch. Second, and more important, it is not necessary to con-
sider the series-parallel arrangement of branches. In other words, the
total real, reactive, or apparent power is independent of whether the
loads are in series, parallel, or series-parallel. The following examples
will demonstrate the relative ease with which all of the quantities of
interest can be found.

EXAMPLE 19.1 Find the total number of watts, volt-amperes reactive,
and volt-amperes, and the power factor Fp of the network in Fig. 19.17.
Draw the power triangle and find the current in phasor form.

Pq
s

Solution: Construct a table such as shown in Table 19.1.

1500 VAR (C)
300 W

700 VAR (L)
200 W

0 VAR
100 W

E  =  100 V ∠ 0°

I

–

+

Load   2 Load   3

Load   1

FIG. 19.17

Example 19.1.

TABLE 19.1

Load W VAR VA

1 100 0 100
2 200 700 (L) �(2�0�0�)2� �� (�7�0�0�)2� � 728.0

3 300 1500 (C) �(3�0�0�)2� �� (�1�5�0�0�)2� � 1529.71

PT � 600 QT � 800 (C) ST � �(6�0�0�)2� �� (�8�0�0�)2� � 1000
Total power dissipated Resultant reactive power of network (Note that ST � sum of

each branch:
1000 � 100 � 728 � 1529.71)
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Thus,

Fp � � � 0.6 leading (C)

The power triangle is shown in Fig. 19.18.
Since ST � VI � 1000 VA, I � 1000 VA/100 V � 10 A; and since v

of cos v � Fp is the angle between the input voltage and current:

I � 10 A ��53.13°

The plus sign is associated with the phase angle since the circuit is pre-
dominantly capacitive.

EXAMPLE 19.2

a. Find the total number of watts, volt-amperes reactive, and volt-
amperes, and the power factor Fp for the network of Fig. 19.19.

600 W
�
1000 VA

PT�
ST

Pq
s

ST   =  1000 VA

PT  =  600 W

QT  =  800 VAR (C)

53.13°  =  cos –1 0.6

FIG. 19.18

Power triangle for Example 19.1.

b. Sketch the power triangle.
c. Find the energy dissipated by the resistor over one full cycle of the

input voltage if the frequency of the input quantities is 60 Hz.
d. Find the energy stored in, or returned by, the capacitor or inductor

over one half-cycle of the power curve for each if the frequency of
the input quantities is 60 Hz.

Solutions:

a. I � � �
100 V �0°

��
10 � ��53.13°

100 V �0°
���
6 � � j 7 � � j 15 �

E
�
ZT

R

6 �

E  =  100 V ∠ 0°

–

+

XL

I 7 �

XC 15 �

FIG. 19.19

Example 19.2.

� 10 A �53.13°
VR � (10 A �53.13°)(6 � �0°) � 60 V �53.13°
VL � (10 A �53.13°)(7 � �90°) � 70 V �143.13°
VC � (10 A �53.13°)(15 � ��90°) � 150 V ��36.87°

PT � EI cos v � (100 V)(10 A) cos 53.13° � 600 W
� I2R � (10 A)2(6 �) � 600 W

� � � 600 W

ST � EI � (100 V)(10 A) � 1000 VA
� I2ZT � (10 A)2(10 �) � 1000 VA

� � � 1000 VA

QT � EI sin v � (100 V)(10 A) sin 53.13° � 800 VAR
� QC � QL

� I2(XC � XL) � (10 A)2(15 � � 7 �) � 800 VAR

(100 V)2

�
10 �

E2

�
ZT

(60 V)2

�
6

V2
R

�
R
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QT � � � �

� 1500 VAR � 700 VAR � 800 VAR

Fp � � � 0.6 leading (C)

b. The power triangle is as shown in Fig. 19.20.

c. WR � � � 10 J

d. WL � � � � 1.86 J

WC � � � � 3.98 J

EXAMPLE 19.3 For the system of Fig. 19.21,

1500 J
�

377

(150 V)(10 A)
��

377 rad/s

VC I
�
q1

700 J
�
377

(70 V)(10 A)
��
(2p)(60 Hz)

VLI
�
q1

(60 V)(10 A)
��

60 Hz

VRI
�
f1

600 W
�
1000 VA

PT
�
ST

(70 V)2

�
7 �

(150 V)2

�
15 �

V2
L

�
XL

V2
C

�
XC

Pq
s

ST   =  1000 VA

PT   =  600 W

QT  =  800 VAR (C)

53.13°

FIG. 19.20

Power triangle for Example 19.2.

R 9 �
E  =  208 V ∠ 0°

–

+

XC 12 �

6.4 kW 5 Hp

Heating
elements

12
60-W
bulbs

Motor h  =  82%

Fp  =  0.72
lagging

Capacitive load

a. Find the average power, apparent power, reactive power, and Fp for
each branch.

b. Find the total number of watts, volt-amperes reactive, and volt-
amperes, and the power factor of the system. Sketch the power tri-
angle.

c. Find the source current I.

Solutions:

a. Bulbs:
Total dissipation of applied power

P1 � 12(60 W) � 720 W

Q1 � 0 VAR

S1 � P1 � 720 VA

Fp1
� 1

Heating elements:
Total dissipation of applied power

P2 � 6.4 kW

Q2 � 0 VAR

S2 � P2 � 6.4 kVA

Fp2
� 1

FIG. 19.21

Example 19.3.
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Motor:

h � Pi � � � 4548.78 W � P3

Fp � 0.72 lagging

P3 � S3 cos v S3 � � � 6317.75 VA

Also, v � cos�1 0.72 � 43.95°, so that

Q3 � S3 sin v � (6317.75 VA)(sin 43.95°)

� (6317.75 VA)(0.694) � 4384.71 VAR (L)

Capacitive load:

I � � � � 13.87 A �53.13°

P4 � I2R � (13.87 A)2
• 9 � � 1731.39 W

Q4 � I2XC � (13.87 A)2
• 12 � � 2308.52 VAR (C)

S4 � �P�2
4��� Q�2

4� � �(1�7�3�1�.3�9� W�)2� �� (�2�3�0�8�.5�2� V�A�R�)2�
� 2885.65 VA

Fp � � � 0.6 leading

b. PT � P1 � P2 � P3 � P4

� 720 W � 6400 W � 4548.78 W � 1731.39 W

� 13,400.17 W

QT � 	Q1 	 Q2 	 Q3 	 Q4

� 0 � 0 � 4384.71 VAR (L) � 2308.52 VAR (C)

� 2076.19 VAR (L)

ST � �P�2
T��� Q�2

T� � �(1�3�,4�0�0�.1�7� W�)2� �� (�2�0�7�6�.1�9� V�A�R�)2�
� 13,560.06 VA

Fp � � � 0.988 lagging

v � cos�1 0.988 � 8.89°

Note Fig. 19.22.

13.4 kW
��
13,560.06 VA

PT
�
ST

1731.39 W
��
2885.65 VA

P4
�
S4

208 V �0°
��
15 � ��53.13°

208 V �0°
��
9 � � j 12 �

E
�
Z

4548.78 W
��

0.72

P3
�
cos v

5(746 W)
��

0.82

Po
�
h

Po
�
Pi

Pq
s

ST  =  13,560.06 VA

PT  =  13.4 kW

QT  =  2076.19 VAR (L)8.89°

FIG. 19.22

Power triangle for Example 19.3.

c. ST � EI I � � � 65.19 A

Lagging power factor: E leads I by 8.89°, and

I � 65.19 A ��8.89°

13,559.89 VA
��

208 V

ST
�
E
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EXAMPLE 19.4 An electrical device is rated 5 kVA, 100 V at a 0.6
power-factor lag. What is the impedance of the device in rectangular
coordinates?

Solution:

S � EI � 5000 VA

Therefore, I � � 50 A

For Fp � 0.6, we have

v � cos�1 0.6 � 53.13°

Since the power factor is lagging, the circuit is predominantly induc-
tive, and I lags E. Or, for E � 100 V �0°,

I � 50 A ��53.13°

However,

ZT � � � 2 � �53.13° � 1.2 � � j 1.6 �

which is the impedance of the circuit of Fig. 19.23.

19.8 POWER-FACTOR CORRECTION

The design of any power transmission system is very sensitive to the
magnitude of the current in the lines as determined by the applied loads.
Increased currents result in increased power losses (by a squared factor
since P � I2R) in the transmission lines due to the resistance of the
lines. Heavier currents also require larger conductors, increasing the
amount of copper needed for the system, and, quite obviously, they
require increased generating capacities by the utility company.

Every effort must therefore be made to keep current levels at a min-
imum. Since the line voltage of a transmission system is fixed, the
apparent power is directly related to the current level. In turn, the
smaller the net apparent power, the smaller the current drawn from the
supply. Minimum current is therefore drawn from a supply when S � P
and QT � 0. Note the effect of decreasing levels of QT on the length
(and magnitude) of S in Fig. 19.24 for the same real power. Note also
that the power-factor angle approaches zero degrees and Fp approaches
1, revealing that the network is appearing more and more resistive at the
input terminals.

The process of introducing reactive elements to bring the power fac-
tor closer to unity is called power-factor correction. Since most loads
are inductive, the process normally involves introducing elements with
capacitive terminal characteristics having the sole purpose of improving
the power factor.

In Fig. 19.25(a), for instance, an inductive load is drawing a current
IL that has a real and an imaginary component. In Fig. 19.25(b), a
capacitive load was added in parallel with the original load to raise the
power factor of the total system to the unity power-factor level. Note
that by placing all the elements in parallel, the load still receives the
same terminal voltage and draws the same current IL. In other words,
the load is unaware of and unconcerned about whether it is hooked up
as shown in Fig. 19.25(a) or Fig. 19.25(b).

100 V �0°
��
50 A ��53.13°

E
�
I

5000 VA
�

100 V

Pq
s

FIG. 19.23

Example 19.4.
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T  < QT
S
<S

v
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FIG. 19.24

Demonstrating the impact of power-factor 
correction on the power triangle of a network.
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Solving for the source current in Fig. 19.25(b):

Is � IC � IL

� j IC(Imag) � IL(Re) � j IL(Imag)
� IL(Re) � j [IL(Imag) � IC(Imag)]

If XC is chosen such that IC(Imag) � IL(Imag), then

Is � IL(Re) � j (0) � IL(Re) �0°

The result is a source current whose magnitude is simply equal to the
real part of the load current, which can be considerably less than the
magnitude of the load current of Fig. 19.25(a). In addition, since the
phase angle associated with both the applied voltage and the source cur-
rent is the same, the system appears “resistive” at the input terminals,
and all of the power supplied is absorbed, creating maximum efficiency
for a generating utility.

EXAMPLE 19.5 A 5-hp motor with a 0.6 lagging power factor and an
efficiency of 92% is connected to a 208-V, 60-Hz supply.
a. Establish the power triangle for the load.
b. Determine the power-factor capacitor that must be placed in parallel

with the load to raise the power factor to unity.
c. Determine the change in supply current from the uncompensated to

the compensated system.
d. Find the network equivalent of the above, and verify the conclusions.

Solutions:

a. Since 1 hp � 746 W,

Po � 5 hp � 5(746 W) � 3730 W

and Pi (drawn from the line) � � � 4054.35 W

Also, FP � cos v � 0.6

and v � cos�1 0.6 � 53.13°

Applying tan v �

we obtain QL � Pi tan v � (4054.35 W) tan 53.13°
� 5405.8 VAR (L)

and

S � �P�2
i �� Q�2

L� � �(4�0�5�4�.3�5� W�)2� �� (�5�4�0�5�.8� V�A�R�)2�
� 6757.25 VA

QL
�
Pi

3730 W
�

0.92

Po
�
h

Pq
s

FIG. 19.25

Demonstrating the impact of a capacitive element on the power factor of a
network.
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The power triangle appears in Fig. 19.26.

b. A net unity power-factor level is established by introducing a
capacitive reactive power level of 5405.8 VAR to balance QL. Since

QC �

then XC � � � 8 �

and C � � � 331.6 mF

c. At 0.6Fp,

S � VI � 6757.25 VA

and I � � � 32.49 A

At unity Fp,

S � VI � 4054.35 VA

and I � � � 19.49 A

producing a 40% reduction in supply current.
d. For the motor, the angle by which the applied voltage leads the cur-

rent is

v � cos�1 0.6 � 53.13°

and P � EIm cos v � 4054.35 W, from above, so that

Im � � � 32.49 A (as above)

resulting in

Im � 32.49 A ��53.13°

Therefore,

Zm � � � 6.4 � �53.13°

� 3.84 � � j 5.12 �

as shown in Fig. 19.27(a).
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��
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�
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��
(208 V)(0.6)

P
�
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��
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�
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��

208 V

S
�
V

1
��
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1
�
2pf XC

(208 V)2

��
5405.8 VAR (C)

V2

�
QC

V2

�
XC

Pq
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S  =  6757.25 VA

P  =  4054.35 W

QL  =  5404.45 VAR (L)

v  =  53.13°

FIG. 19.26

Initial power triangle for the load of 
Example 19.5.

FIG. 19.27

Demonstrating the impact of power-factor corrections on the source current.
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XC 8 �
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IC  =  26 A
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XL 5.12 �

R 3.84 �
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The equivalent parallel load is determined from

Y � �

� 0.156 S ��53.13° � 0.094 S � j 0.125 S

� �

as shown in Fig. 19.27(b).
It is now clear that the effect of the 8-� inductive reactance can

be compensated for by a parallel capacitive reactance of 8 � using a
power-factor correction capacitor of 332 mF.

Since

YT � � � �

Is � EYT � E� � � (208 V)� � � 19.54 A as above

In addition, the magnitude of the capacitive current can be deter-
mined as follows:

IC � � � 26 A

EXAMPLE 19.6

a. A small industrial plant has a 10-kW heating load and a 20-kVA
inductive load due to a bank of induction motors. The heating ele-
ments are considered purely resistive (Fp � 1), and the induction
motors have a lagging power factor of 0.7. If the supply is 1000 V at
60 Hz, determine the capacitive element required to raise the power
factor to 0.95.

b. Compare the levels of current drawn from the supply.

Solutions:

a. For the induction motors,

S � VI � 20 kVA

P � S cos v � (20 � 103 VA)(0.7) � 14 � 103 W

v � cos�1 0.7 � 45.6°

and

QL � VI sin v � (20 � 103 VA)(0.714) � 14.28 � 103 VAR (L)

The power triangle for the total system appears in Fig. 19.28.
Note the addition of real powers and the resulting ST:

ST � �(2�4� k�W�)2� �� (�1�4�.2�8� k�V�A�R�)2� � 27.93 kVA

with IT � � � 27.93 A

The desired power factor of 0.95 results in an angle between S
and P of

v � cos�1 0.95 � 18.19°
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��
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1
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1
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1
��
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1
�
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30.75° 45.6°
S  

=  2
0 k

VA

P  =  10 kW P  =  14 kW

Heating Induction motors

FIG. 19.28

Initial power triangle for the load of 
Example 19.6.
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changing the power triangle to that of Fig. 19.29:

with tan v � �
Q

PT

′L
� Q ′L � PT tan v � (24 � 103 W)(tan 18.19°)

� (24 � 103 W)(0.329) � 7.9 kVAR (L)

The inductive reactive power must therefore be reduced by

QL � Q′L � 14.28 kVAR (L) � 7.9 kVAR (L) � 6.38 kVAR (L)

Therefore, QC � 6.38 kVAR, and using

QC �

we obtain

XC � � � 156.74 �

and C � � � 16.93 mF

b. ST � �(2�4� k�W�)2� �� [�7�.9� k�V�A�R� (�L�)]�2�
� 25.27 kVA

IT � � � 25.27 A

The new IT is 

IT � 25.27 A �27.93 A (original)

19.9 WATTMETERS AND
POWER-FACTOR METERS

The electrodynamometer wattmeter was introduced in Section 4.4 along
with its movement and terminal connections. The same meter can be
used to measure the power in a dc or an ac network using the same con-
nection strategy; in fact, it can be used to measure the wattage of any
network with a periodic or a nonperiodic input.

The digital display wattmeter of Fig. 19.30 employs a sophisticated
electronic package to sense the voltage and current levels and, through
the use of an analog-to-digital conversion unit, display the proper digits
on the display. It is capable of providing a digital readout for distorted
nonsinusoidal waveforms, and it can provide the phase power, total
power, apparent power, reactive power, and power factor.

When using a wattmeter, the operator must take care not to exceed
the current, voltage, or wattage rating. The product of the voltage and
current ratings may or may not equal the wattage rating. In the high-
power-factor wattmeter, the product of the voltage and current ratings is
usually equal to the wattage rating, or at least 80% of it. For a low-
power-factor wattmeter, the product of the current and voltage ratings is
much greater than the wattage rating. For obvious reasons, the low-
power-factor meter is used only in circuits with low power factors (total
impedance highly reactive). Typical ratings for high-power-factor
(HPF) and low-power-factor (LPF) meters are shown in Table 19.2.
Meters of both high and low power factors have an accuracy of 0.5% to
1% of full scale.

25.27 kVA
��

1000 V
ST�
E

1
���
(2p)(60 Hz)(156.74 �)

1
�
2pf XC

(103 V)2

��
6.38 � 103 VAR

E2

�
QC

E2

�
XC

Pq
s

FIG. 19.30

Digital wattmeter. (Courtesy of Yokogawa 
Corporation of America)

v  =  18.19°
PT  =  24 kW

Q�L  =  7.9 kVAR (L)

FIG. 19.29

Power triangle for the load of Example 19.6 
after raising the power factor to 0.95.
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As the name implies, power-factor meters are designed to read the
power factor of a load under operating conditions. Most are designed to
be used on single- or three-phase systems. Both the voltage and the cur-
rent are typically measured using nonintrusive methods; that is, con-
nections are made directly to the terminals for the voltage measure-
ments, whereas clamp-on current transformers are used to sense the
current level, as shown for the power-factor meter of Fig. 19.31.

Once the power factor is known, most power-factor meters come
with a set of tables that will help define the power-factor capacitor that
should be used to improve the power factor. Power-factor capacitors are
typically rated in kVAR, with typical ratings extending from 1 to 
25 kVAR at 240 V and 1 to 50 kVAR at 480 V or 600 V.

19.10 EFFECTIVE RESISTANCE

The resistance of a conductor as determined by the equation R � r(l/A)
is often called the dc, ohmic, or geometric resistance. It is a constant
quantity determined only by the material used and its physical dimen-
sions. In ac circuits, the actual resistance of a conductor (called the
effective resistance) differs from the dc resistance because of the vary-
ing currents and voltages that introduce effects not present in dc circuits.

These effects include radiation losses, skin effect, eddy currents, and
hysteresis losses. The first two effects apply to any network, while the
latter two are concerned with the additional losses introduced by the
presence of ferromagnetic materials in a changing magnetic field.

Experimental Procedure

The effective resistance of an ac circuit cannot be measured by the ratio
V/I since this ratio is now the impedance of a circuit that may have both
resistance and reactance. The effective resistance can be found, how-
ever, by using the power equation P � I2R, where

(19.31)

A wattmeter and an ammeter are therefore necessary for measuring the
effective resistance of an ac circuit.

Radiation Losses

Let us now examine the various losses in greater detail. The radiation
loss is the loss of energy in the form of electromagnetic waves during the
transfer of energy from one element to another. This loss in energy

R eff � �
I

P
2�

Pq
s

TABLE 19.2

Current Voltage Wattage
Meter Ratings Ratings Ratings

HPF 2.5 A 150 V 1500/750/375
5.0 A 300 V

LPF 2.5 A 150 V 300/150/75
5.0 A 300 V

FIG. 19.31

Clamp-on power-factor meter. (Courtesy of
the AEMC Corporation.)
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requires that the input power be larger to establish the same current I,
causing R to increase as determined by Eq. (19.31). At a frequency of
60 Hz, the effects of radiation losses can be completely ignored. How-
ever, at radio frequencies, this is an important effect and may in fact
become the main effect in an electromagnetic device such as an antenna.

Skin Effect

The explanation of skin effect requires the use of some basic concepts
previously described. Remember from Chapter 11 that a magnetic field
exists around every current-carrying conductor (Fig. 19.32). Since the
amount of charge flowing in ac circuits changes with time, the magnetic
field surrounding the moving charge (current) also changes. Recall also
that a wire placed in a changing magnetic field will have an induced
voltage across its terminals as determined by Faraday’s law, e � N �
(df/dt). The higher the frequency of the changing flux as determined by
an alternating current, the greater the induced voltage will be.

For a conductor carrying alternating current, the changing magnetic
field surrounding the wire links the wire itself, thus developing within
the wire an induced voltage that opposes the original flow of charge or
current. These effects are more pronounced at the center of the conduc-
tor than at the surface because the center is linked by the changing flux
inside the wire as well as that outside the wire. As the frequency of the
applied signal increases, the flux linking the wire will change at a
greater rate. An increase in frequency will therefore increase the
counter-induced voltage at the center of the wire to the point where the
current will, for all practical purposes, flow on the surface of the con-
ductor. At 60 Hz, the skin effect is almost noticeable. However, at radio
frequencies the skin effect is so pronounced that conductors are fre-
quently made hollow because the center part is relatively ineffective.
The skin effect, therefore, reduces the effective area through which the
current can flow, and it causes the resistance of the conductor, given by
the equation R↑ � r(l/A↓), to increase.

Hysteresis and Eddy Current Losses

As mentioned earlier, hysteresis and eddy current losses will appear
when a ferromagnetic material is placed in the region of a changing
magnetic field. To describe eddy current losses in greater detail, we will
consider the effects of an alternating current passing through a coil
wrapped around a ferromagnetic core. As the alternating current passes
through the coil, it will develop a changing magnetic flux � linking
both the coil and the core that will develop an induced voltage within
the core as determined by Faraday’s law. This induced voltage and the
geometric resistance of the core RC � r(l/A) cause currents to be devel-
oped within the core, icore � (eind /RC), called eddy currents. The cur-
rents flow in circular paths, as shown in Fig. 19.33, changing direction
with the applied ac potential.

The eddy current losses are determined by

Peddy � i2eddyRcore

The magnitude of these losses is determined primarily by the type of
core used. If the core is nonferromagnetic—and has a high resistivity
like wood or air—the eddy current losses can be neglected. In terms of
the frequency of the applied signal and the magnetic field strength pro-

Pq
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I

Φ

FIG. 19.32

Demonstrating the skin effect on the effective 
resistance of a conductor.

FIG. 19.33

Defining the eddy current losses of a 
ferromagnetic core.



EFFECTIVE RESISTANCE  871

duced, the eddy current loss is proportional to the square of the fre-
quency times the square of the magnetic field strength:

Peddy � f 2B2

Eddy current losses can be reduced if the core is constructed of thin,
laminated sheets of ferromagnetic material insulated from one another
and aligned parallel to the magnetic flux. Such construction reduces the
magnitude of the eddy currents by placing more resistance in their path.

Hysteresis losses were described in Section 11.8. You will recall
that in terms of the frequency of the applied signal and the magnetic
field strength produced, the hysteresis loss is proportional to the fre-
quency to the 1st power times the magnetic field strength to the nth
power:

Phys � f 1Bn

where n can vary from 1.4 to 2.6, depending on the material under con-
sideration.

Hysteresis losses can be effectively reduced by the injection of small
amounts of silicon into the magnetic core, constituting some 2% or 3%
of the total composition of the core. This must be done carefully, how-
ever, because too much silicon makes the core brittle and difficult to
machine into the shape desired.

EXAMPLE 19.7

a. An air-core coil is connected to a 120-V, 60-Hz source as shown in
Fig. 19.34. The current is found to be 5 A, and a wattmeter reading
of 75 W is observed. Find the effective resistance and the inductance
of the coil.
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Wattmeter

I

E

+

–

120 V ∠ 0°

f  =  60 Hz

CC

PC
Coil

FIG. 19.34

The basic components required to determine the effective resistance and
inductance of the coil.

b. A brass core is then inserted in the coil. The ammeter reads 4 A, and
the wattmeter 80 W. Calculate the effective resistance of the core. To
what do you attribute the increase in value over that of part (a)?

c. If a solid iron core is inserted in the coil, the current is found to be
2 A, and the wattmeter reads 52 W. Calculate the resistance and the
inductance of the coil. Compare these values to those of part (a), and
account for the changes.
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Solutions:

a. R � � � 3 � 

ZT � � � 24 �

XL � �Z�2
T��� R�2� � �(2�4� ��)2� �� (�3� ��)2� � 23.81 �

and XL � 2pfL

or L � � � 63.16 mH

b. R � � � � 5 � 

The brass core has less reluctance than the air core. Therefore, a
greater magnetic flux density B will be created in it. Since Peddy �
f 2B2, and Phys � f1Bn, as the flux density increases, the core losses
and the effective resistance increase.

c. R � � � � 13 � 

ZT � � � 60 �

XL � �Z�2
T��� R�2� � �(6�0� ��)2� �� (�1�3� ��)2� � 58.57 �

L � � � 155.36 mH

The iron core has less reluctance than the air or brass cores. There-
fore, a greater magnetic flux density B will be developed in the core.
Again, since Peddy � f 2B2, and Phys � f1Bn, the increased flux density
will cause the core losses and the effective resistance to increase.

Since the inductance L is related to the change in flux by the
equation L � N (df/di), the inductance will be greater for the iron
core because the changing flux linking the core will increase.

19.11 APPLICATIONS

Portable Power Generators

Even though it may appear that 120 V ac are just an extension cord
away, there are times—such as in a remote cabin, on a job site, or while
camping—that we are reminded that not every corner of the globe is
connected to an electric power source. As you travel further away from
large urban communities, gasoline generators such as shown in Fig.
19.35 appear in increasing numbers in hardware stores, lumber yards,
and other retail establishments to meet the needs of the local commu-
nity. Since ac generators are driven by a gasoline motor, they must be
properly ventilated and cannot be run indoors. Usually, because of the
noise and fumes that result, they are placed as far away as possible and
are connected by a long, heavy-duty, weather-resistant extension cord.
Any connection points must be properly protected and placed to ensure
that the connections will not sit in a puddle of water or be sensitive to
heavy rain or snow. Although there is some effort involved in setting up
generators and constantly ensuring that they have enough gas, most
users will tell you that they are worth their weight in gold.
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FIG. 19.35

Single-phase portable generator. (Courtesy of
Coleman Powermate, Inc.)



Continuous 
output power 1750–3000 W 2000–5000 W 2250–7500 W

Horsepower of 
gas motor 4–11 hp 5–14 hp 5–16 hp

Continuous At 120 V: 15–25 A At 120 V: 17–42 A At 120 V: 19–63 A
output current At 220 V(3f): 8–14 A At 220 V(3f): 9–23 A At 220 V(3f): 10–34 A

Output voltage 120 V or 120 V or 120 V or 
3f: 120 V/220 V 3f: 120 V/220 V 3f: 120 V/220 V

Receptacles 2 2–4 2–4

Fuel tank 1⁄2 to 2 gallons 1⁄2 to 3 gallons 1 to 5 gallons
gasoline gasoline gasoline
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The vast majority of generators are built to provide between 1750 W
and 5000 W of power, although larger units can provide up to 20,000 W.
At first encounter, you might assume that you can run the world on
5000 W. However, keep in mind that the unit purchased should be rated
at least 20% above your expected load because of surge currents that
result when appliances, motors, tools, etc., are turned on. Remember
that even a light bulb develops a large turn-on current due to the cold,
low-resistance state of the filament. If you work too closely to the rated
capacity, experiences such as a severe drop in lighting can result when
an electric saw is turned on—almost to the point where it appears that
the lights will go out altogether. Generators are like any other piece of
equipment: If you apply a load that is too heavy, they will shut down.
Most have protective fuses or circuit breakers to ensure that the excur-
sions above rated conditions are monitored and not exceeded beyond
reason. The 20% protective barrier drops the output power from a
5000-W unit to 4000 W, and already we begin to wonder about the load
we can apply. Although 4000 W would be sufficient to run a number of
60-W bulbs, a TV, an oil burner, and so on, troubles develop whenever
a unit is hooked up for direct heating (such as heaters, hair dryers, and
clothes dryers). Even microwaves at 1200 W command quite a power
drain. Pile on a small electric heater at 1500 W with six 60-W bulbs
(360 W), a 250-W TV, and a 250-W oil burner, and then turn on an
electric hair dryer at 1500 W—suddenly you are very close to your
maximum of 4000 W. It doesn’t take long to push the limits when it
comes to energy-consuming appliances.

Table 19.3 provides a list of specifications for the broad range of
portable gasoline generators. Since the heaviest part of a generator is
the gasoline motor, anything over 5 hp gets pretty heavy, especially
when you add the weight of the gasoline. Most good units providing
over 2400 W will have receptacles for 120 V and 220 V at various cur-
rent levels, with an outlet for 12 V dc. They are also built so that they
tolerate outdoor conditions of a reasonable nature and can run continu-
ously for long periods of time. At 120 V, a 5000-W unit can provide a
maximum current of about 42 A.

Pq
s

TABLE 19.3

Specifications for portable gasoline-driven ac generators.

Business Sense

Because of the costs involved, every large industrial plant must contin-
uously review its electric utility bill to ensure its accuracy and to con-
sider ways that will keep it in check. As described in this chapter, the
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power factor associated with the plant as a whole can have a measur-
able effect on the drain current and therefore the kVA drain on the
power line. Power companies are aware of this problem and actually
add a surcharge if the power factor fades below about 0.9. In other
words, to ensure that the load appears as resistive in nature as possible,
the power company is asking every user to try to ensure that his power
factor is between 0.9 and 1 so that the kW demand is very close to the
kVA demand. Power companies do give some leeway, but they don’t
want it to get out of hand.

Consider the following monthly bill for a fairly large industrial
plant:

kWh consumption 146.5 MWh
peak kW demand 241.5 kW
kW demand 233.5 kW
kVA demand 250.5 kVA

The rate schedule provided by the local power authority is the following:

Energy First 450 kWh @ 22.3¢/kWh Next 12 MWh @ 17.1¢/kWh
Additional kWh @ 8.9¢/kWh

Power First 240 kW @ free
Additional kW @ $12.05/kW

Note that this rate schedule has an energy cost breakdown and a power
breakdown. This second fee is the one sensitive to the overall power
factor of the plant.

The electric bill for the month is then calculated as follows:

Cost � (450 kWh)(22.3¢/kWh) � (12 MWh)(17.1¢/kWh)
� [146.2 MWh � (12 MWh � 450 kWh)](8.9¢/kWh)

� $100.35 � $2052.00 � $11,903.75

� $14,056.10

Before examining the effect of the power fee structure, we can find
the overall power factor of the load for the month with the following
ratio taken from the monthly statement:

Fp � �
P

P

a
� � �

2

2

5

3

0

3

k

k

V

W

A
� � 0.932

Since the power factor is larger than 0.9, the chances are that there will
not be a surcharge or that the surcharge will be minimal.

When the power component of the bill is determined, the kVA
demand is multiplied by the magic number of 0.9 to determine a kW
level at this power factor. This kW level is compared to the metered
level, and the consumer pays for the higher level.

In this case, if we multiply the 250 kVA by 0.9, we obtain 225 kW
which is slightly less than the metered level of 233 kW. However, both
levels are less than the free level of 240 kW, so there is no additional
charge for the power component. The total bill remains at $14,056.10.

If the kVA demand of the bill were 388 kVA with the kW demand
staying at 233 kW, the situation would change because 0.9 times
388 kVA would result in 349.2 kW which is much greater than the
metered 233 kW. The 349.2 kW would then be used to determine the
bill as follows:

Pq
s
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349.2 kW � 240 kW � 109.2 kW

(109.2 kW)($12.05/kW) � $1315.86

which is significant.
The total bill can then be determined as follows:

Cost � $14,056.10 � $1,315.86

� $15,371.96

Thus, the power factor of the load dropped to 233 kW/388 kVA � 0.6
which would put an unnecessary additional load on the power plant. It
is certainly time to consider the power-factor-correction option as
described in this text. It is not uncommon to see large capacitors sitting
at the point where power enters a large industrial plant to perform a
needed level of power-factor correction.

All in all, therefore, it is important to fully understand the impact of
a poor power factor on a power plant—whether you someday work for
the supplier or for the consumer.

19.12 COMPUTER ANALYSIS

PSpice

Power Curve: Resistor The computer analysis will begin with a
verification of the curves of Fig. 19.3 which show the in-phase relation-
ship between the voltage and current of a resistor. The figure shows that
the power curve is totally above the horizontal axis and that the curve
has a frequency twice the applied frequency and a peak value equal to
twice the average value. First the simple schematic of Fig. 19.36 must

Pq
s

FIG. 19.36

Using PSpice to review the power curve for a resistive element in an ac circuit.
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be set up. Then, using the Time Domain(Transient) option to get a
plot versus time and setting the Run to time to 1 ms and the Maximum
step size to 1 ms/1000 � 1 ms, we select OK and then the Run PSpice
icon to perform the simulation. Then Trace-Add Trace-V1(R) will
result in the curve appearing in Fig. 19.37. Next, Trace-Add Trace-
I(R) will result in the curve for the current as appearing in Fig. 19.37.
Finally the power curve will be plotted using Trace-Add Trace-
V1(R)*I(R) from the basic power equation, and the larger curve of Fig.
19.37 will result. The original plot had a y-axis that extended from �50
to �50. Since all of the data points are from �20 to �50, the y-axis
was changed to this new range through Plot-Axis Settings-Y Axis-
User Defined-(�20 to �50)-OK to obtain the plot of Fig. 19.37.

FIG. 19.37

The resulting plots for the power, voltage, and current for the resistor 
of Fig. 19.36.

You can distinguish between the curves by simply looking at the
symbol next to each quantity at the bottom left of the plot. In this case,
however, to make it even clearer, a different color was selected for each
trace by clicking on each trace with a right click, selecting Properties,
and choosing the color and width of each curve. However, you can also
add text to the screen by selecting the ABC icon to obtain the Text
Label dialog box, entering the label such as P(R), and clicking OK.
The label can then be placed anywhere on the screen. By selecting the
Toggle cursor key and then clicking on I(R) at the bottom of the
screen, we can use the cursor to find the maximum value of the current.
At A1 � 250 ms or 1⁄4 of the total period of the input voltage, the cur-
rent is a peak at 3.54 A. The peak value of the power curve can then be
found by right-clicking on V1(R)*I(R), clicking on the graph, and then
finding the peak value (also available by simply clicking on the Cursor



COMPUTER ANALYSIS  877

Peak icon to the right of the Toggle cursor key). It occurs at the same
point as the maximum current at a level of 50 W. In particular, note that
the power curve shows two cycles, while both vR and iR show only one
cycle. Clearly, the power curve has twice the frequency of the applied
signal. Also note that the power curve is totally above the zero line,
indicating that power is being absorbed by the resistor through the
entire displayed cycle. Further, the peak value of the power curve is
twice the average value of the curve; that is, the peak value of 50 W is
twice the average value of 25 W.

The results of the above simulation can be verified by performing the
longhand calculation using the rms value of the applied voltage. That is,

P � �
V
R

R
2

� � �
(1

4
0

�
V)2

� � 25 W

Power Curves: Series R-L-C Circuit The network of Fig. 19.38,
with its combination of elements, will now be used to demonstrate that,
no matter what the physical makeup of the network, the average value
of the power curve established by the product of the applied voltage and
resulting source current is equal to that dissipated by the network. At a
frequency of 1 kHz, the reactance of the 1.273-mH inductor will be 8,
and the reactance of the capacitor will be 4 �, resulting in a lagging
network. An analysis of the network will result in

ZT � 4 � � j4 � � 5.657 � �45°

with I � �
Z
E

T
� � � 1.768 A ��45°

and P � I2R � (1.768 A)2 4 � � 12.5 W

10 V �0°
��
5.657 � �45°

Pq
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FIG. 19.38

Using PSpice to examine the power distribution in a series R-L-C circuit.
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The three curves of Fig. 19.39 were obtained using the Simulation
Output Variables V(E:�), I(R), and V(E:�)*I(R). The Run to time
under the Simulation Profile listing was 20 ms, although 1 ms was cho-
sen as the Maximum step size to ensure a good plot. In particular, note
that the horizontal axis does not start until t � 18 ms to ensure that we
are in a steady-state mode and not in a transient stage (where the peak
values of the waveforms could change with time). The horizontal axis
was set to extend from 18 ms to 20 ms by simply selecting Plot-Axis
Settings-X Axis-User Defined-18ms to 20ms-OK. First note that the
current lags the applied voltage as expected for the lagging network.
The phase angle between the two is 45° as determined above. Second,
be aware that the elements were chosen so that the same scale could be
used for the current and voltage. The vertical axis does not have a unit
of measurement, so the proper units must be mentally added for each
plot. Using Plot-Label-Line, a line can be drawn across the screen at
the average power level of 12.5 W. A pencil will appear that can be
clicked in place at the left edge at the 12.5-W level. The pencil can then
be dragged across the page to draw the desired line. Once you are at the
right edge, remove the pressure on the mouse, and the line is drawn.
The different colors for the traces were obtained simply by right-
clicking on a trace and responding to the choices under Properties.
Note that the 12.5-W level is indeed the average value of the power
curve. It is interesting to note that the power curve dips below the axis
for only a short period of time. In other words, during the two visible
cycles, power is being absorbed by the circuit most of the time. The
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FIG. 19.39

Plots of the applied voltage e, current iR � is, and power delivered ps � e 	 is
for the circuit of Fig. 19.38.
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small region below the axis is the return of energy to the network by the
reactive elements. In general, therefore, the source must supply power
to the circuit most of the time, even though a good percentage of the
power may simply be delivering energy to the reactive elements and
may not being dissipated.

20 W

+

–
E

Is

40 W

60 W

240 V

I1 I2

FIG. 19.40

Problem 1.

3 �
+

–
E  =  50 V ∠ 0°

f  =  60 Hz

5 � 9 �

R
XC XL

FIG. 19.41

Problem 2.

PROBLEMS

SECTIONS 19.1 THROUGH 19.7

1. For the battery of bulbs (purely resistive) appearing in
Fig. 19.40:
a. Determine the total power dissipation.
b. Calculate the total reactive and apparent power.
c. Find the source current Is.
d. Calculate the resistance of each bulb for the specified

operating conditions.
e. Determine the currents I1 and I2.

2. For the network of Fig. 19.41:
a. Find the average power delivered to each element.
b. Find the reactive power for each element.
c. Find the apparent power for each element.
d. Find the total number of watts, volt-amperes reactive,

and volt-amperes, and the power factor Fp of the cir-
cuit.

e. Sketch the power triangle.
f. Find the energy dissipated by the resistor over one full

cycle of the input voltage.
g. Find the energy stored or returned by the capacitor

and the inductor over one half-cycle of the power
curve for each.



FIG. 19.42

Problem 3.

Load 1

+

–
E  =  100 V ∠9 0°

Load 2

600 VAR (C)
100 W

200 VAR (L)
0 W

Load 3

0 VAR
300 W

Is

3. For the system of Fig. 19.42:
a. Find the total number of watts, volt-amperes reactive,

and volt-amperes, and the power factor Fp.
b. Draw the power triangle.
c. Find the current Is.

FIG. 19.43

Problem 4.

Load 1

+

–
E  =  200 V ∠ 0° Load 2

600 VAR (C)
500 W

1200 VAR (L)
600 W Load 3

600 VAR (L)
100 W

Is

4. For the system of Fig. 19.43:
a. Find PT, QT, and ST.
b. Determine the power factor Fp.
c. Draw the power triangle.
d. Find Is.

FIG. 19.44

Problem 5.

+

–
E  =  50 V ∠ 60°

Load 4

200 VAR (C)
100 W

Is
Load 3

200 VAR (C)
0 W

Load 1

100 VAR (L)
200 W

Load 2

100 VAR (L)
200 W

5. For the system of Fig. 19.44:
a. Find PT, QT, and ST.
b. Find the power factor Fp.
c. Draw the power triangle.
d. Find Is.
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6. For the circuit of Fig. 19.45:
a. Find the average, reactive, and apparent power for the

20-� resistor.
b. Repeat part (a) for the 10-� inductive reactance.
c. Find the total number of watts, volt-amperes reactive,

and volt-amperes, and the power factor Fp.
d. Find the current Is.

FIG. 19.46

Problem 7.

R 2 �

+

–
E  =  20 V ∠ 0° XL

Is

4 �XC 5 �

f  = 50 Hz

7. For the network of Fig. 19.46:
a. Find the average power delivered to each element.
b. Find the reactive power for each element.
c. Find the apparent power for each element.
d. Find PT, QT, ST, and Fp for the system.
e. Sketch the power triangle.
f. Find Is.

FIG. 19.47

Problem 8.

R 3 �+

–
E  =  50 V ∠6 0°

L

Is

4 �

C 10 �

f  = 60 Hz

8. Repeat Problem 7 for the circuit of Fig. 19.47.

*9. For the network of Fig. 19.48:
a. Find the average power delivered to each element.
b. Find the reactive power for each element.
c. Find the apparent power for each element.
d. Find the total number of watts, volt-amperes reactive,

and volt-amperes, and the power factor Fp of the cir-
cuit.

e. Sketch the power triangle.
f. Find the energy dissipated by the resistor over one full

cycle of the input voltage.
g. Find the energy stored or returned by the capacitor

and the inductor over one half-cycle of the power
curve for each.

FIG. 19.48

Problem 9.

R 30 �

+

–
E  =  50 V ∠ 0°

L

Is 0.1 H

C 100 mF

FIG. 19.45

Problem 6.

R 20 �

+

–
E  =  60 V ∠ 30° XL

Is

600 VAR (L)
400 W

10 �
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10. An electrical system is rated 10 kVA, 200 V at a 0.5 lead-
ing power factor.
a. Determine the impedance of the system in rectangular

coordinates.
b. Find the average power delivered to the system.

11. An electrical system is rated 5 kVA, 120 V, at a 0.8 lag-
ging power factor.
a. Determine the impedance of the system in rectangular

coordinates.
b. Find the average power delivered to the system.

*12. For the system of Fig. 19.49:
a. Find the total number of watts, volt-amperes reactive,

and volt-amperes, and Fp.
b. Find the current Is.
c. Draw the power triangle.
d. Find the type of elements and their impedance in

ohms within each electrical box. (Assume that all ele-
ments of a load are in series.)

e. Verify that the result of part (b) is correct by finding
the current Is using only the input voltage E and the
results of part (d). Compare the value of Is with that
obtained for part (b).

FIG. 19.49

Problem 12.

Load 1

+

–
E  =  30 V ∠ 0°

Load 2

600 VAR (C)
0 W

Is

200 VAR (L)
300 W

*13. Repeat Problem 12 for the system of Fig. 19.50.

FIG. 19.50

Problem 13.

Load 2

+

–
E  =  100 V ∠ 0°

Load 3

0 VAR
300 W

Is

500 VAR (L)
600 W

Load 1

500 VAR (C)
0 W
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15. For the circuit of Fig. 19.52:
a. Find the total number of watts, volt-amperes reactive,

and volt-amperes, and Fp.
b. Find the voltage E.
c. Find the type of elements and their impedance in each

box. (Assume that the elements within each box are in
series.)

Load 2

+

–
E  =  100 V ∠ 0°

Load 3

30 W
40 VAR (L)

Is

100 VAR (L)
Fp  =  0

Load 1

200 W
Fp  =  1

FIG. 19.51

Problem 14.

FIG. 19.52

Problem 15.

+

–
I  =  5 A ∠ 0°

Load 2

1000 W
0.4Fp  (leading)

Load 1

100 W
0.8Fp  (leading)E

SECTION 19.8 Power-Factor Correction

*16. The lighting and motor loads of a small factory establish
a 10-kVA power demand at a 0.7 lagging power factor on
a 208-V, 60-Hz supply.
a. Establish the power triangle for the load.
b. Determine the power-factor capacitor that must be

placed in parallel with the load to raise the power fac-
tor to unity.

c. Determine the change in supply current from the
uncompensated to the compensated system.

d. Repeat parts (b) and (c) if the power factor is in-
creased to 0.9.

17. The load on a 120-V, 60-Hz supply is 5 kW (resistive),
8 kVAR (inductive), and 2 kVAR (capacitive).
a. Find the total kilovolt-amperes.
b. Determine the Fp of the combined loads.

*14. For the circuit of Fig. 19.51:
a. Find the total number of watts, volt-amperes reactive,

and volt-amperes, and Fp.
b. Find the current Is.
c. Find the type of elements and their impedance in each

box. (Assume that the elements within each box are in
series.)
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c. Find the current drawn from the supply.
d. Calculate the capacitance necessary to establish a

unity power factor.
e. Find the current drawn from the supply at unity power

factor, and compare it to the uncompensated level.

18. The loading of a factory on a 1000-V, 60-Hz system
includes:

20-kW heating (unity power factor)
10-kW (Pi) induction motors (0.7 lagging power factor)
5-kW lighting (0.85 lagging power factor)

a. Establish the power triangle for the total loading on
the supply.

b. Determine the power-factor capacitor required to raise
the power factor to unity.

c. Determine the change in supply current from the
uncompensated to the compensated system.

SECTION 19.9 Wattmeters and Power-Factor Meters

19. a. A wattmeter is connected with its current coil as
shown in Fig. 19.53 and with the potential coil across
points f-g. What does the wattmeter read?

b. Repeat part (a) with the potential coil (PC) across
a-b, b-c, a-c, a-d, c-d, d-e, and f-e.

R2

3 �+

–
E  =  50 V ∠ 0° XC 12 �

f

g
R1

2 �

CC
(Current coil)

a b c

XL

3 �
d

e

R3

1 �

PC (Potential
coil)

FIG. 19.53

Problem 19.

20. The voltage source of Fig. 19.54 delivers 660 VA at 120 V,
with a supply current that lags the voltage by a power
factor of 0.6.
a. Determine the voltmeter, ammeter, and wattmeter

readings.
b. Find the load impedance in rectangular form.

FIG. 19.54

Problem 20.

I

I

E

+

–
Wattmeter

CC

PC V LOAD
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SECTION 19.10 Effective Resistance

21. a. An air-core coil is connected to a 200-V, 60-Hz source.
The current is found to be 4 A, and a wattmeter
reading of 80 W is observed. Find the effective
resistance and the inductance of the coil.

b. A brass core is inserted in the coil. The ammeter reads
3 A, and the wattmeter reads 90 W. Calculate the effec-
tive resistance of the core. Explain the increase over
the value of part (a).

c. If a solid iron core is inserted in the coil, the current
is found to be 2 A, and the wattmeter reads 60 W. Cal-
culate the resistance and inductance of the coil. Com-
pare these values to the values of part (a), and account
for the changes.

22. a. The inductance of an air-core coil is 0.08 H, and the
effective resistance is 4 � when a 60-V, 50-Hz source
is connected across the coil. Find the current passing
through the coil and the reading of a wattmeter across
the coil.

b. If a brass core is inserted in the coil, the effective
resistance increases to 7 �, and the wattmeter reads 
30 W. Find the current passing through the coil and
the inductance of the coil.

c. If a solid iron core is inserted in the coil, the effective
resistance of the coil increases to 10 �, and the cur-
rent decreases to 1.7 A. Find the wattmeter reading and
the inductance of the coil.

SECTION 19.12 Computer Analysis

PSpice or Electronics Workbench

23. Using PSpice or EWB, obtain a plot of reactive power
for a pure capacitor of 636.62 mF at a frequency of 1 kHz
for one cycle of the input voltage using an applied volt-
age E � 10 V �0°. On the same graph, plot both the
applied voltage and the resulting current. Apply appropri-
ate labels to the resulting curves to generate results simi-
lar to those in Fig. 19.37.

24. Repeat the analysis of Fig. 19.38 for a parallel R-L-C net-
work of the same values and frequency.

25. Plot both the applied voltage and the source current on
the same set of axes for the network of Fig. 19.27(b), and
show that they are both in phase due to the resulting unity
power factor.

Programming Language (C��, QBASIC, Pascal, etc.)

26. Write a program that provides a general solution for the
network of Fig. 19.19. That is, given the resistance or
reactance of each element and the source voltage at zero
degrees, calculate the real, reactive, and apparent power
of the system.

27. Write a program that will demonstrate the effect of
increasing reactive power on the power factor of a sys-
tem. Tabulate the real power, reactive power, and power
factor of the system for a fixed real power and a reactive
power that starts at 10% of the real power and continues
through to five times the real power in increments of 10%
of the real power.

GLOSSARY

Apparent power The power delivered to a load without con-
sideration of the effects of a power-factor angle of the load.
It is determined solely by the product of the terminal volt-
age and current of the load.

Average (real) power The delivered power dissipated in the
form of heat by a network or system.

Eddy currents Small, circular currents in a paramagnetic
core causing an increase in the power losses and the effec-
tive resistance of the material.

Effective resistance The resistance value that includes the
effects of radiation losses, skin effect, eddy currents, and
hysteresis losses.

Hysteresis losses Losses in a magnetic material introduced
by changes in the direction of the magnetic flux within the
material.

Power-factor correction The addition of reactive compo-
nents (typically capacitive) to establish a system power fac-
tor closer to unity.

Radiation losses The loss of energy in the form of electro-
magnetic waves during the transfer of energy from one ele-
ment to another.

Reactive power The power associated with reactive ele-
ments that provides a measure of the energy associated with
setting up the magnetic and electric fields of inductive and
capacitive elements, respectively.

Skin effect At high frequencies, a counter-induced voltage
builds up at the center of a conductor, resulting in an increased
flow near the surface (skin) of the conductor and a sharp
reduction near the center.As a result, the effective area of con-
duction decreases and the resistance increases as defined by
the basic equation for the geometric resistance of a conductor.
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20.1 INTRODUCTION

This chapter will introduce the very important resonant (or tuned) circuit,
which is fundamental to the operation of a wide variety of electrical and
electronic systems in use today. The resonant circuit is a combination of R,
L, and C elements having a frequency response characteristic similar to
the one appearing in Fig. 20.1. Note in the figure that the response is a

ƒr

ffr

V, I

FIG. 20.1

Resonance curve.

maximum for the frequency fr, decreasing to the right and left of this fre-
quency. In other words, for a particular range of frequencies the response
will be near or equal to the maximum. The frequencies to the far left or
right have very low voltage or current levels and, for all practical pur-
poses, have little effect on the system’s response. The radio or television
receiver has a response curve for each broadcast station of the type indi-
cated in Fig. 20.1. When the receiver is set (or tuned) to a particular sta-
tion, it is set on or near the frequency fr of Fig. 20.1. Stations transmitting
at frequencies to the far right or left of this resonant frequency are not car-
ried through with significant power to affect the program of interest. The
tuning process (setting the dial to fr) as described above is the reason for

Resonance
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the terminology tuned circuit. When the response is at or near the maxi-
mum, the circuit is said to be in a state of resonance.

The concept of resonance is not limited to electrical or electronic
systems. If mechanical impulses are applied to a mechanical system at
the proper frequency, the system will enter a state of resonance in
which sustained vibrations of very large amplitude will develop. The
frequency at which this occurs is called the natural frequency of the
system. The classic example of this effect was the Tacoma Narrows
Bridge built in 1940 over Puget Sound in Washington State. Four
months after the bridge, with its suspended span of 2800 ft, was com-
pleted, a 42-mi/h pulsating gale set the bridge into oscillations at its nat-
ural frequency. The amplitude of the oscillations increased to the point
where the main span broke up and fell into the water below. It has since
been replaced by the new Tacoma Narrows Bridge, completed in 1950.

The resonant electrical circuit must have both inductance and capac-
itance. In addition, resistance will always be present due either to the
lack of ideal elements or to the control offered on the shape of the res-
onance curve. When resonance occurs due to the application of the
proper frequency (fr), the energy absorbed by one reactive element is
the same as that released by another reactive element within the system.
In other words, energy pulsates from one reactive element to the other.
Therefore, once an ideal (pure C, L) system has reached a state of res-
onance, it requires no further reactive power since it is self-sustaining.
In a practical circuit, there is some resistance associated with the reac-
tive elements that will result in the eventual “damping” of the oscilla-
tions between reactive elements.

There are two types of resonant circuits: series and parallel. Each
will be considered in some detail in this chapter.

SERIES RESONANCE

20.2 SERIES RESONANT CIRCUIT

A resonant circuit (series or parallel) must have an inductive and a
capacitive element. A resistive element will always be present due to
the internal resistance of the source (Rs), the internal resistance of the
inductor (Rl), and any added resistance to control the shape of the
response curve (Rdesign ). The basic configuration for the series resonant
circuit appears in Fig. 20.2(a) with the resistive elements listed above.
The “cleaner” appearance of Fig. 20.2(b) is a result of combining the
series resistive elements into one total value. That is,

(20.1)R � Rs � Rl � Rd

ƒr

R L

C

–

+

Es

ZT

IRs Rd Rl L

C
Coil

Source

–

+

Es

(a) (b)

FIG. 20.2

Series resonant circuit.



SERIES RESONANT CIRCUIT  889

The total impedance of this network at any frequency is determined
by

ZT � R � j XL � j XC � R � j (XL � XC)

The resonant conditions described in the introduction will occur
when

(20.2)

removing the reactive component from the total impedance equation.
The total impedance at resonance is then simply

(20.3)

representing the minimum value of ZT at any frequency. The subscript
s will be employed to indicate series resonant conditions.

The resonant frequency can be determined in terms of the induc-
tance and capacitance by examining the defining equation for resonance
[Eq. (20.2)]:

XL � XC

Substituting yields

qL � and q2 �

and (20.4)

f � hertz (Hz)
or fs � L � henries (H) (20.5)

C � farads (F)

The current through the circuit at resonance is

I � � �0°

which you will note is the maximum current for the circuit of Fig. 20.2
for an applied voltage E since ZT is a minimum value. Consider also
that the input voltage and current are in phase at resonance.

Since the current is the same through the capacitor and inductor, the
voltage across each is equal in magnitude but 180° out of phase at res-
onance:

VL � (I �0°)(XL �90°) � IXL �90°

VC � (I �0°)(XC ��90°) � IXC ��90°

and, since XL � XC, the magnitude of VL equals VC at resonance; that is,

(20.6)

Figure 20.3, a phasor diagram of the voltages and current, clearly
indicates that the voltage across the resistor at resonance is the input
voltage, and E, and I, and VR are in phase at resonance.

VLs
� VCs

E
�
R

E �0°
�
R �0°

1
�
2p�L�C�

qs � �
�

1

L�C�
�

1
�
LC

1
�
qC

ZTs
� R

XL � XC

ƒr

180°
out of
phase





I

E

VL

VC

VR

FIG. 20.3

Phasor diagram for the series resonant circuit 
at resonance.
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The average power to the resistor at resonance is equal to I2R, and
the reactive power to the capacitor and inductor are I2XC and I2XL,
respectively.

The power triangle at resonance (Fig. 20.4) shows that the total
apparent power is equal to the average power dissipated by the resistor
since QL � QC. The power factor of the circuit at resonance is

Fp � cos v �

and (20.7)

Plotting the power curves of each element on the same set of axes (Fig.
20.5), we note that, even though the total reactive power at any instant
is equal to zero (note that t � t ′ ), energy is still being absorbed and
released by the inductor and capacitor at resonance.

Fps
� 1

P
�
S

ƒr

QL = I2XL

S = EI

P = I2R = EI

QC = I2XC

FIG. 20.4

Power triangle for the series resonant circuit 
at resonance.

pL

pR

pC

t1 t2 t3 t4 t5
p′L

t
p′C  =  p′L

pC pL

Power
returned by

element

0

Power
supplied to

element

FIG. 20.5

Power curves at resonance for the series resonant circuit.

A closer examination reveals that the energy absorbed by the induc-
tor from time 0 to t1 is the same as the energy released by the capacitor
from 0 to t1. The reverse occurs from t1 to t2, and so on. Therefore, the
total apparent power continues to be equal to the average power, even
though the inductor and capacitor are absorbing and releasing energy.
This condition occurs only at resonance. The slightest change in fre-
quency introduces a reactive component into the power triangle, which
will increase the apparent power of the system above the average power
dissipation, and resonance will no longer exist.

20.3 THE QUALITY FACTOR (Q )

The quality factor Q of a series resonant circuit is defined as the ratio
of the reactive power of either the inductor or the capacitor to the aver-
age power of the resistor at resonance; that is,

(20.8)

The quality factor is also an indication of how much energy is placed in
storage (continual transfer from one reactive element to the other) com-
pared to that dissipated. The lower the level of dissipation for the same
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reactive power, the larger the Qs factor and the more concentrated and
intense the region of resonance.

Substituting for an inductive reactance in Eq. (20.8) at resonance
gives us

Qs �

and (20.9)

If the resistance R is just the resistance of the coil (Rl), we can speak
of the Q of the coil, where

R � Rl (20.10)

Since the quality factor of a coil is typically the information provided
by manufacturers of inductors, it is often given the symbol Q without an
associated subscript. It would appear from Eq. (20.10) that Ql will
increase linearly with frequency since XL � 2pfL. That is, if the fre-
quency doubles, then Ql will also increase by a factor of 2. This is
approximately true for the low range to the midrange of frequencies such
as shown for the coils of Fig. 20.6. Unfortunately, however, as the fre-
quency increases, the effective resistance of the coil will also increase,
due primarily to skin effect phenomena, and the resulting Ql will
decrease. In addition, the capacitive effects between the windings will
increase, further reducing the Ql of the coil. For this reason, Ql must be
specified for a particular frequency or frequency range. For wide fre-
quency applications, a plot of Ql versus frequency is often provided. The
maximum Ql for most commercially available coils is less than 200, with
most having a maximum near 100. Note in Fig. 20.6 that for coils of the
same type, Ql drops off more quickly for higher levels of inductance.

If we substitute

qs � 2pfs

and then fs �

into Eq. (20.9), we have

Qs � � � � � L

� � � � � �

and Qs � �
R
1

���
C
L

�� (20.11)

providing Qs in terms of the circuit parameters.
For series resonant circuits used in communication systems, Qs is

usually greater than 1. By applying the voltage divider rule to the cir-
cuit of Fig. 20.2, we obtain

L
�
R�L�C�

�L�
�
�L�

1
�
�L�C�

L
�
R

1
�
2p�L�C�

2p
�
R

2pfsL
�

R

qsL
�

R

1
�
2p�L�C�

Qcoil � Ql � �
X

R
L

l
�

Qs � �
X

R
L

� � �
q

R
sL
�

I 2XL
�
I 2R

ƒr

Ql
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FIG. 20.6

Ql versus frequency for a series of inductors
of similar construction.



892  RESONANCE

VL � � (at resonance)

and (20.12)

or VC � �

and (20.13)

Since Qs is usually greater than 1, the voltage across the capacitor or
inductor of a series resonant circuit can be significantly greater than the
input voltage. In fact, in many cases the Qs is so high that careful design
and handling (including adequate insulation) are mandatory with
respect to the voltage across the capacitor and inductor.

In the circuit of Fig. 20.7, for example, which is in the state of reso-
nance,

Qs � � � 80

and VL � VC � Qs E � (80)(10 V) � 800 V

which is certainly a potential of significant magnitude.

480 �
�

6 �

XL
�
R

VCs
� Qs E

XC E
�

R

XC E
�

ZT

VLs
� QsE

XL E
�

R

XL E
�

ZT

ƒr

20.4 ZT VERSUS FREQUENCY

The total impedance of the series R-L-C circuit of Fig. 20.2 at any fre-
quency is determined by

ZT � R � j XL � j XC or ZT � R � j (XL � XC)

The magnitude of the impedance ZT versus frequency is determined by

ZT � �R�2��� (�X�L��� X�C)�2�
The total-impedance-versus-frequency curve for the series resonant

circuit of Fig. 20.2 can be found by applying the impedance-versus-
frequency curve for each element of the equation just derived, written
in the following form:

(20.14)

where ZT ( f ) “means” the total impedance as a function of frequency.
For the frequency range of interest, we will assume that the resistance
R does not change with frequency, resulting in the plot of Fig. 20.8. The
curve for the inductance, as determined by the reactance equation, is a

ZT ( f ) � �[R�( f�)]�2��� [�X�L(�f )� �� X�C�( f�)]�2�

R  =  6 �

XC  =  480 �

–

+

E  =  10 V ∠ 0°

XL  =  480 �

FIG. 20.7

High-Q series resonant circuit.

R( f )

R

0 f

FIG. 20.8

Resistance versus frequency.
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straight line intersecting the origin with a slope equal to the inductance
of the coil. The mathematical expression for any straight line in a two-
dimensional plane is given by

y � mx � b

Thus, for the coil,

(where 2pL is the slope), producing the results shown in Fig. 20.9.
For the capacitor,

XC � or XC f �

which becomes yx � k, the equation for a hyperbola, where

y (variable) � XC

x (variable) � f

k (constant) �

The hyperbolic curve for XC ( f ) is plotted in Fig. 20.10. In particu-
lar, note its very large magnitude at low frequencies and its rapid drop-
off as the frequency increases.

If we place Figs. 20.9 and 20.10 on the same set of axes, we obtain
the curves of Fig. 20.11. The condition of resonance is now clearly
defined by the point of intersection, where XL � XC. For frequencies
less than fs, it is also quite clear that the network is primarily capacitive
(XC > XL). For frequencies above the resonant condition, XL > XC, and
the network is inductive.

Applying

ZT ( f ) � �[R�(�f )�]2� �� [�X�L(�f )� �� X�C�(�f )�]2�
� �[R�(�f )�]2� �� [�X�(�f )�]2�

to the curves of Fig. 20.11, where X( f ) � XL( f ) � XC ( f ), we obtain
the curve for ZT ( f ) as shown in Fig. 20.12. The minimum impedance
occurs at the resonant frequency and is equal to the resistance R. Note
that the curve is not symmetrical about the resonant frequency (espe-
cially at higher values of ZT).

The phase angle associated with the total impedance is

(20.15)

For the tan�1 x function (resulting when XL > XC), the larger x is, the
larger the angle v (closer to 90°). However, for regions where XC > XL,
one must also be aware that

(20.16)

At low frequencies, XC > XL, and v will approach �90° (capacitive),
as shown in Fig. 20.13, whereas at high frequencies, XL > XC, and v will
approach 90°. In general, therefore, for a series resonant circuit:

tan�1(�x) � �tan�1 x

v � tan�1 �
(XL �

R

XC)
�

1
�
2pC

1
�
2pC

1
�
2pfC

XL � 2pfL � 0 �  2pL    f   � 0

y  � m x b�

ƒr

XL  =  2pfL

XL ( f )

0

∆x

∆y
2pL  = =  m∆y

∆x

f

FIG. 20.9

Inductive reactance versus frequency.

XC  = 1
2pfC

f0

XC ( f )

FIG. 20.10

Capacitive reactance versus frequency.

XC

X

XL

XC  >  XL XL  >  XC

fs f0

FIG. 20.11

Placing the frequency response of the 
inductive and capacitive reactance of a 

series R-L-C circuit on the same set of axes.

b  ≠  a

ZT ( f )

ffs
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ZT

R

0

FIG. 20.12

ZT versus frequency for the series resonant 
circuit.
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f < fs: network capacitive; I leads E
f > fs: network inductive; E leads I
f � fs: network resistive; E and I are in phase

ƒr

Circuit capacitive
Leading Fp

v

90°
45°
0°

–45°
–90°

(E leads I)

Circuit inductive
Lagging Fp

fs f

FIG. 20.13

Phase plot for the series resonant circuit.

20.5 SELECTIVITY

If we now plot the magnitude of the current I � E/ZT versus frequency
for a fixed applied voltage E, we obtain the curve shown in Fig. 20.14,
which rises from zero to a maximum value of E/R (where ZT is a mini-
mum) and then drops toward zero (as ZT increases) at a slower rate than
it rose to its peak value. The curve is actually the inverse of the imped-
ance-versus-frequency curve. Since the ZT curve is not absolutely sym-
metrical about the resonant frequency, the curve of the current versus
frequency has the same property.

BW

I

Imax  = E
R

0.707Imax

0 f1 fs f2 f

FIG. 20.14

I versus frequency for the series resonant circuit.

There is a definite range of frequencies at which the current is near
its maximum value and the impedance is at a minimum. Those fre-
quencies corresponding to 0.707 of the maximum current are called the
band frequencies, cutoff frequencies, or half-power frequencies.
They are indicated by f1 and f2 in Fig. 20.14. The range of frequencies
between the two is referred to as the bandwidth (abbreviated BW) of
the resonant circuit.

Half-power frequencies are those frequencies at which the power
delivered is one-half that delivered at the resonant frequency; that is,

(20.17)PHPF � �
1
2

� Pmax
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The above condition is derived using the fact that

Pmax � I2
maxR

and PHPF � I 2R � (0.707Imax)
2R � (0.5)(I2

maxR) � Pmax

Since the resonant circuit is adjusted to select a band of frequencies,
the curve of Fig. 20.14 is called the selectivity curve. The term is
derived from the fact that one must be selective in choosing the fre-
quency to ensure that it is in the bandwidth. The smaller the bandwidth,
the higher the selectivity. The shape of the curve, as shown in Fig.
20.15, depends on each element of the series R-L-C circuit. If the resis-
tance is made smaller with a fixed inductance and capacitance, the
bandwidth decreases and the selectivity increases. Similarly, if the ratio
L/C increases with fixed resistance, the bandwidth again decreases with
an increase in selectivity.

In terms of Qs, if R is larger for the same XL, then Qs is less, as
determined by the equation Qs � qsL/R.

A small Qs, therefore, is associated with a resonant curve having a
large bandwidth and a small selectivity, while a large Qs indicates the
opposite.

For circuits where Qs � 10, a widely accepted approximation is that
the resonant frequency bisects the bandwidth and that the resonant
curve is symmetrical about the resonant frequency.

These conditions are shown in Fig. 20.16, indicating that the cutoff fre-
quencies are then equidistant from the resonant frequency.

For any Qs, the preceding is not true. The cutoff frequencies f1 and f2
can be found for the general case (any Qs) by first employing the fact
that a drop in current to 0.707 of its resonant value corresponds to an
increase in impedance equal to 1/0.707 � �2� times the resonant value,
which is R.

Substituting �2�R into the equation for the magnitude of ZT, we find
that

ZT � �R�2��� (�X�L��� X�C)�2�
becomes �2�R � �R�2��� (�X�L��� X�C)�2�
or, squaring both sides, that

2R2 � R2 � (XL � XC)2

and R2 � (XL � XC)2

Taking the square root of both sides gives us

R � XL � XC or R � XL � XC � 0

Let us first consider the case where XL > XC, which relates to f2 or
q2. Substituting q2L for XL and 1/q2C for XC and bringing both quanti-
ties to the left of the equal sign, we have

R � q2L � � 0 or Rq2 � q2
2L � � 0

which can be written

q2
2 � q2 � � 0

1
�
LC

R
�
L

1
�
C

1
�
q2C

1
�
2

ƒr

BW

BW

fs f0

I
R3 > R2 > R1 (L, C fixed)

R1(smaller)

R2

R3(larger)

fs f0

I

BW2

BW3

BW1

L3 /C3

L2/C2

L1/C1

(R  fixed)L3/C3 > L2/C2 > L1/C1

(a)

(b)

BW

FIG. 20.15

Effect of R, L, and C on the selectivity curve 
for the series resonant circuit.

Imax

0.707Imax

a

b

a = b

f1 f2fs

FIG. 20.16

Approximate series resonance curve for 
Qs ≥ 10.
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Solving the quadratic, we have

q2 �

and q2 � � � ��
R
L�2

2

�� �� �
L�4

C
��

with f2 � �
2
1
p
���

2
R
L
� � �

1
2

�����R
L

���
2

� �� �
L�4

C
��� (Hz) (20.18)

The negative sign in front of the second factor was dropped because

(1/2)�(R�/L�)2� �� 4�/L�C� is always greater than R/(2L). If it were not
dropped, there would be a negative solution for the radian frequency q.

If we repeat the same procedure for XC > XL, which relates to q1 or

f1 such that ZT � �R�2��� (�X�C��� X�L)�2�, the solution f1 becomes

f1 � �
2
1
p
����

2
R
L
� � �

1
2

�����R
L

���
2

� �� �
L�4

C
��� (Hz) (20.19)

The bandwidth (BW) is

BW � f2 � f1 � Eq. (20.18) � Eq. (20.19)

and (20.20)

Substituting R/L � qs /Qs from Qs � qsL /R and 1/2p � fs /qs from 
qs � 2pfs gives us

BW � � � �� � � � �� �

or (20.21)

which is a very convenient form since it relates the bandwidth to the Qs

of the circuit. As mentioned earlier, Equation (20.21) verifies that the
larger the Qs, the smaller the bandwidth, and vice versa.

Written in a slightly different form, Equation (20.21) becomes

(20.22)

The ratio ( f2 � f1)/fs is sometimes called the fractional bandwidth, pro-
viding an indication of the width of the bandwidth compared to the res-
onant frequency.

It can also be shown through mathematical manipulations of the per-
tinent equations that the resonant frequency is related to the geometric
mean of the band frequencies; that is,

�
f2 �

fs

f1
� � �

Q

1

s
�

BW � �
Q

fs

s
�

qs
�
Qs

fs
�
qs

R
�
L

1
�
2p

R
�
2pL

BW � f2 � f1 � �
2p

R
L

�

1
�
2

R
�
2L

�(�R/L) � �[��(R�/L�)]�2��� [���(4�/L�C�)]�
����

2

ƒr
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(20.23)

20.6 VR, VL, AND VC

Plotting the magnitude (effective value) of the voltages VR, VL, and VC

and the current I versus frequency for the series resonant circuit on the
same set of axes, we obtain the curves shown in Fig. 20.17. Note that
the VR curve has the same shape as the I curve and a peak value equal
to the magnitude of the input voltage E. The VC curve builds up slowly
at first from a value equal to the input voltage since the reactance of the
capacitor is infinite (open circuit) at zero frequency and the reactance of
the inductor is zero (short circuit) at this frequency. As the frequency
increases, 1/qC of the equation

VC � IXC � (I )� �1
�
qC

fs � �f1�f2�

ƒr

VL

VCmax
  =  VLmax

VCs
  =  VLs

  =  QE

VR
I

f
fLmax

fCmax

fs0

Imax

E

VC

FIG. 20.17

VR, VL, VC, and I versus frequency for a series resonant circuit.

becomes smaller, but I increases at a rate faster than that at which 1/qC
drops. Therefore, VC rises and will continue to rise due to the quickly
rising current, until the frequency nears resonance. As it approaches the
resonant condition, the rate of change of I decreases. When this occurs,
the factor 1/qC, which decreased as the frequency rose, will overcome
the rate of change of I, and VC will start to drop. The peak value will
occur at a frequency just before resonance. After resonance, both VC

and I drop in magnitude, and VC approaches zero.
The higher the Qs of the circuit, the closer fCmax

will be to fs, and the
closer VCmax

will be to QsE. For circuits with Qs ≥ 10, fCmax
	 fs, and

VCmax
	 QsE.

The curve for VL increases steadily from zero to the resonant fre-
quency since both quantities qL and I of the equation VL � IXL �
(I)(qL) increase over this frequency range. At resonance, I has reached
its maximum value, but qL is still rising. Therefore, VL will reach its
maximum value after resonance. After reaching its peak value, the volt-
age VL will drop toward E since the drop in I will overcome the rise in
qL. It approaches E because XL will eventually be infinite, and XC will
be zero.
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As Qs of the circuit increases, the frequency fLmax
drops toward fs, and

VLmax
approaches QsE. For circuits with Qs ≥ 10, fLmax

	 fs, and VLmax
	

QsE.
The VL curve has a greater magnitude than the VC curve for any fre-

quency above resonance, and the VC curve has a greater magnitude than
the VL curve for any frequency below resonance. This again verifies that
the series R-L-C circuit is predominantly capacitive from zero to the
resonant frequency and predominantly inductive for any frequency
above resonance.

For the condition Qs ≥ 10, the curves of Fig. 20.17 will appear as
shown in Fig. 20.18. Note that they each peak (on an approximate
basis) at the resonant frequency and have a similar shape.

ƒr

VCmax
  =  VLmax

  =  QsE

VC

E
VL

VR
Imax

0 f1 fs f2

I

VL

VC

f

FIG. 20.18

VR, VL, VC, and I for a series resonant circuit where Qs ≥ 10.

In review,

1. VC and VL are at their maximum values at or near resonance
(depending on Qs).

2. At very low frequencies, VC is very close to the source voltage
and VL is very close to zero volts, whereas at very high frequen-
cies, VL approaches the source voltage and VC approaches zero
volts.

3. Both VR and I peak at the resonant frequency and have the same
shape.

20.7 EXAMPLES (SERIES RESONANCE)

EXAMPLE 20.1

a. For the series resonant circuit of Fig. 20.19, find I, VR, VL, and VC

at resonance.
b. What is the Qs of the circuit?
c. If the resonant frequency is 5000 Hz, find the bandwidth.
d. What is the power dissipated in the circuit at the half-power fre-

quencies?
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Solutions:

a. ZTs
� R � 2 �

I � � � 5 A �0°

VR � E � 10 V �0°

VL � (I �0°)(XL �90°) � (5 A �0°)(10 � �90°) � 50 V �90°

10 V �0°
��
2 � �0°

E
�
ZTs

ƒr

VR

VC

–

+

E  =  10 V ∠ 0°

I

+ –

R  =  2 � XL  =  10 �

VL+ –

XC  =  10 �
+

–

FIG. 20.19

Example 20.1.

VC � (I �0°)(XC ��90°)� (5 A �0°)(10 � ��90°)�50 V ��90°

b. Qs � � � 5

c. BW � f2 � f1 � � � 1000 Hz
5000 Hz
�

5

fs
�
Qs

10 �
�
2 �

XL
�
R

d. PHPF � Pmax � I 2
maxR � � �(5 A)2(2 �) � 25 W

EXAMPLE 20.2 The bandwidth of a series resonant circuit is 400 Hz.
a. If the resonant frequency is 4000 Hz, what is the value of Qs?
b. If R � 10 �, what is the value of XL at resonance?
c. Find the inductance L and capacitance C of the circuit.

Solutions:

a. BW � or Qs � � � 10

b. Qs � or XL � QsR � (10)(10 �) � 100 �

c. XL � 2pfsL or L � � � 3.98 mH

XC � or C � �

� 0.398 mF

EXAMPLE 20.3 A series R-L-C circuit has a series resonant fre-
quency of 12,000 Hz.
a. If R � 5 �, and if XL at resonance is 300 �, find the bandwidth.
b. Find the cutoff frequencies.

Solutions:

a. Qs � � � 60

BW � � � 200 Hz
12,000 Hz
��

60

fs
�
Qs

300 �
�

5 �

XL
�
R

1
���
2p(4000 Hz)(100 �)

1
�
2pfsXC

1
�
2pfsC

100 �
��
2p(4000 Hz)

XL
�
2pfs

XL
�
R

4000 Hz
�
400 Hz

fs
�
BW

fs
�
Qs

1
�
2

1
�
2

1
�
2
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b. Since Qs ≥ 10, the bandwidth is bisected by fs. Therefore,

f2 � fs � � 12,000 Hz � 100 Hz � 12,100 Hz

and f1 � 12,000 Hz � 100 Hz � 11,900 Hz

EXAMPLE 20.4

a. Determine the Qs and bandwidth for the response curve of Fig.
20.20.

b. For C � 101.5 nF, determine L and R for the series resonant circuit.
c. Determine the applied voltage.

Solutions:

a. The resonant frequency is 2800 Hz. At 0.707 times the peak value,

BW � 200 Hz

and Qs � � � 14

b. fs � or L �

�

� 31.832 mH

Qs � or R � �

� 40 �

c. Imax � or E � ImaxR

� (200 mA)(40 �) � 8 V

EXAMPLE 20.5 A series R-L-C circuit is designed to resonant at qs �
105 rad/s, have a bandwidth of 0.15qs, and draw 16 W from a 120-V
source at resonance.
a. Determine the value of R.
b. Find the bandwidth in hertz.
c. Find the nameplate values of L and C.
d. Determine the Qs of the circuit.
e. Determine the fractional bandwidth.

Solutions:

a. P � and R � � � 900 �

b. fs � � � 15,915.49 Hz

BW � 0.15fs � 0.15(15,915.49 Hz) � 2387.32 Hz

c. Eq. (20.20):

BW � and L � � � 60 mH
900 �

��
2p(2387.32 Hz)

R
�
2pBW

R
�
2pL

105 rad/s
�

2p

qs
�
2p

(120 V)2

�
16 W

E2

�
P

E2

�
R

E
�
R

2p(2800 Hz)(31.832 � 10�3 H)
����

14

XL
�
Qs

XL
�
R

1
����
4p2(2.8 � 103 Hz)2(101.5 � 10�9 F)

1
�
4p2fs

2C
1

�
2p�L�C�

2800 Hz
�
200 Hz

fs
�
BW

BW
�

2

ƒr

I (mA)

200

100

0 2000 3000 4000 f (Hz)

FIG. 20.20

Example 20.4.

fs � and C � �

� 1.67 nF

1
����
4p2(15,915.49 Hz)2(60 � 10�3 H)

1
�
4p2fs

2L

1
�
2p�L�C�
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d. Qs � � � � 6.67

e. � � � � 0.15

PARALLEL RESONANCE

20.8 PARALLEL RESONANT CIRCUIT

The basic format of the series resonant circuit is a series R-L-C combi-
nation in series with an applied voltage source. The parallel resonant
circuit has the basic configuration of Fig. 20.21, a parallel R-L-C com-
bination in parallel with an applied current source.

For the series circuit, the impedance was a minimum at resonance,
producing a significant current that resulted in a high output voltage for
VC and VL. For the parallel resonant circuit, the impedance is relatively
high at resonance, producing a significant voltage for VC and VL

through the Ohm’s law relationship (VC � IZT). For the network of Fig.
20.21, resonance will occur when XL � XC, and the resonant frequency
will have the same format obtained for series resonance.

If the practical equivalent of Fig. 20.21 had the format of Fig. 20.21,
the analysis would be as direct and lucid as that experienced for series
resonance. However, in the practical world, the internal resistance of the
coil must be placed in series with the inductor, as shown in Fig. 20.22.
The resistance Rl can no longer be included in a simple series or paral-
lel combination with the source resistance and any other resistance
added for design purposes. Even though Rl is usually relatively small in
magnitude compared with other resistance and reactance levels of the
network, it does have an important impact on the parallel resonant con-
dition, as will be demonstrated in the sections to follow. In other words,
the network of Fig. 20.21 is an ideal situation that can be assumed only
for specific network conditions.

Our first effort will be to find a parallel network equivalent (at the
terminals) for the series R-L branch of Fig. 20.22 using the technique
introduced in Section 15.10. That is,

ZR-L � Rl � j XL

and YR-L � � � � j 

� � �

with (20.24)

and (20.25)

as shown in Fig. 20.23.
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Redrawing the network of Fig. 20.22 with the equivalent of Fig.
20.23 and a practical current source having an internal resistance Rs will
result in the network of Fig. 20.24.

ƒr

Rl

XL

Rp
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2 + XL
2

RL
XLp

Rl
2 + XL

2

RL
=

FIG. 20.23

Equivalent parallel network for a series R-L combination.
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ZT
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Source

FIG. 20.24

Substituting the equivalent parallel network for the series R-L combination of
Fig. 20.22.

If we define the parallel combination of Rs and Rp by the notation

(20.26)

the network of Fig. 20.25 will result. It has the same format as the ideal
configuration of Fig. 20.21.

We are now at a point where we can define the resonance condi-
tions for the practical parallel resonant configuration. Recall that for
series resonance, the resonant frequency was the frequency at which
the impedance was a minimum, the current a maximum, and the input
impedance purely resistive, and the network had a unity power factor.
For parallel networks, since the resistance Rp in our equivalent model
is frequency dependent, the frequency at which maximum VC is
obtained is not the same as required for the unity-power-factor char-
acteristic. Since both conditions are often used to define the resonant
state, the frequency at which each occurs will be designated by differ-
ent subscripts.

Unity Power Factor, fp

For the network of Fig. 20.25,
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FIG. 20.25

Substituting R � Rs � Rp for the network of
Fig. 20.24.
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and (20.27)

For unity power factor, the reactive component must be zero as
defined by

� � 0

Therefore, �

and (20.28)

Substituting for XLp
yields

(20.29)

The resonant frequency, fp, can now be determined from Eq. (20.29) as
follows:

R2
l � X2

L � XC XL � � �qL �

or X2
L � � R2

l

with 2pfpL � �� �� R�2
l�

and fp � �� �� R�2
l�

Multiplying the top and bottom of the factor within the square-root
sign by C/L produces

fp � ��� �1� ����

and fp � �1� �� �
R�L

2
l C
�� (20.30)

or fp � fs�1� �� �
R�L

2
l C
�� (20.31)

where fp is the resonant frequency of a parallel resonant circuit (for 
Fp � 1) and fs is the resonant frequency as determined by XL � XC for
series resonance. Note that unlike a series resonant circuit, the resonant
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frequency fp is a function of resistance (in this case Rl). Note also, how-
ever, the absence of the source resistance Rs in Eqs. (20.30) and (20.31).
Since the factor �1� �� (�R�2

lC�/L�)� is less than 1, fp is less than fs. Recog-
nize also that as the magnitude of Rl approaches zero, fp rapidly
approaches fs.

Maximum Impedance, fm

At f � fp the input impedance of a parallel resonant circuit will be
near its maximum value but not quite its maximum value due to the
frequency dependence of Rp. The frequency at which maximum
impedance will occur is defined by fm and is slightly more than fp, as
demonstrated in Fig. 20.26. The frequency fm is determined by differ-
entiating (calculus) the general equation for ZT with respect to fre-
quency and then determining the frequency at which the resulting
equation is equal to zero. The algebra is quite extensive and cumber-
some and will not be included here. The resulting equation, however,
is the following:

fm � fs�1� ���� ����� (20.32)

Note the similarities with Eq. (20.31). Since the square-root factor of
Eq. (20.32) is always more than the similar factor of Eq. (20.31), fm is
always closer to fs and more than fp. In general,

(20.33)

Once fm is determined, the network of Fig. 20.25 can be used to
determine the magnitude and phase angle of the total impedance at the
resonance condition simply by substituting f � fm and performing the
required calculations. That is,

f � fm
(20.34)

20.9 SELECTIVITY CURVE FOR
PARALLEL RESONANT CIRCUITS

The ZT -versus-frequency curve of Fig. 20.26 clearly reveals that a par-
allel resonant circuit exhibits maximum impedance at resonance ( fm),
unlike the series resonant circuit, which experiences minimum resis-
tance levels at resonance. Note also that ZT is approximately Rl at f �
0 Hz since ZT � Rs � Rl 	 Rl.

Since the current I of the current source is constant for any value of
ZT or frequency, the voltage across the parallel circuit will have the
same shape as the total impedance ZT, as shown in Fig. 20.27.

For the parallel circuit, the resonance curve of interest is that of the
voltage VC across the capacitor. The reason for this interest in VC

derives from electronic considerations that often place the capacitor at
the input to another stage of a network.

ZTm
� R � XLp

� XC

fs > fm > fp

R2
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�
L

1
�
4

ƒr

FIG. 20.26

ZT versus frequency for the parallel resonant 
circuit.
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FIG. 20.27

Defining the shape of the Vp(f) curve.
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Since the voltage across parallel elements is the same,

(20.35)

The resonant value of VC is therefore determined by the value of ZTm

and the magnitude of the current source I.
The quality factor of the parallel resonant circuit continues to be

determined by the ratio of the reactive power to the real power. That is,

Qp �

where R � Rs � Rp, and Vp is the voltage across the parallel branches.
The result is

Qp � �
X

R

Lp

� � (20.36a)

or since XLp
� XC at resonance,

Qp � (20.36b)

For the ideal current source (Rs � ∞ �) or when Rs is sufficiently
large compared to Rp, we can make the following approximation:

R � Rs 
 Rp 	 Rp

and Qp � � �

so that Qp � �
X

R
L

l
� � Ql

Rs k Rp

(20.37)

which is simply the quality factor Ql of the coil.
In general, the bandwidth is still related to the resonant frequency

and the quality factor by

BW � f2 � f1 � �
Q

fr

p
� (20.38)

The cutoff frequencies f1 and f2 can be determined using the equiva-
lent network of Fig. 20.25 and the unity power condition for resonance.
The half-power frequencies are defined by the condition that the output
voltage is 0.707 times the maximum value. However, for parallel reso-
nance with a current source driving the network, the frequency response
for the driving point impedance is the same as that for the output volt-
age. This similarity permits defining each cutoff frequency as the fre-
quency at which the input impedance is 0.707 times its maximum
value. Since the maximum value is the equivalent resistance R of Fig.
20.25, the cutoff frequencies will be associated with an impedance
equal to 0.707R or (1/�2�)R.
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Setting the input impedance for the network of Fig. 20.25 equal to
this value will result in the following relationship:

Z � � 0.707R

which can be written as

Z � �
R

�
�2�

1
———

�
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1
��1 � j R�qC � �

q

1
L
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�
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q

1

L
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ƒr

or �

and finally �

The only way the equality can be satisfied is if the magnitude of the
imaginary term on the bottom left is equal to 1 because the magnitude
of 1 � j 1 must be equal to �2�.

The following relationship, therefore, defines the cutoff frequencies
for the system:

R�qC � � � 1

Substituting q � 2pf and rearranging will result in the following
quadratic equation:

f 2 � � � 0

having the form af 2 � bf � c � 0

with a � 1 b � � and c � �

Substituting into the equation:

f �

will result in the following after a series of careful mathematical manip-
ulations:
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���

R
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R
1�2���� �
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��� (20.39a)

f2 � �
4p

1
C
���
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R
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��� (20.39b)

Since the term in the brackets of Eq. (20.39a) will always be negative,
simply associate f1 with the magnitude of the result.

The effect of Rl, L, and C on the shape of the parallel resonance
curve, as shown in Fig. 20.28 for the input impedance, is quite similar
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to their effect on the series resonance curve. Whether or not Rl is zero,
the parallel resonant circuit will frequently appear in a network
schematic as shown in Fig. 20.28.

At resonance, an increase in Rl or a decrease in the ratio L /C will
result in a decrease in the resonant impedance, with a corresponding
increase in the current. The bandwidth of the resonance curves is given
by Eq. (20.38). For increasing Rl or decreasing L (or L /C for constant
C), the bandwidth will increase as shown in Fig. 20.28.

At low frequencies, the capacitive reactance is quite high, and the
inductive reactance is low. Since the elements are in parallel, the total
impedance at low frequencies will therefore be inductive. At high fre-
quencies, the reverse is true, and the network is capacitive. At reso-
nance ( fp), the network appears resistive. These facts lead to the phase
plot of Fig. 20.29. Note that it is the inverse of that appearing for the
series resonant circuit because at low frequencies the series resonant
circuit was capacitive and at high frequencies it was inductive.

ƒr
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L2/C2
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FIG. 20.28

Effect of Rl, L, and C on the parallel resonance curve.

20.10 EFFECT OF Ql ≥ 10

The content of the previous section may suggest that the analysis of
parallel resonant circuits is significantly more complex than encoun-
tered for series resonant circuits. Fortunately, however, this is not the
case since, for the majority of parallel resonant circuits, the quality fac-
tor of the coil Ql is sufficiently large to permit a number of approxima-
tions that simplify the required analysis.

FIG. 20.29

Phase plot for the parallel resonant circuit.
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Inductive Reactance, XLp

If we expand XLp
as

XLp
� � � XL � � XL

then, for Ql ≥ 10, XL /Q2
l 	 0 compared to XL, and

Ql ≥ 10
(20.40)

and since resonance is defined by XLp
� XC, the resulting condition for

resonance is reduced to:

Ql ≥ 10
(20.41)

Resonant Frequency, fp (Unity Power Factor)

We can rewrite the factor R2
lC/L of Eq. (20.31) as

� � � �

and substitute Eq. (20.41) (XL 	 XC):

� �

Equation (20.31) then becomes

fp � fs�1� �� �
Q�1

2�
l

��
Ql ≥ 10

(20.42)

clearly revealing that as Ql increases, fp becomes closer and closer to fs.
For Ql ≥ 10,

1 � 	 1

and fp 	 fs �
Ql ≥ 10

(20.43)

Resonant Frequency, fm (Maximum VC)

Using the equivalency R2
lC/L � 1/Q2

l derived for Eq. (20.42), Equation
(20.32) will take on the following form:

fm 	 fs�1� ���������
Ql ≥ 10

(20.44)
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The fact that the negative term under the square root will always be
less than that appearing in the equation for fp reveals that fm will always
be closer to fs than fp.

For Ql ≥ 10 the negative term becomes very small and can be
dropped from consideration, leaving:

fm 	 fs � �
2p�

1

L�C�
�

Ql ≥ 10

(20.45)

In total, therefore, for Ql ≥ 10,

Ql ≥ 10 (20.46)

Rp

Rp � � Rl � � � � Rl � Rl

� Rl � Q2
l Rl � (1 � Q2

l )Rl

For Ql ≥ 10, 1 � Q2
l 	 Q2

l , and

Ql ≥ 10
(20.47)

Applying the approximations just derived to the network of Fig.
20.24 will result in the approximate equivalent network for Ql ≥ 10 of
Fig. 20.30, which is certainly a lot “cleaner” in general appearance.
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lRl
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l
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�
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�
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R2
l � X2

L
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ƒr

Rs Rp  =  Q2RlZTp

I XLp
  =  XL XC

FIG. 20.30

Approximate equivalent circuit for Ql ≥ 10.

Substituting Ql � into Eq. (20.47),

Rp 	 Ql
2Rl � � �

2
Rl � � �

and
Ql ≥ 10

(20.48)

ZTp

The total impedance at resonance is now defined by

Ql ≥ 10
(20.49)ZTp
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For an ideal current source (Rs � ∞ �), or if Rs k Rp, the equation
reduces to

Ql ≥ 10, Rs k Rp

(20.50)

Qp

The quality factor is now defined by

Qp � 	 (20.51)

Quite obviously, therefore, Rs does have an impact on the quality
factor of the network and the shape of the resonant curves.

If an ideal current source (Rs � ∞ �) is employed, or if Rs k Rp,

Qp 	 � � �

and Ql ≥ 10, Rs k Rp
(20.52)

BW

The bandwidth defined by fp is

BW � f2 � f1 � �
Q

fp

p
� (20.53)

By substituting Qp from above and performing a few algebraic manip-
ulations, we can show that

BW � f2 � f1 	 � � � (20.54)

clearly revealing the impact of Rs on the resulting bandwidth. Of course,
if Rs � ∞ � (ideal current source):

BW � f2 � f1 	 �
2

R

p

l

L
�

Rs � ∞ �

(20.55)

IL and IC

A portion of Fig. 20.30 is reproduced in Fig. 20.31, with IT defined as
shown.

As indicated, ZTp
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l
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. The voltage across the paral-

lel network is, therefore,
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The magnitude of the current IC can then be determined using Ohm’s
law, as follows:

IC � �

Substituting XC � XL when Ql ≥ 10,

IC � � IT � IT 

and Ql ≥ 10 (20.56)

revealing that the capacitive current is Ql times the magnitude of the
current entering the parallel resonant circuit. For large Ql, the current IC

can be significant.
A similar derivation results in

Ql ≥ 10 (20.57)

Conclusions

The equations resulting from the application of the condition Ql ≥ 10
are obviously a great deal easier to apply than those obtained earlier. It
is, therefore, a condition that should be checked early in an analysis to
determine which approach must be applied. Although the condition 
Ql ≥ 10 was applied throughout, many of the equations are still good
approximations for Ql < 10. For instance, if Ql � 5, XLp

� (XL/Q2
l ) �

Xl � (XL/25) � XL � 1.04XL, which is very close to XL. In fact, for
Ql � 2, XLp

� (XL/4) � XL � 1.25XL, which agreeably is not XL, but it
is only 25% off. In general, be aware that the approximate equations
can be applied with good accuracy with Ql < 10. The smaller the level
of Ql, however, the less valid the approximation. The approximate equa-
tions are certainly valid for a range of values of Ql < 10 if a rough
approximation to the actual response is desired rather than one accurate
to the hundredths place.

20.11 SUMMARY TABLE

In an effort to limit any confusion resulting from the introduction of fp
and fm and an approximate approach dependent on Ql, summary Table
20.1 was developed. One can always use the equations for any Ql, but

IL 	 QlIT

IC 	 QlIT

Q2
l

�
Ql

Q2
l

—

�
X

R
L

l
�

IT Q2
lRl

�
XL

ITQ2
lRl

�
XC

VC
�
XC

ƒr
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+
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ICIL

ZTp
  =  Rp  =  Ql

2Rl

FIG. 20.31

Establishing the relationship between IC and IL and the current IT.
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a proficiency in applying the approximate equations defined by Ql will
pay dividends in the long run.

For the future, the analysis of a parallel resonant network might pro-
ceed as follows:

1. Determine fs to obtain some idea of the resonant frequency.
Recall that for most situations, fs, fm, and fp will be relatively
close to each other.

2. Calculate an approximate Ql using fs from above, and compare it
to the condition Ql ≥ 10. If the condition is satisfied, the approx-
imate approach should be the chosen path unless a high degree of
accuracy is required.

3. If Ql is less than 10, the approximate approach can be applied, but
it must be understood that the smaller the level of Ql, the less
accurate the solution. However, considering the typical variations
from nameplate values for many of our components and that a
resonant frequency to the tenths place is seldom required, the use
of the approximate approach for many practical situations is usu-
ally quite valid.

20.12 EXAMPLES (PARALLEL RESONANCE)

EXAMPLE 20.6 Given the parallel network of Fig. 20.32 composed
of “ideal” elements:
a. Determine the resonant frequency fp.
b. Find the total impedance at resonance.
c. Calculate the quality factor, bandwidth, and cutoff frequencies f1 and

f2 of the system.

TABLE 20.1

Parallel resonant circuit (fs � 1/(2p�L�C�)).

Any Ql Ql ≥ 10 Ql ≥ 10, Rs k Ql
2Rl

fp fs�1� ���� fs fs

fm fs�1� ��������� fs fs

ZTp
Rs 
 Rp � Rs 
 � � Rs 
 Q2

lRl Q2
lRl

ZTm
Rs 
 ZR�L 
 ZC Rs 
 Q2

l Rl Q2
lRl

Qp � � Ql

BW or � �

IL , IC Network analysis IL � IC � QlIT IL � IC � QlIT

fs
�
Ql

fp
�
Ql

fs
�
Qp

fp
�
Qp

fm
�
Qp

fp
�
Qp

ZTp
�
XC

ZTp
�
XL

ZTp
�
XC

ZTp
�
XLp

R2
l � X2

L
�

Rl

R2
lC

�
L

1
�
4

R2
lC

�
L



EXAMPLES (PARALLEL RESONANCE)  913

d. Find the voltage VC at resonance.
e. Determine the currents IL and IC at resonance.

Solutions:

a. The fact that Rl is zero ohms results in a very high Ql (� XL/Rl), per-
mitting the use of the following equation for fp:

fp � fs � �

� 5.03 kHz

b. For the parallel reactive elements:

ZL � ZC �

but XL � XC at resonance, resulting in a zero in the denominator of
the equation and a very high impedance that can be approximated by
an open circuit. Therefore,

ZTp
� Rs � ZL � ZC � Rs � 10 k�

c. Qp � � � � 316.41

BW � � � 15.90 Hz

Eq. (20.39a):

f1 � � � ��
R

1�2���� �
4�L

C
���1

�
R

1
�
4pC

5.03 kHz
�

316.41

fp
�
Qp

10 k�
���
2p(5.03 kHz)(1 mH)

Rs
�
2pfpL

Rs
�
XLp

(XL �90°)(XC ��90°)
���

�j(XL � XC)

1
���
2p�(1� m�H�)(�1�m�F)�

1
�
2p�L�C�

ƒr

FIG. 20.32

Example 20.6.

ZTp
10 k� 1 mH 1 mF VC

+

–

ICIL

I  =  10 mA Rs

Source “Tank circuit”

L C

� � � �� �����
� 5.025 kHz

Eq. (20.39b):

f2 � �
4p

1

C
���

R

1
� � ��

R

1�2���� �
4�L

C
���

� 5.041 kHz

d. VC � IZTp
� (10 mA)(10 k�) � 100 V

e. IL � � � � � 3.16 A

IC � � � 3.16 A (� QpI )
100 V
�
31.6 �

VC
�
XC

100 V
�
31.6 �

100 V
���
2p(5.03 kHz)(1 mH)

VC
�
2pfp L

VL
�
XL

4(1 mF)
�

1 mH
1

��
(10 k�)2

1
�
10 k�

1
��
4p(1 mF)
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Example 20.6 demonstrates the impact of Rs on the calculations
associated with parallel resonance. The source impedance is the only
factor to limit the input impedance and the level of VC.

EXAMPLE 20.7 For the parallel resonant circuit of Fig. 20.33 with 
Rs � � �:

ƒr

Rl 20 �

XL 0.3 mH

C 100 nF VC

+

–

ZTp

I  =  2 mA

a. Determine fs, fm, and fp, and compare their levels.
b. Calculate the maximum impedance and the magnitude of the voltage

VC at fm.
c. Determine the quality factor Qp.
d. Calculate the bandwidth.
e. Compare the above results with those obtained using the equations

associated with Ql ≥ 10.

Solutions:

a. fs � � � 29.06 kHz
1

���
2p �(0�.3� m�H�)(�1�0�0� n�F�)�

1
�
2p�L�C�

FIG. 20.33

Example 20.7.

fm � fs�1� �� ��
1

4�����
R�L

2
lC
����

� (29.06 kHz)�1� ���������
� 28.58 kHz

fp � fs�1� �� �
R�L

2
lC
�� � (29.06 kHz)�1� �� �����

� 27.06 kHz

Both fm and fp are less than fs, as predicted. In addition, fm is closer
to fs than fp, as forecast. fm is about 0.5 kHz less than fs, whereas fp
is about 2 kHz less. The differences among fs, fm, and fp suggest a
low-Q network.

b. ZTm
� (Rl � j XL) 
 �j XC at f � fm

XL � 2pfmL � 2p(28.58 kHz)(0.3 mH) � 53.87 �

XC � � � 55.69 �

Rl � j XL � 20 � � j 53.87 � � 57.46 � �69.63°

ZTm
�

� 159.34 � ��15.17°

VCmax
� IZTm

� (2 mA)(159.34 �) � 318.68 mV

(57.46 � �69.63°)(55.69 � ��90°)
����

20 � � j 53.87 � � j 55.69 �

1
���
2p(28.58 kHz)(100 nF)

1
�
2pfmC

(20 �)2(100 nF)
��

0.3 mH

(20 �)2(100 nF)
��

0.3 mH

1
�
4
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c. Rs � ∞ �; therefore,

Qp � � � Ql �

� � � 2.55

The low Q confirms our conclusion of part (a). The differences
among fs, fm, and fp will be significantly less for higher-Q net-
works.

d. BW � � � 10.61 kHz

e. For Ql ≥ 10, fm � fp � fs � 29.06 kHz

Qp � Ql � � � 2.74

(versus 2.55 above)

ZTp
� Q2

lRl � (2.74)2
• 20 � � 150.15 � �0°

(versus 159.34 � ��15.17° above)

VCmax
� IZTp

� (2 mA)(150.15 �) � 300.3 mV
(versus 318.68 mV above)

BW � � � 10.61 kHz

(versus 10.61 kHz above)

The results reveal that, even for a relatively low Q system, the approx-
imate solutions are still in the ballpark compared to those obtained
using the full equations. The primary difference is between fs and fp
(about 7%), with the difference between fs and fm at less than 2%. For
the future, using fs to determine Ql will certainly provide a measure of
Ql that can be used to determine whether the approximate approach is
appropriate.

EXAMPLE 20.8 For the network of Fig. 20.34 with fp provided:
a. Determine Ql.
b. Determine Rp.
c. Calculate ZTp.

d. Find C at resonance.
e. Find Qp.
f. Calculate the BW and cutoff frequencies.

Solutions:

a. Ql � � � � 25.12

b. Ql ≥ 10. Therefore,

Rp 	 Q2
lRl � (25.12)2(10 �) � 6.31 k�

c. ZTp
� Rs � Rp � 40 k� � 6.31 k� � 5.45 k�

d. Ql ≥ 10. Therefore,

fp 	

and C � � � 15.83 nF
1

���
4p2(0.04 MHz)2(1 mH)

1
�
4p2f 2L

1
�
2p�L�C�

2p(0.04 MHz)(1 mH)
���

10 �

2pfpL
�

Rl

XL
�
Rl

29.06 kHz
��

2.74

fp
�
Qp

2p(29.06 kHz)(0.3 mH)
���

20 �

2pfsL
�

Rl

27.06 kHz
��

2.55

fp
�
Qp

51 �
�
20 �

2p(27.06 kHz)(0.3 mH)
���

20 �

XL
�
Rl

Rp
�
XLp

Rs 
 Rp
�

XLp

ƒr

CRs

L

40 k�

Rl 10 �

1 mH

fp  =  0.04 MHz

I

FIG. 20.34

Example 20.8.
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e. Ql ≥ 10. Therefore,

Qp � � � � 21.68

f. BW � � � 1.85 kHz
0.04 MHz
��

21.68

fp
�
Qp

5.45 k�
���
2p(0.04 MHz)(1 mH)

Rs � Q2
lRl

�
2pfpL

ZTp
�
XL

ƒr

IC  =  2 mA

50 k�

Rl 100 �

L 5 mH

C 50 pF

Vp

FIG. 20.35

Example 20.9.

CRs
50 k�

L

Rl 100 �

5 mH

50 pF

Vp

2 mAI

FIG. 20.36

Equivalent network for the transistor 
configuration of Fig. 20.35.

f1 � � � �� �����4C
�
L

1
�
R2

1
�
R

1
�
4pC

� � � �� �����
� 5.005 � 106[183.486 � 10�6 � 7.977 � 10�3]

� 5.005 � 106[�7.794 � 10�3]

� 39.009 kHz (ignoring the negative sign)

f2 � � � �� �����
� 5.005 � 106[183.486 � 10�6 � 7.977 � 10�3]

� 5.005 � 106[8.160 � 10�3]

� 40.843 kHz

Note that f2 � f1 � 40.843 kHz � 39.009 kHz � 1.834 kHz, con-
firming our solution for the bandwidth above. Note also that the band-
width is not symmetrical about the resonant frequency, with 991 Hz
below and 843 Hz above.

EXAMPLE 20.9 The equivalent network for the transistor configura-
tion of Fig. 20.35 is provided in Fig. 20.36.
a. Find fp.
b. Determine Qp.
c. Calculate the BW.
d. Determine Vp at resonance.
e. Sketch the curve of VC versus frequency.

Solutions:

a. fs � � � 318.31 kHz

XL � 2pfsL � 2p(318.31 kHz)(5 mH) � 10 k�

Ql � � � 100 > 10

Therefore, fp � fs � 318.31 kHz. Using Eq. (20.31) would result in
	 318.5 kHz.

b. Qp �

Rp � Q2
lRl � (100)2100 � � 1 M�

Qp � � � 4.76

Note the drop in Q from Ql � 100 to Qp � 4.76 due to Rs.

c. BW � � � 66.87 kHz
318.31 kHz
��

4.76

fp
�
Qp

47.62 k�
��

10 k�

50 k� � 1 M�
��

10 k�

Rs 
 Rp
�

XL

10 k�
�
100 �

XL
�
Rl

1
���
2p�(5� m�H�)(�5�0� p�F�)�

1
�
2p�L�C�

4C
�
L

1
�
R2

1
�
R

1
�
4pC

4(15.9 mF)
��

1 mH
1

��
(5.45 k�)2

1
�
5.45 k�

1
��
4p(15.9 mF)
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On the other hand,

BW � � � � � � � �
� 66.85 kHz

compares very favorably with the above solution.

d. Vp � IZTp
� (2 mA)(Rs � Rp) � (2 mA)(47.62 k�) � 95.24 V

e. See Fig. 20.37.

1
��
(50 k�)(50 pF)

100 �
�
5 mH

1
�
2p

1
�
RsC

Rl
�
L

1
�
2p

ƒr

EXAMPLE 20.10 Repeat Example 20.9, but ignore the effects of Rs,
and compare results.

Solutions:

a. fp is the same, 318.31 kHz.
b. For Rs � ∞ �,

Qp � Ql � 100 (versus 4.76)

c. BW � � � 3.183 kHz (versus 66.87 kHz)

d. ZTp
� Rp � 1 M� (versus 47.62 k�)

Vp � IZTp
� (2 mA)(1 M�) � 2000 V (versus 95.24 V)

The results obtained clearly reveal that the source resistance can
have a significant impact on the response characteristics of a parallel
resonant circuit.

EXAMPLE 20.11 Design a parallel resonant circuit to have the
response curve of Fig. 20.38 using a 1-mH, 10-� inductor and a current
source with an internal resistance of 40 k�.

Solution:

BW �
fp

�
Qp

318.31 kHz
��

100

fp
�
Qp

FIG. 20.37

Resonance curve for the network of Fig. 20.36.

Vp

95.24 V

67.34 V

0

318.31 –              kHz66.87
2

318.31 +              kHz  =  351.7 kHz66.87
2

318.31 kHz=  284.9 kHz

Qp  =  4.76BW

BW  =  2500 Hz

fp  =  50 kHz f0

Vp

10 V

FIG. 20.38

Example 20.11.
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Therefore,

Qp � � � 20

XL � 2pfpL � 2p(50 kHz)(1 mH) � 314 �

and Ql � � � 31.4

Rp � Q2
lR � (31.4)2(10 �) � 9859.6 �

Qp � � � 20 (from above)

so that � 6280

resulting in Rs � 17.298 k�

However, the source resistance was given as 40 k�. We must there-
fore add a parallel resistor (R′) that will reduce the 40 k� to approxi-
mately 17.298 k�; that is,

� 17.298 k�

Solving for R′:

R′ � 30.481 k�

The closest commercial value is 30 k�. At resonance, XL � XC, and

XC �

C � �

and C 	 0.01 mF (commercially available)

ZTp
� Rs � Q2

lRl

� 17.298 k� � 9859.6 �
� 6.28 k�

with Vp � IZTp

and I � � 	 1.6 mA

The network appears in Fig. 20.39.

10 V
�
6.28 k�

Vp
�
ZTp

1
��
2p(50 kHz)(314 �)

1
�
2pfp XC

1
�
2pfpC

(40 k�)(R′)
��
40 k� � R′

(Rs)(9859.6)
��
Rs � 9859.6

Rs � 9859.6 �
��

314 �

R
�
XL

314 �
�
10 �

XL
�
Rl

50,000 Hz
��
2500 Hz

fp
�
BW

ƒr

Rs 40 k� R	 30 k�

Rl 10 �

I 1.6 mA

L 1 mH

C 0.01 mF

FIG. 20.39

Network designed to meet the criteria of Fig. 20.38.
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20.13 APPLICATIONS

Stray Resonance

Stray resonance, like stray capacitance and inductance and unexpected
resistance levels, can occur in totally unexpected situations and can
severely affect the operation of a system. All that is required to produce
stray resonance would be, for example, a level of capacitance intro-
duced by parallel wires or copper leads on a printed circuit board, or
simply two parallel conductive surfaces with residual charge and induc-
tance levels associated with any conductor or components such as tape
recorder heads, transformers, and so on, that provide the elements nec-
essary for a resonance effect. In fact, this resonance effect is a very
common effect in the everyday cassette tape recorder. The play/record
head is a coil that can act like an inductor and an antenna. Combine this
factor with the stray capacitance and real capacitance in the network to
form the tuning network, and the tape recorder with the addition of a
semiconductor diode can respond like an AM radio. As you plot the fre-
quency response of any transformer, you will normally find a region
where the response has a peaking effect (look ahead at Fig. 25.23). This
peaking is due solely to the inductance of the coils of the transformer
and the stray capacitance between the wires.

In general, any time you see an unexpected peaking in the frequency
response of an element or a system, it is normally caused by a reso-
nance condition. If the response has a detrimental effect on the overall
operation of the system, a redesign may be in order, or a filter can be
added that will block the frequencies that result in the resonance condi-
tion. Of course, when you add a filter composed of inductors and/or
capacitors, you must be careful that you don’t add another unexpected
resonance condition. It is a problem that can be properly weighed only
by constructing the system and exposing it to the full range of tests.

Graphic and Parametric Equalizers

We have all noticed at one time or another that the music we hear in a
concert hall doesn’t quite sound the same when we play it at home on
our entertainment center. Even after we check the specifications of the
speakers and amplifiers and find that both are nearly perfect (and the
most expensive we can afford), the sound is still not what it should be.
In general, we are experiencing the effects of the local environmental
characteristics on the sound waves. Some typical problems are hard
walls or floors (stone, cement) that will make high frequencies sound
louder. Curtains and rugs, on the other hand, will absorb high frequen-
cies. The shape of the room and the placement of the speakers and fur-
niture will also affect the sound that reaches our ears. Another criterion
is the echo or reflection of sound that will occur in the room. Concert
halls are designed very carefully with their vaulted ceilings and curved
walls to allow a certain amount of echo. Even the temperature and
humidity characteristics of the surrounding air will affect the quality of
the sound. It is certainly impossible, in most cases, to redesign your lis-
tening area to match a concert hall, but with the proper use of electronic
systems you can develop a response that will have all the qualities that
you can expect from a home entertainment center.

For a quality system a number of steps can be taken: characteriza-
tion and digital delay (surround sound) and proper speaker and ampli-

ƒr
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FIG. 20.40

(a) Dual-channel 15-band “Constant Q” graphic equalizer (Courtesy of ARX
Systems.); (b) setup; (c) frequency response.

Full-range
speaker

Full-range
speaker

Amplifier and speaker
(woofer or subwoofer)

Pink noise
throughout

≅ 10′

Microphone
Graphic
and/or
parametric
equalizers

(Mid-range,
low-power)

(Full-range,
low-power)

(Full-range,
low-power)

“Surround sound”
speakers

(b)

10 Hz 100 Hz 1 kHz 10 kHz 100 kHz f
(log scale)31 Hz 63 Hz 125 Hz 250 Hz 500 Hz 2 kHz 4 kHz 8 kHz 16 kHz

Volume

(c)

(a)
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fier selection and placement. Characterization is a process whereby a
thorough sound absorption check of the room is performed and the fre-
quency response determined. A graphic equalizer such as appearing in
Fig. 20.40(a) is then used to make the response “flat” for the full range
of frequencies. In other words, the room is made to appear as though all
the frequencies receive equal amplification in the listening area. For
instance, if the room is fully carpeted with full draping curtains, there
will be a lot of high-frequency absorption, requiring that the high fre-
quencies have additional amplification to match the sound levels of the
mid and low frequencies. To characterize the typical rectangular-shaped
room, a setup such as shown in Fig. 20.40(b) may be used. The ampli-
fier and speakers are placed in the center of one wall, with additional
speakers in the corners of the room facing the reception area. A mike is
then placed in the reception area about 10 ft from the amplifier and cen-
tered between the two other speakers. A pink noise will then be sent out
from a spectrum analyzer (often an integral part of the graphic equal-
izer) to the amplifier and speakers. Pink noise is actually a square-wave
signal whose amplitude and frequency can be controlled. A square-
wave signal was chosen because a Fourier breakdown of a square-wave
signal will result in a broad range of frequencies for the system to
check. You will find in Chapter 24 that a square wave can be con-
structed of an infinite series of sine waves of different frequencies.
Once the proper volume of pink noise is established, the spectrum ana-
lyzer can be used to set the response of each slide band to establish the
desired flat response. The center frequencies for the slides of the
graphic equalizer of Fig. 20.40(a) are provided in Fig. 20.40(c), along
with the frequency response for a number of adjoining frequencies
evenly spaced on a logarithmic scale. Note that each center frequency
is actually the resonant frequency for that slide. The design is such that
each slide can control the volume associated with that frequency, but
the bandwidth and frequency response stay fairly constant. A good
spectrum analyzer will have each slide set against a decibel (dB) scale
(decibels will be discussed in detail in Chapter 23). The decibel scale
simply establishes a scale for the comparison of audio levels. At a nor-
mal listening level, usually a change of about 3 dB is necessary for the
audio change to be detectable by the human ear. At low levels of sound,
a 2-dB change may be detectable, but at loud sounds probably a 4-dB
change would be necessary for the change to be noticed. These are not
strict laws but simply rules of thumb commonly used by audio techni-
cians. For the room in question, the mix of settings may be as shown in
Fig. 20.40(c). Once set, the slides are not touched again. A flat response
has been established for the room for the full audio range so that every
sound or type of music is covered.

A parametric equalizer such as appearing in Fig. 20.41 is similar to
a graphic equalizer, but instead of separate controls for the individual
frequency ranges, it uses three basic controls over three or four broader
frequency ranges. The typical controls—the gain, center frequency, and

ƒr

FIG. 20.41

Six-channel parametric equalizer. (Courtesy of ARX Systems.)
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bandwidth—are typically available for the low-, mid-, and high-
frequency ranges. Each is fundamentally an independent control; that is,
a change in one can be made without affecting the other two. For the
parametric equalizer of Fig. 20.41, each of the six channels has a fre-
quency control switch which, in conjunction with the f �10 switch, will
give a range of center frequencies from 40 Hz through 16 kHz. It has
controls for BW (“Q”) from 3 octaves to 1⁄20 octave, and �18 dB cut and
boost. Some like to refer to the parametric equalizer as a sophisticated
tone control and will actually use them to enrich the sound after the flat
response has been established by the graphic equalizer. The effect
achieved with a standard tone control knob is sometimes referred to as
“boring” compared to the effect established by a good parametric equal-
izer, primarily because the former can control only the volume and not
the bandwidth or center frequency. In general, graphic equalizers estab-
lish the important flat response while parametric equalizers are adjusted
to provide the type and quality of sound you like to hear. You can
“notch out” the frequencies that bother you and remove tape “hiss” and
the “sharpness” often associated with CDs.

One characteristic of concert halls that is more difficult to fake is the
fullness of sound that concert halls are able to provide. In the concert
hall you have the direct sound from the instruments and the reflection
of sound off the walls and the vaulted ceilings which were all carefully
designed expressly for this purpose. Any reflection results in a delay in
the sound waves reaching the ear, creating the fullness effect. Through
digital delay, speakers can be placed to the back and side of a listener
to establish the surround sound effect. In general, the delay speakers are
much lower in wattage, with 20-W speakers typically used with a 100-W
system. The echo response is one reason that people often like to play
their stereos louder than they should for normal hearing. By playing the
stereo louder, they create more echo and reflection off the walls, bring-
ing into play some of the fullness heard at concert halls.

It is probably safe to say that any system composed of quality com-
ponents, a graphic and parametric equalizer, and surround sound will
have all the components necessary to have a quality reproduction of the
concert hall effect.

20.14 COMPUTER ANALYSIS

PSpice

Series Resonance This chapter provides an excellent opportunity
to demonstrate what computer software programs can do for us. Imag-
ine having to plot a detailed resonance curve with all the calculations
required for each frequency. At every frequency, the reactance of the
inductive and capacitive elements changes, and the phasor operations
would have to be repeated—a long and arduous task. However, with
PSpice, taking a few moments to enter the circuit and establish the
desired simulation will result in a detailed plot in a few seconds that can
have plot points every microsecond!

For the first time, the horizontal axis will be in the frequency domain
rather than in the time domain as in all the previous plots. For the series
resonant circuit of Fig. 20.42, the magnitude of the source was chosen
to produce a maximum current of I � 400 mV/40 � � 10 mA at reso-
nance, and the reactive elements will establish a resonant frequency of

ƒr
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fs � � 	 2.91 kHz

The quality factor is

Ql � �
X

R
L

l
� � �

54

4

6

0

.6

�

4 �
� 	 13.7

which is relatively high and should give us a nice sharp response.
The bandwidth is

BW � �
Q

fs

l
� � �

2.9

1

1

3.

k

7

Hz
� 	 212 Hz

which will be verified using our cursor options.
For the ac source, VSIN was chosen again. All the parameters were

set by double-clicking on the source symbol and entering the values in
the Property Editor dialog box. For each, Name and Value was
selected under Display followed by Apply before leaving the dialog
box.

In the Simulation Settings dialog box, AC Sweep/Noise was
selected, and the Start Frequency was set at 1 kHz, the End Fre-
quency at 10 kHz, and the Points/Decade at 10,000. The Logarithmic
scale and Decade settings remain at their default values. The 10,000 for
Points/Decade was chosen to ensure a number of data points near the
peak value. When the SCHEMATIC1 screen of Fig. 20.43 appears,
Trace-Add Trace-I(R)-OK will result in a logarithmic plot that peaks
just to the left of 3 kHz. The spacing between grid lines on the X-axis
should be increased, so Plot-Axis Settings-X Grid-unable Automatic-
Spacing-Log-0.1-OK is implemented. Next, select the Toggle cursor

1
���
2p�(3�0� m�H�)(�0�.1�m�F�)�

1
�
2p�L�C�

ƒr

FIG. 20.42

Series resonant circuit to be analyzed using PSpice.
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icon, and with a right click of the mouse move the right cursor as close
to 7.07 mA as possible (0.707 of the peak value to define the band-
width) to obtain A1 with a frequency of 3.02 kHz at a level of 7.01 mA—
the best we can do with the 10,000 data points per decade. Now do a
left click, and place the left cursor as close to the same level as possi-
ble. The result is 2.8 kHz at a level of 7.07 mA for A2. The cursors
were set in the order above to obtain a positive answer for the difference
of the two as appearing in the third line of the Probe Cursor box. The
resulting 214.22 Hz is an excellent match with the calculated value of
212 Hz.

Parallel Resonance Let us now investigate the parallel resonant cir-
cuit of Fig. 20.33 and compare the results with the longhand solution.
The network appears in Fig. 20.44 using ISRC as the ac source voltage.
Under the Property Editor heading, the following values were set:
DC � 0 A, AC � 2 mA, and TRAN � 0. Under Display, Do Not
Display was selected for both DC and TRAN since they do not play a
part in our analysis. In the Simulation Settings dialog box, AC Sweep/
Noise was selected, and the Start Frequency was selected as 10 kHz
since we know that it will resonate near 30 kHz. The End Frequency
was chosen as 100 kHz for a first run to see the results. The Points/
Decade was set at 10,000 to ensure a good number of data points for
the peaking region. After simulation, Trace-Add Trace-V(C:1)-OK
resulted in the plot of Fig. 20.45 with a resonant frequency near 30 kHz.
The selected range appears to be a good one, but the initial plot needed
more grid lines on the x-axis, so Plot-Axis Settings-X-Grid-unenable
Automatic-Spacing-Log-0.1-OK was used to obtain a grid line at 10-kHz
intervals. Next the Toggle cursor pad was selected and a left-click

ƒr

FIG. 20.43

Resonance curve for the current of the circuit of Fig. 20.42.
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FIG. 20.44

Parallel resonant network to be analyzed using PSpice.

FIG. 20.45

Resonance curve for the voltage across the capacitor of Fig. 20.44.
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cursor established on the screen. The Cursor Peak pad was then cho-
sen to find the peak value of the curve. The result was A1 � 319.45 mV
at 28.94 kHz which is a very close match with the calculated value of
318.68 mV at 28.57 kHz for the maximum value of VC. The bandwidth
is defined at a level of 0.707(319.45 mV) � 225.85 mV. Using the
right-click cursor, we find that the closest we can come is 224.72 mV
for the 10,000 points of data per decade. The resulting frequency is
34.69 kHz as shown in the Probe Cursor box of Fig. 20.45.

We can now use the left-click cursor to find the same level to the left
of the peak value so that we can determine the bandwidth. The closest
that the left-click cursor can come to 225.85 mV is 224.96 mV at a fre-
quency of 23.97 kHz. The bandwidth will then appear as 10.72 kHz in
the Probe Cursor box, comparing very well with the longhand solution
of 10.68 kHz in Example 20.7.

It would now be interesting to look at the phase angle of the voltage
across the parallel network to find the frequency when the network
appears resistive and the phase angle is 0°. First use Trace-Delete All
Traces, and call up P(V(C:1)) followed by OK. The result is the plot
of Fig. 20.46, revealing that the phase angle is close to �90° at very
high frequencies as the capacitive element with its decreasing reactance
takes over the characteristics of the parallel network. At 10 kHz the
inductive element has a lower reactance than the capacitive element,
and the network has a positive phase angle. Using the cursor option, we
can move the left click along the horizontal axis until the phase angle is
at its minimum value. As shown in Fig. 20.46, the smallest angle avail-
able with the determined data points is 49.86 mdegrees � 0.05° which
is certainly very close to 0°. The corresponding frequency is 27.046 kHz
which is essentially an exact match with the longhand solution of

ƒr

FIG. 20.46

Phase plot for the voltage vC for the parallel resonant network of Fig. 20.44.
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27.051 kHz. Clearly, therefore, the frequency at which the phase angle
is zero and the total impedance appears resistive is less than the fre-
quency at which the output voltage is a maximum.

Electronics Workbench

The results of Example 20.9 will now be confirmed using Electronics
Workbench. The network of Fig. 20.36 will appear as shown in Fig.
20.47 after all the elements have been placed as described in earlier
chapters. In particular, note that the frequency assigned to the 2-mA ac
current source is 100 kHz. Since we have some idea that the resonant
frequency is a few hundred kilohertz, it seemed appropriate that the
starting frequency for the plot begin at 100 kHz and extend to 1 MHz.
Also, be sure that the AC Magnitude is set to 2 mA in the Analysis
Setup within the AC Current dialog box.

ƒr

FIG. 20.47

Using Electronics Workbench to confirm the results of Example 20.9.

For simulation, the sequence Simulate-Analyses-AC Analysis is
first selected to obtain the AC Analysis dialog box. The Start fre-
quency is set at 100 kHz, and the Stop frequency at 1 MHz; Sweep
type is Decade; Number of points per decade is 1000; and the Verti-
cal scale is Linear. Under Output variables, node number 1 is selected
as a Variable for analysis followed by Simulate to run the program.
The results are the magnitude and phase plots of Fig. 20.48. Starting
with the Voltage plot, the Show/Hide Grid key, Show/Hide Legend
key, and Show/Hide Cursors key are selected. You will immediately
note under the AC Analysis cursor box that the maximum value is
95.24 V and the minimum value is 6.94 V. By moving the cursor until
we reach 95.24 V (y1), the resonant frequency can be found. As shown
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in the top cursor dialog box of Fig. 20.48, this is achieved at 318.42
kHz (x1). The other (blue) cursor can be used to define the high cutoff
frequency for the bandwidth by first calculating the 0.707 level of the
output voltage. The result is 0.707(95.24 V) � 67.33 V. The closest we
can come to this level with the cursor is 66.43 V (y2) which defines a
frequency of 354.81 kHz (x2). If we now use the red cursor to find the
corresponding level below the resonant frequency, we will find a level
of 67.49 V (y1) at 287.08 kHz (x1). The resulting bandwidth is there-
fore 354.81 kHz � 287.08 kHz � 67.73 kHz.

It would now be interesting to determine the resonant frequency if
we define resonance as that frequency that results in a phase angle of 0°
for the output voltage. By repeating the process described above for the
phase plot, we can set the red cursor as close to 0° as possible. The result
is 1.04° (y1) at 317.69 kHz (x1), clearly revealing that the resonant fre-
quency defined by the phase angle is less than that defined by the peak
voltage. However, with a Ql of about 100, the difference of 0.73 kHz
(less than 1 kHz) is not significant. Also note that when the second cur-
sor was set on approximately 1 MHz (997.7 kHz), the phase angle of
�85.91° is very close to that of a pure capacitor. The shorting effect of
a capacitor at high frequencies has taken over the characteristics of the
parallel resonant circuit.

Again, the computer solution was a very close match with the long-
hand solution of Example 20.9 with a perfect match of 95.24 V for the
peak value and only a small difference in bandwidth with 66.87 kHz in
Example 20.9 and 67.73 kHz here. For the high cutoff frequency, the
computer generated a result of 354.8 kHz, while the theoretical solution
was 351.7 kHz. For the low cutoff frequency, the computer responded
with 287.08 kHz compared to a theoretical solution of 284 kHz.

ƒr

FIG. 20.48

Magnitude and phase plots for the voltage vC of the network of Fig. 20.47.
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PROBLEMS

SECTIONS 20.2 THROUGH 20.7 Series Resonance

1. Find the resonant qs and fs for the series circuit with the
following parameters:
a. R � 10 �, L � 1 H, C � 16 mF
b. R � 300 �, L � 0.5 H, C � 0.16 mF
c. R � 20 �, L � 0.28 mH, C � 7.46 mF

2. For the series circuit of Fig. 20.49:
a. Find the value of XC for resonance.
b. Determine the total impedance of the circuit at reso-

nance.
c. Find the magnitude of the current I.
d. Calculate the voltages VR, VL, and VC at resonance.

How are VL and VC related? How does VR compare to
the applied voltage E?

e. What is the quality factor of the circuit? Is it a high-
or low-Q circuit?

f. What is the power dissipated by the circuit at reso-
nance?

3. For the series circuit of Fig. 20.50:
a. Find the value of XL for resonance.
b. Determine the magnitude of the current I at reso-

nance.
c. Find the voltages VR, VL, and VC at resonance, and

compare their magnitudes.
d. Determine the quality factor of the circuit. Is it a high-

or low-Q circuit?
e. If the resonant frequency is 5 kHz, determine the value

of L and C.
f. Find the bandwidth of the response if the resonant fre-

quency is 5 kHz.
g. What are the low and high cutoff frequencies?

4. For the circuit of Fig. 20.51:
a. Find the value of L in millihenries if the resonant fre-

quency is 1800 Hz.
b. Calculate XL and XC. How do they compare?
c. Find the magnitude of the current Irms at resonance.
d. Find the power dissipated by the circuit at resonance.
e. What is the apparent power delivered to the system at

resonance?
f. What is the power factor of the circuit at resonance?
g. Calculate the Q of the circuit and the resulting band-

width.
h. Find the cutoff frequencies, and calculate the power

dissipated by the circuit at these frequencies.

5. a. Find the bandwidth of a series resonant circuit having
a resonant frequency of 6000 Hz and a Qs of 15.

b. Find the cutoff frequencies.
c. If the resistance of the circuit at resonance is 3 �,

what are the values of XL and XC in ohms?
d. What is the power dissipated at the half-power fre-

quencies if the maximum current flowing through the
circuit is 0.5 A?

6. A series circuit has a resonant frequency of 10 kHz. The
resistance of the circuit is 5 �, and XC at resonance is
200 �.
a. Find the bandwidth.

VR

R  =  10 �
+

–

E 50 mV

VL+ –

+

–
XC VC

I XL  =  30 �

+ –

FIG. 20.49

Problem 2.

XC

VR

R  =  2 � XLI

+ – VL+ –

VC

+

–

+

–

E 20 mV 40 �

FIG. 20.50

Problem 3.

C

R

4.7 �I

L

+

–

e 2 mF20  �  10–3 sin qt

FIG. 20.51

Problem 4.



b. Find the cutoff frequencies.
c. Find Qs.
d. If the input voltage is 30 V �0°, find the voltage across

the coil and capacitor in phasor form.
e. Find the power dissipated at resonance.

7. a. The bandwidth of a series resonant circuit is 200 Hz.
If the resonant frequency is 2000 Hz, what is the
value of Qs for the circuit?

b. If R � 2 �, what is the value of XL at resonance?
c. Find the value of L and C at resonance.
d. Find the cutoff frequencies.

8. The cutoff frequencies of a series resonant circuit are 
5400 Hz and 6000 Hz.
a. Find the bandwidth of the circuit.
b. If Qs is 9.5, find the resonant frequency of the circuit.
c. If the resistance of the circuit is 2 �, find the value of

XL and XC at resonance.
d. Find the value of L and C at resonance.

*9. Design a series resonant circuit with an input voltage of 
5 V �0° to have the following specifications:
a. A peak current of 500 mA at resonance
b. A bandwidth of 120 Hz
c. A resonant frequency of 8400 Hz
Find the value of L and C and the cutoff frequencies.

*10. Design a series resonant circuit to have a bandwidth of
400 Hz using a coil with a Ql of 20 and a resistance of 
2 �. Find the values of L and C and the cutoff frequen-
cies.

*11. A series resonant circuit is to resonate at qs �
2p � 106 rad/s and draw 20 W from a 120-V source at
resonance. If the fractional bandwidth is 0.16:
a. Determine the resonant frequency in hertz.
b. Calculate the bandwidth in hertz.
c. Determine the values of R, L, and C.
d. Find the resistance of the coil if Ql � 80.

*12. A series resonant circuit will resonate at a frequency of 
1 MHz with a fractional bandwidth of 0.2. If the quality
factor of the coil at resonance is 12.5 and its inductance
is 100 mH, determine the following:
a. The resistance of the coil.
b. The additional resistance required to establish the indi-

cated fractional bandwidth.
c. The required value of capacitance.
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LRs 2 k� 0.1 mH C  =  10 nF VC

+

–

ICIL

I 2 mA

FIG. 20.52

Problem 13.

SECTIONS 20.8 THROUGH 20.12

Parallel Resonance

13. For the “ideal” parallel resonant circuit of Fig. 20.52:
a. Determine the resonant frequency ( fp).
b. Find the voltage VC at resonance.
c. Determine the currents IL and IC at resonance.
d. Find Qp.
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14. For the parallel resonant network of Fig. 20.53:
a. Calculate fs.
b. Determine Ql using f � fs. Can the approximate

approach be applied?
c. Determine fp and fm.
d. Calculate XL and XC using fp. How do they compare?
e. Find the total impedance at resonance ( fp).
f. Calculate VC at resonance ( fp).
g. Determine Qp and the BW using fp.
h. Calculate IL and IC at fp.

FIG. 20.54

Problem 15.

FIG. 20.55

Problem 16.

FIG. 20.53

Problem 14.

16. For the network of Fig. 20.55:
a. Find the value of XC at resonance ( fp).
b. Find the total impedance ZTp

at resonance ( fp).
c. Find the currents IL and IC at resonance ( fp).
d. If the resonant frequency is 20,000 Hz, find the value

of L and C at resonance.
e. Find Qp and the BW.

FIG. 20.56

Problem 17.

L 0.1 mH

2 �F VC

+

–
I 2 mA

Rs  =  ∞ �

C

Rl 4 �

ZTp

Rl

XC

IC20 �

XL 100 �

IL
ZTp

Rs 1 k�

I  =  5 mA ∠ 0°

Rl

XC

IC2 �

XL 30 �

IL
ZTp

Rs 450 �

I  =  80 mA ∠ 0°

L 0.5 mH

30 nF VC

+

–
I 10 mA

Rs  =  ∞ �

C

Rl 8 �

ZTp

15. Repeat Problem 14 for the network of Fig. 20.54.

17. Repeat Problem 16 for the network of Fig. 20.56.
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18. For the network of Fig. 20.57:
a. Find the resonant frequencies fs, fp, and fm. What do

the results suggest about the Qp of the network?
b. Find the values of XL and XC at resonance ( fp). How

do they compare?
c. Find the impedance ZTp

at resonance ( fp).
d. Calculate Qp and the BW.
e. Find the magnitude of currents IL and IC at resonance

( fp).
f. Calculate the voltage VC at resonance ( fp).

*19. Repeat Problem 18 for the network of Fig. 20.58.

20. It is desired that the impedance ZT of the high-Q circuit
of Fig. 20.59 be 50 k� �0° at resonance ( fp).
a. Find the value of XL.
b. Compute XC.
c. Find the resonant frequency ( fp) if L � 16 mH.
d. Find the value of C.

FIG. 20.57

Problem 18.

21. For the network of Fig. 20.60:
a. Find fp.
b. Calculate the magnitude of VC at resonance ( fp).
c. Determine the power absorbed at resonance.
d. Find the BW.

Rl

C

IC1.5 �

L 80 mH

IL

ZTp

Rs 10 k�I 10 mA 0.03 mF VC

+

–

FIG. 20.58

Problems 19 and 29.

Rl

C

IC8 �

L 0.5 mH

IL

ZTp

Rs 0.5 k�I 40 mA 1 mF VC

+

–

FIG. 20.59

Problem 20.

FIG. 20.60

Problem 21.

XL

Rl 50 �

XCZT

L

Rl

40 k� C
0.01 mF

VC

+

–

Ql  =  20

200 mH

Rs

I  =  5 mA ∠ 0°
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*22. For the network of Fig. 20.61:
a. Find the value of XL for resonance.
b. Find Ql.
c. Find the resonant frequency ( fp) if the bandwidth is 

1 kHz.
d. Find the maximum value of the voltage VC.
e. Sketch the curve of VC versus frequency. Indicate its

peak value, resonant frequency, and band frequencies.
FIG. 20.61

Problem 22.

FIG. 20.62

Problem 23.

FIG. 20.63

Problem 24.

*23. Repeat Problem 22 for the network of Fig. 20.62.

*24. For the network of Fig. 20.63:
a. Find fs, fp, and fm.
b. Determine Ql and Qp at fp after a source conversion is

performed.
c. Find the input impedance ZTp.

d. Find the magnitude of the voltage VC.
e. Calculate the bandwidth using fp.
f. Determine the magnitude of the currents IC and IL.

*25. For the network of Fig. 20.64, the following are speci-
fied:

fp � 20 kHz
BW � 1.8 kHz

L � 2 mH
Ql � 80

Find Rs and C.

XL

Rl

20 k� XC 400 � VC

+

–

RsI  =  0.1 mA

8 �

XL

Rl

40 k� XC 100 � VC

+

–

RsI  =  6 mA ∠ 0°

12 �

FIG. 20.64

Problem 25.

Rl 6 �

Rs

20 k�
IL

IC

C1 20 nF

C2 10 nF
VC

+

–
L 0.5 mH

E  =  80 V ∠ 0°

+

–
ZTp

C

Rl

Ql

L

Rs

0.2 mA    0° C

L

Rl

I

Rs  =  ∞ Ω

FIG. 20.65

Problem 26.

*26. Design the network of Fig. 20.65 to have the following
characteristics:
a. BW � 500 Hz
b. Qp � 30
c. VCmax

� 1.8 V



Resonance A condition established by the application of a
particular frequency (the resonant frequency) to a series or
parallel R-L-C network. The transfer of power to the system
is a maximum, and, for frequencies above and below, the
power transfer drops off to significantly lower levels.

Selectivity A characteristic of resonant networks directly
related to the bandwidth of the resonant system. High selec-
tivity is associated with small bandwidth (high Q’s), and
low selectivity with larger bandwidths (low Q’s).
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GLOSSARY

Band (cutoff, half-power, corner) frequencies Frequencies
that define the points on the resonance curve that are 0.707
of the peak current or voltage value. In addition, they define
the frequencies at which the power transfer to the resonant
circuit will be half the maximum power level.

Bandwidth (BW) The range of frequencies between the
band, cutoff, or half-power frequencies.

Quality factor (Q) A ratio that provides an immediate indi-
cation of the sharpness of the peak of a resonance curve.
The higher the Q, the sharper the peak and the more quickly
it drops off to the right and left of the resonant frequency.

*27. For the parallel resonant circuit of Fig. 20.66:
a. Determine the resonant frequency.
b. Find the total impedance at resonance.
c. Find Qp.
d. Calculate the BW.
e. Repeat parts (a) through (d) for L � 20 mH and C �

20 nF.
f. Repeat parts (a) through (d) for L � 0.4 mH and C �

1 nF.
g. For the network of Fig. 20.66 and the parameters of

parts (e) and (f), determine the ratio L/C.
h. Do your results confirm the conclusions of Fig. 20.28

for changes in the L /C ratio?

SECTION 20.14 Computer Analysis

PSpice or Electronics Workbench

28. Verify the results of Example 20.8. That is, show that the
resonant frequency is in fact 40 kHz, the cutoff frequen-
cies are as calculated, and the bandwidth is 1.85 kHz.

29. Find fp and fm for the parallel resonant network of Fig.
20.58, and comment on the resulting bandwidth as it
relates to the quality factor of the network.

Programming Language (C��, QBASIC, Pascal, etc.)

30. Write a program to tabulate the impedance and current of
the network of Fig. 20.2 versus frequency for a frequency
range extending from 0.1fs to 2 fs in increments of 0.1fs.
For the first run, use the parameters defined by Example
20.1.

31. Write a program to provide a general solution for the net-
work of Fig. 20.36; that is, determine the parameters
requested in parts (a) through (e) of Example 20.9.

FIG. 20.66

Problem 27.

Rl 20 �

40 k�

L 200 �H�

C 2 nFZTp
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21.1 INTRODUCTION

Chapter 12 discussed the self-inductance of a coil. We shall now exam-
ine the mutual inductance that exists between coils of the same or dif-
ferent dimensions. Mutual inductance is a phenomenon basic to the
operation of the transformer, an electrical device used today in almost
every field of electrical engineering. This device plays an integral part
in power distribution systems and can be found in many electronic cir-
cuits and measuring instruments. In this chapter, we will discuss three
of the basic applications of a transformer: to build up or step down the
voltage or current, to act as an impedance matching device, and to iso-
late (no physical connection) one portion of a circuit from another. In
addition, we will introduce the dot convention and will consider the
transformer equivalent circuit. The chapter will conclude with a word
about writing mesh equations for a network with mutual inductance.

21.2 MUTUAL INDUCTANCE

A transformer is constructed of two coils placed so that the changing
flux developed by one will link the other, as shown in Fig. 21.1. This

ip
Changing flux

pattern

–

+

ep

–

+

es

Primary (Lp , Np)

–

+
vg

Transformer

Secondary (Ls, Ns)

fm(mutual)

fp

FIG. 21.1

Defining the components of a transformer.

Transformers
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will result in an induced voltage across each coil. To distinguish
between the coils, we will apply the transformer convention that

the coil to which the source is applied is called the primary, and the
coil to which the load is applied is called the secondary.

For the primary of the transformer of Fig. 21.1, an application of Fara-
day’s law [Eq. (12.1)] will result in

(volts, V) (21.1)

revealing that the voltage induced across the primary is directly related
to the number of turns in the primary and the rate of change of mag-
netic flux linking the primary coil. Or, from Eq. (12.5),

(volts, V) (21.2)

revealing that the induced voltage across the primary is also directly
related to the self-inductance of the primary and the rate of change of
current through the primary winding.

The magnitude of es, the voltage induced across the secondary, is
determined by

(volts, V) (21.3)

where Ns is the number of turns in the secondary winding and fm is the
portion of the primary flux fp that links the secondary winding.

If all of the flux linking the primary links the secondary, then

fm � fp

and (volts, V) (21.4)

The coefficient of coupling (k) between two coils is determined by

(21.5)

Since the maximum level of fm is fp, the coefficient of coupling
between two coils can never be greater than 1.

The coefficient of coupling between various coils is indicated in Fig.
21.2. In Fig. 21.2(a), the ferromagnetic steel core will ensure that most
of the flux linking the primary will also link the secondary, establishing
a coupling coefficient very close to 1. In Fig. 21.2(b), the fact that both
coils are overlapping will result in the flux of one coil linking the other
coil, with the result that the coefficient of coupling is again very close
to 1. In Fig. 21.2(c), the absence of a ferromagnetic core will result in
low levels of flux linkage between the coils. The closer the two coils
are, the greater the flux linkage, and the higher the value of k, although

k (coefficient of coupling) � �
f

f

m

p
�

es � Ns �
d

d

f

t
p

�

es � Ns �
d

d

f

t
m

�

ep � Lp �
d

d

i

t
p

�

ep � Np �
d

d

f

t
p

�

+ –es

+ –ep

  mφ

Any core

(b)

k ≅  1

Air
core

+ –ep + –es

k  = <<  1 (0.01       0.3)

  pφ
  mφ

  mφ
1φ

(c)

Steel core

+
ep

–

+
es

–

  pφ  mφ ≅

(a)

k ≅  1

FIG. 21.2

Windings having different coefficients of
coupling.
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it will never approach a level of 1. Those coils with low coefficients of
coupling are said to be loosely coupled.

For the secondary, we have

es � Ns � Ns

and (volts, V) (21.6)

The mutual inductance between the two coils of Fig. 21.1 is deter-
mined by

(henries, H) (21.7)

or (henries, H) (21.8)

Note in the above equations that the symbol for mutual inductance
is the capital letter M and that its unit of measurement, like that of
self-inductance, is the henry. In words, Equations (21.7) and (21.8) state
that the

mutual inductance between two coils is proportional to the
instantaneous change in flux linking one coil due to an 
instantaneous change in current through the other coil.

In terms of the inductance of each coil and the coefficient of cou-
pling, the mutual inductance is determined by

(henries, H) (21.9)

The greater the coefficient of coupling (greater flux linkages), or the
greater the inductance of either coil, the higher the mutual inductance
between the coils. Relate this fact to the configurations of Fig. 21.2.

The secondary voltage es can also be found in terms of the mutual
inductance if we rewrite Eq. (21.3) as

es � Ns� �� �
and, since M � Ns(dfm /dip), it can also be written

(volts, V) (21.10)

Similarly, (volts, V) (21.11)ep � M �
d

d

i

t
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�
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�
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�
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�
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M � k�L�pL�s�
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�

M � Ns �
d

d

f

ip

m
�

es � kNs �
d
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f
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�

dkfp
�

dt
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�
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EXAMPLE 21.1 For the transformer in Fig. 21.3:
a. Find the mutual inductance M.
b. Find the induced voltage ep if the flux fp changes at the rate of 

450 mWb/s.
c. Find the induced voltage es for the same rate of change indicated in

part (b).
d. Find the induced voltages ep and es if the current ip changes at the

rate of 0.2 A/ms.

Solutions:

a. M � k�L�pL�s� � 0.6�(2�0�0� m�H�)(�8�0�0� m�H�)�

� 0.6�1�6� �� 1�0���2� � (0.6)(400 � 10�3) � 240 mH

b. ep � Np � (50)(450 mWb/s) � 22.5 V

c. es � kNs � (0.6)(100)(450 mWb/s) � 27 V

d. ep � Lp � (200 mH)(0.2 A/ms) � (200 mH)(200 A/s) � 40 V

es � M � (240 mH)(200 A/s) � 48 V

21.3 THE IRON-CORE TRANSFORMER

An iron-core transformer under loaded conditions is shown in Fig. 21.4.
The iron core will serve to increase the coefficient of coupling between
the coils by increasing the mutual flux fm. Recall from Chapter 11 that
magnetic flux lines will always take the path of least reluctance, which
in this case is the iron core.

dip
�
dt

dip
�
dt

dfp
�
dt

dfp
�
dt

ip

–

+
ep

–

+
es

Lp  =  200 mH
Np  = 50 turns

  p

Ls  =  800 mH
Ns  = 100 turns

k  =  0.6�

FIG. 21.3

Example 21.1.

ip +

–

+ is

es

–

+
vL

–
ZL

+

–
vg

Np Ns

ep

Primary Secondary
Iron core

Φm

Φm

FIG. 21.4

Iron-core transformer.

In the analyses to follow in this chapter, we will assume that all of
the flux linking coil 1 will link coil 2. In other words, the coefficient of
coupling is its maximum value, 1, and fm � fp � fs. In addition, we
will first analyze the transformer from an ideal viewpoint; that is, we
will neglect losses such as the geometric or dc resistance of the coils,
the leakage reactance due to the flux linking either coil that forms no
part of fm, and the hysteresis and eddy current losses. This is not to
convey the impression, however, that we will be far from the actual
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operation of a transformer. Most transformers manufactured today can
be considered almost ideal. The equations we will develop under ideal
conditions will be, in general, a first approximation to the actual
response, which will never be off by more than a few percentage points.
The losses will be considered in greater detail in Section 21.6.

When the current ip through the primary circuit of the iron-core
transformer is a maximum, the flux fm linking both coils is also a max-
imum. In fact, the magnitude of the flux is directly proportional to the
current through the primary windings. Therefore, the two are in phase,
and for sinusoidal inputs, the magnitude of the flux will vary as a sinu-
soid also. That is, if

ip � �2�Ip sin qt

then fm � �m sin qt

The induced voltage across the primary due to a sinusoidal input can
be determined by Faraday’s law:

ep � Np � Np 

Substituting for fm gives us

ep � Np (�m sin qt)

and differentiating, we obtain

ep � qNp�m cos qt

or ep � qNp�m sin(qt � 90°)

indicating that the induced voltage ep leads the current through the pri-
mary coil by 90°.

The effective value of ep is

Ep � �

and (21.12)

which is an equation for the rms value of the voltage across the primary
coil in terms of the frequency of the input current or voltage, the num-
ber of turns of the primary, and the maximum value of the magnetic
flux linking the primary.

For the case under discussion, where the flux linking the secondary
equals that of the primary, if we repeat the procedure just described for
the induced voltage across the secondary, we get

(21.13)

Dividing Eq. (21.12) by Eq. (21.13), as follows:

�

we obtain

4.44 fNp�m
��
4.44 fNs�m

Ep
�
Es

Es � 4.44 fNs�m

Ep � 4.44 fNp�m

2pfNp�m
��

�2�

qNp�m
�

�2�

d
�
dt

dfm
�

dt

dfp
�
dt
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(21.14)

revealing an important relationship for transformers:

The ratio of the magnitudes of the induced voltages is the same as the
ratio of the corresponding turns.

If we consider that

ep � Np and es � Ns 

and divide one by the other, that is,

�

then �

The instantaneous values of e1 and e2 are therefore related by a con-
stant determined by the turns ratio. Since their instantaneous magni-
tudes are related by a constant, the induced voltages are in phase, and
Equation (21.14) can be changed to include phasor notation; that is,

(21.15)

or, since Vg � E1 and VL � E2 for the ideal situation,

(21.16)

The ratio Np /Ns, usually represented by the lowercase letter a, is
referred to as the transformation ratio:

(21.17)

If a < 1, the transformer is called a step-up transformer since the volt-
age Es > Ep; that is,

� � a or Es �

and, if a < 1, Es > Ep

If a > 1, the transformer is called a step-down transformer since 
Es < Ep; that is,

Ep � aEs

and, if a > 1, then Ep > Es

Ep
�
a

Np
�
Ns

Ep
�
Es

a � �
N

N
p

s
�

�
V

V

L

g
� � �

N

N
p

s
�

�
E

E
p

s
� � �

N

N
p

s
�

Np
�
Ns

ep
�
es

Np(dfm/dt)
��
Ns(dfm/dt)

ep
�
es

dfm
�

dt

dfm
�

dt

�
E

E
p

s
� � �

N

N
p

s
�



THE IRON-CORE TRANSFORMER  941

EXAMPLE 21.2 For the iron-core transformer of Fig. 21.5:

Np = 50

ip +

Ep = 200 V

–

+ Is

–

f = 60 Hz

k = 1 Es = 2400 V

Ns

Φm

Φm

FIG. 21.5

Example 21.2.

a. Find the maximum flux �m.
b. Find the secondary turns Ns.

Solutions:

a. Ep � 4.44Np f�m

Therefore, �m � �

and �m � 15.02 mWb

b. �

Therefore, Ns � �

� 600 turns

The induced voltage across the secondary of the transformer of Fig.
21.4 will establish a current is through the load ZL and the secondary
windings. This current and the turns Ns will develop an mmf Nsis that
would not be present under no-load conditions since is � 0 and Nsis �
0. Under loaded or unloaded conditions, however, the net ampere-turns
on the core produced by both the primary and the secondary must
remain unchanged for the same flux fm to be established in the core.
The flux fm must remain the same to have the same induced voltage
across the primary and to balance the voltage impressed across the pri-
mary. In order to counteract the mmf of the secondary, which is tending
to change fm, an additional current must flow in the primary. This cur-
rent is called the load component of the primary current and is repre-
sented by the notation i′p.

For the balanced or equilibrium condition,

Npi′p � Nsis

The total current in the primary under loaded conditions is

ip � i′p � ifm

where ifm
is the current in the primary necessary to establish the flux

fm. For most practical applications, i′p > ifm
. For our analysis, we will

assume ip � i′p, so

Npip � Nsis

(50 t)(2400 V)
��

200 V

NpEs
�

Ep

Np
�
Ns

Ep
�
Es

200 V
��
(4.44)(50 t)(60 Hz)

Ep
�
4.44Np f
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Since the instantaneous values of ip and is are related by the turns
ratio, the phasor quantities Ip and Is are also related by the same ratio:

NpIp � NsIs

or (21.18)

The primary and secondary currents of a transformer are therefore
related by the inverse ratios of the turns.

Keep in mind that Equation (21.18) holds true only if we neglect the
effects of ifm

. Otherwise, the magnitudes of Ip and Is are not related by
the turns ratio, and Ip and Is are not in phase.

For the step-up transformer, a < 1, and the current in the secondary,
Is � aIp, is less in magnitude than that in the primary. For a step-down
transformer, the reverse is true.

21.4 REFLECTED IMPEDANCE AND POWER

In the previous section we found that

� � a and � �

Dividing the first by the second, we have

�

or � a2 and � a2

However, since

Zp � and ZL �

then (21.19)

which in words states that the impedance of the primary circuit of an
ideal transformer is the transformation ratio squared times the imped-
ance of the load. If a transformer is used, therefore, an impedance can
be made to appear larger or smaller at the primary by placing it in the
secondary of a step-down (a > 1) or step-up (a < 1) transformer, respec-
tively. Note that if the load is capacitive or inductive, the reflected
impedance will also be capacitive or inductive.

For the ideal iron-core transformer,

� a �

or (21.20)

and (ideal conditions) (21.21)Pin � Pout

EpIp � EsIs

Is
�
Ip

Ep
�
Es

Zp � a2ZL

VL
�
Is

Vg
�
Ip

VL
�
Is

Vg
�
Ip

Vg / Ip
�
VL /Is

a
�
1/a

Vg /VL
�
Ip /Is

1
�
a

Ns
�
Np

Ip
�
Is

Np
�
Ns

Vg
�
VL

�
I

I
p

s
� � �

N

N

p

s
�
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EXAMPLE 21.3 For the iron-core transformer of Fig. 21.6:
a. Find the magnitude of the current in the primary and the impressed

voltage across the primary.
b. Find the input resistance of the transformer.

Solutions:

a. �

Ip � Is � � �(0.1 A) � 12.5 mA

VL � IsZL � (0.1 A)(2 k�) � 200 V

Also, �

Vg � VL � � �(200 V) � 1600 V

b. Zp � a2ZL

a � � 8

Zp � (8)2(2 k�) � Rp � 128 k�

EXAMPLE 21.4 For the residential supply appearing in Fig. 21.7,
determine (assuming a totally resistive load) the following:

Np
�
Ns

40 t
�
5 t

Np
�
Ns

Np
�
Ns

Vg
�
VL

5 t
�
40 t

Ns
�
Np

Ns
�
Np

Ip
�
Is Np = 40 t

+ Ip

Zp
Vg

–

Ns = 5 t

Is = 100 mA
Denotes iron-core

R 2 k�

+

VL

–

FIG. 21.6

Example 21.3.

Ip

–

+

Ten 60-W bulbs

TV
400 W

Air
conditioner

2000 W

120 V

120 V

2400 V

VL

–

+ R R

N1 N2

I1

I2

Main service
Residential service:
120/240 V, 3-wire,
single-phase

240 V

FIG. 21.7

Single-phase residential supply.

a. the value of R to ensure a balanced load
b. the magnitude of I1 and I2

c. the line voltage VL

d. the total power delivered
e. the turns ratio a � Np /Ns
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Solutions:

a. PT � (10)(60 W) � 400 W � 2000 W
� 600 W � 400 W � 2000 W � 3000 W

Pin � Pout

VpIp � VsIs � 3000 W (purely resistive load)

(2400 V)Ip � 3000 W and Ip � 1.25 A

R � � � 1920 �

b. P1 � 600 W � VI1 � (120 V)I1

and I1 � 5 A

P2 � 2000 W � VI2 � (240 V)I2

and I2 � 8.33 A

c. VL � �3�Vf � 1.73(2400 V) � 4152 V

d. PT � 3Pf � 3(3000 W) � 9 kW

e. a � � � � 10

21.5 IMPEDANCE MATCHING, ISOLATION,
AND DISPLACEMENT

Transformers can be particularly useful when you are trying to ensure
that a load receives maximum power from a source. Recall that maxi-
mum power is transferred to a load when its impedance is a match with
the internal resistance of the supply. Even if a perfect match is unat-
tainable, the closer the load matches the internal resistance, the greater
the power to the load and the more efficient the system. Unfortunately,
unless it is planned as part of the design, most loads are not a close
match with the internal impedance of the supply. However, transform-
ers have a unique relationship between their primary and secondary
impedances that can be put to good use in the impedance matching
process. Example 21.5 will demonstrate the significant difference in the
power delivered to the load with and without an impedance matching
transformer.

EXAMPLE 21.5

a. The source impedance for the supply of Fig. 21.8(a) is 512 �, which
is a poor match with the 8-� input impedance of the speaker. One
can expect only that the power delivered to the speaker will be sig-
nificantly less than the maximum possible level. Determine the
power to the speaker under the conditions of Fig. 21.8(a).

b. In Fig. 21.8(b), an audio impedance matching transformer was intro-
duced between the speaker and the source, and it was designed to
ensure maximum power to the 8-� speaker. Determine the input
impedance of the transformer and the power delivered to the
speaker.

c. Compare the power delivered to the speaker under the conditions of
parts (a) and (b).

2400 V
�
240 V

Vp
�
Vs

Np
�
Ns

2400 V
�
1.25 A

Vf
�
Ip
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Solutions:

a. The source current:

Is � � � � 230.8 mA

The power to the speaker:

P � I2R � (230.8 mA)2 ⋅ 8 � � 426.15 mW � 0.43 W

or less than half a watt.

b. Zp � a2ZL

a � � � 8

and Zp � (8)28 � � 512 �

which matches that of the source. Maximum power transfer condi-
tions have been established, and the source current is now deter-
mined by

Is � � � � 117.19 mA

The power to the primary (which equals that to the secondary for the
ideal transformer) is

P � I2R � (117.19 mA)2 512 � � 7.032 W

The result is not in milliwatts, as obtained above, and exceeds 7 W,
which is a significant improvement.

c. Comparing levels, 7.032 W/426.15 mW � 16.5, or more than 16
times the power delivered to the speaker using the impedance match-
ing transformer.

Another important application of the impedance matching capabili-
ties of a transformer is the matching of the 300-� twin line transmis-
sion line from a television antenna to the 75-� input impedance of
today’s televisions (ready-made for the 75-� coaxial cable), as shown
in Fig. 21.9. A match must be made to ensure the strongest signal to the
television receiver.

Using the equation Zp � a2ZL we find

300 � � a275 �

120 V
�
1024 �

120 V
��
512 � � 512 �

E
�
RT

8
�
1

Np
�
Ns

120 V
�
520 �

120 V
��
512 � � 8 �

E
�
RT

(a) (b)

8 : 1

+

Vg

–

8 �

120 V

Rs

512 �

Zp

+

Vg

–

8 �

120 V

Rs

512 �

FIG. 21.8

Example 21.5.

75 �

TV input

300 �:75 �

FIG. 21.9

Television impedance matching transformer.
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and a � �� � �4� � 2

with Np : Ns � 2 : 1 (a step-down transformer)

EXAMPLE 21.6 Impedance matching transformers are also quite evi-
dent in public address systems, such as the one appearing in the 70.7-V
system of Fig. 21.10. Although the system has only one set of output
terminals, up to four speakers can be connected to this system (the
number is a function of the chosen system). Each 8-� speaker is con-
nected to the 70.7-V line through a 10-W audio-matching transformer
(defining the frequency range of linear operation).

300 �
�
75 �

Public address
system

Very low output impedance

70.7 V
+

–

8 � 10 W
matching audio
transformers

8 � speakers

FIG. 21.10

Public address system.

a. If each speaker of Fig. 21.10 can receive 10 W of power, what is the
maximum power drain on the source?

b. For each speaker, determine the impedance seen at the input side of
the transformer if each is operating under its full 10 W of power.

c. Determine the turns ratio of the transformers.
d. At 10 W, what are the speaker voltage and current?
e. What is the load seen by the source with one, two, three, or four

speakers connected?

Solutions:

a. Ideally, the primary power equals the power delivered to the load,
resulting in a maximum of 40 W from the supply.

b. The power at the primary:

Pp � VpIp � (70.7 V) Ip � 10 W

and Ip � � 141.4 mA

so that Zp � � � 500 �

c. Zp � a2ZL ⇒ a � �� � �� � �6�2�.5� � 7.91 � 8 : 1

d. Vs � VL � � � 8.94 V � 9 V
70.7 V
�

7.91

Vp
�
a

500 �
�

8 �

Zp
�
ZL

70.7 V
��
141.4 mA

Vp
�
Ip

10 W
�
70.7 V
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e. All the speakers are in parallel. Therefore,

One speaker: RT � 500 �

Two speakers: RT � � 250 �

Three speakers: RT � � 167 �

Four speakers: RT � � 125 �

Even though the load seen by the source will vary with the number
of speakers connected, the source impedance is so low (compared to the
lowest load of 125 �) that the terminal voltage of 70.7 V is essentially
constant. This is not the case where the desired result is to match the
load to the input impedance; rather, it was to ensure 70.7 V at each pri-
mary, no matter how many speakers were connected, and to limit the
current drawn from the supply.

The transformer is frequently used to isolate one portion of an elec-
trical system from another. Isolation implies the absence of any direct
physical connection. As a first example of its use as an isolation device,
consider the measurement of line voltages on the order of 40,000 V
(Fig. 21.11).

500 �
�

4

500 �
�

3

500 �
�

2

Lines

40,000 V

+

–

Np

Ns
=  400  =  a

Voltmeter

100 V
+

–
V

FIG. 21.11

Isolating a high-voltage line from the point of measurement.

To apply a voltmeter across 40,000 V would obviously be a danger-
ous task due to the possibility of physical contact with the lines when
making the necessary connections. By including a transformer in the
transmission system as original equipment, one can bring the potential
down to a safe level for measurement purposes and can determine the
line voltage using the turns ratio. Therefore, the transformer will serve
both to isolate and to step down the voltage.

As a second example, consider the application of the voltage vx to
the vertical input of the oscilloscope (a measuring instrument) in Fig.
21.12. If the connections are made as shown, and if the generator and
oscilloscope have a common ground, the impedance Z2 has been effec-
tively shorted out of the circuit by the ground connection of the oscil-
loscope. The input voltage to the oscilloscope will therefore be mean-

vx

+

–

Vertical channel

vg

+

–
+

–

Oscilloscope

Z1

Z2

FIG. 21.12

Demonstrating the shorting effect introduced
by the grounded side of the vertical channel of

an oscilloscope.
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ingless as far as the voltage vx is concerned. In addition, if Z2 is the
current-limiting impedance in the circuit, the current in the circuit may
rise to a level that will cause severe damage to the circuit. If a trans-
former is used as shown in Fig. 21.13, this problem will be eliminated,
and the input voltage to the oscilloscope will be vx.

The linear variable differential transformer (LVDT) is a sensor that
can reveal displacement using transformer effects. In its simplest form,
the LVDT has a central winding and two secondary windings, as
shown in Fig. 21.14(a). A ferromagnetic core inside the windings is
free to move as dictated by some external force. A constant, low-level
ac voltage is applied to the primary, and the output voltage is the dif-
ference between the voltages induced in the secondaries. If the core is
in the position shown in Fig. 21.14(b), a relatively large voltage will
be induced across the secondary winding labeled coil 1, and a rela-
tively small voltage will be induced across the secondary winding
labeled coil 2 (essentially an air-core transformer for this position).
The result is a relatively large secondary output voltage. If the core is
in the position shown in Fig. 21.14(c), the flux linking each coil is the
same, and the output voltage (being the difference) will be quite small.
In total, therefore, the position of the core can be related to the sec-
ondary voltage, and a position-versus-voltage graph can be developed
as shown in Fig. 21.14(d). Due to the nonlinearity of the B-H curve,
the curve becomes somewhat nonlinear if the core is moved too far
out of the unit.

Z1vx

+

– Oscilloscope

1 1:

Z2

V

FIG. 21.13

Correcting the situation of Fig. 21.12 using an
isolation transformer.

(a)

Ferromagnetic core

Primary winding

Secondary
coil 1

Secondary
coil 2

End plate

(b)

xmax

e1max
+ –

e2min
+ –

e1 – e2 = eTmax

xmin

(e1 = e2)

+ – + –

e1 – e2 = eTmin

(c)

(d)

0

eT (induced voltage)

xmax x displacement

eTmax

e1 e2

FIG. 21.14

LVDT transformer: (a) construction; (b) maximum displacement; (c) minimum
displacement; (d) graph of induced voltage versus displacement.

21.6 EQUIVALENT CIRCUIT 
(IRON-CORE TRANSFORMER)

For the nonideal or practical iron-core transformer, the equivalent cir-
cuit appears as in Fig. 21.15. As indicated, part of this equivalent circuit
includes an ideal transformer. The remaining elements of Fig. 21.15 are
those elements that contribute to the nonideal characteristics of the
device. The resistances Rp and Rs are simply the dc or geometric resis-
tance of the primary and secondary windings, respectively. For the pri-
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mary and secondary coils of a transformer, there is a small amount of
flux that links each coil but does not pass through the core, as shown in
Fig. 21.16 for the primary winding. This leakage flux, representing a
definite loss in the system, is represented by an inductance Lp in the pri-
mary circuit and an inductance Ls in the secondary.

The resistance Rc represents the hysteresis and eddy current losses
(core losses) within the core due to an ac flux through the core. The induc-
tance Lm (magnetizing inductance) is the inductance associated with the
magnetization of the core, that is, the establishing of the flux �m in the
core. The capacitances Cp and Cs are the lumped capacitances of the pri-
mary and secondary circuits, respectively, and Cw represents the equiva-
lent lumped capacitances between the windings of the transformer.

Since i′p is normally considerably larger than ifm
(the magnetizing

current), we will ignore ifm
for the moment (set it equal to zero), result-

ing in the absence of Rc and Lm in the reduced equivalent circuit of Fig.
21.17. The capacitances Cp, Cw, and Cs do not appear in the equivalent
circuit of Fig. 21.17 since their reactance at typical operating frequencies
will not appreciably affect the transfer characteristics of the transformer.

–

+

Ep

Rp Lp

RCCp Np Ns RLCs EsLm

RsLs

–

+
ip

ifm
i'p

Cw

Ideal transformer

FIG. 21.15

Equivalent circuit for the practical iron-core transformer.

Φleakage

Φm

Φm

Φleakage

FIG. 21.16

Identifying the leakage flux of the primary.

–

+

Ep

Rp Lp Np Ns

RL

RsLs

–

+

Es

Ideal transformer

a  =
Np

Ns

FIG. 21.17

Reduced equivalent circuit for the nonideal iron-core transformer.

If we now reflect the secondary circuit through the ideal transformer
using Eq. (21.19), as shown in Fig. 21.18(a), we will have the load and
generator voltage in the same continuous circuit. The total resistance
and inductive reactance of the primary circuit are determined by

(21.22)Requivalent � Re � Rp � a2Rs
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and (21.23)

which result in the useful equivalent circuit of Fig. 21.18(b). The load
voltage can be obtained directly from the circuit of Fig. 21.18(b)
through the voltage divider rule:

aVL �

and VL � (21.24)

The network of Fig. 21.18(b) will also allow us to calculate the
generator voltage necessary to establish a particular load voltage. The
voltages across the elements of Fig. 21.18(b) have the phasor rela-
tionship indicated in Fig. 21.19(a). Note that the current is the refer-
ence phasor for drawing the phasor diagram. That is, the voltages
across the resistive elements are in phase with the current phasor,
while the voltage across the equivalent inductance leads the current by
90°. The primary voltage, by Kirchhoff’s voltage law, is then the pha-
sor sum of these voltages, as indicated in Fig. 21.19(a). For an induc-
tive load, the phasor diagram appears in Fig. 21.19(b). Note that aVL

leads I by the power-factor angle of the load. The remainder of the
diagram is then similar to that for a resistive load. (The phasor dia-
gram for a capacitive load will be left to the reader as an exercise.)

The effect of Re and Xe on the magnitude of Vg for a particular VL is
obvious from Eq. (21.24) or Fig. 21.19. For increased values of Re or
Xe, an increase in Vg is required for the same load voltage. For Re and
Xe � 0, VL and Vg are simply related by the turns ratio.

EXAMPLE 21.7 For a transformer having the equivalent circuit of
Fig. 21.20:
a. Determine Re and Xe.
b. Determine the magnitude of the voltages VL and Vg.
c. Determine the magnitude of the voltage Vg to establish the same load

voltage in part (b) if Re and Xe � 0 �. Compare with the result of
part (b).

a2RLVg
��
(Re � a2RL) � j Xe

(Ri)Vg
��
(Re � Ri) � j Xe

Xequivalent � Xe � Xp � a2Xs

–

+

Ep

a2Rs Xp

Np Ns

RL  VL

–

+

Es

Ideal transformer

a2XsRp

Vg

–

+

–

+

Xe

Np Ns

RL  VL

Ideal transformer

Re

Vg

–

+

–

+

–

+

aVL

Ri  =  a2RL

(a) (b)

a  =
Np

Ns
a  =

Np

Ns

FIG. 21.18

Reflecting the secondary circuit into the primary side of the iron-core 
transformer.

aVLI IRe

Vg
IXe

IXe

IRe

Vg

I

aVL

(power-factor angle of the load)θ

(a)

(b)

FIG. 21.19

Phasor diagram for the iron-core transformer
with (a) unity power-factor load (resistive)

and (b) lagging power-factor load (inductive).
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Solutions:

a. Re � Rp � a2Rs � 1 � � (2)2(1 �) � 5 �

Xe � Xp � a2Xs � 2 � � (2)2(2 �) � 10 �

b. The transformed equivalent circuit appears in Fig. 21.21.

aVL � (Ip)(a
2RL) � 2400 V

Thus, 

VL � � � 1200 V

and

Vg � Ip(Re � a2RL � j Xe)

� 10 A(5 � � 240 � � j 10 �) � 10 A(245 � � j 10 �)

Vg � 2450 V � j 100 V � 2452.04 V �2.34° � 2452.04 V �2.34°

2400 V
�

2
2400 V
�

a

Ip  =  10 A ∠  0°

Xp

RL

Ideal transformer

Rp

Vg

–

+
VL

–

+1 � 2 � 2 : 1

RsXs

1 �2 �

60 �

FIG. 21.20

Example 21.7.

Vg

–

+

Ip  =  10 A ∠  0° Re

5 �

Xe

10 �

aVL a2RL  =  (4)(60 �)  =  240 �
–

+

FIG. 21.21

Transformed equivalent circuit of Fig. 21.20.

c. For Re and Xe � 0, Vg � aVL � (2)(1200 V) � 2400 V.
Therefore, it is necessary to increase the generator voltage by

52.04 V (due to Re and Xe) to obtain the same load voltage.

21.7 FREQUENCY CONSIDERATIONS

For certain frequency ranges, the effect of some parameters in the
equivalent circuit of the iron-core transformer of Fig. 21.15 should not
be ignored. Since it is convenient to consider a low-, mid-, and high-
frequency region, the equivalent circuits for each will now be intro-
duced and briefly examined.

For the low-frequency region, the series reactance (2pfL) of the pri-
mary and secondary leakage reactances can be ignored since they are
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small in magnitude. The magnetizing inductance must be included,
however, since it appears in parallel with the secondary reflected cir-
cuit, and small impedances in a parallel network can have a dramatic
impact on the terminal characteristics. The resulting equivalent network
for the low-frequency region is provided in Fig. 21.22(a). As the fre-
quency decreases, the reactance of the magnetizing inductance will
reduce in magnitude, causing a reduction in the voltage across the sec-
ondary circuit. For f � 0 Hz, Lm is ideally a short circuit, and VL � 0.
As the frequency increases, the reactance of Lm will eventually be suf-
ficiently large compared with the reflected secondary impedance to be
neglected. The mid-frequency reflected equivalent circuit will then
appear as shown in Fig. 21.22(b). Note the absence of reactive ele-
ments, resulting in an in-phase relationship between load and generator
voltages.

For higher frequencies, the capacitive elements and primary and sec-
ondary leakage reactances must be considered, as shown in Fig. 21.23.
For discussion purposes, the effects of Cw and Cs appear as a lumped
capacitor C in the reflected network of Fig. 21.23; Cp does not appear
since the effect of C will predominate. As the frequency of interest
increases, the capacitive reactance (XC � 1/2pfC) will decrease to the
point that it will have a shorting effect across the secondary circuit of
the transformer, causing VL to decrease in magnitude.

Rp

–

+

Rc a2RL aVL

a2Rs

LmVg

–

+

(a)

Rp

–

+

a2RL aVL

a2Rs

Vg

–

+

(b)

Rc

FIG. 21.22

(a) Low-frequency reflected equivalent circuit;
(b) mid-frequency reflected circuit.

–

+

Rc

Rp

Vg

Xp a2Xs a2Rs

a2RL aVLC

–

+

FIG. 21.23

High-frequency reflected equivalent circuit.

A typical iron-core transformer-frequency response curve appears in
Fig. 21.24. For the low- and high-frequency regions, the primary ele-
ment responsible for the drop-off is indicated. The peaking that occurs
in the high-frequency region is due to the series resonant circuit estab-
lished by the inductive and capacitive elements of the equivalent circuit.
In the peaking region, the series resonant circuit is in, or near, its reso-
nant or tuned state.

VL (for fixed Vg)

(Lm)

0

(C)

100 1000 10,000 100,000 f (Hz)
(log scale)

Fairly flat
response region

(VL least sensitive to f )

FIG. 21.24

Transformer-frequency response curve.
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21.8 SERIES CONNECTION OF 
MUTUALLY COUPLED COILS

In Chapter 12, we found that the total inductance of series isolated coils
was determined simply by the sum of the inductances. For two coils that
are connected in series but also share the same flux linkages, such as
those in Fig. 21.25(a), a mutual term is introduced that will alter the total
inductance of the series combination. The physical picture of how the
coils are connected is indicated in Fig. 21.25(b). An iron core is included,
although the equations to be developed are for any two mutually coupled
coils with any value of coefficient of coupling k. When referring to the
voltage induced across the inductance L1 (or L2) due to the change in flux
linkages of the inductance L2 (or L1, respectively), the mutual inductance
is represented by M12. This type of subscript notation is particularly
important when there are two or more mutual terms.

Due to the presence of the mutual term, the induced voltage e1 is
composed of that due to the self-inductance L1 and that due to the
mutual inductance M12. That is,

e1 � L1 � M12 

However, since i1 � i2 � i,

e1 � L1 � M12 

or (volts, V) (21.25)

and, similarly,

(volts, V) (21.26)

For the series connection, the total induced voltage across the series
coils, represented by eT, is

eT � e1 � e2 � (L1 � M12) � (L2 � M12)

or eT � (L1 � L2 � M12 � M12)

and the total effective inductance is

(henries, H) (21.27)

The subscript (�) was included to indicate that the mutual terms
have a positive sign and are added to the self-inductance values to
determine the total inductance. If the coils were wound such as shown
in Fig. 21.26, where f1 and f2 are in opposition, the induced voltages
due to the mutual terms would oppose that due to the self-inductance,
and the total inductance would be determined by

(henries, H) (21.28)LT(�) � L1 � L2 � 2M12

LT(�) � L1 � L2 � 2M12

di
�
dt

di
�
dt

di
�
dt

e2 � (L2 � M12)�
d
d
i
t
�

e1 � (L1 � M12)�
d
d
i
t
�

di
�
dt

di
�
dt

di2
�
dt

di1
�
dt

+ –e1 + –e2

Iron core

M  =  M12 (+)
L1 L2

(a)

L1 L2

M12 (+)

+ –e1 + –e2
i2

(b)

i1

  1φ   2φ

FIG. 21.25

Mutually coupled coils connected in series.

M12 (–) L2L1

  1φ   2φi1 i2

FIG. 21.26

Mutually coupled coils connected in series
with negative mutual inductance.
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Through Eqs. (21.27) and (21.28), the mutual inductance can be
determined by

(21.29)

Equation (21.29) is very effective in determining the mutual induc-
tance between two coils. It states that the mutual inductance is equal to
one-quarter the difference between the total inductance with a positive
and negative mutual effect.

From the preceding, it should be clear that the mutual inductance
will directly affect the magnitude of the voltage induced across a coil
since it will determine the net inductance of the coil. Additional exam-
ination reveals that the sign of the mutual term for each coil of a cou-
pled pair is the same. For LT(�) they were both positive, and for LT(�)

they were both negative. On a network schematic where it is inconve-
nient to indicate the windings and the flux path, a system of dots is
employed that will determine whether the mutual terms are to be posi-
tive or negative. The dot convention is shown in Fig. 21.27 for the series
coils of Figs. 21.25 and 21.26.

If the current through each of the mutually coupled coils is going
away from (or toward) the dot as it passes through the coil, the mutual
term will be positive, as shown for the case in Fig. 21.27(a). If the
arrow indicating current direction through the coil is leaving the dot for
one coil and entering the dot for the other, the mutual term is negative.

A few possibilities for mutually coupled transformer coils are indi-
cated in Fig. 21.28(a). The sign of M is indicated for each. When deter-
mining the sign, be sure to examine the current direction within the coil
itself. In Fig. 21.28(b), one direction was indicated outside for one coil
and through for the other. It initially might appear that the sign should
be positive since both currents enter the dot, but the current through coil
1 is leaving the dot; hence a negative sign is in order.

M12 � �
1
4

�(LT(�) � LT(�))

L1 L2
(a)

L1 L2
(b)

FIG. 21.27

Dot convention for the series coils of 
(a) Fig. 21.25 and (b) Fig. 21.26.

M (+) M (+) M (–) M (–)

(a) (b)

FIG. 21.28

Defining the sign of M for mutually coupled transformer coils.

The dot convention also reveals the polarity of the induced voltage
across the mutually coupled coil. If the reference direction for the cur-
rent in a coil leaves the dot, the polarity at the dot for the induced volt-
age of the mutually coupled coil is positive. In the first two figures of
Fig. 21.28(a), the polarity at the dots of the induced voltages is positive.
In the third figure of Fig. 21.28(a), the polarity at the dot of the right-
hand coil is negative, while the polarity at the dot of the left-hand coil
is positive, since the current enters the dot (within the coil) of the right-
hand coil. The comments for the third figure of Fig. 21.28(a) can also
be applied to the last figure of Fig. 21.28(a).
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EXAMPLE 21.8 Find the total inductance of the series coils of Fig.
21.29.

Solution:

Coil 2: L2 � M12 � M23

Coil 3: L3 � M23 � M13

and

LT � (L1 � M12 � M13) � (L2 � M12 � M23) � (L3 � M23 � M13)

� L1 � L2 � L3 � 2M12 � 2M23 � 2M13

Substituting values, we find

LT � 5 H � 10 H � 15 H � 2(2 H) � 2(3 H) � 2(1 H)
� 34 H � 8 H � 26 H

EXAMPLE 21.9 Write the mesh equations for the transformer net-
work in Fig. 21.30.

Solution: For each coil, the mutual term is positive, and the sign of
M in Xm � qM �90° is positive, as determined by the direction of I1

and I2. Thus,

E1 � I1R1 � I1XL1
�90° � I2Xm �90° � 0

or E1 � I1(R1 � j XL1
) � I2Xm �90° � 0

For the other loop,

�I2XL2
�90° � I1Xm �90° � I2RL � 0

or I2(RL � j XL2
) � I1Xm �90° � 0

21.9 AIR-CORE TRANSFORMER

As the name implies, the air-core transformer does not have a ferro-
magnetic core to link the primary and secondary coils. Rather, the coils
are placed sufficiently close to have a mutual inductance that will estab-
lish the desired transformer action. In Fig. 21.31, current direction and

L1� M12 � M13Coil 1: 

Current vectors leave dot.

One current vector enters dot , while one leaves.

M12  =  2 H M23  =  3 H

L1 =  5 H L2  =  10 H L3  =  15 Hi

M13  =  1 H

FIG. 21.29

Example 21.8.

L1

–

+
L2E1 I1 I2 RL

R1
M

FIG. 21.30

Example 21.9.

Rp

+

–

vg

Zi

ip +

–

ep Lp

M

esLs

+

–

vL

is+

–

Rs

ZL

Ideal transformer

FIG. 21.31

Air-core transformer equivalent circuit.
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polarities have been defined for the air-core transformer. Note the pres-
ence of a mutual inductance term M, which will be positive in this case,
as determined by the dot convention.

From past analysis in this chapter, we now know that

(21.30)

for the primary circuit.
We found in Chapter 12 that for the pure inductor, with no mutual

inductance present, the mathematical relationship

v1 � L 

resulted in the following useful form of the voltage across an inductor:

V1 � I1XL �90° where XL � qL

Similarly, it can be shown, for a mutual inductance, that

v1 � M 

will result in

(21.31)

Equation (21.30) can then be written (using phasor notation) as

(21.32)

and Vg � IpRp �0° � IpXLp
�90° � IsXm �90°

or (21.33)

For the secondary circuit,

(21.34)

and VL � IsRs �0° � IsXLs
�90° � IpXm �90°

or (21.35)

Substituting VL � �IsZL

into Eq. (21.35) results in

0 � Is(Rs � j XLs
� ZL) � IpXm �90°

Solving for Is, we have

Is �

and, substituting into Eq. (21.33), we obtain

�IpXm �90°
��
Rs � j XLs

� ZL

VL � I(Rs � j XLs
) � IpXm �90°

Es � IsXLs
�90° � IpXm �90°

Vg � Ip(Rp � j XLp
) � IsXm �90°

Ep � IpXLp
�90° � IsXm �90°

V1 � I2Xm �90° where Xm � qM

di2
�
dt

di1
�
dt

ep � Lp �
d

d

i

t
p

� � M �
d

d

i

t
s

�



AIR-CORE TRANSFORMER  957

Vg � Ip(Rp � j XLp
) � � �Xm �90°

Thus, the input impedance is

Zi � � Rp � j XLp
�

or, defining

Zp � Rp � j XLp
Zs � Rs � j XLs

and Xm �90° � �j qM

we have

Zi � Zp �

and (21.36)

The term (qM)2/(Zs � ZL) is called the coupled impedance, and it is
independent of the sign of M since it is squared in the equation. Con-
sider also that since (qM)2 is a constant with 0° phase angle, if the load
ZL is resistive, the resulting coupled impedance term will appear capac-
itive due to division of (Zs � RL) into (qM)2. This resulting capacitive
reactance will oppose the series primary inductance Lp, causing a
reduction in Zi. Including the effect of the mutual term, the input
impedance to the network will appear as shown in Fig. 21.32.

EXAMPLE 21.10 Determine the input impedance to the air-core
transformer in Fig. 21.33.

Zi � Zp � �
Z
(

s

q

�

M)
Z

2

L
�

(�j qM)2

�
Zs � ZL

(Xm �90°)2

��
Rs � j XLs

� ZL

Vg
�
Ip

�IpXm �90°
��
Rs � j XLs

� ZL

   2M2

Zs + ZL
––––––

Zi

Rp Lp

Coupled
impedence

ω

FIG. 21.32

Input characteristics for the air-core
transformer.

Rp

Lp  =  6 H

M  =  0.9 H

Ls  =  1 H

Rs

0.5 �3 �

q  =  400

RL 40 �Zi

FIG. 21.33

Example 21.10.

Solution:

Zi � Zp �

� Rp � j XLp
�

� 3 � � j 2.4 k� �

� j 2.4 k� �
129.6 � 103 �
��
40.5 � j 400

((400 rad/s)(0.9 H))2

���
0.5 � � j 400 � � 40 �

(qM)2

��
Rs � j XLs

� RL

(qM)2

�
Zs � ZL
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� j 2.4 k� � 322.4 � ��84.22°
capacitive

� j 2.4 k� � (0.0325 k� � j 0.3208 k�)

� 0.0325 k� � j (2.40 � 0.3208) k�

and Zi � Ri � j XLi
� 32.5 � � j 2079 � � 2079.25 � �89.10°

21.10 NAMEPLATE DATA

A typical iron-core power transformer rating, included in the name-
plate data for the transformer, might be the following:

5 kVA 2000/100 V 60 Hz

The 2000 V or the 100 V can be either the primary or the secondary
voltage; that is, if 2000 V is the primary voltage, then 100 V is the sec-
ondary voltage, and vice versa. The 5 kVA is the apparent power 
(S � VI ) rating of the transformer. If the secondary voltage is 100 V,
then the maximum load current is

IL � � � 50 A

and if the secondary voltage is 2000 V, then the maximum load cur-
rent is

IL � � � 2.5 A

The transformer is rated in terms of the apparent power rather than
the average, or real, power for the reason demonstrated by the circuit
of Fig. 21.34. Since the current through the load is greater than that
determined by the apparent power rating, the transformer may be per-
manently damaged. Note, however, that since the load is purely capac-
itive, the average power to the load is zero. The wattage rating would
therefore be meaningless regarding the ability of this load to damage
the transformer.

The transformation ratio of the transformer under discussion can be
either of two values. If the secondary voltage is 2000 V, the transfor-
mation ratio is a � Np/Ns � Vg /VL � 100 V/2000 V � 1/20, and the
transformer is a step-up transformer. If the secondary voltage is 100 V,
the transformation ratio is a � Np/Ns � Vg /VL � 2000 V/100 V � 20,
and the transformer is a step-down transformer.

The rated primary current can be determined simply by applying Eq.
(21.18):

Ip �

which is equal to [2.5A/(1/20)] � 50A if the secondary voltage is 2000 V,
and (50 A/20) � 2.5 A if the secondary voltage is 100 V.

To explain the necessity for including the frequency in the nameplate
data, consider Eq. (21.12):

Ep � 4.44fpNp�m

and the B-H curve for the iron core of the transformer (Fig. 21.35).
The point of operation on the B-H curve for most transformers is at

the knee of the curve. If the frequency of the applied signal should

Is
�
a

5000 VA
�

2000 V
S

�
VL

5000 VA
�

100 V
S

�
VL

IL = –––––– = 4 A > 2.5 A (rated)2000 V
500 Ω

+

2000 V XC = 500 Ω

Iron core
–

Secondary

FIG. 21.34

Demonstrating why transformers are rated in
kVA rather than kW.


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drop, and Np and Ep remain the same, then �m must increase in magni-
tude, as determined by Eq. (21.12):

�m �

The result is that B will increase, as shown in Fig. 21.35, causing H to
increase also. The resulting DI could cause a very high current in the
primary, resulting in possible damage to the transformer.

21.11 TYPES OF TRANSFORMERS

Transformers are available in many different shapes and sizes. Some of
the more common types include the power transformer, audio trans-
former, IF (intermediate-frequency) transformer, and RF (radio-
frequency) transformer. Each is designed to fulfill a particular require-
ment in a specific area of application. The symbols for some of the
basic types of transformers are shown in Fig. 21.36.

Ep
��
4.44 fp↓Np

Knee of curve

B  =
�m

Acore

�B  =
��m
Acore

�H  =
N1�I1
Icore

H  =
N1I1
Icore

0

FIG. 21.35

Demonstrating why the frequency of application is important for transformers.

Air-core Iron-core Variable-core

FIG. 21.36

Transformer symbols.

The method of construction varies from one transformer to another.
Two of the many different ways in which the primary and secondary
coils can be wound around an iron core are shown in Fig. 21.37. In
either case, the core is made of laminated sheets of ferromagnetic mate-
rial separated by an insulator to reduce the eddy current losses. The
sheets themselves will also contain a small percentage of silicon to
increase the electrical resistivity of the material and further reduce the
eddy current losses.

A variation of the core-type transformer appears in Fig. 21.38. This
transformer is designed for low-profile (the 2.5-VA size has a maximum
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–

EpVR  =  120 V Es VL  =  6 V

I2  =  1 A

—  A1
20

Vg  =  120 V Ep  =  120 V

VL  =  126 V

Es  =  6 V

I2  =  1 A

I1  =  —  A1
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height of only 0.65 in.) applications in power, control, and instrumenta-
tion applications. There are actually two transformers on the same core,
with the primary and secondary of each wound side by side. The
schematic representation appears in the same figure. Each set of termi-
nals on the left can accept 115 V at 50 or 60 Hz, whereas each side of
the output will provide 230 V at the same frequency. Note the dot con-
vention, as described earlier in the chapter.

The autotransformer [Fig. 21.39(b)] is a type of power transformer
that, instead of employing the two-circuit principle (complete isolation
between coils), has one winding common to both the input and the out-
put circuits. The induced voltages are related to the turns ratio in the
same manner as that described for the two-circuit transformer. If the
proper connection is used, a two-circuit power transformer can be

FIG. 21.38

Split bobbin, low-profile power transformer.
(Courtesy of Microtran 

Company, Inc.)

FIG. 21.39

(a) Two-circuit transformer; (b) autotransformer.

Laminated sheets

Secondary Primary

Secondary

(b) Shell type(a) Core type

Primary

FIG. 21.37

Types of ferromagnetic core construction.
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whereas for the autotransformer, S � (1 A)(120 V) � 126 VA, which
is many times that of the two-circuit transformer. Note also that the cur-
rent and voltage of each coil are the same as those for the two-circuit
configuration. The disadvantage of the autotransformer is obvious: loss
of the isolation between the primary and secondary circuits.

A pulse transformer designed for printed-circuit applications where
high-amplitude, long-duration pulses must be transferred without satu-
ration appears in Fig. 21.40. Turns ratios are available from 1: 1 to 5: 1 at
maximum line voltages of 240 V rms at 60 Hz. The upper unit is for
printed-circuit applications with isolated dual primaries, whereas the
lower unit is the bobbin variety with a single primary winding.

Two miniature ( in. by in.) transformers with plug-in or insulated
leads appear in Fig. 21.41, along with their schematic representations.
Power ratings of 100 mW or 125 mW are available with a variety of
turns ratios, such as 1: 1, 5: 1, 9.68: 1, and 25: 1.

1
�
4

1
�
4

1
�
20

FIG. 21.40

Pulse transformers. (Courtesy of DALE
Electronics, Inc.)

FIG. 21.41

Miniature transformers. (Courtesy of PICO Electronics, Inc.)

+ A

– B

CTE pZ i(A – B )

E p

2

E p

2

Z1/2

Z1/2

N p

2

N p

2

Ns E s

+

–

Z L

FIG. 21.42

Ideal transformer with a center-tapped primary.

21.12 TAPPED AND MULTIPLE-LOAD
TRANSFORMERS

For the center-tapped (primary) transformer of Fig. 21.42, where the
voltage from the center tap to either outside lead is defined as Ep/2, the
relationship between Ep and Es is

(21.37)�
E

E
p

s
� � �

N

N
p

s
�

employed as an autotransformer. The advantage of using it as an auto-
transformer is that a larger apparent power can be transformed. This can
be demonstrated by the two-circuit transformer of Fig. 21.39(a), shown
in Fig. 21.39(b) as an autotransformer.

For the two-circuit transformer, note that S � ( A)(120 V) � 6 VA,1
�
20
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For each half-section of the primary,

Z1/2 � � �
2

ZL � � �
2

ZL

with Zi(A�B)
� � �

2

ZL

Therefore, (21.38)

For the multiple-load transformer of Fig. 21.43, the following
equations apply:

(21.39)

The total input impedance can be determined by first noting that, for
the ideal transformer, the power delivered to the primary is equal to the
power dissipated by the load; that is,

P1 � PL2
� PL3

and, for resistive loads (Zi � Ri, Z2 � R2, and Z3 � R3),

� �

or, since E2 � Ei and E3 � E1

then � �

and � �

Thus, (21.40)

indicating that the load resistances are reflected in parallel.
For the configuration of Fig. 21.44, with E2 and E3 defined as shown,

Equations (21.39) and (21.40) are applicable.

21.13 NETWORKS WITH MAGNETICALLY
COUPLED COILS

For multiloop networks with magnetically coupled coils, the mesh-
analysis approach is most frequently applied. A firm understanding of
the dot convention discussed earlier should make the writing of the
equations quite direct and free of errors. Before writing the equations
for any particular loop, first determine whether the mutual term is pos-
itive or negative, keeping in mind that it will have the same sign as that
for the other magnetically coupled coil. For the two-loop network of
Fig. 21.45, for example, the mutual term has a positive sign since the
current through each coil leaves the dot. For the primary loop,

E1 � I1Z1 � I1ZL1
� I2Zm � Z2(I1 � I2) � 0

�
R
1

i
� � �

(N1/N
1

2)
2R2

� � �
(N1/N

1

3)
2R3

�

E2
i

��
(N1/N3)

2R3

E2
i

��
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2R2

E2
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�
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2
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�
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FIG. 21.44

Ideal transformer with a tapped secondary
and multiple loads.
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FIG. 21.45

Applying mesh analysis to magnetically
coupled coils.
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FIG. 21.43

Ideal transformer with multiple loads.
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FIG. 21.46

Applying mesh analysis to a network with two
magnetically coupled coils.

where M of Zm � qM �90° is positive, and

I1(Z1 � ZL1
� Z2) � I2(Z2 � Zm) � E1

Note in the above that the mutual impedance was treated as if it were
an additional inductance in series with the inductance L1 having a sign
determined by the dot convention and the voltage across which is deter-
mined by the current in the magnetically coupled loop.

For the secondary loop,

�Z2(I2 � I1) � I2ZL2
� I1Zm � I2Z3 � 0

or I2(Z2 � ZL2
� Z3) � I1(Z2 � Zm) � 0

For the network of Fig. 21.46, we find a mutual term between L1 and
L2 and L1 and L3, labeled M12 and M13, respectively.

For the coils with the dots (L1 and L3), since each current through the
coils leaves the dot, M13 is positive for the chosen direction of I1 and I3.
However, since the current I1 leaves the dot through L1, and I2 enters the
dot through coil L2, M12 is negative. Consequently, for the input circuit,

E1 � I1Z1 � I1ZL1
� I2(�Zm12

) � I3Zm13
� 0

or E1 � I1(Z1 � ZL1
) � I2Zm12

� I3Zm13
� 0

For loop 2,

�I2Z2 � I2ZL2
� I1(�Zm12

) � 0

�I1Zm12
� I2(Z2 � ZL2

) � 0

and for loop 3,

�I3Z3 � I3ZL3
� I1Zm13

� 0

or I1Zm13
� I3(Z3 � ZL3

) � 0

In determinant form,

I1(Z1 � ZL1
) � I2Zm12

� I3Zm13
� E1

�I1Zm12
� I2(Z2 � ZL12

) � 0 � 0
I1Zm13

� 0 � I3(Z3 � Z13) � 0

21.14 APPLICATIONS

The transformer has appeared throughout the text in a number of
described applications, from the basic dc supply to the soldering gun to
the flyback transformer of a simple flash camera. Transformers were
used to increase or decrease the voltage or current level, to act as an
impedance matching device, or in some cases to play a dual role of
transformer action and reactive element. They are so common in such a
wide variety of systems that one should make an effort to be very famil-
iar with their general characteristics. For most applications their design
today is such that they can be considered 100% efficient. That is, the
power applied is the power delivered to the load. In general, however,
they are frequently the largest element of a design and because of the
nonlinearity of the B-H curve can cause some distortion of the trans-
formed waveform. By now it should be clear that they are useful only
in situations where the applied voltage is changing with time. The
application of a dc voltage to the primary will result in 0 V at the sec-
ondary, but the application of a voltage that changes with time, no mat-
ter what its general appearance, will result in a voltage on the sec-
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ondary. Always keep in mind that even though it can provide isolation
between the primary and secondary circuits, a transformer can trans-
form the load impedance to the primary circuit at a level that can sig-
nificantly impact on the behavior of the network. Even the smallest
impedance in the secondary can be made to appear very large in the pri-
mary when a step-down transformer is used.

Transformers, like every other component you may use, have power
ratings. The larger the power rating, the larger the resulting transformer,
primarily because of the larger conductors in the windings to handle the
current. The size of a transformer is also a function of the frequency
involved. The lower the frequency, the larger the required transformer,
as easily recognized by the size of large power transformers (also
affected by the current levels as mentioned above). For the same power
level the higher the frequency of transformation, the smaller the trans-
former can be. Because of eddy current and hysteresis losses in a trans-
former, the design of the core is quite important. A solid core would
introduce high levels of such losses, whereas a core constructed of
sheets of high-permeability steel with the proper insulation between the
sheets would reduce the losses significantly.

Although very fundamental in their basic structure, transformers are
recognized as one of the major building blocks of electrical and elec-
tronic systems. There isn’t a publication on new components published
that does not include a new design for the variety of applications devel-
oping every day.

Low-Voltage Compensation

At times during the year, peak demands from the power company can
result in a reduced voltage down the line. In midsummer, for example,
the line voltage may drop from 120 V to 100 V because of the heavy
load often due primarily to air conditioners. However, air conditioners
do not run as well under low-voltage conditions, so the following
option using an autotransformer may be the solution.

In Fig. 21.47(a), an air conditioner drawing 10 A at 120 V is con-
nected through an autotransformer to the available supply that has
dropped to 100 V. Assuming 100% efficiency, the current drawn from
the line would have to be 12 A to ensure that Pi � Po � 1200 W. Using
the analysis introduced in Section 21.11, we will find that the current in
the primary winding is 2 A with 10 A in the secondary. The 12 A will

(b)

Step-up isolation
transformer

Source

100 V

12 A
10 A

+

–
120-V air conditioner

–

+

(a)

100 V

+

–

Source

12 A

2 A

10 A

Autotransformer

+

–
120-V air conditioner

FIG. 21.47

Maintaining a 120-V supply for an air conditioner: (a) using an
autotransformer; (b) using a traditional step-up transformer.
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exist only in the line connecting the source to the primary. If the volt-
age level were increased using the traditional step-up transformer
shown in Fig. 21.47(b), the same currents would result at the source and
load. However, note that the current through the primary is now 12 A
which is 6 times that in the autotransformer. The result is that the wind-
ing in the autotransformer can be much thinner due to the significantly
lower current level.

Let us now examine the turns ratio required and the number of turns
involved for each setup (associating one turn with each volt of the pri-
mary and secondary).

For the autotransformer:

�
N
N

p

s� � �
V
V

p

s� � �
1

1

0

0

0

V

V
� ⇒ �

1
1
0
0
0
t
t

�

For the traditional transformer:

�
N
N

p

s� � �
V
V

p

s� � �
1

1

2

0

0

0

V

V
� ⇒ �

1
1
2
0
0
0

t
t

�

In total, therefore, the autotransformer has only 10 turns in the sec-
ondary, whereas the traditional has 120. For the autotransformer we
need only 10 turns of heavy wire to handle the current of 10 A, not the
full 120 required for the traditional transformer. In addition, the total
number of turns for the autotransformer is 110 compared to 220 for the
traditional transformer.

The net result of all the above is that even though the protection
offered by the isolation feature is lost, the autotransformer can be much
smaller in size and weight and, therefore, less costly.

Ballast Transformer

Until just recently, all fluorescent lights such as appearing in Fig.
21.48(a) had a ballast transformer as shown in Fig. 21.48(b). In many
cases its weight alone is almost equal to that of the fixture itself. In
recent years a solid-state equivalent transformer has been developed
that in time may replace most of the ballast transformers. However, for
now and the near future, because of the additional cost associated with
the solid-state variety, the ballast transformer will appear in most fluo-
rescent bulbs.

The basic connections for a single-bulb fluorescent light are pro-
vided in Fig. 21.49(a). Note that the transformer is connected as an
autotransformer with the full applied 120 V across the primary. When
the switch is closed, the applied voltage and the voltage across the sec-
ondary will add and establish a current through the filaments of the flu-
orescent bulb. The starter is initially a short circuit to establish the con-
tinuous path through the two filaments. In older fluorescent bulbs the
starter was a cylinder with two contacts, as shown in Fig. 21.49(b),
which had to be replaced on occasion. It sat right under the fluorescent
bulb near one of the bulb connections. Now, as shown by the sketch of
the inside of a ballast transformer in Fig. 21.49(c), the starter is now
commonly built into the ballast and can no longer be replaced. The volt-
age established by the autotransformer action is sufficient to heat the fil-
aments but not light the fluorescent bulb. The fluorescent lamp is a long
tube with a coating of fluorescent paint on the inside. It is filled with an
inert gas and a small amount of liquid mercury. The distance between
the electrodes at the ends of the lamp is too much for the applied auto-



966  TRANSFORMERS

transformer voltage to establish conduction. To overcome this problem,
the filaments are first heated as described above to convert the mercury
(a good conductor) from a liquid to a gas. Conduction can then be
established by the application of a large potential across the electrodes.
This potential is established when the starter (a thermal switch that
opens when it reaches a particular temperature) opens and causes the
inductor current to drop from its established level to zero amperes. This
quick drop in current will establish a very high spike in voltage across
the coils of the autotransformer as determined by vL � L(diL /dt). This
significant spike in voltage will also appear across the bulb and will
establish current between the electrodes. Light will then be given off as
the electrons hit the fluorescent surface on the inside of the tube. It is
the persistence of the coating that helps hide the oscillation in conduc-
tion level due to the low-frequency (60-Hz) power that could result in a
flickering light. The starter will remain open until the next time the bulb
is turned on. The flow of charge between electrodes will then be main-
tained solely by the voltage across the autotransformer. This current is
relatively low in magnitude because of the reactance of the secondary
winding in the resulting series circuit. In other words, the autotrans-
former has shifted to one that is now providing a reactance to the sec-
ondary circuit to limit the current through the bulb. Without this limit-
ing factor the current through the bulb would be too high, and the bulb
would quickly burn out. This action of the coils of the transformer gen-
erating the required voltage and then acting as a coil to limit the current
has resulted in the general terminology of swinging choke.

The fact that the light is not generated by an IR drop across a fila-
ment of a bulb is the reason fluorescent lights are so energy efficient. In

FIG. 21.48

Fluorescent lamp: (a) general appearance; (b) internal view with ballast.
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fact, in an incandescent bulb, about 75% of the applied energy is lost in
heat, with only 25% going to light emission. In a fluorescent bulb more
than 70% goes to light emission and 30% to heat losses. As a rule of
thumb, one can assume that the lighting from a 40-W fluorescent lamp
[such as the unit of Fig. 21.48(a) with its two 20-W bulbs] is equivalent
to that of a 100-W incandescent bulb.

One other interesting difference between incandescent and fluores-
cent bulbs is the method of determining whether they are good or bad.
For the incandescent light it is immediately obvious when it fails to give
light at all. For the fluorescent bulb, however, assuming that the ballast
is in good working order, the bulb will begin to dim as its life wears on.
The electrodes will get coated and be less efficient, and the coating on
the inner surface will begin to deteriorate.

Rapid-start fluorescent lamps are different in operation only in that
the voltage generated by the transformer is sufficiently large to atomize
the gas upon application and initiate conduction, thereby removing the
need for a starter and eliminating the warm-up time of the filaments. In
time the solid-state ballast will probably be the unit of choice because of
its quick response, higher efficiency, and lighter weight, but the transition
will take some time. The basic operation will remain the same, however.

Because of the fluorine gas (hence the name fluorescent bulb) and
the mercury in fluorescent lamps, they must be discarded with care. Ask
your local disposal facility where to take the bulbs. Breaking them for

FIG. 21.49

(a) Schematic of single-bulb fluorescent lamp; (b) starter; (c) internal view of
ballast transformer.
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insertion in a plastic bag could be a very dangerous proposition. If you
happen to break a bulb and get cut in the process, be sure to go right to
a medical facility since you could sustain fluorine or mercury poisoning.

21.15 COMPUTER ANALYSIS

PSpice

Transformer (Controlled Sources) The simple transformer con-
figuration of Fig. 21.50 will now be investigated using controlled
sources to mimic the behavior of the transformer as defined by its basic
voltage and current relationships.

+

–
Zi

Ep Es RL 100 �

R1

10 �

Vg  =  20 V ∠  0°

1 : 4
+

–

+

–

FIG. 21.50

Applying PSpice to a step-up transformer.

For comparison purposes, a theoretical solution of the network
would yield the following:

Zi � a2ZL

� � �
2

100 �

� 6.25 �

and Ep � � 7.692 V

with Es � Ep � �
(1

1
/4)
� (7.692 V) � 4(7.692 V) � 30.77 V

and VL � Es � 30.77 V

For the ideal transformer, the secondary voltage is defined by Es �
Ns/Np(Ep) which is Es � 4Ep for the network of Fig. 21.50. The fact that
the magnitude of one voltage is controlled by another requires that we
use the Voltage-Controlled Voltage Source(VCVS) source in the
ANALOG library. It appears as E in the Parts List and has the format
appearing in Fig. 21.51. The sensing voltage is E1, and the controlled
voltage appears across the two terminals of the circular symbol for a
voltage source. Double-clicking on the source symbol will permit set-
ting the GAIN to 4 for this example. Note in Fig. 21.51 that the sens-
ing voltage is the primary voltage of the circuit of Fig. 21.50, and the
output voltage is connected directly to the load resistor RL. There is no
real problem making the necessary connections because of the format
of the E source.

The next step is to set up the current relationship for the transformer.
Since the magnitude of one current will be controlled by the magnitude
of another current in the same configuration, a Current-Controlled

1
�
a

(6.25 �)(20 V)
��
6.25 � � 10 �

1
�
4
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Current Source(CCCS) must be employed. It also appears in the
ANALOG library under the Part List as F and has the format appear-
ing in Fig. 21.51. Note that both currents have a direction associated
with them. For the ideal transformer, Ip � Ns/Np(Is) which is Ip � 4Is

for the network of Fig. 21.50. The gain for the part can be set using the
same procedure defined for the E source. Since the secondary current
will be the controlling current, its level must be fed into the F source in
the same direction as indicated in the controlled source. When making
this connection, be sure to click the wire in location before crossing the
wire of the primary circuit and then clicking it again after crossing the
wire. If you do this properly, a connection point indicated by a small
red dot will not appear. The controlled current IR1

can be connected as
shown because the connection E1 is only sensing a voltage level, essen-
tially has infinite impedance, and can be looked upon as an open circuit.
In other words, the current through R1 will be the same as through the
controlled source of F.

A simulation was set up with AC Sweep and 1 kHz for the Start and
End Frequencies. One data point per decade was selected, and the sim-
ulation was initiated. After the SCHEMATIC1 screen appeared, the
window was exited, and PSpice-View Output File was selected to
result in the AC ANALYSIS solution of Fig. 21.52. Note that the volt-
age is 30.77 V, which is an exact match with the theoretical solution.

Transformer (Library) The same network can be analyzed by
choosing one of the transformers from the EVAL library as shown in
Fig. 21.53. The transformer labeled K3019PL_3C8 was chosen, and
the proper attributes were placed in the Property Editor dialog box.

FIG. 21.51

Using PSpice to determine the magnitude and phase angle for the load voltage
of the network of Fig. 21.50.
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The only three required were COUPLING set at 1, L1–TURNS set at
1, and L2–TURNS set at 4. In the Simulation Settings, AC Sweep was
chosen and 1MEGHz used for both the Start and End Frequency
because it was found that it acted as an almost ideal transformer at this
frequency—a little bit of run and test. When the simulation was run, the
results under PSpice-View Output File appeared as shown in Fig.
21.54—almost an exact match with the theoretical solution of 30.77 V.

FIG. 21.52

The output file for the analysis indicated in Fig. 21.51.

FIG. 21.53

Using a transformer provided in the EVAL library to analyze the network 
of Fig. 21.50.
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FIG. 21.55

Problems 1, 2, and 3.

PROBLEMS

SECTION 21.2 Mutual Inductance

1. For the air-core transformer of Fig. 21.55:
a. Find the value of Ls if the mutual inductance M is

equal to 80 mH.
b. Find the induced voltages ep and es if the flux linking

the primary coil changes at the rate of 0.08 Wb/s.
c. Find the induced voltages ep and es if the current ip

changes at the rate of 0.3 A/ms.

2. a. Repeat Problem 1 if k is changed to 1.
b. Repeat Problem 1 if k is changed to 0.2.
c. Compare the results of parts (a) and (b).

3. Repeat Problem 1 for k � 0.9, Np � 300 turns, and Ns �
25 turns.

SECTION 21.3 The Iron-Core Transformer

4. For the iron-core transformer (k � 1) of Fig. 21.56:
a. Find the magnitude of the induced voltage Es.
b. Find the maximum flux �m.

5. Repeat Problem 4 for Np � 240 and Ns � 30.

6. Find the applied voltage of an iron-core transformer if
the secondary voltage is 240 V, and Np � 60 with Ns �
720.

7. If the maximum flux passing through the core of Prob-
lem 4 is 12.5 mWb, find the frequency of the input
voltage.

Np = 8

Ip +

Ep = 25 V

–

+ Is

Es

–

f = 60 Hz

Ns = 64

Φm

Φm

FIG. 21.56

Problems 4, 5, and 7.

FIG. 21.54

The output file for the analysis indicated in Fig. 21.53.



SECTION 21.4 Reflected Impedance and Power

8. For the iron-core transformer of Fig. 21.57:
a. Find the magnitude of the current IL and the voltage

VL if a � 1/5, Ip � 2 A, and ZL � 2-� resistor.
b. Find the input resistance for the data specified in 

part (a).

9. Find the input impedance for the iron-core transformer of
Fig. 21.57 if a � 2, Ip � 4 A, and Vg � 1600 V.

10. Find the voltage Vg and the current Ip if the input imped-
ance of the iron-core transformer of Fig. 21.57 is 4 �,
and VL � 1200 V and a � 1/4.

11. If VL � 240 V, ZL � 20-� resistor, Ip � 0.05 A, and Ns �
50, find the number of turns in the primary circuit of the
iron-core transformer of Fig. 21.57.

12. a. If Np � 400, Ns � 1200, and Vg � 100 V, find the
magnitude of Ip for the iron-core transformer of Fig.
21.57 if ZL � 9 � � j 12 �.

b. Find the magnitude of the voltage VL and the current
IL for the conditions of part (a).

SECTION 21.5 Impedance Matching, Isolation,

and Displacement

13. a. For the circuit of Fig. 21.58, find the transformation
ratio required to deliver maximum power to the
speaker.

b. Find the maximum power delivered to the speaker.

SECTION 21.6 Equivalent Circuit

(Iron-Core Transformer)

14. For the transformer of Fig. 21.59, determine
a. the equivalent resistance Re.
b. the equivalent reactance Xe.
c. the equivalent circuit reflected to the primary.
d. the primary current for Vg � 50 V �0°.
e. the load voltage VL.
f. the phasor diagram of the reflected primary circuit.
g. the new load voltage if we assume the transformer to

be ideal with a 4 : 1 turns ratio. Compare the result
with that of part (e).
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FIG. 21.59

Problems 14 through 16, 30, and 31.
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Problems 8 through 12.
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15. For the transformer of Fig. 21.59, if the resistive load is
replaced by an inductive reactance of 20 �:
a. Determine the total reflected primary impedance.
b. Calculate the primary current.
c. Determine the voltage across Re and Xe, and find the

reflected load.
d. Draw the phasor diagram.

16. Repeat Problem 15 for a capacitive load having a reac-
tance of 20 �.

SECTION 21.7 Frequency Considerations

17. Discuss in your own words the frequency characteristics
of the transformer. Employ the applicable equivalent 
circuit and frequency characteristics appearing in this
chapter.

SECTION 21.8 Series Connection of 

Mutually Coupled Coils

18. Determine the total inductance of the series coils of Fig.
21.60.

19. Determine the total inductance of the series coils of Fig.
21.61.

L1  =  4 H

M12  =  1 H

i L2  =  7 H

FIG. 21.60

Problem 18.

L1  =  200 mH

k  =  0 .8

i L2  =  600 mH

FIG. 21.61

Problem 19.

L1  =  2 H

M12  =  0.2 H

L2  =  1 H L3  =  4 H

k  =  1
M13  =  0.1 H

FIG. 21.62

Problem 20.

I2 RL

R1

E

M12

L1 L2

I1

+

–

FIG. 21.63

Problem 21.

20. Determine the total inductance of the series coils of Fig.
21.62.

21. Write the mesh equations for the network of Fig. 21.63.



SECTION 21.9 Air-Core Transformer

22. Determine the input impedance to the air-core trans-
former of Fig. 21.64. Sketch the reflected primary net-
work.

SECTION 21.10 Nameplate Data

23. An ideal transformer is rated 10 kVA, 2400/120 V, 60 Hz.
a. Find the transformation ratio if the 120 V is the sec-

ondary voltage.
b. Find the current rating of the secondary if the 120 V

is the secondary voltage.
c. Find the current rating of the primary if the 120 V is

the secondary voltage.
d. Repeat parts (a) through (c) if the 2400 V is the sec-

ondary voltage.

SECTION 21.11 Types of Transformers

24. Determine the primary and secondary voltages and cur-
rents for the autotransformer of Fig. 21.65.

SECTION 21.12 Tapped and Multiple-Load

Transformers

25. For the center-tapped transformer of Fig. 21.42 where 
Np � 100, Ns � 25, ZL � R �0° � 5 � �0°, and Ep �
100 V �0°:
a. Determine the load voltage and current.
b. Find the impedance Zi.
c. Calculate the impedance Z1/2.

26. For the multiple-load transformer of Fig. 21.43 where 
N1 � 90, N2 � 15, N3 � 45, Z2 � R2 �0° � 8 � �0°,
Z3 � RL �0° � 5 � �0°, and Ei � 60 V �0°:
a. Determine the load voltages and currents.
b. Calculate Z1.

27. For the multiple-load transformer of Fig. 21.44 where 
N1 � 120, N2 � 40, N3 � 30, Z2 � R2 �0° � 12 � �0°,
Z3 � R3 �0° � 10 � �0°, and E1 � 120 V �60°:
a. Determine the load voltages and currents.
b. Calculate Z1.

SECTION 21.13 Networks with 

Magnetically Coupled Coils

28. Write the mesh equations for the network of Fig. 21.66.

29. Write the mesh equations for the network of Fig. 21.67.

SECTION 21.15 Computer Analysis

PSpice or Electronics Workbench

*30. Generate the schematic for the network of Fig. 21.59, and
find the voltage VL.

*31. Develop a technique using PSpice or EWB to find the
input impedance at the source for the network of Fig.
21.59.

*32. Using a transformer from the library, find the load volt-
age for the network of Fig. 21.64 for an applied voltage
of 40 V �0°.

Programming Language (C��, QBASIC, Pascal, etc.)

33. Write a program to provide a general solution to the
problem of impedance matching as defined by Example
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FIG. 21.65

Problem 24.
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Problem 28.
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FIG. 21.67

Problem 29.
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FIG. 21.64

Problems 22 and 32.
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21.5. That is, given the speaker impedance and the inter-
nal resistance of the source, determine the required turns
ratio and the power delivered to the speaker. In addition,
calculate the load and source current and the primary and
secondary voltages. The source voltage will have to be
provided with the other parameters of the network.

34. Given the equivalent model of an iron-core transformer
appearing in Fig. 21.20, write a program to calculate the
magnitude of the voltage Vg.

35. Given the parameters of Example 21.7, write a program
to calculate the input impedance in polar form.

GLOSSARY

Autotransformer A transformer with one winding common
to both the primary and the secondary circuits. A loss in
isolation is balanced by the increase in its kilovolt-ampere 
rating.

Coefficient of coupling (k) A measure of the magnetic cou-
pling of two coils that ranges from a minimum of 0 to a
maximum of 1.

Dot convention A technique for labeling the effect of the
mutual inductance on a net inductance of a network or 
system.

Leakage flux The flux linking the coil that does not pass
through the ferromagnetic path of the magnetic circuit.

Loosely coupled A term applied to two coils that have a low
coefficient of coupling.

Multiple-load transformers Transformers having more than
a single load connected to the secondary winding or windings.

Mutual inductance The inductance that exists between mag-
netically coupled coils of the same or different dimensions.

Nameplate data Information such as the kilovolt-ampere
rating, voltage transformation ratio, and frequency of appli-
cation that is of primary importance in choosing the proper
transformer for a particular application.

Primary The coil or winding to which the source of electri-
cal energy is normally applied.

Reflected impedance The impedance appearing at the pri-
mary of a transformer due to a load connected to the sec-
ondary. Its magnitude is controlled directly by the transfor-
mation ratio.

Secondary The coil or winding to which the load is normally
applied.

Step-down transformer A transformer whose secondary
voltage is less than its primary voltage. The transformation
ratio a is greater than 1.

Step-up transformer A transformer whose secondary volt-
age is greater than its primary voltage. The magnitude of
the transformation ratio a is less than 1.

Tapped transformer A transformer having an additional
connection between the terminals of the primary or sec-
ondary windings.

Transformation ratio (a) The ratio of primary to secondary
turns of a transformer.
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22.1 INTRODUCTION

An ac generator designed to develop a single sinusoidal voltage for
each rotation of the shaft (rotor) is referred to as a single-phase ac gen-
erator. If the number of coils on the rotor is increased in a specified
manner, the result is a polyphase ac generator, which develops more
than one ac phase voltage per rotation of the rotor. In this chapter, the
three-phase system will be discussed in detail since it is the most fre-
quently used for power transmission.

In general, three-phase systems are preferred over single-phase sys-
tems for the transmission of power for many reasons, including the fol-
lowing:

1. Thinner conductors can be used to transmit the same kVA at the
same voltage, which reduces the amount of copper required (typ-
ically about 25% less) and in turn reduces construction and main-
tenance costs.

2. The lighter lines are easier to install, and the supporting struc-
tures can be less massive and farther apart.

3. Three-phase equipment and motors have preferred running and
starting characteristics compared to single-phase systems because
of a more even flow of power to the transducer than can be deliv-
ered with a single-phase supply.

4. In general, most larger motors are three phase because they are
essentially self-starting and do not require a special design or
additional starting circuitry.

The frequency generated is determined by the number of poles on
the rotor (the rotating part of the generator) and the speed with which
the shaft is turned. Throughout the United States the line frequency is
60 Hz, whereas in Europe the chosen standard is 50 Hz. Both frequen-
cies were chosen primarily because they can be generated by a rela-
tively efficient and stable mechanical design that is sensitive to the size
of the generating systems and the demand that must be met during peak

Polyphase Systems
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periods. On aircraft and ships the demand levels permit the use of a
400-Hz line frequency.

The three-phase system is used by almost all commercial electric
generators. This does not mean that single-phase and two-phase gener-
ating systems are obsolete. Most small emergency generators, such as
the gasoline type, are one-phase generating systems. The two-phase
system is commonly used in servomechanisms, which are self-correct-
ing control systems capable of detecting and adjusting their own opera-
tion. Servomechanisms are used in ships and aircraft to keep them on
course automatically, or, in simpler devices such as a thermostatic cir-
cuit, to regulate heat output. In many cases, however, where single-
phase and two-phase inputs are required, they are supplied by one and
two phases of a three-phase generating system rather than generated
independently.

The number of phase voltages that can be produced by a polyphase
generator is not limited to three. Any number of phases can be obtained
by spacing the windings for each phase at the proper angular position
around the stator. Some electrical systems operate more efficiently if
more than three phases are used. One such system involves the process
of rectification, which is used to convert an alternating output to one
having an average, or dc, value. The greater the number of phases, the
smoother the dc output of the system.

22.2 THE THREE-PHASE GENERATOR

The three-phase generator of Fig. 22.1(a) has three induction coils
placed 120° apart on the stator, as shown symbolically by Fig. 22.1(b).
Since the three coils have an equal number of turns, and each coil
rotates with the same angular velocity, the voltage induced across each
coil will have the same peak value, shape, and frequency. As the shaft
of the generator is turned by some external means, the induced voltages
eAN, eBN, and eCN will be generated simultaneously, as shown in Fig.
22.2. Note the 120° phase shift between waveforms and the similarities
in appearance of the three sinusoidal functions.

120°

A

BC

+

–

eAN

N

–

N

N

120°

120°

eBN

eCN +

+

–

(b)

A

(a)

B
C

N

FIG. 22.1

(a) Three-phase generator; (b) induced voltages of a three-phase generator.

In particular, note that

at any instant of time, the algebraic sum of the three phase voltages
of a three-phase generator is zero.



THE THREE-PHASE GENERATOR  979

This is shown at qt � 0 in Fig. 22.2, where it is also evident that when
one induced voltage is zero, the other two are 86.6% of their positive or
negative maximums. In addition, when any two are equal in magnitude
and sign (at 0.5Em), the remaining induced voltage has the opposite
polarity and a peak value.

The sinusoidal expression for each of the induced voltages of Fig.
22.2 is

(22.1)

The phasor diagram of the induced voltages is shown in Fig. 22.3,
where the effective value of each is determined by

EAN � 0.707Em(AN)

EBN � 0.707Em(BN)

ECN � 0.707Em(CN)

and EAN � EAN �0°

EBN � EBN ��120°

ECN � ECN ��120°

By rearranging the phasors as shown in Fig. 22.4 and applying a law
of vectors which states that the vector sum of any number of vectors
drawn such that the “head” of one is connected to the “tail” of the
next, and that the head of the last vector is connected to the tail of the
first is zero, we can conclude that the phasor sum of the phase voltages
in a three-phase system is zero. That is,

(22.2)EAN � EBN � ECN � 0

eAN � Em(AN) sin qt

eBN � Em(BN) sin(qt � 120°)

eCN � Em(CN) sin(qt � 240°) � Em(CN) sin(qt � 120°)

0.866 Em(CN)

0

60°
0.866 Em(BN)

120° 120°

p
2

p

eAN

0.5 Em(CN)

0.5 Em(CN)

eBN eCN

3
2p

2p 5
2p

3p 7
2p

4p qt

e

FIG. 22.2

Phase voltages of a three-phase generator.

120°

120°

120°

ECN

EAN

EBN

FIG. 22.3

Phasor diagram for the phase voltages of a 
three-phase generator.

EBN

EAN

ECN

FIG. 22.4

Demonstrating that the vector sum of the 
phase voltages of a three-phase generator 

is zero.
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22.3 THE Y-CONNECTED GENERATOR

If the three terminals denoted N of Fig. 22.1(b) are connected together,
the generator is referred to as a Y-connected three-phase generator
(Fig. 22.5). As indicated in Fig. 22.5, the Y is inverted for ease of nota-
tion and for clarity. The point at which all the terminals are connected
is called the neutral point. If a conductor is not attached from this point
to the load, the system is called a Y-connected, three-phase, three-wire
generator. If the neutral is connected, the system is a Y-connected,
three-phase, four-wire generator. The function of the neutral will be
discussed in detail when we consider the load circuit.

The three conductors connected from A, B, and C to the load are
called lines. For the Y-connected system, it should be obvious from Fig.
22.5 that the line current equals the phase current for each phase; that
is,

(22.3)

where f is used to denote a phase quantity and g is a generator param-
eter.

The voltage from one line to another is called a line voltage. On the
phasor diagram (Fig. 22.6) it is the phasor drawn from the end of one
phase to another in the counterclockwise direction.

Applying Kirchhoff’s voltage law around the indicated loop of Fig.
22.6, we obtain

EAB � EAN � EBN � 0

or EAB � EAN � EBN � EAN � ENB

The phasor diagram is redrawn to find EAB as shown in Fig. 22.7. Since
each phase voltage, when reversed (ENB), will bisect the other two, a �
60°. The angle b is 30° since a line drawn from opposite ends of a
rhombus will divide in half both the angle of origin and the opposite
angle. Lines drawn between opposite corners of a rhombus will also
bisect each other at right angles.

IL � Ifg

FIG. 22.5

Y-connected generator.

Line

L
O
A
D

IL

Line

IL

Line

IL

Neutral

Ifg

+

EAN

–

A

N

Ifg

+
ECN

–

C B

Ifg

EBN
+

–
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The length x is

x � EAN cos 30° � EAN

and EAB � 2x � (2) EAN � �3�EAN

Noting from the phasor diagram that v of EAB � b � 30°, the result is

EAB � EAB �30° � �3�EAN �30°

and ECA � �3�ECN �150°

EBC � �3�EBN �270°

In words, the magnitude of the line voltage of a Y-connected generator
is �3� times the phase voltage:

(22.4)

with the phase angle between any line voltage and the nearest phase
voltage at 30°.

In sinusoidal notation,

eAB � �2�EAB sin(qt � 30°)

eCA � �2�ECA sin(qt � 150°)

and eBC � �2�EBC sin(qt � 270°)

The phasor diagram of the line and phase voltages is shown in Fig. 22.8.
If the phasors representing the line voltages in Fig. 22.8(a) are rearranged
slightly, they will form a closed loop [Fig. 22.8(b)]. Therefore, we can
conclude that the sum of the line voltages is also zero; that is,

(22.5)EAB � ECA � EBC � 0

EL � �3�Ef

�3�
�

2

�3�
�

2

FIG. 22.6

Line and phase voltages of the Y-connected 
three-phase generator.

(phase voltage)

+
EAN

– A

N

+

ECN

–

C

B

EBN

+
–

EBC

(line voltage)EAB

ECA

120°

120°

ECN

EAN

EBN

α  =  60°α

α  =  60°
α

ENB

EAB

β =  30°x

x

FIG. 22.7

Determining a line voltage for a 
three-phase generator.
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22.4 PHASE SEQUENCE (Y-CONNECTED
GENERATOR)

The phase sequence can be determined by the order in which the pha-
sors representing the phase voltages pass through a fixed point on the
phasor diagram if the phasors are rotated in a counterclockwise direc-
tion. For example, in Fig. 22.9 the phase sequence is ABC. However,
since the fixed point can be chosen anywhere on the phasor diagram,
the sequence can also be written as BCA or CAB. The phase sequence
is quite important in the three-phase distribution of power. In a three-
phase motor, for example, if two phase voltages are interchanged, the
sequence will change, and the direction of rotation of the motor will be
reversed. Other effects will be described when we consider the loaded
three-phase system.

The phase sequence can also be described in terms of the line volt-
ages. Drawing the line voltages on a phasor diagram in Fig. 22.10, we
are able to determine the phase sequence by again rotating the phasors
in the counterclockwise direction. In this case, however, the sequence
can be determined by noting the order of the passing first or second
subscripts. In the system of Fig. 22.10, for example, the phase sequence
of the first subscripts passing point P is ABC, and the phase sequence
of the second subscripts is BCA. But we know that BCA is equivalent to
ABC, so the sequence is the same for each. Note that the phase
sequence is the same as that of the phase voltages described in Fig.
22.9.

If the sequence is given, the phasor diagram can be drawn by sim-
ply picking a reference voltage, placing it on the reference axis, and
then drawing the other voltages at the proper angular position. For a
sequence of ACB, for example, we might choose EAB to be the refer-
ence [Fig. 22.11(a)] if we wanted the phasor diagram of the line volt-
ages, or ENA for the phase voltages [Fig. 22.11(b)]. For the sequence
indicated, the phasor diagrams would be as in Fig. 22.11. In phasor
notation,

EAB � EAB �0° (reference)
Line

ECA � ECA ��120°
voltages

EBC � EBC ��120°

(a)

(b)

EAB

EBC

ECA

120°

120°

120°

ECN

EAN

EBN

30°

30°
EABECA

EBC

30°

Fixed point P

EAN
A

N

ECN

C

B

EBN

Rotation

FIG. 22.9

Determining the phase sequence from the 
phase voltages of a three-phase generator.

P

EAB
A

ECA

C

B

EBC

Rotation

FIG. 22.10

Determining the phase sequence from the line 
voltages of a three-phase generator. 






FIG. 22.8

(a) Phasor diagram of the line and phase voltages of a three-phase generator;
(b) demonstrating that the vector sum of the line voltages of a three-phase

system is zero.
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EAN � EAN �0° (reference)
Phase

ECN � ECN ��120°
voltages

EBN � EBN ��120°

22.5 THE Y-CONNECTED GENERATOR 
WITH A Y-CONNECTED LOAD

Loads connected to three-phase supplies are of two types: the Y and the
D. If a Y-connected load is connected to a Y-connected generator, the
system is symbolically represented by Y-Y. The physical setup of such
a system is shown in Fig. 22.12.

FIG. 22.11

Drawing the phasor diagram from the phase sequence.

P

EAB

A

EBC

B

C

ECA

ACB

(a)

P

EAN

A

EBN

B

C

ECN

ACB

(b)

IL

IL

EL

Ifg

+

–

A

N

Ifg

+

–

C B

Ifg

+

–
Ef

Ef

EL

IL
c

EL

IfL

IN

a
IfL

Ef Vf

+

–

n

IfL

b
Vf Vf

+

–

+

–

Z1

Z3 Z2

FIG. 22.12

Y-connected generator with a Y-connected load.

If the load is balanced, the neutral connection can be removed
without affecting the circuit in any manner; that is, if

Z1 � Z2 � Z3






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then IN will be zero. (This will be demonstrated in Example 22.1.) Note
that in order to have a balanced load, the phase angle must also be the
same for each impedance—a condition that was unnecessary in dc cir-
cuits when we considered balanced systems.

In practice, if a factory, for example, had only balanced, three-phase
loads, the absence of the neutral would have no effect since, ideally, the
system would always be balanced. The cost would therefore be less since
the number of required conductors would be reduced. However, lighting
and most other electrical equipment will use only one of the phase volt-
ages, and even if the loading is designed to be balanced (as it should be),
there will never be perfect continuous balancing since lights and other
electrical equipment will be turned on and off, upsetting the balanced
condition. The neutral is therefore necessary to carry the resulting cur-
rent away from the load and back to the Y-connected generator. This will
be demonstrated when we consider unbalanced Y-connected systems.

We shall now examine the four-wire Y-Y-connected system. The cur-
rent passing through each phase of the generator is the same as its cor-
responding line current, which in turn for a Y-connected load is equal to
the current in the phase of the load to which it is attached:

(22.6)

For a balanced or an unbalanced load, since the generator and load
have a common neutral point, then

(22.7)

In addition, since IfL � Vf /Zf, the magnitude of the current in
each phase will be equal for a balanced load and unequal for an unbal-
anced load. You will recall that for the Y-connected generator, the
magnitude of the line voltage is equal to �3� times the phase voltage.
This same relationship can be applied to a balanced or an unbalanced
four-wire Y-connected load:

(22.8)

For a voltage drop across a load element, the first subscript refers to
that terminal through which the current enters the load element, and the
second subscript refers to the terminal from which the current leaves. In
other words, the first subscript is, by definition, positive with respect to
the second for a voltage drop. Note Fig. 22.13, in which the standard dou-
ble subscripts for a source of voltage and a voltage drop are indicated.

EXAMPLE 22.1 The phase sequence of the Y-connected generator in
Fig. 22.13 is ABC.
a. Find the phase angles v2 and v3.
b. Find the magnitude of the line voltages.
c. Find the line currents.
d. Verify that, since the load is balanced, IN � 0.

Solutions:

a. For an ABC phase sequence,

v2 � �120° and v3 � �120°

EL � �3�Vf

Vf � Ef

Ifg � IL � IfL
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b. EL � �3�Ef � (1.73)(120 V) � 208 V. Therefore,

EAB � EBC � ECA � 208 V

c. Vf � Ef. Therefore,

Van � EAN Vbn � EBN Vcn � ECN

IfL � Ian � � �

� 24 A ��53.13°

Ibn � � � 24 A ��173.13°

Icn � � � 24 A �66.87°

and, since IL � IfL,

IAa � Ian � 24 A ��53.13°

IBb � Ibn � 24 A ��173.13°

ICc � Icn � 24 A �66.87°

d. Applying Kirchhoff’s current law, we have

IN � IAa � IBb � ICc

In rectangular form,

IAa � 24 A ��53.13° � 14.40 A � j 19.20 A
IBb � 24 A ��173.13° � �22.83 A � j 2.87 A
ICc � 24 A �66.87° � �09.43 A � j 22.07 A

Σ(IAa � IBb � ICc) � 0 � j 0

and IN is in fact equal to zero, as required for a balanced load.

22.6 THE Y-D SYSTEM

There is no neutral connection for the Y-D system of Fig. 22.14. Any
variation in the impedance of a phase that produces an unbalanced sys-
tem will simply vary the line and phase currents of the system.

120 V ��120°
��

5 � �53.13°
Vcn�
Zcn

120 V ��120°
��

5 � �53.13°
Vbn�
Zbn

120 V �0°
��
5 � �53.13°

120 V �0°
��
3 � � j 4 �

Van�
Zan

A

+

–

120 V    0°EAN

120 V    θ3θ

ECN EBN
+

–

+

–
N

C B

a

+

–

3 ΩIan

+

–

+

– n

c b

Van

4 Ω

4 Ω Vbn

3 Ω
Vcn

3 Ω

Icn Ibn

IAa

EAB

IN

IBb

ECA

ICc
EBC

4 Ω Balanced
load

120 V    θ2θ

FIG. 22.13

Example 22.1.



986  POLYPHASE SYSTEMS

For a balanced load,

(22.9)

The voltage across each phase of the load is equal to the line voltage
of the generator for a balanced or an unbalanced load:

(22.10)

The relationship between the line currents and phase currents of a
balanced D load can be found using an approach very similar to that
used in Section 22.3 to find the relationship between the line volt-
ages and phase voltages of a Y-connected generator. For this case,
however, Kirchhoff’s current law is employed instead of Kirchhoff’s
voltage law.

The results obtained are

(22.11)

and the phase angle between a line current and the nearest phase cur-
rent is 30°. A more detailed discussion of this relationship between the
line and phase currents of a D-connected system can be found in Sec-
tion 22.7.

For a balanced load, the line currents will be equal in magnitude, as
will the phase currents.

EXAMPLE 22.2 For the three-phase system of Fig. 22.15:
a. Find the phase angles v2 and v3.
b. Find the current in each phase of the load.
c. Find the magnitude of the line currents.

Solutions:

a. For an ABC sequence,

v2 � �120° and v3 � �120°

IL � �3�If

Vf � EL

Z1 � Z2 � Z3

IL

IL

EL

Ifg

+

–

A

N
Ifg

+

–

C
B

Ifg

+

–

Ef

Ef

EL

IL
c

EL

IfL

a

IfL

Ef

Vf
+–

b

Vf

+

–

Z2

IfL

Z3 Z1

Vf

–

+

FIG. 22.14

Y-connected generator with a D-connected load.
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b. Vf � EL. Therefore,

Vab � EAB Vca � ECA Vbc � EBC

The phase currents are

Iab � � � � 15 A ��53.13°

Ibc � � � 15 A ��173.13°

Ica � � � 15 A �66.87°

c. IL � �3�If � (1.73)(15 A) � 25.95 A. Therefore,

IAa � IBb � ICc � 25.95 A

22.7 THE D-CONNECTED GENERATOR

If we rearrange the coils of the generator in Fig. 22.16(a) as shown in
Fig. 22.16(b), the system is referred to as a three-phase, three-wire,

150 V ��120°
��
10 � �53.13°

Vca�
Zca

150 V ��120°
��
10 � �53.13°

Vbc�
Zbc

150 V �0°
��
10 � �53.13°

150 V �0°
��
6 � � j 8 �

Vab�
Zab

ECA  =  150 V ∠  v3

IAa

ICc

A

C

B

IBb
c

a

+–

b

+

Ica3-phase, 3-wire,
Y-connected generator
Phase sequence:  ABC

EAB  =  150 V ∠  0°

XL  =  8 �

Vbc

–

– +

R  =  6 �

Iab

Ibc XL  =  8 �

R  =  6 �

R  =  6 �

Vca Vab

XL  =  8 �

EBC  =  150 V ∠  v2

FIG. 22.15

Example 22.2.

FIG. 22.16

D-connected generator.
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�-connected ac generator. In this system, the phase and line voltages
are equivalent and equal to the voltage induced across each coil of the
generator; that is,

EAB � EAN and eAN � �2�EAN sin qt Phase
EBC � EBN and eBN � �2�EBN sin(qt � 120°) sequence

ECA � ECN and eCN � �2�ECN sin(qt � 120°) ABC

or (22.12)

Note that only one voltage (magnitude) is available instead of the two
available in the Y-connected system.

Unlike the line current for the Y-connected generator, the line current
for the D-connected system is not equal to the phase current. The rela-
tionship between the two can be found by applying Kirchhoff’s current
law at one of the nodes and solving for the line current in terms of the
phase currents; that is, at node A,

IBA � IAa � IAC

or IAa � IBA � IAC � IBA � ICA

The phasor diagram is shown in Fig. 22.17 for a balanced load.

EL � Efg







120°

120°

IAa

ICB

IBA

IAC

60°

ICA

30°

30°

IAa  =  �3 IBA

IBA

�3
2

IBA

�3
2

FIG. 22.17

Determining a line current from the phase currents of a D-connected, three-
phase generator.

Using the same procedure to find the line current as was used to find
the line voltage of a Y-connected generator produces the following:

IAa � �3�IBA ��30°

IBb � �3�ICB ��150°

ICc � �3�IAC �90°

In general:

(22.13)

with the phase angle between a line current and the nearest phase cur-
rent at 30°. The phasor diagram of the currents is shown in Fig. 22.18.

IL � �3�Ifg
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It can be shown in the same manner employed for the voltages of a
Y-connected generator that the phasor sum of the line currents or phase
currents for D-connected systems with balanced loads is zero.

22.8 PHASE SEQUENCE (D-CONNECTED
GENERATOR)

Even though the line and phase voltages of a D-connected system are
the same, it is standard practice to describe the phase sequence in terms
of the line voltages. The method used is the same as that described for
the line voltages of the Y-connected generator. For example, the phasor
diagram of the line voltages for a phase sequence ABC is shown in Fig.
22.19. In drawing such a diagram, one must take care to have the
sequence of the first and second subscripts the same. In phasor notation,

EAB � EAB �0°
EBC � EBC ��120°
ECA � ECA �120°

22.9 THE D-D, D-Y THREE-PHASE SYSTEMS

The basic equations necessary to analyze either of the two systems 
(D-D, D-Y) have been presented at least once in this chapter. We will
therefore proceed directly to two descriptive examples, one with a 
D-connected load and one with a Y-connected load.

EXAMPLE 22.3 For the D-D system shown in Fig. 22.20:
a. Find the phase angles v2 and v3 for the specified phase sequence.
b. Find the current in each phase of the load.
c. Find the magnitude of the line currents.

FIG. 22.18

The phasor diagram of the currents of a 
three-phase, D-connected generator.

120°

120°
120°

ICB

IBA

IAC

30°

30°
IBb

ICc

30°

IAa

P

EAB

ECA

EBC

Rotation

Phase sequence:  ABC

FIG. 22.19

Determining the phase sequence for a 
D-connected, three-phase generator.
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Solutions:

a. For an ACB phase sequence,

v2 � 120° and v3 � �120°

b. Vf � EL. Therefore,

Vab � EAB Vca � ECA Vbc � EBC

The phase currents are

Iab � � �

5 � � j 5 �

� � 33.9 A �45°

Ibc � � � 33.9 A �165°

Ica � � � 33.9 A ��75°

c. IL � �3�If � (1.73)(34 A) � 58.82 A. Therefore,

IAa � IBb � ICc � 58.82 A

EXAMPLE 22.4 For the D-Y system shown in Fig. 22.21:
a. Find the voltage across each phase of the load.
b. Find the magnitude of the line voltages.

Solutions:

a. IfL � IL. Therefore,

Ian � IAa � 2 A �0°

Ibn � IBb � 2 A ��120°

Icn � ICc � 2 A �120°

120 V ��120°
��
3.54 � ��45°

Vca�
Zca

120 V �120°
��
3.54 � ��45°

Vbc�
Zbc

120 V �0°
��
3.54 � ��45°

120 V �0°
–––
�
7

2

.

5

07

�

1

�

�

�

�

9

4

0

5

°

°
�

120 V �0°
———
(5 � �0°)(5 � ��90°)

Vab�
Zab

FIG. 22.20

Example 22.3: D-D system.

IAa

ICc

A

C

B

EBC  =  120 V ∠  v2

IBb

c

a

+–

b

+

Ica

3-phase
∆-connected ac generator

Phase sequence:  ACB

ECA  =  120 V ∠  v3

EAB  =  120 V ∠  0°

Vbc

–

– +
Iab

Ibc

5 �

Vca

Vab

5 �

5 � 5 �

5 �5 �
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The phase voltages are

Van � IanZan � (2 A �0°)(10 � ��53.13°) � 20 V ��53.13°

Vbn � IbnZbn � (2 A ��120°)(10 � ��53.13°) � 20 V ��173.13°

Vcn � IcnZcn � (2 A �120°)(10 � ��53.13°) � 20 V �66.87°

b. EL � �3�Vf � (1.73)(20 V) � 34.6 V. Therefore,

EBA � ECB � EAC � 34.6 V

22.10 POWER

Y-Connected Balanced Load

Please refer to Fig. 22.22 for the following discussion.

FIG. 22.21

Example 22.4: D-Y system.

A

C

B

ICc  =  2 A ∠  120°

c

a

+ b

Icn

ECA

EAB

Vbn

6 �

8 �

3-phase
∆-connected generator

“Phase sequence:”
ABC

IAa  =  2 A ∠  0°

EBC

IBb  =
2 A ∠  –120°

+

+

–

IbnVcn

Ian

Van

n

– –6 �
8 �

6 �
8 �

IL

IL

EL

IL

+

–

+

–

I��

V��

I��

V��

a

bc

I�� V��

Z  =  R  ±  jX

+

– n

EL
EL

Z

Z Z

FIG. 22.22

Y-connected balanced load.
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Average Power The average power delivered to each phase can be
determined by any one of Eqs. (22.14) through (22.16).

(watts, W) (22.14)

where vVf
If indicates that v is the phase angle between Vf and If. The

total power to the balanced load is

(W) (22.15)

or, since Vf � and If � IL

then PT � 3 IL cos vVf
If

But � �(1) � � �� � � � �3�

Therefore,

(W) (22.16)

Reactive Power The reactive power of each phase (in volt-amperes
reactive) is

(VAR) (22.17)

The total reactive power of the load is

(VAR) (22.18)

or, proceeding in the same manner as above, we have

(VAR) (22.19)

Apparent Power The apparent power of each phase is

(VA) (22.20)

The total apparent power of the load is

(VA) (22.21)

or, as before,

(VA) (22.22)ST � �3�ELIL

ST � 3Sf

Sf � VfIf

QT � �3�ELIL sin vVf
If � 3I2

LXf

QT � 3Qf

Qf � VfIf sin vVf
If � I2

fXf � �
V
Xf

2
X�

PT � �3�ELIL cos vVf
If � 3I2

LRf

3�3�
�

3

�3�
�
�3�

3
�
�3�

3
�
�3�

EL
�
�3�

EL
�
�3�

PT � 3Pf

Pf � VfIf cos vVf
If � I2

fRf � �
V
Rf

2
R�
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Power Factor The power factor of the system is given by

(22.23)

EXAMPLE 22.5 For the Y-connected load of Fig. 22.23:

Fp � �
P

ST

T
� � cos vVf

If (leading or lagging)

a

+

–n

c

XL  =  4 Ω

R  =  3 Ω

XL  =  4 Ω

+

R  =  3 Ω R  =  3 Ω

XL  =  4 Ω

+

–

EL  =  173.2  V    – 120°

EL  =  173.2  V    + 120°
EL  =  173.2  V    0°

b

–

I�� V��

I��

V�� V��

I��

FIG. 22.23

Example 22.5.

a. Find the average power to each phase and the total load.
b. Determine the reactive power to each phase and the total reactive

power.
c. Find the apparent power to each phase and the total apparent power.
d. Find the power factor of the load.

Solutions:

a. The average power is

Pf � VfIf cos vVf
If � (100 V)(20 A) cos 53.13° � (2000)(0.6)

� 1200 W

Pf � I2
fRf � (20 A)2(3 �) � (400)(3) � 1200 W

Pf � � � � 1200 W

PT � 3Pf � (3)(1200 W) � 3600 W

or

PT � �3�ELIL cos vVf
If � (1.732)(173.2 V)(20 A)(0.6) � 3600 W

b. The reactive power is

Qf � VfIf sin vVf
If � (100 V)(20 A) sin 53.13° � (2000)(0.8)

� 1600 VAR

or Qf � I2
fXf � (20 A)2(4 �) � (400)(4) � 1600 VAR

QT � 3Qf � (3)(1600 VAR) � 4800 VAR

or

QT � �3�ELIL sin vVf
If � (1.732)(173.2 V)(20 A)(0.8) � 4800 VAR

3600
�

3
(60 V)2

�
3 �

V2
R�

Rf
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c. The apparent power is

Sf � VfIf � (100 V)(20 A) � 2000 VA

ST � 3Sf � (3)(2000 VA) � 6000 VA

or ST � �3�ELIL � (1.732)(173.2 V)(20 A) � 6000 VA

d. The power factor is

Fp � � � 0.6 lagging

D-Connected Balanced Load

Please refer to Fig. 22.24 for the following discussion.

3600 W
�
6000 VA

PT�
ST

Average Power

(W) (22.24)

(W) (22.25)

Reactive Power

(VAR) (22.26)

(VAR) (22.27)

Apparent Power

(VA) (22.28)Sf � VfIf

QT � 3Qf

Qf � VfIf sin vVf
If � I2

fXf � �
V
Xf

2
X�

PT � 3Pf

Pf � VfIf cos vVf
If � I2

fRf � �
V
Rf

2
R�

FIG. 22.24

D-connected balanced load.

IL

EL

Z Z

Z

+

–

I��

+

–
V��

I��

EL

IL

EL

IL

V��– +

Z  =  R    ±  jX� �

I��

V��
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(VA) (22.29)

Power Factor

(22.30)

EXAMPLE 22.6 For the D-Y connected load of Fig. 22.25, find the
total average, reactive, and apparent power. In addition, find the power
factor of the load.

Fp � �
P

ST

T
�

ST � 3Sf � �3�ELIL

EL  =  200 V ∠  0°

6 �

EL  =  200 V ∠  –120°

EL  =  200 V ∠  +120°

8 �

4 � 4 �

4 �
6 �

8 � 6 �

8 �

3 �

3 �3 �

FIG. 22.25

Example 22.6.

Solution: Consider the D and Y separately.

For the D:

ZD � 6 � � j 8 � � 10 � ��53.13°

If � � � 20 A

PTD
� 3I2

fRf � (3)(20 A)2(6 �) � 7200 W

QTD
� 3I2

fXf � (3)(20 A)2(8 �) � 9600 VAR (C)

STD
� 3VfIf � (3)(200 V)(20 A) � 12,000 VA

For the Y:

ZY � 4 � � j 3 � � 5 � �36.87°

If � � � � 23.12 A

PTY
� 3I2

fRf � (3)(23.12 A)2(4 �) � 6414.41 W

QTY
� 3I2

fXf � (3)(23.12 A)2(3 �) � 4810.81 VAR (L)

STY
� 3VfIf � (3)(116 V)(23.12 A) � 8045.76 VA

116 V
�

5 �

200 V/�3�
��

5 �
EL/�3�
�

ZY

200 V
�
10 �

EL�
ZD
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For the total load:

PT � PTD
� PTY

� 7200 W � 6414.41 W � 13,614.41 W

QT � QTD
� QTY

� 9600 VAR (C) � 4810.81 VAR (I)

� 4789.19 VAR (C )

ST � �P�2
T��� Q�2

T� � �(1�3�,6�1�4�.4�1� W�)2� �� (�4�7�8�9�.1�9� V�A�R�)2�
� 14,432.2 VA

Fp � � � 0.943 leading

EXAMPLE 22.7 Each transmission line of the three-wire, three-phase
system of Fig. 22.26 has an impedance of 15 � � j 20 �. The system
delivers a total power of 160 kW at 12,000 V to a balanced three-phase
load with a lagging power factor of 0.86.

13,614.41 W
��
14,432.20 VA

PT�
ST

a. Determine the magnitude of the line voltage EAB of the generator.
b. Find the power factor of the total load applied to the generator.
c. What is the efficiency of the system?

Solutions:

a. Vf (load) � � � 6936.42 V

PT (load) � 3VfIf cos v

and

If � �

� 8.94 A

Since v � cos�1 0.86 � 30.68°, assigning Vf an angle of 0° or
Vf � Vf �0°, a lagging power factor results in

If � 8.94 A ��30.68°

For each phase, the system will appear as shown in Fig. 22.27,
where

EAN � IfZline � Vf � 0

160,000 W
���
3(6936.42 V)(0.86)

PT
��
3Vf cos v

12,000 V
�

1.73

VL
�
�3�

A

N

C B

15 � 20 �

15 � 20 �

15 � 20 �

Z1  =  Z2  =  Z3

a

n
12 k VEAB

c

Z2

Z1

Z3

FIG. 22.26

Example 22.7.
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or

EAN � IfZline � Vf

� (8.94 A ��30.68°)(25 � �53.13°) � 6936.42 V �0°
� 223.5 V �22.45° � 6936.42 V �0°
� 206.56 V � j 85.35 V � 6936.42 V
� 7142.98 V � j 85.35 V
� 7143.5 V �0.68°

Then EAB � �3�Efg � (1.73)(7143.5 V)
� 12,358.26 V

b. PT � Pload � Plines

� 160 kW � 3(IL)2Rline

� 160 kW � 3(8.94 A)215 �
� 160,000 W � 3596.55 W
� 163,596.55 W

and 

PT � �3�VLIL cos vT

or cos vT � �

and

Fp � 0.856 < 0.86 of load

c. h � � � � 0.978

� 97.8%

22.11 THE THREE-WATTMETER METHOD

The power delivered to a balanced or an unbalanced four-wire, Y-con-
nected load can be found by the three-wattmeter method, that is, by
using three wattmeters in the manner shown in Fig. 22.28. Each
wattmeter measures the power delivered to each phase. The potential
coil of each wattmeter is connected parallel with the load, while the
current coil is in series with the load. The total average power of the
system can be found by summing the three wattmeter readings; that is,

(22.31)

For the load (balanced or unbalanced), the wattmeters are connected as
shown in Fig. 22.29. The total power is again the sum of the three
wattmeter readings:

(22.32)PTD
� P1 � P2 � P3

PTY
� P1 � P2 � P3

160 kW
���
160 kW � 3596.55 W

Po
��
Po � Plosses

Po
�
Pi

163,596.55 W
���
(1.73)(12,358.26 V)(8.94 A)

PT
�
�3�VLIL

FIG. 22.27

The loading on each phase of the system of Fig. 22.26.

If  =  8.94 A ∠  –30.68°
A

15 � IfIL 20 �

EAN

+

–

+

–

VfZ1

Zline



998  POLYPHASE SYSTEMS

If in either of the cases just described the load is balanced, the power
delivered to each phase will be the same. The total power is then just
three times any one wattmeter reading.

22.12 THE TWO-WATTMETER METHOD

The power delivered to a three-phase, three-wire, D- or Y-connected,
balanced or unbalanced load can be found using only two wattmeters if
the proper connection is employed and if the wattmeter readings are
interpreted properly. The basic connections of this two-wattmeter
method are shown in Fig. 22.30. One end of each potential coil is con-
nected to the same line. The current coils are then placed in the remain-
ing lines.

FIG. 22.28

Three-wattmeter method for a Y-connected load.

FIG. 22.29

Three-wattmeter method for a D-connected load.

+–

Z1

Line

Neutral

P3

P1

P2

+–CC1

PC1

CC2

PC2

CC3

PC3

+–

+–

+–

+–

Line

a

b
c

n

Line

Z3 Z2

+– +–

P1

P2

+–

CC1

PC1

CC2

PC2

CC3

P3
+–

+–
+–

Line

a

b
c

Line

Line

Z2

PC3

+– Z3 Z1

Line

a

�- or Y-
connected

load

Line

Line

c

b

+–

+–
+–

+–
P1 CC1

PC1

P2
CC2

PC2

FIG. 22.30

Two-wattmeter method for a D- or a 
Y-connected load.

Line

a

�- or Y-
connected

load

Line

Line

c

b

+–

+–
+–

+–P1
CC1

PC1

P2
CC2

PC2

FIG. 22.31

Alternative hookup for the two-wattmeter 
method.

The connection shown in Fig. 22.31 will also satisfy the require-
ments. A third hookup is also possible, but this is left to the reader as
an exercise.

The total power delivered to the load is the algebraic sum of the two
wattmeter readings. For a balanced load, we will now consider two
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methods of determining whether the total power is the sum or the dif-
ference of the two wattmeter readings. The first method to be described
requires that we know or be able to find the power factor (leading or
lagging) of any one phase of the load. When this information has been
obtained, it can be applied directly to the curve of Fig. 22.32.

The curve in Fig. 22.32 is a plot of the power factor of the load
(phase) versus the ratio Pl /Ph, where Pl and Ph are the magnitudes of
the lower- and higher-reading wattmeters, respectively. Note that for a
power factor (leading or lagging) greater than 0.5, the ratio has a posi-
tive value. This indicates that both wattmeters are reading positive, and
the total power is the sum of the two wattmeter readings; that is, PT �
Pl � Ph. For a power factor less than 0.5 (leading or lagging), the ratio
has a negative value. This indicates that the smaller-reading wattmeter
is reading negative, and the total power is the difference of the two
wattmeter readings; that is, PT � Ph � Pl.

A closer examination will reveal that, when the power factor is 
1 (cos 0° � 1), corresponding to a purely resistive load, Pl /Ph � 1 or
Pl � Ph, and both wattmeters will have the same wattage indication. At
a power factor equal to 0 (cos 90° � 0), corresponding to a purely reac-
tive load, Pl /Ph � �1 or Pl � �Ph, and both wattmeters will again
have the same wattage indication but with opposite signs. The transition
from a negative to a positive ratio occurs when the power factor of the
load is 0.5 or v � cos�1 0.5 � 60°. At this power factor, Pl /Ph � 0, so
that Pl � 0, while Ph will read the total power delivered to the load.

The second method for determining whether the total power is the
sum or difference of the two wattmeter readings involves a simple labo-
ratory test. For the test to be applied, both wattmeters must first have an
up-scale deflection. If one of the wattmeters has a below-zero indica-
tion, an up-scale deflection can be obtained by simply reversing the
leads of the current coil of the wattmeter. To perform the test:

1. Take notice of which line does not have a current coil sensing the
line current.

2. For the lower-reading wattmeter, disconnect the lead of the poten-
tial coil connected to the line without the current coil.

3. Take the disconnected lead of the lower-reading wattmeter’s
potential coil, and touch a connection point on the line that has
the current coil of the higher-reading wattmeter.

FIG. 22.32

Determining whether the readings obtained using the two-wattmeter method
should be added or subtracted.

0.2
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PT  =  Ph  –  Pl PT  =  Pl  +  Ph
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4. If the pointer deflects downward (below zero watts), the wattage
reading of the lower-reading wattmeter should be subtracted from
that of the higher-reading wattmeter. Otherwise, the readings
should be added.

For a balanced system, since

PT � Ph � Pl � �3�ELIL cos vVf
If

the power factor of the load (phase) can be found from the wattmeter
readings and the magnitude of the line voltage and current:

(22.33)

EXAMPLE 22.8 For the unbalanced D-connected load of Fig. 22.33
with two properly connected wattmeters:

Fp � cos vVf
If � �

�
Ph

3�
�

EL

P

IL

l
�

15 �

EBC  =  208 V ∠  –120°

EAB  =  208 V ∠  0°

20 �

a
A

10 �

12 �

R2

R1

XL

12 �

bc

XC
Iab

Ica

R3

Ibc

IBb

IAa

ICc

+–

+–
ECA =  208 V ∠  120°

+–
+–

B

C

W1

W2

FIG. 22.33

Example 22.8.

a. Determine the magnitude and angle of the phase currents.
b. Calculate the magnitude and angle of the line currents.
c. Determine the power reading of each wattmeter.
d. Calculate the total power absorbed by the load.
e. Compare the result of part (d) with the total power calculated using

the phase currents and the resistive elements.

Solutions:

a. Iab � � � � 20.8 A �0°

Ibc � � � �

� 8.32 A ��173.13°

Ica � � � �

� 12.26 A �165°

b. IAa � Iab � Ica

� 20.8 A �0° � 12.26 A �165°
� 20.8 A � (�11.84 A � j 3.17 A)
� 20.8 A � 11.84 A � j 3.17 A � 32.64 A � j 3.17 A
� 32.79 A ��5.55°

208 V ��120°
��
16.97 � ��45°

208 V ��120°
��
12 � � j 12 �

ECA�
Zca

Vca�
Zca

208 V ��120°
��
25 � �53.13°

208 V ��120°
��
15 � � j 20 �

EBC�
Zbc

Vbc�
Zbc

208 V �0°
��
10 � �0°

EAB�
Zab

Vab�
Zab
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IBb � Ibc � Iab

� 8.32 A ��173.13° � 20.8 A �0°
� (�8.26 A � j 1 A) � 20.8 A
� �8.26 A � 20.8 A � j 1 A � �29.06 A � j 1 A
� 29.08 A ��178.03°

ICc � Ica � Ibc

� 12.26 A �165° � 8.32 A ��173.13°
� (�11.84 A � j 3.17 A) � (�8.26 A � j 1 A)
� �11.84 A � 8.26 A � j (3.17 A � 1 A) � �3.58 A � j 4.17 A
� 5.5 A �130.65°

c. P1 � VabIAa cos vVab
IAa

Vab � 208 V �0°

IAa � 32.79 A ��5.55°
� (208 V)(32.79 A) cos 5.55°
� 6788.35 W

Vbc � EBC � 208 V ��120°
but Vcb � ECB � 208 V ��120° � 180°

� 208 V �60°
with ICc � 5.5 A �130.65°

P2 � Vcb ICc cos vVcb
ICc

P2 � (208 V)(5.5 A) cos 70.65°
� 379.1 W

d. PT � P1 � P2 � 6788.35 W � 379.1 W
� 7167.45 W

e. PT � (Iab)
2R1 � (Ibc)

2R2 � (Ica)
2R3

� (20.8 A)210 � � (8.32 A)215 � � (12.26 A)212 �
� 4326.4 W � 1038.34 W � 1803.69 W
� 7168.43 W

(The slight difference is due to the level of accuracy carried through
the calculations.)

22.13 UNBALANCED, THREE-PHASE,
FOUR-WIRE, Y-CONNECTED LOAD

For the three-phase, four-wire, Y-connected load of Fig. 22.34, condi-
tions are such that none of the load impedances are equal—hence we
have an unbalanced polyphase load. Since the neutral is a common
point between the load and source, no matter what the impedance of
each phase of the load and source, the voltage across each phase is the
phase voltage of the generator:

(22.34)

The phase currents can therefore be determined by Ohm’s law:

(22.35)

The current in the neutral for any unbalanced system can then be found
by applying Kirchhoff’s current law at the common point n:

(22.36)IN � If1
� If2

� If3
� IL1

� IL 2
� IL 3

If1
� �

V

Z
f

1

1� � �
E

Z
f

1

1� and so on

Vf � Ef
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Because of the variety of equipment found in an industrial environ-
ment, both three-phase power and single-phase power are usually pro-
vided with the single-phase obtained off the three-phase system. In
addition, since the load on each phase is continually changing, a four-
wire system (with a neutral) is normally employed to ensure steady
voltage levels and to provide a path for the current resulting from an
unbalanced load. The system of Fig. 22.35 has a three-phase trans-
former dropping the line voltage from 13,800 V to 208 V. All the lower-
power-demand loads such as lighting, wall outlets, security, etc., use the
single-phase, 120-V line to neutral voltage. Higher power loads, such as
air conditioners, electric ovens or dryers, etc., use the single-phase,
208 V available from line to line. For larger motors and special high-
demand equipment, the full three-phase power can be taken directly off
the system, as shown in Fig. 22.35. In the design and construction of a
commercial establishment, the National Electric Code requires that every
effort be made to ensure that the expected loads, whether they be single-

Line

IL1

Line

Line

Neutral

IfL1

+

–

+

–

+

–

IN

IL2

Vf1 Z1

IL3

IfL2

Vf2

Z2Z3

Vf3

IfL3

EL

EL EL

FIG. 22.34

Unbalanced Y-connected load.

208 V ∠ –120°

208 V ∠ 120°
208 V ∠ 0°

Secondary
3   transformerφ

1  φ
120 V

1  φ
280 V

1  φ
120 V

1  φ
120 V

208 V
balanced

load

φ3

FIG. 22.35

3f/1f, 208-V/120-V industrial supply.
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or multiphase, result in a total load that is as balanced as possible
between the phases, thus ensuring the highest level of transmission effi-
ciency.

22.14 UNBALANCED, THREE-PHASE,
THREE-WIRE, Y-CONNECTED LOAD

For the system shown in Fig. 22.36, the required equations can be
derived by first applying Kirchhoff’s voltage law around each closed
loop to produce

Z1

Z2Z3

ECA

EBC

EAB
ECA

+

–

Vcn

+

–

Van

+

–

Ian

EAB
+

–

Ibn

Icn

–

+
Vbn

EBA
+–

n

a

c b

EAB � Van � Vbn � 0

EBC � Vbn � Vcn � 0

ECA � Vcn � Van � 0

Substituting, we have

Van � IanZ1 Vbn � IbnZ2 Vcn � IcnZ3

EAB � IanZ1 � IbnZ2 (22.37a)

EBC � IbnZ2 � IcnZ3 (22.37b)

ECA � IcnZ3 � IanZ1 (22.37c)

Applying Kirchhoff’s current law at node n results in

Ian � Ibn � Icn � 0 and Ibn � �Ian � Icn

Substituting for Ibn in Eqs. (22.37a) and (22.37b) yields

EAB � IanZ1 � [�(Ian � Icn)]Z2

EBC � �(Ian � Icn)Z2 � IcnZ3

which are rewritten as

EAB � Ian(Z1 � Z2) � IcnZ2

EBC � Ian(�Z2) � Icn[�(Z2 � Z3)]

FIG. 22.36

Unbalanced, three-phase, three-wire, Y-connected load.
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Using determinants, we have

� EAB Z2 �
� EBC �(Z2 � Z3)�Ian � –––––––––––––––––––––––
�Z1 � Z2 Z2 �
� �Z2 �(Z2 � Z3)�

�

Ian �

Applying Kirchhoff’s voltage law to the line voltages:

EAB � ECA � EBC � 0 or EAB � EBC � �ECA

Substituting for (EAB � ECB) in the above equation for Ian:

Ian �

and Ian � (22.38)

In the same manner, it can be shown that

Icn � (22.39)

Substituting Eq. (22.39) for Icn in the right-hand side of Eq. (22.37b),
we obtain

Ibn � (22.40)

EXAMPLE 22.9 A phase-sequence indicator is an instrument that can
display the phase sequence of a polyphase circuit. A network that will
perform this function appears in Fig. 22.37. The applied phase sequence
is ABC. The bulb corresponding to this phase sequence will burn more
brightly than the bulb indicating the ACB sequence because a greater
current is passing through the ABC bulb. Calculating the phase currents
will demonstrate that this situation does in fact exist:

Z1 � XC � � � 166 �

By Eq. (22.39),

1
���
(377 rad/s)(16 � 10�6 F)

1
�
qC

EBCZ1 � EABZ3
���
Z1Z2 � Z1Z3 � Z2Z3

ECAZ2 � EBCZ1
���
Z1Z2 � Z1Z3 � Z2Z3

EABZ3 � ECAZ2
���
Z1Z2 � Z1Z3 � Z2Z3

�Z2(�ECA) � Z3EAB
���
�Z1Z2 � Z1Z3 � Z2Z3

�Z2(EAB � EBC) � Z3EAB
���

�Z1Z2 � Z1Z3 � Z2Z3

�(Z2 � Z3)EAB � EBCZ2
����
�Z1Z2 � Z1Z3 � Z2Z3 � Z2

2 � Z2
2

�

Icn �

(200 V �120°)(200 � �0°) � (200 V ��120°)(166 � ��90°)
����������
(166 � ��90°)(200 � �0°) � (166 � ��90°)(200 � �0°) � (200 � �0°)(200 � �0°)

Icn �
ECAZ2 � EBCZ1

���
Z1Z2 � Z1Z3 � Z2Z3
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Dividing the numerator and denominator by 1000 and converting both
to the rectangular domain yields

Icn �

� �

Icn � 0.259 A �123.06°

By Eq. (22.40),

Ibn �

�

Ibn �

Dividing by 1000 and converting to the rectangular domain yields

Ibn � �

� � 0.91 A �225.36°

and Ibn > Icn by a factor of more than 3:1. Therefore, the bulb indicat-
ing an ABC sequence will burn more brightly due to the greater current.
If the phase sequence were ACB, the reverse would be true.

70.73 �166.43°
��
77.52 ��58.93°

�68.75 � j 16.60
��
77.52 ��58.93°

�28.75 �j 16.60 � 40.0
���

77.52 ��58.93°

33,200 V ��210° � 40,000 V �0°
����

77.52 � 103 � ��58.93°

(200 V ��120°)(166 ��90°) � (200 V �0°)(200 �0°)
������

77.52 � 103 � ��58.93°

EBCZ1 � EABZ3
���
Z1Z2 � Z1Z3 � Z2Z3

20.05 �64.13°
��
77.52 ��58.93°

8.75 � j 18.04
��
77.52 ��58.93°

(�20 � j 34.64) � (28.75 � j 16.60)
����

40 � j 66.4

40,000 V �120° � 33,200 V ��30°
������
33,200 � ��90° � 33,200 � ��90° � 40,000 � �0°

EAB  =  200 V ∠  0°

200 �

EBC  =  200 V ∠  –120°

ECA  =  200 V ∠  +120°

f  =  60 Hz

16 mF

ACB

a (1)

(3) c b (2)

Z1
Bulbs (150 W)
200 � internal

resistance

200 �

ABC

n
Z3 Z2

FIG. 22.37

Example 22.9.
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PROBLEMS

SECTION 22.5 The Y-Connected Generator

with a Y-Connected Load

1. A balanced Y load having a 10-� resistance in each leg is
connected to a three-phase, four-wire, Y-connected gen-
erator having a line voltage of 208 V. Calculate the mag-
nitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.

2. Repeat Problem 1 if each phase impedance is changed to
a 12-� resistor in series with a 16-� capacitive reac-
tance.

3. Repeat Problem 1 if each phase impedance is changed to
a 10-� resistor in parallel with a 10-� capacitive reac-
tance.

4. The phase sequence for the Y-Y system of Fig. 22.38 is
ABC.
a. Find the angles v2 and v3 for the specified phase

sequence.
b. Find the voltage across each phase impedance in pha-

sor form.
c. Find the current through each phase impedance in

phasor form.
d. Draw the phasor diagram of the currents found in part

(c), and show that their phasor sum is zero.
e. Find the magnitude of the line currents.
f. Find the magnitude of the line voltages.

FIG. 22.38

Problems 4, 5, 6, and 31.

A

120  V �0°

a

20 Ω

20 Ω20 Ω

C B c b

120  V �03θ

+

–
N

– 120  V �02θ

+

5. Repeat Problem 4 if the phase impedances are changed to
a 9-� resistor in series with a 12-� inductive reactance.

6. Repeat Problem 4 if the phase impedances are changed to
a 6-� resistance in parallel with an 8-� capacitive reac-
tance.
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7. For the system of Fig. 22.39, find the magnitude of the
unknown voltages and currents.

a

10 �

10 �

3-phase
Y-connected

4-wire generator

Phase sequence: ABC

10 �

Ian

n
–
–

+

Van

IAa

A

EAB  =  220 V ∠ 0°

EBC  =  220 V ∠ + 120°

N

B

C

ECA  =  220 V ∠  –120°

IBb

ICc

Icn Ibn

bc
+

10 �

Vbn

–
Vcn

+
10 �

10 �

FIG. 22.39

Problems 7, 32, and 44.

+

EAB3-phase
Y-connected generator

A

B

C

1 �

1 �

1 �

Line resistance

a

16 �

12 �

n

12 �

16 �

c b

12 �

16 �

V  = 50 Vφ

–

FIG. 22.40

Problem 8.

*8. Compute the magnitude of the voltage EAB for the bal-
anced three-phase system of Fig. 22.40.
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*9. For the Y-Y system of Fig. 22.41:
a. Find the magnitude and angle associated with the

voltages EAN, EBN, and ECN.
b. Determine the magnitude and angle associated with

each phase current of the load: Ian, Ibn, and Icn.
c. Find the magnitude and phase angle of each line cur-

rent: IAa, IBb, and ICc.
d. Determine the magnitude and phase angle of the volt-

age across each phase of the load: Van, Vbn, and Vcn.

A 30 �

+
0.4 k�

N

B

C

30 �

EBC  =  22 kV ∠ –120°

40 �

30 � 40 �

IAa

IBb

ICc

ECA  =  22 kV ∠ +120°

EAB  =  22 kV ∠ 0°

–

Van

Ian

1 k�

+

–
Vbn1 k�

0.4 k�
Ibn

bc

1 k�

+
0.4 k�

Icn –

40 �

Vcn

a

FIG. 22.41

Problem 9.

SECTION 22.6 The Y-D System

10. A balanced D load having a 20-� resistance in each leg
is connected to a three-phase, three-wire, Y-connected
generator having a line voltage of 208 V. Calculate the
magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.

11. Repeat Problem 10 if each phase impedance is changed
to a 6.8-� resistor in series with a 14-� inductive reac-
tance.

12. Repeat Problem 10 if each phase impedance is changed
to an 18-� resistance in parallel with an 18-� capacitive
reactance.

13. The phase sequence for the Y-D system of Fig. 22.42 is
ABC.
a. Find the angles v2 and v3 for the specified phase

sequence.
b. Find the voltage across each phase impedance in pha-

sor form.
c. Draw the phasor diagram of the voltages found in part

(b), and show that their sum is zero around the closed
loop of the D load.

d. Find the current through each phase impedance in
phasor form.

e. Find the magnitude of the line currents.
f. Find the magnitude of the generator phase voltages.
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b
22 �

c

a

B

N

C

A

EBC  =  208 V ∠ v2

ECA  =  208 V ∠ v3

EAB  =  208 V ∠ 0°

22 � 22 �

FIG. 22.42

Problems 13, 14, 15, 34, and 45.

FIG. 22.43

Problems 16, 35, and 47.

10 �10 �

a

10 �

3-phase
Y-connected

4-wire generator

Phase sequence: ABC

10 �

Ica

+

Vab

IAa

A

ECA  =  220 V ∠ + 120°

B

C

EBC  =  220 V ∠  –120°

IBb

ICc

bc

–

–

Vca

+

10 �

EAB  =  220 V ∠ 0°

10 �

Iab

Ibc

Vbc +–

14. Repeat Problem 13 if the phase impedances are changed
to a 100-� resistor in series with a capacitive reactance
of 100 �.

15. Repeat Problem 13 if the phase impedances are changed
to a 3-� resistor in parallel with an inductive reactance of
4 �.

16. For the system of Fig. 22.43, find the magnitude of the
unknown voltages and currents.



*17. For the D-connected load of Fig. 22.44:
a. Find the magnitude and angle of each phase current

Iab, Ibc, and Ica.
b. Calculate the magnitude and angle of each line cur-

rent IAa, IBb, and ICc.
c. Determine the magnitude and angle of the voltages

EAB, EBC, and ECA.
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20 �10 �

+

–

20 �10 �

20 �10 �

1 k�

0.3 k� 1 k�

0.3 k�0.3 k�

1 k�

a

c

IAa

IBb

ICc

ECA

+

–
EAB

B

+

–
EBC

C

Ica

Iab

Ibc
b

Vab  =  16 kV ∠ 0°
Vbc  =  16 kV ∠ –120°
Vca  =  16 kV ∠ +120°

A

FIG. 22.44

Problem 17.

SECTION 22.9 The D-D, D-Y Three-Phase Systems

18. A balanced Y load having a 30-� resistance in each leg
is connected to a three-phase, D-connected generator
having a line voltage of 208 V. Calculate the magnitude
of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.

19. Repeat Problem 18 if each phase impedance is changed
to a 12-� resistor in series with a 12-� inductive reac-
tance.

20. Repeat Problem 18 if each phase impedance is changed
to a 15-� resistor in parallel with a 20-� capacitive reac-
tance.

*21. For the system of Fig. 22.45, find the magnitude of the
unknown voltages and currents.

22. Repeat Problem 21 if each phase impedance is changed
to a 10-� resistor in series with a 20-� inductive reac-
tance.

23. Repeat Problem 21 if each phase impedance is changed
to a 20-� resistor in parallel with a 15-� capacitive reac-
tance.

24. A balanced D load having a 220-� resistance in each leg
is connected to a three-phase, D-connected generator hav-
ing a line voltage of 440 V. Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.

25. Repeat Problem 24 if each phase impedance is changed
to a 12-� resistor in series with a 9-� capacitive reac-
tance.
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26. Repeat Problem 24 if each phase impedance is changed
to a 22-� resistor in parallel with a 22-� inductive reac-
tance.

27. The phase sequence for the D-D system of Fig. 22.46 is
ABC.
a. Find the angles v2 and v3 for the specified phase

sequence.
b. Find the voltage across each phase impedance in pha-

sor form.
c. Draw the phasor diagram of the voltages found in part

(b), and show that their phasor sum is zero around the
closed loop of the D load.

d. Find the current through each phase impedance in
phasor form.

e. Find the magnitude of the line currents.

Van 24 �

A

B

C

a

n

bc

3-phase
∆-connected generator

Phase sequence: ABC

IBb

ICc

Icn Ibn

Ian

IAa

+

–

24 � 24 �

Vbn
+

–

+

–
Vcn

EBC = 120 V ∠  –120°

EAB = 120 V ∠ 0°

ECA = 120 V ∠ + 12 0°

FIG. 22.45

Problems 21, 22, 23, and 37.

20 �

aA

BC

20 �

20 �
c

ECA  =  100 V ∠ v3

EAB  =  100 V ∠ 0°

EBC  =  100 V ∠ v2

b

FIG. 22.46

Problem 27.



28. Repeat Problem 25 if each phase impedance is changed
to a 12-� resistor in series with a 16-� inductive reac-
tance.

29. Repeat Problem 25 if each phase impedance is changed
to a 20-� resistor in parallel with a 20-� capacitive reac-
tance.

SECTION 22.10 Power

30. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 2.

31. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 4.

32. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 7.

33. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 12.

34. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 14.

35. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 16.

36. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 20.

37. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 22.

38. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 26.

39. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the three-phase system of Problem 28.

40. A balanced, three-phase, D-connected load has a line
voltage of 200 and a total power consumption of 4800 W
at a lagging power factor of 0.8. Find the impedance of
each phase in rectangular coordinates.

41. A balanced, three-phase, Y-connected load has a line
voltage of 208 and a total power consumption of 1200 W
at a leading power factor of 0.6. Find the impedance of
each phase in rectangular coordinates.

*42. Find the total watts, volt-amperes reactive, volt-amperes,
and Fp of the system of Fig. 22.47.
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FIG. 22.47

Problem 42.

a

20 �15 �
3 �

4 � 4 �
4 �

n 15 �

b

20 �15 �

3 �3 �

c

20 �

EBC = 125 V � –120°

ECA = 125 V � + 120°

EAB = 125 V �0°
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*43. The Y-Y system of Fig. 22.48 has a balanced load and a
line impedance Zline � 4 � � j 20 �. If the line voltage
at the generator is 16,000 V and the total power delivered
to the load is 1200 kW at 80 A, determine each of the fol-
lowing:
a. The magnitude of each phase voltage of the generator.
b. The magnitude of the line currents.
c. The total power delivered by the source.
d. The power factor angle of the entire load “seen” by

the source.
e. The magnitude and angle of the current IAa if EAN �

EAN �0°.
f. The magnitude and angle of the phase voltage Van.
g. The impedance of the load of each phase in rectangu-

lar coordinates.
h. The difference between the power factor of the load

and the power factor of the entire system (including
Zline).

i. The efficiency of the system.

Z1

Z2 Z3

A

N

C B

IAa

EAB = 16 kV

4 � 20 �

4 � 20 �

4 � 20 �

c b

n

+

–

EAN

+

–

Van

a
Ian = 80 A

Z1 = Z2 = Z
lagging Fp

FIG. 22.48

Problem 43.

∆- or Y-
connected

load

+–
+–

Wattmeter

CC
PC

FIG. 22.49

Problem 46.

SECTION 22.11 The Three-Wattmeter Method

44. a. Sketch the connections required to measure the total
watts delivered to the load of Fig. 22.39 using three
wattmeters.

b. Determine the total wattage dissipation and the read-
ing of each wattmeter.

45. Repeat Problem 44 for the network of Fig. 22.42.

SECTION 22.12 The Two-Wattmeter Method

46. a. For the three-wire system of Fig. 22.49, properly con-
nect a second wattmeter so that the two will measure
the total power delivered to the load.

b. If one wattmeter has a reading of 200 W and the other
a reading of 85 W, what is the total dissipation in watts
if the total power factor is 0.8 leading?

c. Repeat part (b) if the total power factor is 0.2 lagging
and Pl � 100 W.

47. Sketch three different ways that two wattmeters can be
connected to measure the total power delivered to the
load of Problem 16.
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*48. For the Y-D system of Fig. 22.50:
a. Determine the magnitude and angle of the phase cur-

rents.
b. Find the magnitude and angle of the line currents.
c. Determine the reading of each wattmeter.
d. Find the total power delivered to the load.

R3 10 �

ECA  =  208 V ∠ 120°

+–
+–

A

W1

+–
+–

W2

B

C

IAa

IBb

ICc

–

+

EAB  =  208 V ∠ 0°

EBC  =  208 V ∠ –120°

–

+

–

+

10 �XC

R1

R2

10 �

10 �

Iab

a

Ibc

Ica

c

b

10 �

XL

FIG. 22.50

Problem 48.

2 �

EBC = 208 V � –120°

ECA = 208 V � –240°

EAB = 208 V �0°

2 �

c b

n

10 �

10 �

12 �

12 �

a

FIG. 22.51

Problem 49.

SECTION 22.13 Unbalanced, Three-Phase,

Four-Wire, Y-Connected Load

*49. For the system of Fig. 22.51:
a. Calculate the magnitude of the voltage across each

phase of the load.
b. Find the magnitude of the current through each phase

of the load.
c. Find the total watts, volt-amperes reactive, volt-

amperes, and Fp of the system.
d. Find the phase currents in phasor form.
e. Using the results of part (c), determine the current IN.

FIG. 22.52

Problem 50.

EBC = 200 V � –120°

ECA = 200 V � –240°

EAB = 200 V �0°

20 �

c b

n

16 �

12 �

3 �

4 �

a SECTION 22.14 Unbalanced,Three-Phase,

Three-Wire,Y-Connected Load

*50. For the three-phase, three-wire system of Fig. 22.52, find
the magnitude of the current through each phase of the
load, and find the total watts, volt-amperes reactive, volt-
amperes, and Fp of the load.
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GLOSSARY

�-connected ac generator A three-phase generator having
the three phases connected in the shape of the capital Greek
letter delta (D).

Line current The current that flows from the generator to the
load of a single-phase or polyphase system.

Line voltage The potential difference that exists between the
lines of a single-phase or polyphase system.

Neutral connection The connection between the generator
and the load that, under balanced conditions, will have zero
current associated with it.

Phase current The current that flows through each phase of
a single-phase or polyphase generator load.

Phase sequence The order in which the generated sinusoidal
voltages of a polyphase generator will affect the load to
which they are applied.

Phase voltage The voltage that appears between the line and
neutral of a Y-connected generator and from line to line in
a D-connected generator.

Polyphase ac generator An electromechanical source of ac
power that generates more than one sinusoidal voltage per

rotation of the rotor. The frequency generated is determined
by the speed of rotation and the number of poles of the
rotor.

Single-phase ac generator An electromechanical source of
ac power that generates a single sinusoidal voltage having a
frequency determined by the speed of rotation and the num-
ber of poles of the rotor.

Three-wattmeter method A method for determining the
total power delivered to a three-phase load using three
wattmeters.

Two-wattmeter method A method for determining the total
power delivered to a D- or Y-connected three-phase load
using only two wattmeters and considering the power factor
of the load.

Unbalanced polyphase load A load not having the same
impedance in each phase.

Y-connected three-phase generator A three-phase source
of ac power in which the three phases are connected in the
shape of the letter Y.
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23.1 LOGARITHMS

The use of logarithms in industry is so extensive that a clear under-
standing of their purpose and use is an absolute necessity. At first expo-
sure, logarithms often appear vague and mysterious due to the mathe-
matical operations required to find the logarithm and antilogarithm
using the longhand table approach that is typically taught in mathemat-
ics courses. However, almost all of today’s scientific calculators have
the common and natural log functions, eliminating the complexity of
applying logarithms and allowing us to concentrate on the positive
characteristics of the function.

Basic Relationships

Let us first examine the relationship between the variables of the loga-
rithmic function. The mathematical expression

N � (b)x

states that the number N is equal to the base b taken to the power x. A
few examples:

100 � (10)2

27 � (3)3

54.6 � (e)4 where e � 2.7183

If the question were to find the power x to satisfy the equation

1200 � (10)x

the value of x could be determined using logarithms in the following
manner:

x � log10 1200 � 3.079

revealing that

103.079 � 1200

dB

Decibels, Filters,
and Bode Plots
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Note that the logarithm was taken to the base 10—the number to be
taken to the power of x. There is no limitation to the numerical value of
the base except that tables and calculators are designed to handle either
a base of 10 (common logarithm, ) or base e � 2.7183 (naturalLOG

dB

logarithm, ). In review, therefore,

(23.1)

The base to be employed is a function of the area of application. If a
conversion from one base to the other is required, the following equa-
tion can be applied:

(23.2)

The content of this chapter is such that we will concentrate solely on
the common logarithm. However, a number of the conclusions are also
applicable to natural logarithms.

Some Areas of Application

The following is a short list of the most common applications of the
logarithmic function:

1. This chapter will demonstrate that the use of logarithms permits
plotting the response of a system for a range of values that may
otherwise be impossible or unwieldy with a linear scale.

2. Levels of power, voltage, and the like, can be compared without
dealing with very large or very small numbers that often cloud
the true impact of the difference in magnitudes.

3. A number of systems respond to outside stimuli in a nonlinear
logarithmic manner. The result is a mathematical model that per-
mits a direct calculation of the response of the system to a partic-
ular input signal.

4. The response of a cascaded or compound system can be rapidly
determined using logarithms if the gain of each stage is known on
a logarithmic basis. This characteristic will be demonstrated in an
example to follow.

Graphs

Graph paper is available in the semilog and log-log varieties. Semilog
paper has only one log scale, with the other a linear scale. Both scales
of log-log paper are log scales. A section of semilog paper appears in
Fig. 23.1. Note the linear (even-spaced-interval) vertical scaling and the
repeating intervals of the log scale at multiples of 10.

The spacing of the log scale is determined by taking the common
log (base 10) of the number. The scaling starts with 1, since log10 1
� 0. The distance between 1 and 2 is determined by log10 2 �
0.3010, or approximately 30% of the full distance of a log interval,
as shown on the graph. The distance between 1 and 3 is determined
by log10 3 � 0.4771, or about 48% of the full width. For future ref-
erence, keep in mind that almost 50% of the width of one log inter-
val is represented by a 3 rather than by the 5 of a linear scale. In
addition, note that the number 5 is about 70% of the full width, and
8 is about 90%. Remembering the percentage of full width of the

loge x � 2.3 log10 x

If N � (b)x, then x � logb N.

IN
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lines 2, 3, 5, and 8 will be particularly useful when the various lines
of a log plot are left unnumbered.

Since

log10 1 � 0

log10 10 � 1

log10 100 � 2

log10 1000 � 3

the spacing between 1 and 10, 10 and 100, 100 and 1000, and so on,
will be the same as shown in Figs. 23.1 and 23.2.

dB

•
•

•

6

5

4

3

2

1

2

Linear
scale

1 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90100

Log scalelog10 2  =  0.3010
≅   30%

log10 4  =  0.6021  ≅   60%

≅   70% ≅   95%
≅   78% ≅   90%

≅   85%

log10 3  =  0.4771  ≅   48%

% of full width

FIG. 23.1

Semilog graph paper.
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FIG. 23.2

Frequency log scale.
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Note in Figs. 23.1 and 23.2 that the log scale becomes compressed
at the high end of each interval. With increasing frequency levels
assigned to each interval, a single graph can provide a frequency plot
extending from 1 Hz to 1 MHz, as shown in Fig. 23.2, with particular
reference to the 30%, 50%, 70%, and 90% levels of each interval.

On many log plots, the tick marks for most of the intermediate levels
are left off because of space constraints. The following equation can be
used to determine the logarithmic level at a particular point between
known levels using a ruler or simply estimating the distances. The param-
eters are defined by Fig. 23.3.

(23.3)

The derivation of Eq. (23.3) is simply an extension of the details regard-
ing distance appearing on Fig. 23.1.

EXAMPLE 23.1

Determine the value of the point appearing on the logarithmic plot of
Fig. 23.4 using the measurements made by a ruler (linear).

Solution:

� � � 0.584

Using a calculator:

10d1/d2 � 100.584 � 3.837

Applying Eq. (23.3):

Value � 10x � 10d1/d2 � 102 � 3.837
� 383.7

23.2 PROPERTIES OF LOGARITHMS

There are a few characteristics of logarithms that should be empha-
sized:

1. The common or natural logarithm of the number 1 is 0.

(23.4)

just as 10x � 1 requires that x � 0.
2. The log of any number less than 1 is a negative number.

log10
1⁄2 � log10 0.5 � �0.3

log10
1⁄10 � log10 0.1 � �1

3. The log of the product of two numbers is the sum of the logs of
the numbers.

(23.5)

4. The log of the quotient of two numbers is the log of the numer-
ator minus the log of the denominator.

log10 ab � log10 a � log10 b

log10 1 � 0

0.438�
�
0.750�

7/16�
�
3/4�

d1
�
d2

Value � 10x � 10d1/d2

dB

10 x

d1

d2

10 x+1

FIG. 23.3

Finding a value on a log plot.

102

7/16"

1033/4"

FIG. 23.4

Example 23.1.
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(23.6)

5. The log of a number taken to a power is equal to the product of
the power and the log of the number.

(23.7)

Calculator Functions

On most calculators the log of a number is found by simply entering the 
number and pressing the or key.

For example,

log10 80 �

with a display of 1.903.
For the reverse process, where N, or the antilogarithm, is desired, the

function 10x is employed. On most calculators 10x appears as a second
function above the key. For the case of

0.6 � log10 N

the following keys are employed:

with a display of 3.981. Checking: log10 3.981 � 0.6.

EXAMPLE 23.2 Evaluate each of the following logarithmic expres-
sions:
a. log10 0.004
b. log10 250,000
c. log10(0.08)(240)

d. log10
1 � 104

��
1 � 10�4

10x2ND F6

LOG

LOG08

INLOG

log10 an � n log10 a

log10 �
a
b

� � log10 a � log10 b

dB

e. log10(10)4

Solutions:

a. �2.398
b. �5.398
c. log10(0.08)(240) � log10 0.08 � log10 240 � �1.097 � 2.380

� 1.283

d. log10 � log10 1 � 104 � log10 1 � 10�4 � 4 � (�4)
� 8

e. log10 104 � 4 log10 10 � 4(1) � 4

23.3 DECIBELS

Power Gain

Two levels of power can be compared using a unit of measure called the
bel, which is defined by the following equation:

1 � 104

��
1 � 10�4
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(bels) (23.8)

However, to provide a unit of measure of less magnitude, a decibel
is defined, where

(23.9)

The result is the following important equation, which compares
power levels P2 and P1 in decibels:

(decibels, dB) (23.10)

If the power levels are equal (P2 � P1), there is no change in power
level, and dB � 0. If there is an increase in power level (P2 > P1), the
resulting decibel level is positive. If there is a decrease in power level
(P2 < P1), the resulting decibel level will be negative.

For the special case of P2 � 2P1, the gain in decibels is

dB � 10 log10 � 10 log10 2 � 3 dB

Therefore, for a speaker system, a 3-dB increase in output would re-
quire that the power level be doubled. In the audio industry, it is a
generally accepted rule that an increase in sound level is accom-
plished with 3-dB increments in the output level. In other words, a
1-dB increase is barely detectable, and a 2-dB increase just dis-
cernible. A 3-dB increase normally results in a readily detectable
increase in sound level. An additional increase in the sound level is
normally accomplished by simply increasing the output level another
3 dB. If an 8-W system were in use, a 3-dB increase would require
a 16-W output, whereas an additional increase of 3 dB (a total of
6 dB) would require a 32-W system, as demonstrated by the calcula-
tions below:

dB � 10 log10 � 10 log10 � 10 log10 2 � 3 dB

dB � 10 log10 � 10 log10 � 10 log10 4 � 6 dB

For P2 � 10P1,

dB � 10 log10 � 10 log10 10 � 10(1) � 10 dB

resulting in the unique situation where the power gain has the same
magnitude as the decibel level.

For some applications, a reference level is established to permit a
comparison of decibel levels from one situation to another. For com-
munication systems a commonly applied reference level is

Pref � 1 mW (across a 600-� load)

Equation (23.10) is then typically written as

P2
�
P1

32
�
8

P2
�
P1

16
�
8

P2
�
P1

P2
�
P1

dB � 10 log10 �
P

P

1

2
�

1 bel � 10 decibels (dB)

B � log10 �
P

P

1

2
�

dB
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dBm � 10 log10 �
1 m

P
W
��600 �

(23.11)

Note the subscript m to denote that the decibel level is determined with
a reference level of 1 mW.

In particular, for P � 40 mW,

dBm � 10 log10 � 10 log10 40 � 10(1.6) � 16 dBm

whereas for P � 4 W,

dBm � 10 log10 � 10 log10 4000 � 10(3.6) � 36 dBm

Even though the power level has increased by a factor of 4000 mW/
40 mW � 100, the dBm increase is limited to 20 dBm. In time, the sig-
nificance of dBm levels of 16 dBm and 36 dBm will generate an imme-
diate appreciation regarding the power levels involved. An increase of
20 dBm will also be associated with a significant gain in power levels.

Voltage Gain

Decibels are also used to provide a comparison between voltage levels.
Substituting the basic power equations P2 � V2

2/R2 and P1 � V2
1/R1 into

Eq. (23.10) will result in

dB � 10 log10 � 10 log10

V2
2/R2

�
V2

1/R1

P2
�
P1

4000 mW
��

1 mW

40 mW
�
1 mW

dB

� 10 log10 � 10 log10� �
2

� 10 log10� �
and dB � 20 log10 � 10 log10

For the situation where R2 � R1, a condition normally assumed
when comparing voltage levels on a decibel basis, the second term of
the preceding equation will drop out (log10 1 � 0), and

(dB) (23.12)

Note the subscript v to define the decibel level obtained.

EXAMPLE 23.3 Find the voltage gain in dB of a system where the
applied signal is 2 mV and the output voltage is 1.2 V.

Solution:

dBv � 20 log10 �
V

V
o

i

� � 20 log10 �
2
1.

m
2 V

V
� � 20 log10 600 � 55.56 dB

for a voltage gain Av � Vo /Vi of 600.

EXAMPLE 23.4 If a system has a voltage gain of 36 dB, find the
applied voltage if the output voltage is 6.8 V.

dBv � 20 log10 �
V

V

1

2
�

R2
�
R1

V2
�
V1

R2
�
R1

V2
�
V1

V2
2/V

2
1

�
R2/R1
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Solution:

dBv � 20 log10

36 � 20 log10

1.8 � log10

From the antilogarithm:

�
V

V
o

i
� � 63.096

and Vi � � � 107.77 mV

Table 23.1 compares the magnitude of specific gains to the resulting
decibel level. In particular, note that when voltage levels are compared,
a doubling of the level results in a change of 6 dB rather than 3 dB as
obtained for power levels.

In addition, note that an increase in gain from 1 to 100,000 results in
a change in decibels that can easily be plotted on a single graph. Also
note that doubling the gain (from 1 to 2 and 10 to 20) results in a 6-dB
increase in the decibel level, while a change of 10 to 1 (from 1 to 10,
10 to 100, and so on) always results in a 20-dB decrease in the decibel
level.

The Human Auditory Response

One of the most frequent applications of the decibel scale is in the com-
munication and entertainment industries. The human ear does not
respond in a linear fashion to changes in source power level; that is, a
doubling of the audio power level from 1/2 W to 1 W does not result in
a doubling of the loudness level for the human ear. In addition, a
change from 5 W to 10 W will be received by the ear as the same
change in sound intensity as experienced from 1/2 W to 1 W. In other
words, the ratio between levels is the same in each case (1 W/0.5 W �
10 W/5 W � 2), resulting in the same decibel or logarithmic change
defined by Eq. (23.7). The ear, therefore, responds in a logarithmic
fashion to changes in audio power levels.

To establish a basis for comparison between audio levels, a reference
level of 0.0002 microbar (mbar) was chosen, where 1 mbar is equal to
the sound pressure of 1 dyne per square centimeter, or about 1 millionth
of the normal atmospheric pressure at sea level. The 0.0002-mbar level
is the threshold level of hearing. Using this reference level, the sound
pressure level in decibels is defined by the following equation:

(23.13)

where P is the sound pressure in microbars.
The decibel levels of Fig. 23.5 are defined by Eq. (23.13). Meters

designed to measure audio levels are calibrated to the levels defined by
Eq. (23.13) and shown in Fig. 23.5.

dBs � 20 log10 �
0.000

P

2 mbar
�

6.8 V
�
63.096

Vo
�
63.096

Vo�
Vi

Vo�
Vi

Vo�
Vi

dB

TABLE 23.1

Vo /Vi dB � 20 log10(Vo /Vi)

1 0 dB
2 6 dB

10 20 dB
20 26 dB

100 40 dB
1,000 60 dB

100,000 100 dB
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A common question regarding audio levels is how much the power
level of an acoustical source must be increased to double the sound
level received by the human ear. The question is not as simple as it
first seems due to considerations such as the frequency content of the
sound, the acoustical conditions of the surrounding area, the physical
characteristics of the surrounding medium, and—of course—the
unique characteristics of the human ear. However, a general conclu-
sion can be formulated that has practical value if we note the power
levels of an acoustical source appearing to the left of Fig. 23.5. Each
power level is associated with a particular decibel level, and a change
of 10 dB in the scale corresponds with an increase or a decrease in
power by a factor of 10. For instance, a change from 90 dB to 100 dB
is associated with a change in wattage from 3 W to 30 W. Through
experimentation it has been found that on an average basis the
loudness level will double for every 10-dB change in audio level—a
conclusion somewhat verified by the examples to the right of Fig.
23.5. Using the fact that a 10-dB change corresponds with a tenfold
increase in power level supports the following conclusion (on an
approximate basis): Through experimentation it has been found that on
an average basis, the loudness level will double for every 10-dB
change in audio level.

To double the sound level received by the human ear, the power
rating of the acoustical source (in watts) must be increased by a
factor of 10.

dB
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FIG. 23.5

Typical sound levels and their decibel levels.
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In other words, doubling the sound level available from a 1-W acousti-
cal source would require moving up to a 10-W source.

Instrumentation

A number of modern VOMs and DMMs have a dB scale designed to pro-
vide an indication of power ratios referenced to a standard level of 1 mW
at 600 �. Since the reading is accurate only if the load has a characteris-
tic impedance of 600 �, the 1-mW, 600 reference level is normally
printed somewhere on the face of the meter, as shown in Fig. 23.6. The
dB scale is usually calibrated to the lowest ac scale of the meter. In other

dB

1 mW, 600 �

1.5
1

.5

0

2.0
2.5

33VAC

65432102468
12

7 8 9
10

11+DB–D
B

FIG. 23.6

Defining the relationship between a dB scale referenced to 1 mW, 600 � and
a 3-V-rms voltage scale.

words, when making the dB measurement, choose the lowest ac voltage
scale, but read the dB scale. If a higher voltage scale is chosen, a correc-
tion factor must be employed that is sometimes printed on the face of the
meter but always available in the meter manual. If the impedance is other
than 600 � or not purely resistive, other correction factors must be used
that are normally included in the meter manual. Using the basic power
equation P � V2/R will reveal that 1 mW across a 600-� load is the same
as applying 0.775 V rms across a 600-� load; that is, V � �P�R� �

�(1� m�W�)(�6�0�0� ��)� � 0.775 V. The result is that an analog display will
have 0 dB [defining the reference point of 1 mW, dB � 10 log10 P2/P1 �
10 log10 (1 mW/1 mW(ref)] � 0 dB] and 0.775 V rms on the same
pointer projection, as shown in Fig. 23.6. A voltage of 2.5 V across a
600-� load would result in a dB level of dB � 20 log10 V2/V1 � 20 log10

2.5 V/0.775 � 10.17 dB, resulting in 2.5 V and 10.17 dB appearing
along the same pointer projection. A voltage of less than 0.775 V, such as
0.5 V, will result in a dB level of dB � 20 log10 V2/V1 � 20 log10

0.5 V/0.775 V � �3.8 dB, as is also shown on the scale of Fig. 23.6.
Although a reading of 10 dB will reveal that the power level is 10 times
the reference, don’t assume that a reading of 5 dB means that the output
level is 5 mW. The 10 : 1 ratio is a special one in logarithmic circles. For
the 5-dB level, the power level must be found using the antilogarithm
(3.126), which reveals that the power level associated with 5 dB is about
3.1 times the reference or 3.1 mW. A conversion table is usually provided
in the manual for such conversions.

23.4 FILTERS

Any combination of passive (R, L, and C) and/or active (transistors or
operational amplifiers) elements designed to select or reject a band of
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frequencies is called a filter. In communication systems, filters are
employed to pass those frequencies containing the desired information
and to reject the remaining frequencies. In stereo systems, filters can be
used to isolate particular bands of frequencies for increased or
decreased emphasis by the output acoustical system (amplifier, speaker,
etc.). Filters are employed to filter out any unwanted frequencies, com-
monly called noise, due to the nonlinear characteristics of some elec-
tronic devices or signals picked up from the surrounding medium. In
general, there are two classifications of filters:

1. Passive filters are those filters composed of series or parallel
combinations of R, L, and C elements.

2. Active filters are filters that employ active devices such as tran-
sistors and operational amplifiers in combination with R, L, and C
elements.

dB

Stop-band filter:

(d)

Vo

0

Vmax

0.707Vmax

Pass-band Stop-band Pass-band

f1 fo f2 f

Pass-band filter:

(c)
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0

Vmax

0.707Vmax

Stop-band
Pass-band

Stop-band
f1 fo f2 f

High-pass filter:

(b)

Vo

0

Vmax

0.707Vmax

Stop-band Pass-band
fc f

Low-pass filter:

(a)

Vo

0

Vmax

0.707Vmax

Pass-band Stop-band
fc f

FIG. 23.7

Defining the four broad categories of filters.
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Since this text is limited to passive devices, the analysis of this chap-
ter will be limited to passive filters. In addition, only the most funda-
mental forms will be examined in the next few sections. The subject of
filters is a very broad one that continues to receive extensive research
support from industry and the government as new communication sys-
tems are developed to meet the demands of increased volume and
speed. There are courses and texts devoted solely to the analysis and
design of filter systems that can become quite complex and sophisti-
cated. In general, however, all filters belong to the four broad categories
of low-pass, high-pass, pass-band, and stop-band, as depicted in Fig.
23.7. For each form there are critical frequencies that define the regions
of pass-bands and stop-bands (often called reject bands). Any frequency
in the pass-band will pass through to the next stage with at least 70.7%
of the maximum output voltage. Recall the use of the 0.707 level to
define the bandwidth of a series or parallel resonant circuit (both with
the general shape of the pass-band filter).

For some stop-band filters, the stop-band is defined by conditions
other than the 0.707 level. In fact, for many stop-band filters, the con-
dition that Vo � 1/1000Vmax (corresponding with �60 dB in the dis-
cussion to follow) is used to define the stop-band region, with the pass-
band continuing to be defined by the 0.707-V level. The resulting
frequencies between the two regions are then called the transition fre-
quencies and establish the transition region.

At least one example of each filter of Fig. 23.7 will be discussed in
some detail in the sections to follow. Take particular note of the relative
simplicity of some of the designs.

23.5 R-C LOW-PASS FILTER

The R-C filter, incredibly simple in design, can be used as a low-pass or
a high-pass filter. If the output is taken off the capacitor, as shown in
Fig. 23.8, it will respond as a low-pass filter. If the positions of the
resistor and capacitor are interchanged and the output is taken off the
resistor, the response will be that of a high-pass filter.

A glance at Fig. 23.7(a) reveals that the circuit should behave in a
manner that will result in a high-level output for low frequencies and a
declining level for frequencies above the critical value. Let us first
examine the network at the frequency extremes of f � 0 Hz and very
high frequencies to test the response of the circuit.

At f � 0 Hz,

XC � � ∞ �

and the open-circuit equivalent can be substituted for the capacitor, as
shown in Fig. 23.9, resulting in Vo � Vi.

At very high frequencies, the reactance is

XC � � 0 �

and the short-circuit equivalent can be substituted for the capacitor, as
shown in Fig. 23.10, resulting in Vo � 0 V.

A plot of the magnitude of Vo versus frequency will result in the curve
of Fig. 23.11. Our next goal is now clearly defined: Find the frequency
at which the transition takes place from a pass-band to a stop-band.

1
�
2pfC

1
�
2pfC

dB

–

+ R

C Vo

–

+

FIG. 23.8

Low-pass filter.

–

+ R

Vi

–

+

Vo  =  Vi

FIG. 23.9

R-C low-pass filter at low frequencies.

–

+ R

Vi

–

+

Vo  =  0 V

FIG. 23.10

R-C low-pass filter at high frequencies.
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For filters, a normalized plot is employed more often than the plot of
Vo versus frequency of Fig. 23.11.

Normalization is a process whereby a quantity such as voltage,
current, or impedance is divided by a quantity of the same unit of
measure to establish a dimensionless level of a specific value or
range.

A normalized plot in the filter domain can be obtained by dividing
the plotted quantity such as Vo of Fig. 23.11 with the applied voltage Vi

for the frequency range of interest. Since the maximum value of Vo for
the low-pass filter of Fig. 23.8 is Vi, each level of Vo in Fig. 23.11 is
divided by the level of Vi. The result is the plot of Av � Vo/Vi of Fig.
23.12. Note that the maximum value is 1 and the cutoff frequency is
defined at the 0.707 level.

dB

0

Vo

Vo  =  0.707Vi

Pass-band Stop-band f (log scale)fc

FIG. 23.11

Vo versus frequency for a low-pass R-C filter.

Av  =

0

0.707

Pass-band Stop-band f (log scale)fc

Vo
Vi

1

FIG. 23.12

Normalized plot of Fig. 23.11.

At any intermediate frequency, the output voltage Vo of Fig. 23.8
can be determined using the voltage divider rule:

Vo �

or

Av � � �

and

Av � � ��90° � tan�1� �XC
�
R

XC��
�R�2��� X�2

C�
Vo
�
Vi

XC ��90°
���
�R�2��� X�2

C� /�tan�1(XC /R)

XC ��90°
��

R � j XC

Vo�
Vi

XC ��90°Vi��
R � j XC
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The magnitude of the ratio Vo /Vi is therefore determined by

Av � � � (23.14)

and the phase angle is determined by

(23.15)

For the special frequency at which XC � R, the magnitude becomes

Av � �
V

V

o

i

� � � � � 0.707

which defines the critical or cutoff frequency of Fig. 23.12.
The frequency at which XC � R is determined by

�
2p

1
fcC
� � R

and (23.16)

The impact of Eq. (23.16) extends beyond its relative simplicity. For
any low-pass filter, the application of any frequency less than fc will
result in an output voltage Vo that is at least 70.7% of the maximum.
For any frequency above fc, the output is less than 70.7% of the applied
signal.

Solving for Vo and substituting Vi � Vi �0° gives

Vo � � �v�Vi � � �v�Vi �0°

and Vo � �v

The angle v is, therefore, the angle by which Vo leads Vi. Since v �
�tan�1 R/XC is always negative (except at f � 0 Hz), it is clear that Vo

will always lag Vi, leading to the label lagging network for the network
of Fig. 23.8.

At high frequencies, XC is very small and R/XC is quite large, result-
ing in v � �tan�1 R/XC approaching �90°.

At low frequencies, XC is quite large and R/XC is very small, result-
ing in v approaching 0°.

At XC � R, or f � fc, �tan�1 R/XC � �tan�1 1 � �45°.
A plot of v versus frequency results in the phase plot of Fig. 23.13.
The plot is of Vo leading Vi, but since the phase angle is always neg-

ative, the phase plot of Fig. 23.14 (Vo lagging Vi) is more appropriate.
Note that a change in sign requires that the vertical axis be changed to
the angle by which Vo lags Vi. In particular, note that the phase angle
between Vo and Vi is less than 45° in the pass-band and approaches 0°

XCVi
��
�R� 2��� X�2

C�

XC
��
�R� 2��� X�2

C�
XC

��
�R� 2��� X�2

C�

fc � �
2p

1
RC
�

1
�
�2�

1
�
�1� �� 1�

1
——

	��
X
R
C
�
�

2


�
 1


v � �90° � tan�1 �
X

R

C
� � �tan�1 �

X

R

C

�

1
——

	��
X
R
C
�
�

2


�
 1

XC��

�R� 2��� X�2
C�

Vo�
Vi

dB
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at lower frequencies. 
In summary, for the low-pass R-C filter of Fig. 23.8:

fc � �
2p

1
RC
�

For f < fc, Vo > 0.707Vi

whereas for f > fc, Vo < 0.707Vi

At fc, Vo lags Vi by 45°

The low-pass filter response of Fig. 23.7(a) can also be obtained
using the R-L combination of Fig. 23.15 with

fc � �
2p

R

L
� (23.17)

In general, however, the R-C combination is more popular due to the
smaller size of capacitive elements and the nonlinearities associated
with inductive elements. The details of the analysis of the low-pass
R-L will be left as an exercise for the reader.

EXAMPLE 23.5

a. Sketch the output voltage Vo versus frequency for the low-pass R-C
filter of Fig. 23.16.

b. Determine the voltage Vo at f � 100 kHz and 1 MHz, and compare
the results to the results obtained from the curve of part (a).

c. Sketch the normalized gain Av � Vo/Vi.

dB

FIG. 23.13

Angle by which Vo leads Vi.

0°

–45°

–90°

v (Vo leads Vi)
Pass-band Stop-bandfc

f (log scale)

Pass-band Stop-band

0°

45°

90°

v (Vo lags Vi)

f (log scale)fc

FIG. 23.14

Angle by which Vo lags Vi.

–

+

R Vo

–

+

Vi

L

FIG. 23.15

Low-pass R-L filter.

–

+

Vi  =  20 V ∠  0°

R

1 k�

C 500 pF

–

+

Vo

FIG. 23.16

Example 23.5.



0.707Vi

10 V

Vi  =  20 V

6.1V

10 kHz 100 kHz 1 MHz 10 MHz f (log scale)

Pass-band Stop-band

Vo (volts)

19.08 V
14.14 V

318.31 kHz

fc
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Solutions:

a. Eq. (23.16):

fc � � � 318.31 kHz

At fc, Vo � 0.707(20 V) � 14.14 V. See Fig. 23.17.

1
��
2p(1 k�)(500 pF)

1
�
2pRC

dB

FIG. 23.17

Frequency response for the low-pass R-C network of Fig. 23.16.

b. Eq. (23.14):

Vo �

At f � 100 kHz:

XC � � � 3.18 k�

and Vo � � 19.08 V

At f � 1 MHz:

XC � � � 0.32 k�

and Vo � � 6.1 V

Both levels are verified by Fig. 23.17.
c. Dividing every level of Fig. 23.17 by Vi � 20 V will result in the

normalized plot of Fig. 23.18.

20 V
———

	��
0
.

1

3
 2

k
 �

k
�
�
�

2
 �
 1


1
���
2p(1 MHz)(500 pF)

1
�
2pfC

20 V
———

	��
3
.

1

1
 8

k
 �

k
�
�
�

2
 �
 1


1
���
2p(100 kHz)(500 pF)

1
�
2pfC

Vi
——

	��
X
R
C
�
�

2


 �
 1
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23.6 R-C HIGH-PASS FILTER

As noted early in Section 23.5, a high-pass R-C filter can be constructed
by simply reversing the positions of the capacitor and resistor, as shown
in Fig. 23.19.

At very high frequencies the reactance of the capacitor is very small,
and the short-circuit equivalent can be substituted, as shown in Fig.
23.20. The result is that Vo � Vi.

dB

0.707

0.5

1

0.305

10 kHz 100 kHz 1 MHz 10 MHz f (log scale)

318.31 kHz

fc

Av  =
Vo
Vi

0.954

FIG. 23.18

Normalized plot of Fig. 23.17.

–

+

R

C

Vi

–

+

Vo

FIG. 23.19

High-pass filter.

–

+

RVi

–

+

Vo  = 0  V

FIG. 23.20

R-C high-pass filter at very high frequencies.

–

+

RVi

–

+

Vo  =  0 V

FIG. 23.21

R-C high-pass filter at f � 0 Hz.

At f � 0 Hz, the reactance of the capacitor is quite high, and the
open-circuit equivalent can be substituted, as shown in Fig. 23.21. In
this case, Vo � 0 V.

A plot of the magnitude versus frequency is provided in Fig. 23.22,
with the normalized plot in Fig. 23.23.

Vo

Vo  =  Vi

Vo  =  0.707Vi

0

Stop-band Pass-band
f (log scale)fc

FIG. 23.22

Vo versus frequency for a high-pass R-C filter.

At any intermediate frequency, the output voltage can be determined
using the voltage divider rule:

Vo �
R �0° Vi
��
R � j XC



1034  DECIBELS, FILTERS, AND BODE PLOTS

or

� �

and � �tan�1(XC /R)

The magnitude of the ratio Vo/Vi is therefore determined by

Av � � � (23.18)

and the phase angle v by

(23.19)

For the frequency at which XC � R, the magnitude becomes

� � � � 0.707

as shown in Fig. 23.23.
The frequency at which XC � R is determined by

XC � � R

and fc � �
2p

1
RC
� (23.20)

For the high-pass R-C filter, the application of any frequency greater
than fc will result in an output voltage Vo that is at least 70.7% of the
magnitude of the input signal. For any frequency below fc, the output is
less than 70.7% of the applied signal.

For the phase angle, high frequencies result in small values of XC,
and the ratio XC /R will approach zero with tan�1(XC /R) approaching 0°,
as shown in Fig. 23.24. At low frequencies, the ratio XC /R becomes

1
�
2pfcC

1
�
�2�

1
���
�1� �� 1�

1
——

	1
 �
 �
�
X

R
C
�
�

2



Vo
�
Vi

v � tan�1 �
X

R
C
�

1
——

	1
 �
 �
�
X

R
C
�
�

2



R

��
�R� 2��� X�2

C�
Vo
�
Vi

R
��
�R� 2��� X�2

C�
Vo
�
Vi

R �0°
���
�R�2��� X�2

C� ��tan�1(XC /R)

R �0°
�
R � j XC

Vo
�
Vi

dB

0

Stop-band Pass-band
f (log scale)

0.707

1

Av  =
Vo
Vi

fc

FIG. 23.23

Normalized plot of Fig. 23.22.
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quite large, and tan�1(XC /R) approaches 90°. For the case XC � R,
tan�1(XC /R) � tan�1 1 � 45°. Assigning a phase angle of 0° to Vi such
that Vi � Vi �0°, the phase angle associated with Vo is v, resulting in
Vo � Vo �v and revealing that v is the angle by which Vo leads Vi.
Since the angle v is the angle by which Vo leads Vi throughout the fre-
quency range of Fig. 23.24, the high-pass R-C filter is referred to as a
leading network.

In summary, for the high-pass R-C filter:

fc � �
2p

1
RC
�

For f < fc, Vo < 0.707Vi

whereas for f > fc, Vo > 0.707Vi

At fc, Vo leads Vi by 45°

The high-pass filter response of Fig. 23.23 can also be obtained
using the same elements of Fig. 23.15 but interchanging their positions,
as shown in Fig. 23.25.

EXAMPLE 23.6 Given R � 20 k� and C � 1200 pF:
a. Sketch the normalized plot if the filter is used as both a high-pass

and a low-pass filter.
b. Sketch the phase plot for both filters of part (a).
c. Determine the magnitude and phase of Av � Vo /Vi at f � �� fc for the

high-pass filter.

Solutions:

a. fc � �

� 6631.46 Hz
The normalized plots appear in Fig. 23.26.

b. The phase plots appear in Fig. 23.27.

c. f � fc � (6631.46 Hz) � 3315.73 Hz

XC � �

� 40 k�

1
���
(2p)(3315.73 Hz)(1200 pF)

1
�
2pfC

1
�
2

1
�
2

1
���
(2p)(20 k�)(1200 pF)

1
�
2pRC

dB

Pass-bandStop-band

0°

45°

90°

v (Vo leads Vi)

f (log scale)fc

FIG. 23.24

Phase-angle response for the high-pass R-C filter.

–

+R

Vo

–

+

Vi L

FIG. 23.25

High-pass R-L filter.
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Av � � � �

� � 0.4472

v � tan�1 � tan�1 � tan�1 2 � 63.43°

and Av � � 0.4472 �63.43°

23.7 PASS-BAND FILTERS

A number of methods are used to establish the pass-band characteristic
of Fig. 23.7(c). One method employs both a low-pass and a high-pass
filter in cascade, as shown in Fig. 23.28.

The components are chosen to establish a cutoff frequency for the
high-pass filter that is lower than the critical frequency of the low-pass
filter, as shown in Fig. 23.29. A frequency f1 may pass through the low-

Vo
�
Vi

40 k�
�
20 k�

XC
�
R

1
�
�5�

1
��
�1� �� (�2�)2�

1
——

	1
 �
 �
�
4
2
0
0
 k

k
�

�
�
�

2



1

——

	1
 �
 �
�
X
R
C�
�

2



Vo
�
Vi

dB

1

0.707

0

Low-pass

fc  =  6631.46 Hz f (log scale)

Av  =
Vo
Vi

1

0.707

0 fc  =  6631.46 Hz f (log scale)

Av  =
Vo
Vi

High-pass

FIG. 23.26

Normalized plots for a low-pass and a high-pass filter using the same elements.

90°

45°

0

fc  =  6631.46 Hz f (log scale)

Low-pass

� (Vo lags Vi)

90°

45°

0

fc  =  6631.46 Hz f (log scale)

� (Vo leads Vi)

High-pass

θ θ

FIG. 23.27

Phase plots for a low-pass and a high-pass filter using the same elements.

–

+ High-pass
filter

Low-pass
filter

Vi

–

+

Vo

FIG. 23.28

Pass-band filter.
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pass filter but have little effect on Vo due to the reject characteristics of
the high-pass filter. A frequency f2 may pass through the high-pass fil-
ter unmolested but be prohibited from reaching the high-pass filter by
the low-pass characteristics. A frequency fo near the center of the pass-
band will pass through both filters with very little degeneration.

The network of Example 23.7 will generate the characteristics of
Fig. 23.29. However, for a circuit such as the one shown in Fig. 23.30,
there is a loading between stages at each frequency that will affect the
level of Vo. Through proper design, the level of Vo may be very near the
level of Vi in the pass-band, but it will never equal it exactly. In addi-
tion, as the critical frequencies of each filter get closer and closer
together to increase the quality factor of the response curve, the peak
values within the pass-band will continue to drop. For cases where
Vomax � Vimax the bandwidth is defined at 0.707 of the resulting Vomax.

EXAMPLE 23.7 For the pass-band filter of Fig. 23.30:
a. Determine the critical frequencies for the low- and high-pass filters.
b. Using only the critical frequencies, sketch the response characteris-

tics. 
c. Determine the actual value of Vo at the high-pass critical frequency

calculated in part (a), and compare it to the level that will define the
upper frequency for the pass-band.

Solutions:

a. High-pass filter:

fc � � � 106.1 kHz

Low-pass filter:

fc � � � 994.72 kHz

b. In the mid-region of the pass-band at about 500 kHz, an analysis of
the network will reveal that Vo � 0.9Vi as shown in Fig. 23.31. The
bandwidth is therefore defined at a level of 0.707(0.9Vi) � 0.636Vi

as also shown in Fig. 23.31.
c. At f � 994.72 kHz,

XC1
� � 107 �

1
�
2pfC1

1
��
2p(40 k�)(4 pF)

1
�
2pR2C2

1
��
2p(1 k�)(1.5 nF)

1
�
2pR1C1

dB

FIG. 23.29

Pass-band characteristics.

–

+

R1 1 k� C2 4 pF

R2

40 k�

C1

1.5 nF

Vi

–

+

Vo

High-pass
filter

Low-pass
filter

FIG. 23.30

Pass-band filter.

(High-pass) (Low-pass)

High-pass

Low-pass

BW
Vmax

0.707Vmax

Vo

0 f1 fo ff2fc fc
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The parallel combination R1 || (R2 � j XC2
) is essentially 0.976 k�

�0° because the R2 � XC 2
combination is so large compared to the

parallel resistor R1.
Then

V′ � � 0.994Vi �6.26°

with

Vo �

Vo � 0.703Vi ��39°

so that

Vo � 0.703Vi at f � 994.72 kHz

Since the bandwidth is defined at 0.636Vi the upper cutoff fre-
quency will be higher than 994.72 kHz as shown in Fig. 23.31.

The pass-band response can also be obtained using the series and
parallel resonant circuits discussed in Chapter 20. In each case, how-
ever, Vo will not be equal to Vi in the pass-band, but a frequency range
in which Vo will be equal to or greater than 0.707Vmax can be defined.

For the series resonant circuit of Fig. 23.33, XL � XC at resonance,
and

Vomax
� �

R �

R
Rl

� Vi

f � fs

(23.21)

(40 k� ��90°)(0.994Vi �6.26°)
����

40 k� � j40 k�

0.976 k� �0°(Vi)���
0.976 k� � j 0.107 k�

dB

Pass-band
0.636 Vi

0.707 Vi

0.9 Vi

Vi

Vo

fc ≅  106 kHz
Actual fc

fc ≅  995 kHz Actual fc
0 f

FIG. 23.31

Pass-band characteristics for the filter of Fig. 23.30.

–

+

R1  =  1 k� XC2
40 k�

R2

40 k�

XC1

107 �

Vi

–

+

Vo
–

+
V'

FIG. 23.32

Network of Fig. 23.30 at f � 994.72 kHz.

and XC2
� � R2 � 40 k�

resulting in the network of Fig. 23.32.

1
�
2pfC2



PASS-BAND FILTERS  1039

and fs � �
2p�

1

L�C�
� (23.22)

with (23.23)

and (23.24)

For the parallel resonant circuit of Fig. 23.34, ZTp
is a maximum

value at resonance, and

f � fp

(23.25)Vomax
� �

ZT

Z

p

T

�

pVi

R
�

BW � �
Q

fs

s
�

Qs � �
R �

XL

Rl
�

dB

Rl

Pass-band filter

Vi

–

+

Vi

f

L C
R Vo

–

+

Vi

0.707Vomax

0

Vo

Vi

f1 f2fs f

Vomax

BW

Rl

FIG. 23.33

Series resonant pass-band filter.

ZTp

0

Vi

Vi

–

+

Rl

L
CVi Vo

–

+

Pass-band filter

Vi

0

0.707Vomax

Vomax

f1 f2fp

BW

Vo  
=  VC

f

R

FIG. 23.34

Parallel resonant pass-band filter.

with
Ql ≥ 10

(23.26)

and fp �

Ql ≥ 10

(23.27)
1

�
2p�L�C�

ZTp
� Q2

l Rl
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For the parallel resonant circuit

(23.28)

and (23.29)

As a first approximation that is acceptable for most practical appli-
cations, it can be assumed that the resonant frequency bisects the band-
width.

EXAMPLE 23.8

a. Determine the frequency response for the voltage Vo for the series
circuit of Fig. 23.35.

b. Plot the normalized response Av � Vo /Vi.
c. Plot a normalized response defined by A′v � Av/Avmax

.

Solutions:

a. fs � � � 50,329.21 Hz

Qs � � � 9.04

BW � � � 5.57 kHz

At resonance:

Vomax
� � � 0.943Vi � 0.943(20 mV)

� 18.86 mV

At the cutoff frequencies:

Vo � (0.707)(0.943Vi) � 0.667Vi � 0.667(20 mV)

� 13.34 mV

Note Fig. 23.36.

33 �(Vi)
��
33 � � 2 �

RVi
�
R � Rl

50,329.21 Hz
��

9.04

fs
�
Qs

2p(50,329.21 Hz)(1 mH)
���

33 � � 2 �

XL
�
R � Rl

1
���
2p�(1� m�H�)(�0.�01� m�F)�

1
�
2p�L�C�

BW � �
Q

fp

p
�

Qp � �
X

R
L

l
�

dB

–

+

R 33 �

Rl

2 �

–

+

Vo

L C

1 mH
0.01 mF

Vi  =  20 mV ∠  0°

FIG. 23.35

Series resonant pass-band filter for 
Example 23.8.

Vo

18.86 mV

13.34 mV

fs  ≅   50.3 kHz f (log scale)

0

BW  =  5.57 kHz

FIG. 23.36

Pass-band response for the network.

b. Dividing all levels of Fig. 23.36 by Vi � 20 mV will result in the
normalized plot of Fig. 23.37(a).
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c. Dividing all levels of Fig. 23.37(a) by Avmax
� 0.943 will result in

the normalized plot of Fig. 23.37(b).

23.8 STOP-BAND FILTERS

Stop-band filters can also be constructed using a low-pass and a high-
pass filter. However, rather than the cascaded configuration used for the
pass-band filter, a parallel arrangement is required, as shown in Fig.
23.38. A low-frequency f1 can pass through the low-pass filter, and a
higher-frequency f2 can use the parallel path, as shown in Figs. 23.38
and 23.39. However, a frequency such as fo in the reject-band is higher
than the low-pass critical frequency and lower than the high-pass criti-
cal frequency, and is therefore prevented from contributing to the levels
of Vo above 0.707Vmax.

dB

0.943

0.667

0
fs f (log scale)

Av  =
Vo
Vi

=
Vo

20 mV

(a)

1

0.707

0
fs f (log scale)

(b)

Av  = =
Av

Avmax

Av
0.943

BW

{

BW

{

FIG. 23.37

Normalized plots for the pass-band filter of Fig. 23.35.

Vi

–

+

Low-pass
filter

High-pass
filter

Vo

–

+

f2 (high)

f1 (low)

fo

fo

f1 (low)

f2 (high)

FIG. 23.38

Stop-band filter.

FIG. 23.39

Stop-band characteristics.

f1

BW

fc fo fc f2 f  (log scale)

Vo

Vomax

0.707Vomax

(Low-pass) (High-pass)
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Since the characteristics of a stop-band filter are the inverse of the
pattern obtained for the pass-band filters, we can employ the fact that at
any frequency the sum of the magnitudes of the two waveforms to the
right of the equals sign in Fig. 23.40 will equal the applied voltage Vi.

=

0

Vi

Vi

0

Vi

Vo

ff fo

Pass-band Stop-band

0 ffo

+

For the pass-band filters of Figs. 23.33 and 23.34, therefore, if we
take the output off the other series elements as shown in Figs. 23.41 and
23.42, a stop-band characteristic will be obtained, as required by Kirch-
hoff’s voltage law.

For the series resonant circuit of Fig. 23.41, Equations (23.22)
through (23.24) still apply, but now, at resonance,

FIG. 23.40

Demonstrating how an applied signal of fixed magnitude can be broken down
into a pass-band and stop-band response curve.

FIG. 23.42

Stop-band filter using a parallel resonant network.

FIG. 23.41

Stop-band filter using a series resonant circuit.
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0.707Vi
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Vomin

f1 fs f2 f

–

+

Vi
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0

Vi

–

+

Vo

Rl

Stop-band filter

R

L

C

BW

Vo

Vomax  =  Vi

0.707Vi

0

Vomin

f1 fp f2 f
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(23.30)

For the parallel resonant circuit of Fig. 23.42, Equations (23.26)
through (23.29) are still applicable, but now, at resonance,

(23.31)

The maximum value of Vo for the series resonant circuit is Vi at the
low end due to the open-circuit equivalent for the capacitor and Vi at the
high end due to the high impedance of the inductive element.

For the parallel resonant circuit, at f � 0 Hz, the coil can be replaced
by a short-circuit equivalent, and the capacitor can be replaced by
its open circuit and Vo � RVi /(R � Rl). At the high-frequency end,
the capacitor approaches a short-circuit equivalent, and Vo increases
toward Vi.

23.9 DOUBLE-TUNED FILTER

Some network configurations display both a pass-band and a stop-band
characteristic, such as shown in Fig. 23.43. Such networks are called
double-tuned filters. For the network of Fig. 23.43(a), the parallel res-
onant circuit will establish a stop-band for the range of frequencies not
permitted to establish a significant VL. The greater part of the applied
voltage will appear across the parallel resonant circuit for this fre-
quency range due to its very high impedance compared with RL. For the
pass-band, the parallel resonant circuit is designed to be capacitive
(inductive if Ls is replaced by Cs). The inductance Ls is chosen to can-
cel the effects of the resulting net capacitive reactance at the resonant
pass-band frequency of the tank circuit, thereby acting as a series reso-
nant circuit. The applied voltage will then appear across RL at this fre-
quency.

Vomin
� �

R �

RV

Z
i

Tp

�

Vomin
� �

Rl

R

�

lVi

R
�

FIG. 23.43

Double-tuned networks.

(a)

–

+

RL VLVi

Ls

C

Lp

–

+

Double-tuned filter

–

+

RL VLVi

Ls C

Lp

–

+

Double-tuned filter

(b)

For the network of Fig. 23.43(b), the series resonant circuit will still
determine the pass-band, acting as a very low impedance across the par-
allel inductor at resonance. At the desired stop-band resonant frequency,
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the series resonant circuit is capacitive. The inductance Lp is chosen to
establish parallel resonance at the resonant stop-band frequency. The
high impedance of the parallel resonant circuit will result in a very low
load voltage VL.

For rejected frequencies below the pass-band, the networks should
appear as shown in Fig. 23.43. For the reverse situation, Ls in Fig.
23.43(a) and Lp in Fig. 23.43(b) are replaced by capacitors.

EXAMPLE 23.9 For the network of Fig. 23.43(b), determine Ls and
Lp for a capacitance C of 500 pF if a frequency of 200 kHz is to be
rejected and a frequency of 600 kHz accepted.

Solution: For series resonance, we have

fs �

and Ls � � � 140.7 mH

At 200 kHz,

XLs
� qL � 2pfsLs � (2p)(200 kHz)(140.7 mH) � 176.8 �

and XC � � � 1591.5 �

For the series elements,

j (XLs
� XC) � j (176.8 � � 1591.5 �) � �j 1414.7 � � �j X′C

At parallel resonance (Ql ≥ 10 assumed),

XLp
� X′C

and Lp � � � 1.13 mH

The frequency response for the preceding network appears as one of the
examples of PSpice in the last section of the chapter.

23.10 BODE PLOTS

There is a technique for sketching the frequency response of such fac-
tors as filters, amplifiers, and systems on a decibel scale that can save a
great deal of time and effort and provide an excellent way to compare
decibel levels at different frequencies.

The curves obtained for the magnitude and/or phase angle versus
frequency are called Bode plots (Fig. 23.44). Through the use of
straight-line segments called idealized Bode plots, the frequency
response of a system can be found efficiently and accurately.

To ensure that the derivation of the method is correctly and clearly
understood, the first network to be analyzed will be examined in some
detail. The second network will be treated in a shorthand manner, and
finally a method for quickly determining the response will be intro-
duced.

1414.7 �
��
(2p)(200 kHz)

XLp
�
q

1
���
(2p)(200 kHz)(500 pF)

1
�
qC

1
���
4p2(600 kHz)2(500 pF)

1
�
4p2f 2

sC

1
�
2p�L�C�

dB

FIG. 23.44

Hendrik Wade Bode

American (Madison, WI;
Summit, NJ; 
Cambridge, MA)

(1905–81)

V.P. at Bell

Laboratories

Professor of Systems

Engineering,

Harvard University

Courtesy of AT&T Archives

In his early years at Bell Laboratories, Hendrik Bode
was involved with electric filter and equalizer de-
sign. He then transferred to the Mathematics Re-
search Group, where he specialized in research per-
taining to electrical networks theory and its
application to long-distance communication facili-
ties. In 1946 he was awarded the Presidential Certif-
icate of Merit for his work in electronic fire control
devices. In addition to the publication of the book
Network Analysis and Feedback Amplifier Design in
1945, which is considered a classic in its field, he
has been granted 25 patents in electrical engineering
and systems design. Upon retirement, Bode was
elected Gordon McKay Professor of Systems Engi-
neering at Harvard University. He was a fellow of
the IEEE and American Academy of Arts and Sci-
ences.
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High-Pass R-C Filter

Let us start by reexamining the high-pass filter of Fig. 23.45. The high-
pass filter was chosen as our starting point because the frequencies of
primary interest are at the low end of the frequency spectrum.

The voltage gain of the system is given by

Av � � � �

�

If we substitute fc � �
2p

1

RC
� (23.32)

which we recognize as the cutoff frequency of earlier sections, we
obtain

Av � (23.33)

We will find in the analysis to follow that the ability to reformat the
gain to one having the general characteristics of Eq. (23.33) is critical
to the application of the Bode technique. Different configurations will
result in variations of the format of Eq. (23.33), but the desired similar-
ities will become obvious as we progress through the material.

In magnitude and phase form:

Av � � Av �v � �tan�1( fc /f ) (23.34)

providing an equation for the magnitude and phase of the high-pass fil-
ter in terms of the frequency levels.

Using Eq. (23.12),

AvdB
� 20 log10 Av

and, substituting the magnitude component of Eq. (23.34),

AvdB
 � 20 log10                            � 20 log10 1 � 20 log10�����1 �  fc/f   2

�����1 �  fc /f  21
                      

0

1
��
�1� �� (�fc�/f�)2�

Vo
�
Vi

1
��
1 � j ( fc /f )

1
——

1 � j ��2p

1

RC
�� �

1

f
�

1
——

1 � j �
2p

1

fCR
�

1
—

1 � j �
X

R
C
�

R
�
R � j XC

Vo
�
Vi

dB

FIG. 23.45

High-pass filter.

–

+

RVi

C

–

+

Vo

and AvdB
� �20 log10�1� �� ����

2�
Recognizing that log10�x� � log10 x1/2 � log10 x, we have

AvdB
� � (20) log10�1 � � �

2

�fc
�

f

1
�
2

1
�
2

fc
�
f

� �10 log10�1 � � �
2

�fc
�

f
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For frequencies where f K fc or ( fc /f )2 k 1,

1 � � �
2

	 � �
2

and AvdB
� �10 log10� �

2

but log10 x2 � 2 log10 x

resulting in AvdB
� �20 log10

However, logarithms are such that

�log10 b � �log10

and substituting b � fc /f, we have

AvdB
� �20 log10

f K fc

(23.35)

First note the similarities between Eq. (23.35) and the basic equation
for gain in decibels: GdB � 20 log10 Vo/Vi. The comments regarding
changes in decibel levels due to changes in Vo/Vi can therefore be
applied here also, except now a change in frequency by a 2�1 ratio will
result in a 6-dB change in gain. A change in frequency by a 10�1 ratio
will result in a 20-dB change in gain.

Two frequencies separated by a 2:1 ratio are said to be an octave
apart.

For Bode plots, a change in frequency by one octave will result in
a 6-dB change in gain.

Two frequencies separated by a 10:1 ratio are said to be a decade
apart.

For Bode plots, a change in frequency by one decade will result in
a 20-dB change in gain.

One may wonder about all the mathematical development to obtain
an equation that initially appears confusing and of limited value. As
specified, Equation (23.35) is accurate only for frequency levels much
less than fc.

First, realize that the mathematical development of Eq. (23.35) will
not have to be repeated for each configuration encountered. Second, the
equation itself is seldom applied but simply used in a manner to be
described to define a straight line on a log plot that permits a sketch of
the frequency response of a system with a minimum of effort and a high
degree of accuracy.

To plot Eq. (23.35), consider the following levels of increasing fre-
quency:

For f � fc /10, f / fc � 0.1 and �20 log10 0.1 � �20 dB

For f � fc /4, f / fc � 0.25 and �20 log10 0.25 � �12 dB

For f � fc /2, f / fc � 0.51 and �20 log10 0.5 � �6 dB

For f � fc, f / fc � 1 and �20 log10 1 � 0 dB

f
�
fc

1
�
b

fc
�

f

fc
�

f

fc
�

f

fc
�

f

dB
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Note from the above equations that as the frequency of interest
approaches fc, the dB gain becomes less negative and approaches the
final normalized value of 0 dB. The positive sign in front of Eq. (23.35)
can therefore be interpreted as an indication that the dB gain will have
a positive slope with an increase in frequency. A plot of these points on
a log scale will result in the straight-line segment of Fig. 23.46 to the
left of fc.

dB

FIG. 23.46

Idealized Bode plot for the low-frequency region.

–7 dB

0
f (log scale)

–3

–6

–9

–12

–15

–18

Actual frequency response

–6 dB/octave or –20 dB/decade

–21 +20 log10

 fc
10

 fc
4

 fc
2  fc 2 fc 3 fc 5 fc 10 fc

–20 log10 1  =  0 dB

Idealized Bode plotAv(dB) (linear scale)

 f
 fc

–20

–1 dB

For the future, note that the resulting plot is a straight line intersect-
ing the 0-dB line at fc. It increases to the right at a rate of �6 dB per
octave or �20 dB per decade. In other words, once fc is determined,
find fc /2, and a plot point exists at �6 dB (or find fc /10, and a plot point
exists at �20 dB).

Bode plots are straight-line segments because the dB change per
decade or octave is constant.

The actual response will approach an asymptote (straight-line seg-
ment) defined by AvdB

� 0 dB since at high frequencies

f k fc and fc /f 	 0

with AvdB
� 20 log10 � 20 log10

� 20 log10 1 � 0 dB

The two asymptotes defined above will intersect at fc, as shown in
Fig. 23.46, forming an envelope for the actual frequency response.

At f � fc, the cutoff frequency,

AvdB
� 20 log10 � 20 log10 � 20 log10

� �3 dB

At f � 2fc,

AvdB
� �20 log10 �1� �� ���

2

f�
f
c

c

���
2� � �20 log10 �1� �� ���

1

2
���

2�
� �20 log10 �1�.2�5� � �1 dB

as shown in Fig. 23.46.

1
�
�2�

1
��
�1� �� 1�

1
��
�1� �� (�fc�/f�)2�

1
��
�1� �� 0�

1
��
�1� �� (�fc�/f�)2�
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At f � fc /2,

AvdB
� �20 log10 �1� �� ���

fc�fc
/�2
���

2

� � �20 log10�1� �� (�2�)2�

� �20 log10 �5�
� �7 dB

separating the idealized Bode plot from the actual response by 7 dB �
6 dB � 1 dB, as shown in Fig. 23.46.

Reviewing the above,

at f � fc , the actual response curve is 3 dB down from the idealized
Bode plot, whereas at f � 2fc and fc /2, the actual response curve is
1 dB down from the asymptotic response.

The phase response can also be sketched using straight-line asymp-
totes by considering a few critical points in the frequency spectrum.

Equation (23.34) specifies the phase response (the angle by which
Vo leads Vi) by

(23.36)

For frequencies well below fc ( f K fc), v � tan�1( fc /f ) approaches 90°
and for frequencies well above fc ( f k fc), v � tan�1( fc /f ) will
approach 0°, as discovered in earlier sections of the chapter. At f � fc,
v � tan�1( fc /f ) � tan�1 1 � 45°.

Defining f K fc for f � fc /10 (and less) and f k fc for f � 10fc (and
more), we can define

an asymptote at v � 90° for f K fc /10, an asymptote at v � 0° for
f k 10fc, and an asymptote from fc/10 to 10fc that passes through
v � 45° at f � fc.

The asymptotes defined above all appear in Fig. 23.47. Again, the Bode
plot for Eq.(23.36) is a straight line because the change in phase angle
will be 45° for every tenfold change in frequency.

Substituting f � fc /10 into Eq. (23.36),

v � tan�1� � � tan�1 10 � 84.29°
fc

�
fc /10

v � tan�1 �
f

f

c
�

dB

Actual response

Difference  =  5.7°

45°45°

90°

θ  =  90°
θ (Vo leads Vi)

10 fc

Difference  =  5.7°

θ  =  0°
100 fc f (log scale) fc fc

10
 fc

100

0°

FIG. 23.47

Phase response for a high-pass R-C filter.
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for a difference of 90° � 84.29° 	 5.7° from the idealized response.
Substituting f � 10fc ,

v � tan�1� � � tan�1 	 5.7°

In summary, therefore,

at f � fc, v � 45°, whereas at f � fc /10 and 10fc, the difference
between the actual phase response and the asymptotic plot is 5.7°.

EXAMPLE 23.10

a. Sketch AvdB
versus frequency for the high-pass R-C filter of Fig.

23.48.
b. Determine the decibel level at f � 1 kHz.
c. Sketch the phase response versus frequency on a log scale.

Solutions:

a. fc � � � 1591.55 Hz

The frequency fc is identified on the log scale as shown in Fig. 23.49.
A straight line is then drawn from fc with a slope that will intersect
�20 dB at fc /10 � 159.15 Hz or �6 dB at fc /2 � 795.77 Hz.
A second asymptote is drawn from fc to higher frequencies at 0 dB.
The actual response curve can then be drawn through the �3-dB
level at fc approaching the two asymptotes of Fig. 23.49. Note the 
1-dB difference between the actual response and the idealized Bode
plot at f � 2fc and 0.5fc.

1
��
(2p)(1 k�)(0.1 mF)

1
�
2pRC

1
�
10

fc
�
10fc

dB

0.1 mF

R 1 k�

C

+

–

Vi

+

–

Vo

FIG. 23.48

Example 23.10.

0
f (log scale)

–3

–6

–9

–12

–15

–18

Actual response curve

–21

 fc
10

–24

dB
=  159.15 Hz

10 kHz5 kHz

1 dB

2 fc2 kHz

fc  =  1591.55 Hz

1 kHz

–3 dB at  f  =  fc

200 Hz 300 Hz

 fc
2

=  795.77 Hz

100 Hz

–20 dB

1 dB

FIG. 23.49

Frequency response for the high-pass filter of Fig. 23.48.

Note that in the solution to part (a), there is no need to employ
Eq. (23.35) or to perform any extensive mathematical manipula-
tions.
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b. Eq. (23.33):

|AvdB| � 20 log10 � 20 log10

� 20 log10 � 20 log10 0.5318 � �5.49 dB

as verified by Fig. 23.49.
c. See Fig. 23.50. Note that v � 45° at f � fc � 1591.55 Hz, and the

difference between the straight-line segment and the actual response
is 5.7° at f � fc /10 � 159.2 Hz and f � 10fc � 15,923.6 Hz.

1
��
�1� �� (�1�.5�9�2�)2�

1
���

�1� �� ���1�5�9

1�1

0�.5

0�5

0� H�z
���2�

1
��

�1� �� ���
f

f
c
���

2�

dB

Low-Pass R-C Filter

For the low-pass filter of Fig. 23.51,

Av � � � � 1

1 1 1
� –––––––– � ––––––––––– � –––––––––––

1 � j 1 � j 1 � j 

and Av � (23.37)

with (23.38)

as defined earlier.
Note that now the sign of the imaginary component in the denom-

inator is positive and fc appears in the denominator of the frequency
ratio rather than in the numerator, as in the case of fc for the high-pass
filter.

fc � �
2p

1
RC
�

1
��
1 � j ( f/fc)

f
––
�
2p

1
RC
�

R
—
�
2p

1
fC
�

R
�
XC

1
––

�
�j

R
XC
�

�j XC
�
R � j XC

Vo
�
Vi

0° f (log scale)

 fc

θ (Vo leads Vi)

=  159.15 Hz
10 kHz1 kHz

fc  =  1591.55 Hz

100 Hz

45°

90°

10 Hz
10

100 kHz

10 fc  =  15,915.5 Hz

45°

Difference  =  5.7°

Difference  =  5.7°

θ

FIG. 23.50

Phase plot for the high-pass R-C filter.
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Vi
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FIG. 23.51

Low-pass filter.
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In terms of magnitude and phase,

(23.39)

An analysis similar to that performed for the high-pass filter will
result in

f k fc

(23.40)

Note in particular that the equation is exact only for frequencies
much greater than fc, but a plot of Eq. (23.40) does provide an asymp-
tote that performs the same function as the asymptote derived for the
high-pass filter. In addition, note that it is exactly the same as Eq.
(23.35), except for the minus sign, which suggests that the resulting
Bode plot will have a negative slope [recall the positive slope for Eq.
(23.35)] for increasing frequencies beyond fc.

A plot of Eq. (23.40) appears in Fig. 23.52 for fc � 1 kHz. Note the
6-dB drop at f � 2fc and the 20-dB drop at f � 10fc.

AvdB
� �20 log10 �

f

f

c
�

Av � �
V

V
o

i
� � Av �v � �

�1� ��
1

(�f /�fc�)2�
� ��tan�1( f /fc)

dB

2 kHz (log scale)

f (log scale)
–3

–6

–9

–12

–15

–18

Actual
frequency
response

–21

–24

dB

10 kHz
2 fc

1 kHz0.1 kHz
10 fcfc

2
1  fc

1 dB difference
–6 dB

1 dB difference

–20 dB

FIG. 23.52

Bode plot for the high-frequency region of a low-pass R-C filter.

At f k fc, the phase angle v � �tan�1( f /fc) approaches �90°,
whereas at f K fc, v � �tan�1( f /fc) approaches 0°. At f � fc, v �
�tan�1 1 � �45°, establishing the plot of Fig. 23.53. Note again the 45°
change in phase angle for each tenfold increase in frequency.

f (log scale)0°

–45°

v  =  –90°

v (Vo leads Vi)

100 fcfc

 fc/10

Difference  =  5.7°

Difference  =  5.7°
–90°

10 fc

45°

v  =  0°fc/100

FIG. 23.53

Phase plot for a low-pass R-C filter.
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Even though the preceding analysis has been limited solely to the
R-C combination, the results obtained will have an impact on networks
that are a great deal more complicated. One good example is the high-
and low-frequency response of a standard transistor configuration.
Some capacitive elements in a practical transistor network will affect
the low-frequency response, and others will affect the high-frequency
response. In the absence of the capacitive elements, the frequency
response of a transistor would ideally stay level at the midband value.
However, the coupling capacitors at low frequencies and the bypass
and parasitic capacitors at high frequencies will define a bandwidth for
numerous transistor configurations. In the low-frequency region, spe-
cific capacitors and resistors will form an R-C combination that will
define a low cutoff frequency. There are then other elements and
capacitors forming a second R-C combination that will define a high
cutoff frequency. Once the cutoff frequencies are known, the
�3-dB points are set, and the bandwidth of the system can be deter-
mined.

23.11 SKETCHING THE BODE RESPONSE

In the previous section we found that normalized functions of the form
appearing in Fig. 23.54 had the Bode envelope and the dB response

dB

dB

–3 dB

fc

f

–6 dB/octave (for increasing f )

1

(a)

Low-pass:

1  +  j
f

fc

dB

0 dBfc

f

+6 dB/octave (for increasing f )

1

(b)

High-pass:

1  +  j
f
fc –3 dB

FIG. 23.54

dB response of (a) low-pass filter and (b) high-pass filter.

indicated in the same figure. In this section we introduce additional
functions and their responses that can be used in conjunction with those
of Fig. 23.54 to determine the dB response of more sophisticated sys-
tems in a systematic, time-saving, and accurate manner.

As an avenue toward introducing an additional function that appears
quite frequently, let us examine the high-pass filter of Fig. 23.55 which
has a high-frequency output less than the full applied voltage.

Before developing a mathematical expression for Av � Vo /Vi, let us
first make a rough sketch of the expected response.

FIG. 23.55

High-pass filter with attenuated output.

1 nF

R2 4 k�

C

+

–

Vi

+

–

Vo

R1

1 k�
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At f � 0 Hz, the capacitor will assume its open-circuit equivalence,
and Vo � 0 V. At very high frequencies, the capacitor can assume its
short-circuit equivalence, and

Vo � Vi � Vi � 0.8Vi

The resistance to be employed in the equation for cutoff frequency
can be determined by simply determining the Thévenin resistance “seen”
by the capacitor. Setting Vi � 0 V and solving for RTh (for the capacitor
C) will result in the network of Fig. 23.56, where it is quite clear that

RTh � R1 � R2 � 1 k� � 4 k� � 5 k�

4 k�
��
1 k� � 4 k�

R2
�
R1 � R2

dB

R2

R1

Vi  =  0 V

RTh

FIG. 23.56

Determining RTh for the equation for cutoff frequency.

Therefore,

fc � � � 31.83 kHz

A sketch of Vo versus frequency is provided in Fig. 23.57(a). A nor-
malized plot using Vi as the normalizing quantity will result in the
response of Fig. 23.57(b). If the maximum value of Av is used in the
normalization process, the response of Fig. 23.57(c) will be obtained.

1
��
2p(5 k�)(1 nF)

1
�
2pRThC

(a)

ffc
0

Vo

0.5656Vi

0.8Vi

Vi  =  0.8Vi

R2
R1  +  R2

(c)

ffc
0

Av�  =

0.707

1
1

Av

Avmax

 =
Av
0.8

(b)

ffc
0

Av  =

0.5656

0.8

R2
R1  +  R2

Vo

Vi

FIG. 23.57

Finding the normalized plot for the gain of the high-pass filter of Fig. 23.55
with attenuated output.

For all the plots obtained in the previous section, Vi was the maximum
value, and the ratio Vo /Vi had a maximum value of 1. For many situa-
tions, this will not be the case, and we must be aware of which ratio is
being plotted versus frequency. The dB response curves for the plots of
Figs. 23.57(b) and 23.57(c) can both be obtained quite directly using
the foundation established by the conclusions depicted in Fig. 23.54,
but we must be aware of what to expect and how they will differ. In
Fig. 23.57(b) we are comparing the output level to the input voltage. In
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Fig. 23.57(c) we are plotting Av versus the maximum value of Av. On
most data sheets and for the majority of the investigative techniques
commonly employed, the normalized plot of Fig. 23.57(c) is used
because it establishes 0 dB as an asymptote for the dB plot. To ensure
that the impact of using either Fig. 23.57(b) or Fig. 23.57(c) in a fre-
quency plot is understood, the analysis of the filter of Fig. 23.55 will
include the resulting dB plot for both normalized curves.

For the network of Fig. 23.55:

Vo � � R2� �Vi

Dividing the top and bottom of the equation by R1 � R2 results in

Vo � � �
but �j � �j � �j

� �j with fc � and RTh � R1 � R2

1
�
2pRThC

fc
�
f

1
��
2p f(R1 � R2)C

1
��
q(R1 � R2)C

XC
�
R1 � R2

1
——
1 � j�

R1

X

�
C

R2
�

R2
�
R1 � R2

1
��
R1 � R2 � j XC

R2Vi
��
R1 � R2 � j XC

dB

so that Vo � � �Vi

If we divide both sides by Vi, we obtain

Av � � � � (23.41)

from which the magnitude plot of Fig. 23.57(b) can be obtained. If we
divide both sides by Avmax

� R2/(R1 � R2), we have

(23.42)

from which the magnitude plot of Fig. 23.57(c) can be obtained.
Based on the past section, a dB plot of the magnitude of A′v �

Av/Avmax
is now quite direct using Fig. 23.54(b). The plot appears in Fig.

23.58.
For the gain Av � Vo /Vi , we can apply Eq. (23.5):

20 log10 ab � 20 log10 a � 20 log10 b

where

20 log10
 � ��
� 20 log10 � 20 log10

The second term will result in the same plot of Fig. 23.58, but the
first term must be added to the second to obtain the total dB response.

Since R2/(R1 � R2) must always be less than 1, we can rewrite the
first term as

20 log10
R2

R1 � R2 R2

R1 � R2

R2

1
R1 � R2

� 20 log10 � 20 log101 � 20 log10

0

1
��
�1� ��(�fc�/f�)2�

R2
�
R1 � R2

1
��
1 � j( fc /f )

R2
�
R1 � R2

A�
v � �

A
A

vm

v

ax

� � �
1 � j

1

( fc /f )
�

1
��
1� j( fc /f )

R2
�
R1 � R2

Vo
�
Vi

1
��
1� j( fc /f )

R2
�
R1 � R2
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and (23.43)

providing the drop in dB from the 0-dB level for the plot. Adding one
log plot to the other at each frequency, as permitted by Eq. (23.5), will
result in the plot of Fig. 23.59.

20 log10 �
R1

R

�
2

R2
� � �20 log10 �

R1

R

�

2

R2
�

dB

fc  =  31.83 kHz

–3 dB

f

0

Av�
dB

  =
Av

Avmax   dB

FIG. 23.58

dB plot for A′v for the high-pass filter of Fig. 23.55.

+

–1.94 dB  –3 dB  =  –4.94 dB

–1.94 dB

AvdB
 =

Vo

Vi   dB

f

0
fc  =  31.83 kHz

f

0

20 log10
1

1  +

fc  =  31.83 kHz

� f1
f

2
dB

f

0

20 log10
R2

R1  +  R2  dB

–20 log10
R2

R1  +  R2 =  –1.94 dB

=

FIG. 23.59

Obtaining a dB plot of AvdB
� �dB

.
Vo
�
Vi

For the network of Fig. 23.55, the gain Av � Vo /Vi can also be
found in the following manner:

Vo �

Av � � � �

� �
j 2pf R2C

���
1 � j 2pf (R1 � R2)C

j qR2C
��
1 � j q(R1 � R2)C

j R2/XC
��
j (R1 � R2)/XC � 1

j R2
��
j (R1 � R2) � XC

R2
��
R1 � R2 � j XC

Vo
�
Vi

R2Vi
��
R1 � R2 � j XC
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and (23.44)

with f1 � and fc �

The bottom of Eq. (23.44) is a match of the denominator of the low-
pass function of Fig. 23.54(a). The numerator, however, is a new func-
tion that will define a unique Bode asymptote that will prove useful for
a variety of network configurations.

Applying Eq. (23.5):

20 log10 � 20 log10� �� �
� 20 log10( f /f1) � 20 log10

Let us now consider specific frequencies for the first term.

At f � f1:

20 log10 � 20 log10 1 � 0 dB

At f � 2f1:

20 log10 � 20 log10 2 � �6 dB

At f � f1:

20 log10 � 20 log10 0.5 � �6 dB

A dB plot of 20 log10( f /f1) is provided in Fig. 23.60. Note that the
asymptote passes through the 0-dB line at f � f1 and has a positive
slope of �6 dB/octave (or 20 dB/decade) for frequencies above and
below f1 for increasing values of f.

If we examine the original function Av, we find that the phase angle
associated with j f /f1 � f/f1 �90° is fixed at 90°, resulting in a phase
angle for Av of 90° � tan�1( f/fc) � �tan�1( fc /f ).

Now that we have a plot of the dB response for the magnitude of the
function f /f1, we can plot the dB response of the magnitude of Av using
a procedure outlined by Fig. 23.61.

Solving for f1 and fc:

f1 � � � 39.79 kHz

with fc � � � 31.83 kHz

For this development the straight-line asymptotes for each term
resulting from the application of Eq. (23.5) will be drawn on the same
frequency axis to permit an examination of the impact of one line sec-
tion on the other. For clarity, the frequency spectrum of Fig. 23.61 has
been divided into two regions.

In region 1 we have a 0-dB asymptote and one increasing at 
6 dB/octave for increasing frequencies. The sum of the two as defined
by Eq. (23.5) is simply the 6-dB/octave asymptote shown in the figure.

1
��
2p(5 k�)(1 nF)

1
��
2p(R1 � R2)C

1
��
2p(4 k�)(1 nF)

1
�
2pR2C

f
�
f1

1
�
2

f
�
f1

f
�
f1

1
��
�1� �� (�f /�fc�)2�

1
��
�1� �� (�f /�fc�)2�

f
�
f1

Vo
�
Vi

1
��
2p(R1 � R2)C

1
�
2pR2C

Av � �
V
V

o

i
� � �

1 �

j (

j

f/

(

f1
f

)

/fc)
�

dB

f1 f

0 dB

20 log10
f
f1

+6 dB/octave

FIG. 23.60

dB plot of f /f1.
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In region 2 one asymptote is increasing at 6 dB, and the other is
decreasing at �6 dB/octave for increasing frequencies. The net effect
is that one cancels the other for the region greater than f � fc, leaving
a horizontal asymptote beginning at f � fc. A careful sketch of the
asymptotes on a log scale will reveal that the horizontal asymptote is
at �1.94 dB, as obtained earlier for the same function. The horizontal
level can also be determined by simply plugging f � fc into the Bode
plot defined by f/f1; that is,

20 log � 20 log10 � 20 log10

� 20 log10 0.799 � �1.94 dB

The actual response can then be drawn using the asymptotes and the
known differences at f � fc (�3 dB) and at f � 0.5fc or 2fc (�1 dB).

In summary, therefore, the same dB response for Av � Vo /Vi can be
obtained by isolating the maximum value or defining the gain in a dif-
ferent form. The latter approach permitted the introduction of a new
function for our catalog of idealized Bode plots that will prove useful in
the future.

23.12 LOW-PASS FILTER WITH
LIMITED ATTENUATION

Our analysis will now continue with the low-pass filter of Fig. 23.62,
which has limited attentuation at the high-frequency end. That is, the
output will not drop to zero as the frequency becomes relatively high.
The filter is similar in construction to Fig. 23.55, but note that now Vo

includes the capacitive element.
At f � 0 Hz, the capacitor can assume its open-circuit equivalence,

and Vo � Vi. At high frequencies the capacitor can be approximated by
a short-circuit equivalence, and

31.83 kHz
��
39.79 kHz

fc
�
f1

f
�
f1

dB

Actual response

1.94 dB f (log scale)

f10 fc

Av  dB

–3 dB

1 2

FIG. 23.61

Plot of Av
dB for the network of Fig. 23.55.

R2

R1

Vi

C

+

–

Vo

+

–

FIG. 23.62

Low-pass filter with limited attenuation.
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Vo � Vi

A plot of Vo versus frequency is provided in Fig. 23.63(a). A sketch
of Av � Vo /Vi will appear as shown in Fig. 23.63(b).

R2
�
R1 � R2

dB

(a)

f  (log scale)fc

Vo

0.707Vi

 Vi

Av  =
Vo

Vi

R2
R1  +  R2

Vi

(b)

f  (log scale)fc

0.707
R2

R1  +  R2

1

FIG. 23.63

Low-pass filter with limited attenuation.

An equation for Vo in terms of Vi can be derived by first applying
the voltage divider rule:

Vo �

and Av � � � 

�

� �

so that (23.45)

with f1 � and fc �

The denominator of Eq. (23.45) is simply the denominator of the
low-pass function of Fig. 23.54(a). The numerator, however, is new and
must be investigated.

Applying Eq. (23.5):

AvdB
� 20 log10 � 20 log10 �1� �� (�f /�f1�)2� � 20 log10

For f k f1, ( f /f1)
2 k 1, and the first term becomes

20 log10 �(�f /�f1�)2� � 20 log10(( f /f1)
2)1/2 � 20 log10( f /f1) f kf1

which defines the idealized Bode asymptote for the numerator of Eq.
(23.45).

At f � f1, 20 log10 1 � 0 dB, and at f � 2f1, 20 log10 2 � 6 dB. For
frequencies much less than f1, ( f /f1)

2 K 1, and the first term of the Eq.
(23.5) expansion becomes 20 log10 �1� � 20 log10 1 � 0 dB, which
establishes the low-frequency asymptote.




1
��
�1� �� (�f /�fc�)2�

Vo
�
Vi

1
��
2p(R1 � R2)C

1
�
2pR2C

Av � �
V
V

o

i
� � �

1

1

�

�

j

j

(

(

f

f

/

/

f

f
1

c)

)
�

1 � j 2pfR2C
���
1 � j 2pf(R1 � R2)C

j(R2/XC) � 1
���
j((R1 � R2)/XC) � 1

( j)(R2XC � j)
���
( j)((R1 � R2)/XC � j)

R2/XC � j
��
(R1 � R2)/XC � j

R2 � j XC
��
R1 � R2 � j XC

Vo
�
Vi

(R2 � j XC)Vi
��
R1 � R2 � j XC



LOW-PASS FILTER WITH LIMITED ATTENUATION  1059

The full idealized Bode response for the numerator of Eq. (23.45) is
provided in Fig. 23.64.

dB

0 dB ff1

3 dB

Actual response

+6 dB/octave

20 log10√ f
f1

21  +

FIG. 23.64

Idealized and actual Bode response for the magnitude of (1 � j (f /f1)).

We are now in a position to determine Av|dB by plotting the asymp-
tote for each function of Eq. (23.45) on the same frequency axis, as
shown in Fig. 23.65. Note that fc must be less than f1 since the denom-
inator of f1 includes only R2, whereas the denominator of fc includes
both R2 and R1.

f  (log scale)

Av  =

 f1

Actual response

 fc

dB

Vo

Vi

–20 log10
R1  +  R2

R2

321

0 dB

Since R2/(R1 � R2) will always be less than 1, we can use an earlier
development to obtain an equation for the drop in dB below the 0-dB
axis at high frequencies. That is,

20 log10 R2/(R1 � R2) � 20 log10 1/((R1 � R2)/R2)

� 20 log10 1 � 20 log10((R1 � R2)/R2)

0

FIG. 23.65

AvdB
versus frequency for the low-pass filter with limited attenuation of 

Fig. 23.62.
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and (23.46)

as shown in Fig. 23.65.
In region 1 of Fig. 23.65, both asymptotes are at 0 dB, resulting in a

net Bode asymptote at 0 dB for the region. At f � fc , one asymptote
maintains its 0-dB level, whereas the other is dropping by 6 dB/octave.
The sum of the two is the 6-dB drop per octave shown for the region. In
region 3 the �6-dB/octave asymptote is balanced by the �6-dB/octave
asymptote, establishing a level asymptote at the negative dB level
attained by the fc asymptote at f � f1. The dB level of the horizontal
asymptote in region 3 can be determined using Eq. (23.46) or by simply
substituting f � f1 into the asymptotic expression defined by fc.

The full idealized Bode envelope is now defined, permitting a sketch
of the actual response by simply shifting 3 dB in the right direction at
each corner frequency, as shown in Fig. 23.65.

The phase angle associated with Av can be determined directly from
Eq. (23.45). That is,

(23.47)

A full plot of v versus frequency can be obtained by simply substi-
tuting various key frequencies into Eq. (23.47) and plotting the result
on a log scale.

The first term of Eq. (23.47) defines the phase angle established by
the numerator of Eq. (23.45). The asymptotic plot established by the
numerator is provided in Fig. 23.66. Note the phase angle of 45° at f �
f1 and the straight-line asymptote between f1/10 and 10f1.

v � tan�1 f /f1 � tan�1 f /fc

20 log10 �
R1

R

�
2

R2
� � �20 log10 �

R1

R

�

2

R2
�

dB

f

v  1  +  j

Actual phase angle

f
f1

0°

45°

90°

v  =  0° f1
10

f1 10f1

v  =  90°

FIG. 23.66

Phase angle for (1 � j ( f /f1)).

Now that we have an asymptotic plot for the phase angle of the
numerator, we can plot the full phase response by sketching the asymp-
totes for both functions of Eq. (23.45) on the same graph, as shown in
Fig. 23.67.

The asymptotes of Fig. 23.67 clearly indicate that the phase angle
will be 0° in the low-frequency range and 0° (90° � 90° � 0°) in the
high-frequency range. In region 2 the phase plot drops below 0° due to
the impact of the fc asymptote. In region 4 the phase angle increases
since the asymptote due to fc remains fixed at �90°, whereas that due
to f1 is increasing. In the midrange the plot due to f1 is balancing the
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continued negative drop due to the fc asymptote, resulting in the level-
ing response indicated. Due to the equal and opposite slopes of the
asymptotes in the midregion, the angles of f1 and fc will be the same,
but note that they are less than 45°. The maximum negative angle will
occur between f1 and fc. The remaining points on the curve of Fig. 23.67
can be determined by simply substituting specific frequencies into Eq.
(23.45). However, it is also useful to know that the most dramatic (the
quickest) changes in the phase angle occur when the dB plot of the
magnitude also goes through its greatest changes (such as at f1 and fc).

23.13 HIGH-PASS FILTER WITH
LIMITED ATTENUATION

The filter of Fig. 23.68 is designed to limit the low-frequency attenua-
tion in much the same manner as described for the low-pass filter of the
previous section.

At f � 0 Hz the capacitor can assume its open-circuit equivalence,
and Vo � [R2/(R1 � R2)]Vi. At high frequencies the capacitor can be
approximated by a short-circuit equivalence, and Vo � Vi.

The resistance to be employed when determining fc can be found by
finding the Thévenin resistance for the capacitor C, as shown in Fig.
23.69. A careful examination of the resulting configuration will reveal
that RTh � R1 � R2 and fc � 1/2p(R1 � R2)C.

A plot of Vo versus frequency is provided in Fig. 23.70(a), and a
sketch of Av � Vo /Vi appears in Fig. 23.70(b).

An equation for Av � Vo / Vi can be derived by first applying the
voltage divider rule:

Vo �

and Av � � �

� �
R1R2 � j R2XC

���
R1R2 � j R2XC � j R1XC

R2(R1 � j XC)
���
R2(R1 � j XC) � j R1XC

R2––––

R2 � �
R

R
1

1

(

�

�j

j

X

X
C

C

)
�

R2
��
R2 � R1 � �j XC

Vo
�
Vi

R2Vi
��
R2 � R1 � �j XC

dB

0°
f

–45°

–90°

1

v (Av)

fc/10

45°

90°

f1/10

fc f1

10 fc 10 f1

2 3 4 5

FIG. 23.67

Phase angle for the low-pass filter of Fig. 23.62.

R2

C+

–

Vi

+

–

Vo

R1

FIG. 23.68

High-pass filter with limited attenuation.

R2
RThVi  =  0 V

R1

FIG. 23.69

Determining R for the fc calculation for the
filter of Fig. 23.68.
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� �

� � �

R1 � R2

so that (23.48)

with f1 � and fc �
1

��
2p(R1 � R2)C

1
�
2pR1C

Av � �
V
V

o
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� � �

1

1
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———
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X
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�

——
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X

�
C
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�
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R
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1 � j �
R

R
2

1

X

R
C

2

�
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1R2
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�XC

R1R2 � j R2XC
���
R1R2 � j (R1 � R2)XC

dB

(a)

ffc

0
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0.707Vi

 Vi
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R2
R1  +  R2

(b)

ffc

0

0.707

R2
R1  +  R2

1

Av  =
Vo

Vi

FIG. 23.70

High-pass filter with limited attenuation.

The denominator of Eq. (23.48) is simply the denominator of the
high-pass function of Fig. 23.54(b). The numerator, however, is new
and must be investigated.

Applying Eq. (23.5):

AvdB
� 20 log10 � 20 log10 �1� �� (�f1�/f�)2� � 20 log10

For f K f1, ( f1/f )2 k 1, and the first term becomes

20 log10 �(�f1�/f� )�2� � 20 log10( f1/f ) f K f1

which defines the idealized Bode asymptote for the numerator of Eq.
(23.48).

At f � f1, 20 log10 1 � 0 dB

At f � 0.5f1, 20 log10 2 � 6 dB

At f � 0.1f1, 20 log10 10 � 20 dB

For frequencies greater than f1, f1/f K 1 and 20 log10 1 � 0 dB,
which establishes the high-frequency asymptote. The full idealized
Bode plot for the numerator of Eq. (23.48) is provided in Fig. 23.71.




1
��
�1� �� (�fc/�f )�2�

Vo
�
Vi



HIGH-PASS FILTER WITH LIMITED ATTENUATION  1063

We are now in a position to determine AvdB
by plotting the asymp-

totes for each function of Eq. (23.48) on the same frequency axis, as
shown in Fig. 23.72. Note that fc must be more than f1 since R1 � R2

must be less than R1.
When determining the linearized Bode response, let us first exam-

ine region 2, where one function is 0 dB and the other is dropping at
6 dB/octave for decreasing frequencies. The result is a decreasing
asymptote from fc to f1. At the intersection of the resultant of region 2
with f1, we enter region 1, where the asymptotes have opposite slopes
and cancel the effect of each other. The resulting level at f1 is deter-
mined by �20 log10(R1 � R2)/R2, as found in earlier sections. The
drop can also be determined by simply substituting f � f1 into the
asymptotic equation defined for fc. In region 3 both are at 0 dB, result-

dB

f (log scale)

0

f1
3 dB

0 dB

Actual response–6 dB/octave

1  +
f1
f

220 log10√

FIG. 23.71

Idealized and actual Bode response for the magnitude of (1 � j ( f1 /f)).

f (log scale)

0 f1

R1  +  R2

Actual response

AvdB

1

fc

–20 log10 R2

2 3

FIG. 23.72

AvdB
versus frequency for the high-pass filter with limited attenuation 

of Fig. 23.68.
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ing in a 0-dB asymptote for the region. The resulting asymptotic and
actual responses both appear in Fig. 23.72.

The phase angle associated with Av can be determined directly from
Eq. (23.48); that is,

(23.49)

A full plot of v versus frequency can be obtained by simply substi-
tuting various key frequencies into Eq. (23.49) and plotting the result
on a log scale.

The first term of Eq. (23.49) defines the phase angle established by
the numerator of Eq. (23.48). The asymptotic plot resulting from the
numerator is provided in Fig. 23.73. Note the leading phase angle of
45° at f � f1 and the straight-line asymptote from f1/10 to 10f1.

v � �tan�1 �
f

f
1
� � tan�1 �

f

f
c
�

dB

f (log scale)
0°

f1

v  1  –  j
f1
f

Actual response
–45°

–90°
v  =  –90°

f1/10 v  =  0°10f1

FIG. 23.73

Phase angle for (1 � j ( f1/f)).

Now that we have an asymptotic plot for the phase angle of the
numerator, we can plot the full phase response by sketching the asymp-
totes for both functions of Eq. (23.48) on the same graph, as shown in
Fig. 23.74.

The asymptotes of Fig. 23.74 clearly indicate that the phase angle
will be 90° in the low-frequency range and 0° (90° � 90° � 0°) in the
high-frequency range. In region 2 the phase angle is increasing above 0°
because one angle is fixed at 90° and the other is becoming less nega-
tive. In region 4 one is 0° and the other is decreasing, resulting in a
decreasing v for this region. In region 3 the positive angle is always
greater than the negative angle, resulting in a positive angle for the
entire region. Since the slopes of the asymptotes in region 3 are equal
but opposite, the angles at fc and f1 are the same. Figure 23.74 reveals
that the angle at fc and f1 will be less than 45°. The maximum angle will
occur between fc and f1, as shown in the figure. Note again that the
greatest change in v occurs at the corner frequencies, matching the
regions of greatest change in the dB plot.
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EXAMPLE 23.11 For the filter of Fig. 23.75:
a. Sketch the curve of AvdB

versus frequency using a log scale.
b. Sketch the curve of v versus frequency using a log scale.

Solutions:

a. For the break frequencies:

f1 � � � 37.2 Hz

fc � � � 376.25 Hz

The maximum low-level attentuation is

�20 log10 � �20 log10

� �20 log10 10.1 � �20.09 dB

The resulting plot appears in Fig. 23.76.
b. For the break frequencies:

At f � f1 � 37.2 Hz,

v � �tan�1 � tan�1

� �tan�1 1 � tan�1

� �45° � 84.35°
� 39.35°

At f � fc � 376.26 Hz,

v � �tan�1 � tan�1 1
37.2 Hz

��
376.26 Hz

376.25 Hz
��

37.2 Hz

fc
�
f

f1
�
f

9.1 k� � 1 k�
��

1 k�

R1 � R2
�

R2

1
���
2p(0.9 k�)(0.47 mF)

1
––––
2p��R1

R

�
1R2

R2
��C

1
���
2p(9.1 k�)(0.47 mF)

1
�
2pR1C

dB

f (log scale)
0°

v (Av)

4

–45°

–90°

f1/10 10f1

45°

90°

fc/10 f1 fc 10fc

321 5

FIG. 23.74

Phase response for the high-pass filter of Fig. 23.68.

9.1 k�

R2 Vo

R1

C

0.47 mF 1 k�

+

–

Vi

+

–

FIG. 23.75

Example 23.11.



1066  DECIBELS, FILTERS, AND BODE PLOTS

� �5.65° � 45°
� 39.35°

At a frequency midway between fc and f1 on a log scale, for exam-
ple, 120 Hz:

v � �tan�1 � tan�1

� �17.22° � 72.31°
� 55.09°

The resulting phase plot appears in Fig. 23.77.

376.26 Hz
��

120 Hz
37.2 Hz
�
120 Hz

dB

f (log scale)
0

–3 dB

–17 dB
–20 dB

+20 dB

AvdB

–3 dB

1000 Hz 0 dB

f1

10 Hz 37.2 Hz 100 Hz
fc

376.25 Hz

FIG. 23.76

AvdB
versus frequency for the filter of Fig. 23.75.

f (log scale)
0°

45°

v

376.25 Hz

1000 Hzf110 Hz

37.2 Hz

100 Hz

90°

120 Hz

fc

39.35° 39.35°
55.09°

FIG. 23.77

v (the phase angle associated with Av) versus frequency for the filter of 
Fig. 23.75.

23.14 OTHER PROPERTIES AND A
SUMMARY TABLE

Bode plots are not limited to filters but can be applied to any system for
which a dB-versus-frequency plot is desired. Although the previous sec-
tions did not cover all the functions that lend themselves to the ideal-
ized linear asymptotes, many of those most commonly encountered
have been introduced.

We now examine some of the special situations that can develop that
will further demonstrate the adaptability and usefulness of the linear
Bode approach to frequency analysis.
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In all the situations described in this chapter, there was only one
term in the numerator or denominator. For situations where there is
more than one term, there will be an interaction between functions that
must be examined and understood. In many cases the use of Eq. (23.5)
will prove useful. For example, if Av should have the format

Av � � (23.50)

we can expand the function in the following manner:

AvdB
� 20 log10

� 20 log10 a � 20 log10 b �20 log10 c � 20 log10 d � 20 log10 e

revealing that the net or resultant dB level is equal to the algebraic sum
of the contributions from all the terms of the original function. We will,
therefore, be able to add algebraically the linearized Bode plots of all
the terms in each frequency interval to determine the idealized Bode
plot for the full function.

If two terms happen to have the same format and corner frequency,
as in the function

Av �

the function can be rewritten as

Av �

so that AvdB � 20 log10

� �20 log10(1 � ( f1/f )2)

for f K f1, ( f1/f )2 k 1, and

AvdB
� �20 log10( f1/f )2 � �40 log10 f1/f

versus the �20 log10( f1/f ) obtained for a single term in the denominator.
The resulting dB asymptote will drop, therefore, at a rate of �12 dB/
octave (�40 dB/decade) for decreasing frequencies rather than
�6 dB/octave. The corner frequency is the same, and the high-frequency
asymptote is still at 0 dB. The idealized Bode plot for the above func-
tion is provided in Fig. 23.78.

Note the steeper slope of the asymptote and the fact that the actual
curve will now pass �6 dB below the corner frequency rather than �3
dB, as for a single term.

Keep in mind that if the corner frequencies of the two terms in the
numerator or denominator are close but not exactly equal, the total dB
drop is the algebraic sum of the contributing terms of the expansion.
For instance, consider the linearized Bode plot of Fig. 23.79 with cor-
ner frequencies f1 and f2.

In region 3 both asymptotes are 0 dB, resulting in an asymptote at
0 dB for frequencies greater than f2. For region 2, one asymptote is at
0 dB, whereas the other drops at �6 dB/octave for decreasing fre-
quencies. The net result for this region is an asymptote dropping at
�6 dB, as shown in the same figure. At f1, we find two asymptotes
dropping off at �6 dB for decreasing frequencies. The result is an
asymptote dropping off at �12 dB/octave for this region.

1
��
(�1� �� (�f1�/f�)2�)2

1
��
(1 � j f1/f )2

1
���
(1 � j f1/f )(1 � j f1/f )

(a)(b)(c)
�

(d )(e)

(a)(b)(c)
�

(d )(e)

200(1 � j f2/f )( j f/f1)
���
(1 � j f1/f )(1 � j f/f2)

dB
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If f1 and f2 are at least two octaves apart, the effect of one on the
plotting of the actual response for the other can just about be ignored.
In other words, for this example, if f1 < f2, then the actual response will
be down �3 dB at f � f2 and f1.

The above discussion can be expanded for any number of terms at
the same frequency or in the same region. For three equal terms in the
denominator, the asymptote will drop at �18 dB/octave, and so on. In
time the procedure will be somewhat self-evident and relatively
straightforward to apply. In many cases the hardest part of finding a
solution is to put the original function in the desired form.

1
�
4

AvdB

0

f1
1
2 f1 0 dB

Actual response

–6 dB

–12 dB/octave

–2 dB
–12 dB

–6 dB

–6 dB/octave

FIG. 23.78

Plotting the linearized Bode plot of .
1

��
(1 � j ( f1/f ))2

FIG. 23.79

Plot of AvdB for with f1 < f2.
1

���
(1 � j (f1/f))(1 � j (f2/f))

0

f1 f2 0 dB

f

–3 dB for f1  ≤ 1
4 f2 (2 octaves below)

–6 dB/octave

–3 dB for f1  ≤ 1
4 f2 (2 octaves below)

–12 dB/octave

Actual response

AvdB
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EXAMPLE 23.12 A transistor amplifier has the following gain:

dB

a. Sketch the normalized response A′v � Av /Avmax
, and determine the

bandwidth of the amplifier.
b. Sketch the phase response, and determine a frequency where the

phase angle is close to 0°.

Solutions:

a. A′v � �
Av
�
100

Av
�
Avmax

0
f1 f

0.707Avmax

Avmax

Av  =
Vo

Vi

High-pass +
0

f2 f

0.707Avmax

Avmax

Av  =
Vo

Vi

Low-pass

0
f2 f

0.707Avmax

Avmax

Av  =
Vo

Vi

BW

f1

BW  =  f2  –  f1

FIG. 23.80

Finding the overall gain versus frequency for Example 23.12.

Plotting all the idealized Bode plots on the same axis will result
in the plot of Fig. 23.81. Note for frequencies less than 50 Hz that
the resulting asymptote drops off at �12 dB/octave. In addition,
since 50 Hz and 200 Hz are separated by two octaves, the actual
response will be down by only about �3 dB at the corner frequen-
cies of 50 Hz and 200 Hz.

For the high-frequency region, the corner frequencies are not sep-
arated by two octaves, and the difference between the idealized plot

and

A′vdB
� �20 log10 a � 20 log10 b � 20 log10 c � 20 log10 d

clearly substantiating the fact that the total number of decibels is
equal to the algebraic sum of the contributing terms.

A careful examination of the original function will reveal that the
first two terms in the denominator are high-pass filter functions,
whereas the last two are low-pass functions. Figure 23.80 demon-
strates how the combination of the two types of functions defines a
bandwidth for the amplifier. The high-frequency filter functions have
defined the low cutoff frequency, and the low-frequency filter func-
tions have defined the high cutoff frequency.

Av �
100

�������

�1 � j �
50

f

Hz
���1 � j �

200

f

Hz
���1 � j �

10 k

f

Hz
���1 � j �

20 k

f

Hz
��

�

� � � �� �� �� �1
�
d

1
�
c

1
�
b

1
�
a

1
��
(a)(b)(c)(d)

1
�������

�1 � j �
50

f

Hz
���1 � j �

200

f

Hz
���1 � j �

10 k

f

Hz
���1 � j �

20 k

f

Hz
��
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and the actual Bode response must be examined more carefully.
Since 10 kHz is one octave below 20 kHz, we can use the fact that
the difference between the idealized response and the actual
response for a single corner frequency is 1 dB. If we add an addi-
tional �1-dB drop due to the 20-kHz corner frequency to the �3-dB
drop at f � 10 kHz, we can conclude that the drop at 10 kHz will be
�4 dB, as shown on the plot. To check the conclusion, let us write
the full expression for the dB level at 10 kHz and find the actual
level for comparison purposes.

A′vdB
� �20 log10 �1� �� ���

1
5�0
0� k�H

H�z
z

���
2

� � 20 log10 �1� �� ���
2
1�0
0�0

k� H
H�z

z
���

2

�
� 20 log10 �1� �� ���

1
1�0
0� k

k�H
H�z

z
���

2

� � 20 log10 �1� �� ���
1
2�0
0� k

k�H
H�z

z
���

2

�
� �0.00011 dB � 0.0017 dB � 3.01 dB � 0.969 dB

� �3.98 dB � �4 dB as before

An examination of the above calculations clearly reveals that the
last two terms predominate in the high-frequency region and essen-
tially eliminate the need to consider the first two terms in that region.
For the low-frequency region an examination of the first two terms
is sufficient.

Proceeding in a similar fashion, we find a �4-dB difference at
f � 20 kHz, resulting in the actual response appearing in Fig.
23.81. Since the bandwidth is defined at the �3-dB level, a judg-
ment must be made as to where the actual response crosses the
�3-dB level in the high-frequency region. A rough sketch sug-
gests that it is near 8.5 kHz. Plugging this frequency into the
high-frequency terms results in

A′vdB
� �20 log10 �1� �� ����

2

� � 20 log10 �1� �� ����
2

�
� �2.148 dB � 0.645 dB � �2.8 dB

8.5 kHz
�
20 kHz

8.5 kHz
�
10 kHz

dB

2 3 4 5 6 7 8 9 1 32 4 5 6 7 8 91 32 4 5 6 7 89 1 32 4 5 6 7 89 1
100
kHz

20 kHz10 kHz1 kHz200 Hz100 Hz50 Hz10 Hz

A′vdB

0

–3 dB

–6 dB

–12 dB

–20 dB

BW

FIG. 23.81

A′vdB
versus frequency for Example 23.12.
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which is relatively close to the �3-dB level, and

BW � fhigh � flow � 8.5 kHz � 200 Hz � 8.3 kHz

In the midrange of the bandwidth, A′vdB
will approach 0 dB. At f �

1 kHz:

A′vdB
� �20 log10 �1� �� ����

2

� � 20 log10 �1� �� ����
2

�
� 20 log10 �1� �� ����

2

� � 20 log10 �1� �� ����
2

�
� �0.0108 dB � 0.1703 dB � 0.0432 dB � 0.0108 dB

� �0.2351 dB � � —
1
5

— dB

which is certainly close to the 0-dB level, as shown on the plot.
b. The phase response can be determined by simply substituting a num-

ber of key frequencies into the following equation, derived directly
from the original function Av:

1 kHz
�
20 kHz

1 kHz
�
10 kHz

200 Hz
�
1 kHz

50 Hz
�
1 kHz

dB

2 3 4 5 6 7 8 91 32 4 5 6 7 8 9 1 32 4 5 6 7 8 91 32 4 5 6 7 8 9 1
100
kHz

20 kHz10 kHz1 kHz200 Hz100 Hz50 Hz10 Hz180°

90°

0°

1

–90°

–180°

FIG. 23.82

Phase response for Example 23.12.

At 10 kHz the asymptotes leave us with v � �45° � 32° � �77°
(actual � �71.56°). The net phase plot appears to be close to 0° at
about 1300 Hz. As a check on our assumptions and the use of the
asymptotic approach, let us plug in f � 1300 Hz into the equation for v:

v � tan�1 � tan�1 � tan�1 � tan�1 f
�
20 kHz

f
�
10 kHz

200 Hz
�

f

50 Hz
�

f

However, let us make full use of the asymptotes defined by each
term of Av and sketch the response by finding the resulting phase
angle at critical points on the frequency axis. The resulting asymp-
totes and phase plot are provided in Fig. 23.82. Note that at f �
50 Hz, the sum of the two angles determined by the straight-line
asymptotes is 45° � 75° � 120° (actual � 121°). At f � 1 kHz, if
we subtract 5.7° for one corner frequency, we obtain a net angle of
14° � 5.7° � 8.3° (actual � 5.6°).
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� 2.2° � 8.75° � 7.41° � 3.72°
� �0.18° � 0° as predicted

In total, the phase plot appears to shift from a positive angle
of 180° (Vo leading Vi) to a negative angle of 180° as the fre-
quency spectrum extends from very low frequencies to high fre-
quencies. In the midregion the phase plot is close to 0° (Vo in
phase with Vi), much like the response to a common-base tran-
sistor amplifier.

In an effort to consolidate some of the material introduced in this
chapter and provide a reference for future investigations, Table 23.2
was developed; it includes the linearized dB and phase plots for the
functions appearing in the first column. These are by no means all the
functions encountered, but they do provide a foundation to which addi-
tional functions can be added.

Reviewing the development of the filters of Sections 23.12 and
23.13, it is probably evident that establishing the function Av in the
proper form is the most difficult part of the analysis. However, with
practice and an awareness of the desired format, methods will surface
that will significantly reduce the effort involved.

23.15 CROSSOVER NETWORKS

The topic of crossover networks is included primarily to present an
excellent demonstration of filter operation without a high level of com-
plexity. Crossover networks are employed in audio systems to ensure
that the proper frequencies are channeled to the appropriate speaker.
Although less expensive audio systems have to rely on one speaker to
cover the full audio range from about 20 Hz to 20 kHz, better systems
will employ at least three speakers to cover the low range (20 Hz to
about 500 Hz), the midrange (500 Hz to about 5 kHz), and the high
range (5 kHz and up). The term crossover comes from the fact that the
system is designed to have a crossover of frequency spectrums for adja-
cent speakers at the �3-dB level, as shown in Fig. 23.83. Depending on
the design, each filter can drop off at 6 dB, 12 dB, or 18 dB, with com-
plexity increasing with the desired dB drop-off rate. The three-way
crossover network of Fig. 23.83 is quite simple in design, with a low-
pass R-L filter for the woofer, an R-L-C pass-band filter for the
midrange, and a high-pass R-C filter for the tweeter. The basic equa-
tions for the components are provided below. Note the similarity
between the equations, with the only difference for each type of ele-
ment being the cutoff frequency.

(23.51)

(23.52)Cmid � �
2p

1

f1R
� Chigh � �

2p

1

f2R
�

Llow � �
2p

R

f1
� Lmid � �

2p

R

f2
�

dB

v � tan�1 � tan�1 � tan�1 � tan�1 1300 Hz
�
20 kHz

1300 Hz
�
10 kHz

200 Hz
�
1300 Hz

50 Hz
�
1300 Hz
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AvdB

+6 dB/octave

f1 f
0

0 dB

AvdB

–6 dB/octave

fc

f
0

0 dB

AvdB

–6 dB/octave

fc

f

0

0 dB

AvdB

+6 dB/octave

f1 f
0

0 dB

AvdB

–6 dB/octave

f1 f
0 0°f1

f
0°

45°

90°

–45°

–90°
–90°

–45°

f1/10 10f1

v (Vo leads Vi)

f1 f
0°

45°

90°

–90°

+45°

10
10f1

v (Vo leads Vi)
+90°

f1

0°

f1 f
0°

45°

90°

10
10f1

v (Vo leads Vi)
+90°

f1

f1 f
0°

45°

90°

+45°

10
10f1

v (Vo leads Vi)
+90°

f1

0°

f2/10

f
0°

45°

90°

–45°

–90°

–45°

10f2

v (Vo leads Vi)

–90°

0° f2

Av � 1 � j  
f1
f

Av � 1 � j f1
f

Av �  j f1
f

Av �
1

1 � j  fc
f

Av �
1

Function dB Plot Phase Plot

1 � j  f
 fc

TABLE 23.2

Idealized Bode plots for various functions.
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For the crossover network of Fig. 23.83 with three 8-� speakers, the
resulting values are

Llow � � � 3.183 mH 3.3 mH 
(commercial value)

Lmid � � � 254.65 mH 270 mH 
(commercial value)

Cmid � � � 49.736 mF 47 mF 
(commercial value)

Chigh � � � 3.979 mF 3.9 mF 
(commercial value)

as appearing on Fig. 23.83.
For each filter, a rough sketch of the frequency response is included

to show the crossover at the specific frequencies of interest. Because all
three speakers are in parallel, the source voltage and impedance for
each are the same. The total loading on the source is obviously a func-
tion of the frequency applied, but the total delivered is determined
solely by the speakers since they are essentially resistive in nature.

To test the system, let us apply a 4-V signal at a frequency of 1 kHz
(a predominant frequency of the typical human auditory response
curve) and see which speaker will have the highest power level.

At f � 1 kHz,

XLlow
� 2pfLlow � 2p(1 kHz)(3.3 mH) � 20.74 �

Vo � �

� 1.44 V��68.90°

(8 ��0°)(4 V�0°)
��

8 � � j 20.74 �

(ZR �0°)(Vi �0°)
��

ZT

1
��
2p(5 kHz)(8 �)

1
�
2pf2R

1
��
2p(400 Hz)(8 �)

1
�
2pf1R

8 �
��
2p(5 kHz)

R
�
2pf2

8 �
��
2p(400 Hz)

R
�
2pf1

dB

8 �
Llow = 3.3 mH

Vi

+

–

–3 dB

400 Hz0 dB

–3 dB

400 Hz0 dB

–3 dB

5 kHz

8 �

8 �

–3 dB

5 kHz0 dB

Cmid = 47   F� Lmid = 270   H�

Chigh = 3.9   F�

FIG. 23.83

Three-way, 6-dB-per-octave, crossover network.
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XLmid
� 2pfLmid � 2p(1 kHz)(270 mH) � 1.696 �

XCmid
� � � 3.386 �

1
���
2p(1 kHz)(47 mF)

1
�
2pfCmid

dB

Vo � �
(8 � �0°)(4 V �0°)

����
8 � � j 1.696 � � j 3.386 �

(ZR �0°)(Vi �0°)
��

ZT

� 3.94 V �11.93°

XChigh
� � � 40.81 �

Vo � �

� 0.77 V �78.91°

Using the basic power equation P � V2/R, the power to the woofer is

Plow � � � 0.259 W

to the midrange speaker,

Pmid � � � 1.94 W

and to the tweeter,

Phigh � � � 0.074 W

resulting in a power ratio of 7.5�1 between the midrange and the
woofer and 26�1 between the midrange and the tweeter. Obviously, the
response of the midrange speaker will totally overshadow the other two.

23.16 APPLICATIONS

Attenuators

Attenuators are, by definition, any device or system that can reduce the
power or voltage level of a signal while introducing little or no distor-
tion. There are two general types: passive and active. The passive type
uses only resistors, while the active type uses electronic devices such as
transistors and integrated circuits. Since electronics is a subject for the
courses to follow, our attention here will be only on the resistive type.
Attenuators are commonly used in audio equipment (such as the
graphic and parametric equalizers introduced in the previous chapter),
antenna systems, AM or FM systems where attenuation may be
required before the signals are mixed, and any other application where
a reduction in signal strength is required.

The unit of Fig. 23.84 has coaxial input and output terminals and
switches to set the level of dB reduction. It has a flat response from dc
to about 6 GHz, which essentially means that its introduction into the
network will not affect the frequency response for this band of frequen-
cies. The design is rather simple with resistors connected in either a tee
(T) or a wye (Y) configuration as shown in Figs. 23.85 and 23.86,
respectively, for a 50-� coaxial system. In each case the resistors are

(0.77 V)2

��
8 �

V2

�
R

(3.94 V)2

��
8 �

V2

�
R

(1.44 V)2

��
8 �

V2

�
R

(8 � �0°)(4 V �0°)
���

8 � � j 40.81 �

(ZR �0°)(Vi �0°)
��

ZT

1
���
2p(1 kHz)(3.9 mF)

1
��
2pfChigh

50-ohm coax attenuator

OUT

IN
1 dB 3 dB 10 dB

2 dB
5 dB 20 dB

FIG. 23.84

Passive coax attenuator.

Attentuation R1 R2

R1 R1

R2

1 dB

2 dB

3 dB

5 dB

10 dB

20 dB

2.9 Ω

5.7 Ω

8.5 Ω

14.0 Ω

26.0 Ω

41.0 Ω

433.3 Ω

215.2 Ω

141.9 Ω

82.2 Ω

35.0 Ω

10.0 Ω

FIG. 23.85

Tee (T) configuration.
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chosen to ensure that the input impedance and output impedance match
the line. That is, the input and output impedances of each configuration
will be 50 �. For a number of dB attenuations, the resistor values for
the T and Y are provided in Figs. 23.85 and 23.86. Note in each design
that two of the resistors are the same, while the third is a much smaller
or larger value.

For the 1-dB attenuation, the resistor values were inserted for the T
configuration in Fig. 23.87(a). Terminating the configuration with a
50-� load, we find through the following calculations that the input
impedance is, in fact, 50 �:

Ri � R1 � R2��(R1 � RL ) � 2.9 � � 433.3 ���(2.9 � � 50 �)

� 2.9 � � 47.14 �

� 50.04 �

Looking back from the load as shown in Fig. 23.87(b) with the
source set to zero volts, we find through the following calculations that
the output impedance is also 50 �:

Ro � R1 � R2��(R1 � Rs) � 2.9 � � 433.3 ���(2.9 � � 50 �)

� 2.9 � � 47.14 �

� 50.04 �

FIG. 23.87

1-dB attenuator: (a) loaded; (b) finding Ro.

Ri = 50 Ω
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2.9 �
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RL 50 �R2 433.3 �

1-dB attenuator
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50 �
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2.9 �
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2.9 �

Vs = 0 V R2 433.3 � Ro = 50 Ω
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+

–
Vs

R2 433.3 �
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–
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R′

Rs

50 �

R1

2.9 �

R1

2.9 �

RL 50 �

FIG. 23.88

Determining the voltage levels for the 1-dB attenuator of Fig. 23.87(a).

R2

R1 R1

Attentuation R1 R2

1 dB

2 dB

3 dB

5 dB

10 dB

20 dB

5.8 Ω

11.6 Ω

17.6 Ω

30.4 Ω

71.2 Ω

247.5 Ω

870.0 Ω

436.0 Ω

292.0 Ω

178.6 Ω

96.2 Ω

61.0 Ω

FIG. 23.86

Wye (Y) configuration.

In Fig. 23.88, a 50-� load has been applied, and the output voltage
is determined as follows:

R� � R2��(R1 � RL ) � 47.14 � from above

and VR2
� �

R�

R
�

�Vs

R1
� � � 0.942Vs

with VL � �
R

R

L

L

�

VR

R
2

1
� � � 0.890Vs

50 � (0.942Vs)��
50 � � 2.9 �

47.14 � Vs��
47.14 � � 2.9 �
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Calculating the drop in dB will result in the following:

A�dB
� 20 log10 �

V

V
L

s

� � 20 log10 �
0.8

V
9

s

0Vs�

� 20 log10 0.890 � �1.01 dB

substantiating the fact that there is a 1-dB attenuation.
As mentioned earlier, there are other methods for attenuation that are

more sophisticated in design and beyond the scope of the coverage of
this text. However, the above designs are quite effective and relatively
inexpensive, and they perform the task at hand quite well.

Noise Filters

Noise is a problem that can occur in any electronic system. In general,
it is the presence of any unwanted signal that can affect the overall
operation of a system. It can come from a power source (60-Hz hum),
from feedback networks, from mechanical systems connected to elec-
trical systems, from stray capacitive and inductive effects, or possibly
from a local signal source that is not properly shielded—the list is end-
less. The manner in which the noise is eliminated or handled is nor-
mally analyzed by someone with a broad practical background and with
a sense for the origin for the unwanted noise and how to remove it in
the simplest and most direct way. In most cases the problem will not be
part of the original design but a second effort in the testing phase to
remove unexpected problems. Although sophisticated methods can be
applied when the problem can be serious in nature, most situations are
handled simply by the proper placement of an element or two of a value
sensitive to the problem.

In Fig. 23.89 two capacitors have been strategically placed in the
tape recording and playback sections of a tape recorder to remove the

dB
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FIG. 23.89

Noise reduction in a tape recorder.
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undesirable high-frequency noise (rushing sound) that can result from
unexpected, randomly placed particles on a magnetic tape, noise com-
ing down the line, or noise introduced from the local environment. Dur-
ing the record mode, with the switches in the positions shown (R), the
100-pF capacitor at the top of the schematic will act as a short circuit to
the high-frequency noise. The capacitor C1 is included to compensate
for the fact that recording on a tape is not a linear process versus fre-
quency. In other words, certain frequencies are recorded at higher
amplitudes than others.

In Fig. 23.90 a sketch of recording level versus frequency has been
provided, clearly indicating that the human audio range of about 40 Hz
to 20 kHz is very poor for the tape recording process, starting to rise
only after 20 kHz. Thus, tape recorders must include a fixed biasing fre-
quency which when added to the actual audio signal will bring the fre-
quency range to be amplified to the region of high-amplitude recording.
On some tapes the actual bias frequency is provided, while on others
the phrase normal bias is used. Even after you pass the bias frequency,
there is a frequency range that follows that drops off considerably.
Compensation for this drop-off is provided by the parallel combination
of the resistor R1 and the capacitor C1 mentioned above. At frequencies
near the bias frequency, the capacitor is designed to act essentially like
an open circuit (high reactance), and the head current and voltage are
limited by the resistors R1 and R2. At frequencies in the region where
the tape gain drops off with frequency, the capacitor begins to take on a
lower reactance level and reduce the net impedance across the parallel
branch of R1 and C1. The result is an increase in head current and volt-
age due to the lower net impedance in the line, resulting in a leveling in
the tape gain following the bias frequency. Eventually, the capacitor
will begin to take on the characteristics of a short circuit, effectively
shorting out the resistance R1, and the head current and voltage will be
a maximum. During playback this bias frequency is eliminated by a
notch filter so that the original sound is not distorted by the high-
frequency signal.

FIG. 23.90

Noise reduction in a tape recorder.

Recording level

0 20 kHz 30 kHz

Bias frequency

High frequency
drop off

f

During playback (P), the upper circuit of Fig. 23.89 is set to ground by
the upper switch, and the lower network comes into play. Again note the
second 100-pF capacitor connected to the base of the transistor to short to
ground any undesirable high-frequency noise. The resistor is there to
absorb any power associated with the noise signal when the capacitor
takes on its short-circuit equivalence. Keep in mind that the capacitor was
chosen to act as a short-circuit equivalent for a particular frequency
range and not for the audio range where it is essentially an open circuit.
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Alternators in a car are notorious for developing high-frequency
noise down the line to the radio, as shown in Fig. 23.91(a). This prob-
lem is usually alleviated by placing a high-frequency filter in the line as
shown. The inductor of 1 H will offer a high impedance for the range
of noise frequencies, while the capacitor (1000 mF to 47,000 mF) will
act as a short-circuit equivalent to any noise that happens to get
through. For the speaker system in Fig. 23.91(b), the push-pull power
arrangement of transistors in the output section can often develop a
short period of time between pulses where the strong signal voltage is
zero volts. During this short period the coil of the speaker rears its
inductive effects, sees an unexpected path to ground like a switch open-
ing, and quickly cuts off the speaker current. Through the familiar rela-
tionship vL � L(diL /dt), an unexpected voltage will develop across the
coil and set a high-frequency oscillation on the line that will find its
way back to the amplifier and cause further distortion. This effect can be
subdued by placing an R-C path to ground that will offer a low-resistance
path from the speaker to ground for a range of frequencies typically
generated by this signal distortion. Since the capacitor will assume a
short-circuit equivalence for the range of noise disturbance, the resistor
was added to limit the current and absorb the energy associated with the
signal noise.

dB

FIG. 23.91

Noise generation: (a) due to a car alternator; (b) from a push-pull amplifier.

(b)

R

CC

Push-pull response
V

Vs ≅  0 V

t

Push-pull
amplifier

Cb

Short-circuit path
for unwanted high-frequency
oscillation

Car
alternator

High-frequency
noise

1 H

L

C

Radio

(1000 µF
to

47,000 µF)

(a)

In regulators, such as the 5-V regulator of Fig. 23.92(a), when a
spike in current comes down the line for any number of reasons, there
will be a voltage drop along the line, and the input voltage to the regu-
lator will drop. The regulator, performing its primary function, will
sense this drop in input voltage and will increase its amplification level
through a feedback loop to maintain a constant output. However, the
spike is of such short duration that the output voltage will have a spike
of its own because the input voltage has quickly returned to its normal
level, and with the increased amplification the output will jump to a
higher level. Then the regulator senses its error and quickly cuts its
gain. The sensitivity to changes in the input level has caused the output
level to go through a number of quick oscillations that can be a real
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problem for the equipment to which the dc voltage is applied: A high-
frequency noise signal has been developed. One way to subdue this
reaction and, in fact, slow the system response down so that very short
interval spikes have less impact is to add a capacitor across the output
as shown in Fig. 23.92(b). Since the regulator is providing a fixed dc
level, a large capacitor of 1 mF can be used to short-circuit a wide range
of high-frequency disturbances. However, you don’t want to make the
capacitor too large or you’ll get too much damping, and large over-
shoots and undershoots can develop. To maximize the input of the
added capacitor, you must place it physically closer to the regulator to
ensure that noise is not picked up between the regulator and capacitor
and to avoid developing any delay time between output signal and
capacitive reaction.

In general, as you examine the schematic of working systems and
see elements that don’t appear to be part of any standard design proce-
dure, you can assume that they are either protective devices or due to
noise on the line that is affecting the operation of the system. Noting
their type, value, and location will often reveal their purpose and modus
operandi.

23.17 COMPUTER ANALYSIS

PSpice

High-Pass Filter The computer analysis will begin with an investi-
gation of the high-pass filter of Fig. 23.93. The cutoff frequency is
determined by fc � 1/2pRC � 1.592 kHz, with the voltage across the
resistor approaching 1 V at high frequencies at a phase angle of 0°.

For this analysis, the ac voltage source VAC was used. Within the
Property Editor, the quantities defined appear next to the source in
Fig. 23.93. Otherwise, building the circuit is quite straightforward. 

Our interest lies in the effect of frequency on the magnitude of the
output voltage across the resistor and the resulting phase angle. Follow-
ing the selection of AC Sweep under the Analysis type heading, the
Start Frequency should be set at 10 Hz so that we have some data
points at the very low end and an End Frequency of 100 kHz so that
we extend well into the high frequencies. Here is the obvious advantage

dB
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FIG. 23.92

Regulator: (a) effect of spike in current on the input side; (b) noise reduction.
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of the logarithmic axis: a wide range of values on a plot of limited size.
To ensure sufficient data points, the Points/Decade was set at 10k.
When V(R:1) is selected, the resulting SCHEMATIC1 appears as
shown in Fig. 23.94. Note the nice transition from one region to the
other. At low frequencies when the reactance of the capacitor far out-
weighs that of the resistor, most of the applied voltage appears across
the capacitor, and very little across the resistor. At much higher fre-
quencies the reactance of the capacitor drops off very quickly, and the
voltage across the resistor picks up toward a maximum of 1 V.

Select Plot-Add Plot to Window-Trace-Add Trace-P(V(R:1))-
OK, and the phase plot of Fig.23.94 results showing a shift from 90°,
when the network is highly capacitive in nature, to 0°, when it becomes
resistive. If we select the phase plot SEL>> and click on the Toggle
cursor pad, a left click will place a cursor on the screen that can define
the frequency at which the phase angle is 45°. At 45.12°, which is the
closest we can come with the available data points, we find that the cor-
responding frequency is 1.585 kHz which is a very close match with the
1.592 kHz calculated above. The right-click cursor can be placed at
100 kHz to show that the phase angle has dropped to 0.91°, which cer-
tainly defines the network as resistive at this frequency.

Double-Tuned Filter Our analysis will now turn to a fairly complex-
looking filter for which an enormous amount of time would be required
to generate a detailed plot of gain versus frequency using a handheld
calculator. It is the same filter examined in Example 23.9, so we have a
chance to test our theoretical solution. The schematic appears in Fig.
23.95 with VAC again chosen since the frequency range of interest will
be set by the Simulation Profile. Again, the attributes for the source

dB

FIG. 23.93

High-pass R-C filter to be investigated using PSpice.
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FIG. 23.94

Magnitude and phase plot for the high-pass R-C filter of Fig. 23.93.

FIG. 23.95

Using PSpice to analyze a double-tuned filter.
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were set in the Property Editor box rather than by selecting the com-
ponents from the screen. Note the need for the two resistors in series
with the inductors since inductors cannot be considered ideal elements.
The small value of the resistive elements, however, will have no effect
on the results obtained.

In the Simulation Settings dialog box, AC Sweep was again selected
with a Start Frequency of 100 Hz and an End Frequency of 10 MHz
(be sure to enter this value as 10MEGHZ) to ensure that the full-range
effect is provided. We can then use the axis controls to close in on the
desired plot. The Points/Decade remains at 10k, although with this
range of frequencies it may take a few seconds to simulate. Once the
SCHEMATIC1 appears, Trace-Add Trace-V(RL:1)-OK will result in
the plot of Fig. 23.96. Quite obviously there is a reject-band around
200 kHz and a pass-band around 600 kHz. Isn’t it interesting that up to
10 kHz we have another pass-band as the inductor Lp provides an
almost direct path of low impedance from input to output. At frequen-
cies approaching 10 MHz, there is a continous stop-band due to the
open-circuit equivalence of the Lp inductor. Using the cursor option, we
can place the left-click cursor on the minimum point of the graph by
using the Cursor Trough key pad (the second pad to the right of the
Toggle cursor pad). The right click can be used to identify the fre-
quency of the maximum point on the curve near 600 kHz. The results
appearing in the Probe Cursor box clearly support our theoretical cal-
culations of 200 kHz for the band-stop minimum (A1 � 200.02 kHz
with a magnitude of essentially 0 V) and 600 kHz for the pass-band
maximum (A2 � 603.115 kHz with a magnitude of 1 V).

dB

FIG. 23.96

Magnitude plot versus frequency for the voltage across RL of the network of
Fig. 23.95.
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Let us now concentrate on the range from 10 kHz to 1 MHz where
most of the filtering action is taking place. That was the advantage of
choosing such a wide range of frequencies when the Simulation Set-
tings were set up. The data have been established for the broad range of
frequencies, and you can simply select a band of interest once the
region of most activity is defined. If the frequency range were too nar-
row in the original simulation, another simulation would have to be
defined. Select Plot-Axis Settings-X Axis-User Defined-10kHz to
1MEGHz-OK to obtain the plot at the bottom of Fig. 23.97. A dB plot
of the results can also be displayed in the same figure by selecting Plot-
Add Plot to Window-Trace-Add Trace-DB(V(RL:1))-OK, resulting
in the plot at the top of the figure. Using our left-click cursor option and
the Cursor Trough key, we find that the minimum is at �83.48 dB at
a frequency of 200 kHz, which is an excellent characteristic for a band-
stop filter. Using the right-click cursor and setting it on 600 kHz, we
find that the drop is �30.11 �dB or essentially 0 dB, which is excellent
for the pass-band region.

dB

FIG. 23.97

dB and magnitude plot for the voltage across RL of the network of Fig. 23.95.



PROBLEMS  1085dB

PROBLEMS

SECTION 23.1 Logarithms

1. a. Determine the frequencies (in kHz) at the points indi-
cated on the plot of Fig. 23.98(a).

b. Determine the voltages (in mV) at the points indicated
on the plot of Fig. 23.98(b).

(a)

103

?

104

?

( f )

?

10–1

(b)

100

?

(V)

FIG. 23.98

Problem 1.

SECTION 23.2 Properties of Logarithms

2. Determine log10 x for each value of x.
a. 100,000 b. 0.0001
c. 108 d. 10�6

e. 20 f. 8643.4
g. 56,000 h. 0.318

3. Given N � log10 x, determine x for each value of N.
a. 3 b. 12
c. 0.2 d. 0.04
e. 10 f. 3.18
g. 1.001 h. 6.1

4. Determine loge x for each value of x.
a. 100,000 b. 0.0001
c. 20 d. 8643.4
Compare with the solutions to Problem 2.

5. Determine log10 48 � log10(8)(6), and compare to
log10 8 � log10 6.

6. Determine log10 0.2 � log10 18/90, and compare to 
log10 18 � log10 90.

7. Verify that log10 0.5 is equal to �log10 1/0.5 � �log10 2.

8. Find log10(3)3, and compare with 3 log10 3.

SECTION 23.3 Decibels

9. a. Determine the number of bels that relate power levels
of P2 � 280 mW and P1 � 4 mW.

b. Determine the number of decibels for the power levels
of part (a), and compare results.

10. A power level of 100 W is 6 dB above what power level?
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11. If a 2-W speaker is replaced by one with a 40-W output,

what is the increase in decibel level?

12. Determine the dBm level for an output power of 120 mW.

13. Find the dBv gain of an amplifier that raises the voltage
level from 0.1 mV to 8.4 mV.

14. Find the output voltage of an amplifier if the applied volt-
age is 20 mV and a dBv gain of 22 dB is attained.

15. If the sound pressure level is increased from 0.001 mbar to
0.016 mbar, what is the increase in dBs level?

16. What is the required increase in acoustical power to raise
a sound level from that of quiet music to very loud music?
Use Fig. 23.5.

17. a. Using semilog paper, plot XL versus frequency for a 
10-mH coil and a frequency range of 100 Hz to 1 MHz.
Choose the best vertical scaling for the range of XL.

b. Repeat part (a) using log-log graph paper. Compare
to the results of part (a). Which plot is more infor-
mative?

c. Using semilog paper, plot XC versus frequency for a 
1-mF capacitor and a frequency range of 10 Hz to 
100 kHz. Again choose the best vertical scaling for the
range of XC.

d. Repeat part (a) using log-log graph paper. Compare
to the results of part (c). Which plot is more infor-
mative?

18. a. For the meter of Fig. 23.6, find the power delivered to
a load for an 8-dB reading.

b. Repeat part (a) for a �5-dB reading.

SECTION 23.5 R-C Low-Pass Filter

19. For the R-C low-pass filter of Fig. 23.99:
a. Sketch Av � Vo /Vi versus frequency using a log scale

for the frequency axis. Determine Av � Vo /Vi at 0.1fc,
0.5fc, fc, 2fc, and 10fc.

b. Sketch the phase plot of v versus frequency, where v is
the angle by which Vo leads Vi. Determine v at f �
0.1fc, 0.5fc, fc, 2fc, and 10fc.

*20. For the network of Fig. 23.100:
a. Determine Vo at a frequency one octave above the crit-

ical frequency.
b. Determine Vo at a frequency one decade below the crit-

ical frequency.
c. Do the levels of parts (a) and (b) verify the expected

frequency plot of Vo versus frequency for the filter?

21. Design an R-C low-pass filter to have a cutoff frequency of
500 Hz using a resistor of 1.2 k�. Then sketch the result-
ing magnitude and phase plot for a frequency range of
0.1fc to 10fc.

22. For the low-pass filter of Fig. 23.101:
a. Determine fc.
b. Find Av � Vo/Vi at f � 0.1fc , and compare to the max-

imum value of 1 for the low-frequency range.
c. Find Av � Vo/Vi at f � 10fc , and compare to the mini-

mum value of 0 for the high-frequency range.
d. Determine the frequency at which Av � 0.01 or Vo �

Vi.
1
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FIG. 23.99
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SECTION 23.6 R-C High-Pass Filter

23. For the R-C high-pass filter of Fig. 23.102:
a. Sketch Av � Vo /Vi versus frequency using a log scale

for the frequency axis. Determine Av � Vo /Vi at fc,
one octave above and below fc, and one decade above
and below fc.

b. Sketch the phase plot of v versus frequency, where v is
the angle by which Vo leads Vi. Determine v at the
same frequencies noted in part (a).

24. For the network of Fig. 23.103:
a. Determine Av � Vo /Vi at f � fc for the high-pass filter.
b. Determine Av � Vo /Vi at two octaves above fc. Is the

rise in Vo significant from the f � fc level?
c. Determine Av � Vo /Vi at two decades above fc. Is the

rise in Vo significant from the f � fc level?
d. If Vi � 10 mV, what is the power delivered to R at the

critical frequency?

25. Design a high-pass R-C filter to have a cutoff or corner
frequency of 2 kHz, given a capacitor of 0.1 mF. Choose
the closest commercial value for R, and then recalculate
the resulting corner frequency. Sketch the normalized
gain Av � Vo /Vi for a frequency range of 0.1fc to 10fc.

26. For the high-pass filter of Fig. 23.104:
a. Determine fc.
b. Find Av � Vo /Vi at f � 0.01fc , and compare to the

minimum level of 0 for the low-frequency region.
c. Find Av � Vo /Vi at f � 100fc, and compare to the

maximum level of 1 for the high-frequency region.
d. Determine the frequency at which Vo � Vi.

SECTION 23.7 Pass-Band Filters

27. For the pass-band filter of Fig. 23.105:
a. Sketch the frequency response of Av � Vo /Vi against a

log scale extending from 10 Hz to 10 kHz.
b. What are the bandwidth and the center frequency?

*28. Design a pass-band filter such as the one appearing in
Fig. 23.105 to have a low cutoff frequency of 4 kHz and
a high cutoff frequency of 80 kHz.

29. For the pass-band filter of Fig. 23.106:
a. Determine fs.
b. Calculate Qs and the BW for Vo.
c. Sketch Av � Vo /Vi for a frequency range of 1 kHz to

1 MHz.
d. Find the magnitude of Vo at f � fs and the cutoff fre-

quencies.

1
�
2

R 2.2  k�

C

20 nF

Vi

–

+

Vo

–

+

FIG. 23.102

Problem 23.
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Problems 26 and 54.
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Problems 27 and 28.
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30. For the pass-band filter of Fig. 23.107:
a. Determine the frequency response of Av � Vo /Vi for a

frequency range of 100 Hz to 1 MHz.
b. Find the quality factor Qp and the BW of the response.

SECTION 23.8 Stop-Band Filters

*31. For the stop-band filter of Fig. 23.108:
a. Determine Qs.
b. Find the bandwidth and the half-power frequencies.
c. Sketch the frequency characteristics of Av � Vo /Vi.
d. What is the effect on the curve of part (c) if a load of

2 k� is applied?

*32. For the pass-band filter of Fig. 23.109:
a. Determine Qp (RL � ∞ �, an open circuit).
b. Sketch the frequency characteristics of Av � Vo /Vi.
c. Find Qp (loaded) for RL � 100 k�, and indicate the

effect of RL on the characteristics of part (b).
d. Repeat part (c) for RL � 20 k�.

SECTION 23.9 Double-Tuned Filter

33. a. For the network of Fig. 23.43(a), if Lp � 400 mH (Q >
10), Ls � 60 mH, and C � 120 pF, determine the
rejected and accepted frequencies.

b. Sketch the response curve for part (a).

34. a. For the network of Fig. 23.43(b), if the rejected fre-
quency is 30 kHz and the accepted is 100 kHz, deter-
mine the values of Ls and Lp (Q > 10) for a capaci-
tance of 200 pF.

b. Sketch the response curve for part (a).

SECTION 23.10 Bode Plots

35. a. Sketch the idealized Bode plot for Av � Vo /Vi for the
high-pass filter of Fig. 23.110.

b. Using the results of part (a), sketch the actual fre-
quency response for the same frequency range.

c. Determine the decibel level at fc, fc, 2fc, fc, and
10fc.

d. Determine the gain Av � Vo /Vi as f � fc, fc, and 2fc.
e. Sketch the phase response for the same frequency

range.

*36. a. Sketch the response of the magnitude of Vo (in terms
of Vi) versus frequency for the high-pass filter of Fig.
23.111.

b. Using the results of part (a), sketch the response Av �
Vo /Vi for the same frequency range.

c. Sketch the idealized Bode plot.

1
�
2

1
�
10

1
�
2
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Vi

–

+

Vo

–

+

R

4 k�

L

Rl 16 �

1 mH

0.001 mFC2

FIG. 23.107

Problems 30 and 55.

–

+

R

0.4 k�
Rl 10 �

XL 5 k�

XC 5 k�

Vi

–

+

Vo RL 2 k�

fs =  5 kHz

FIG. 23.108

Problem 31.

–

+

R1

1 k�

XL 5 k�

Vi

–

+

Vo

fp =  20 kHz

Rl 10 �

XC 400 � RL

FIG. 23.109

Problem 32.

R 0.47 k�

C

0.05 mF

Vi

–

+

Vo

–

+

FIG. 23.110

Problem 35.

R1 6 k�
C

0.02 mF
Vi

–

+

Vo

–

+

R2 12 k�

FIG. 23.111

Problem 36.
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d. Sketch the actual response, indicating the dB differ-
ence between the idealized and the actual response at
f � fc, 0.5fc, and 2fc.

e. Determine AvdB
at f � 1.5fc from the plot of part (d),

and then determine the corresponding magnitude of
Av � Vo /Vi.

f. Sketch the phase response for the same frequency
range (the angle by which Vo leads Vi).

37. a. Sketch the idealized Bode plot for Av � Vo /Vi for the
low-pass filter of Fig. 23.112.

b. Using the results of part (a), sketch the actual fre-
quency response for the same frequency range.

c. Determine the decibel level at fc, fc, 2fc, fc, and
10fc.

d. Determine the gain Av � Vo /Vi at f � fc, fc, and 2 fc.
e. Sketch the phase response for the same frequency

range.

*38. a. Sketch the response of the magnitude of Vo (in terms
of Vi) versus frequency for the low-pass filter of Fig.
23.113.

b. Using the results of part (a), sketch the response Av �
Vo /Vi for the same frequency range.

c. Sketch the idealized Bode plot.
d. Sketch the actual response indicating the dB differ-

ence between the idealized and the actual response at
f � fc, 0.5fc, and 2fc.

e. Determine AvdB
at f � 0.25fc from the plot of part (d),

and then determine the corresponding magnitude of 
Av � Vo /Vi.

f. Sketch the phase response for the same frequency
range (the angle by which Vo leads Vi).

SECTION 23.11 Sketching the Bode Response

39. For the filter of Fig. 23.114:
a. Sketch the curve of AvdB

versus frequency using a log
scale.

b. Sketch the curve of v versus frequency for the same
frequency range as in part (a).

1
�
2

1
�
10

1
�
2

dB

R

12 k�

C 1 nFVi

–

+

Vo

–

+

FIG. 23.112

Problem 37.

Vi

–

+

Vo

–

+

R1

4.7 k�

R2 27 k�
C  =  0.04 mF

FIG. 23.113

Problem 38.

R1

12 k�

C

100 nF

Vi

–

+

Vo

–

+

R2

6 k�

R3 8 k�

FIG. 23.115

Problem 40.

R2 40 k�

C

0.01 mF
Vi

–

+

Vo

–

+

R3 60 k�

R1

10 k�

FIG. 23.114

Problem 39.

*40. For the filter of Fig. 23.115:
a. Sketch the curve of AvdB

versus frequency using a log
scale.

b. Sketch the curve of v versus frequency for the same
frequency range as in part (a).
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SECTION 23.12 Low-Pass Filter with

Limited Attenuation

41. For the filter of Fig. 23.116:
a. Sketch the curve of AvdB

versus frequency using the
idealized Bode plots as a guide.

b. Sketch the curve of v versus frequency.

*42. For the filter of Fig. 23.117:
a. Sketch the curve of AvdB

versus frequency using the
idealized Bode plots as a guide.

b. Sketch the curve of v versus frequency.

SECTION 23.13 High-Pass Filter with

Limited Attenuation

43. For the filter of Fig. 23.118:
a. Sketch the curve of AvdB

versus frequency using the
idealized Bode plots as an envelope for the actual
response.

b. Sketch the curve of v (the angle by which Vo leads Vi)
versus frequency.

*44. For the filter of Fig. 23.119:
a. Sketch the curve of AvdB

versus frequency using the
idealized Bode plots as an envelope for the actual
response.

b. Sketch the curve of v (the angle by which Vo leads Vi)
versus frequency.

R2 10 k�

C 800 pF

Vi

–

+

Vo

–

+

R1

90 k�

FIG. 23.116

Problem 41.

R3 6 k�

C 0.01 mF

Vi

–

+

Vo

–

+

R2

12 k�

R1 20 k�

FIG. 23.117

Problem 42.

R2 0.5 k�

C

0.05 mF
Vi

–

+

Vo

–

+

R1

3.3 k�

FIG. 23.118

Problem 43.

R3 4.7 k�

C

0.1 mFVi

–

+

Vo

–

+

R2

1.2 k�R1

2 k�

FIG. 23.119

Problem 44.
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SECTION 23.14 Other Properties and a

Summary Table

45. A bipolar transistor amplifier has the following gain:

Av �
160

�������

�1 � j �
100

f

Hz
�� �1 � j �

130

f

Hz
�� �1 � j �

20k

f

Hz
�� �1 � j �

50 k

f

Hz
��

a. Sketch the normalized Bode response A′vdB
�

(Av /Avmax
)|dB, and determine the bandwidth of the

amplifier. Be sure to note the corner frequencies.
b. Sketch the phase response, and determine a frequency

where the phase angle is relatively close to 45°.

46. A JFET transistor amplifier has the following gain:

Av �
�5.6

���������

�1 � j �
10

f

Hz
�� �1 � j �

45

f

Hz
�� �1 � j �

68

f

Hz
�� �1 � j �

23 k

f

Hz
�� �1 � j �

50 k

f

Hz
��

a. Sketch the normalized Bode response A′vdB
�

(Av /Avmax
|dB), and determine the bandwidth of the

amplifier. When you normalize, be sure that the max-
imum value of A′v is �1. Clearly indicate the cutoff
frequencies on the plot.

b. Sketch the phase response, and note the regions of
greatest change in phase angle. How do the regions
correspond to the frequencies appearing in the func-
tion Av?

47. A transistor amplifier has a midband gain of �120, a
high cutoff frequency of 36 kHz, and a bandwidth of 
35.8 kHz.In addition, the actual response is also about
�15 dB at f � 50 Hz. Write the transfer function Av for
the amplifier.

48. Sketch the Bode plot of the following function:

Av �

49. Sketch the Bode plot of the following function:

Av �

50. Sketch the Bode plot of the following function:

Av �

*51. Sketch the Bode plot of the following function:

Av �

*52. Sketch the Bode plot of the following function (note the
presence of q rather than f ):

Av �

SECTION 23.15 Crossover Networks

*53. The three-way crossover network of Fig. 23.120 has a
12-dB rolloff at the cutoff frequencies.
a. Determine the ratio Vo /Vi for the woofer and tweeter

at the cutoff frequencies of 400 Hz and 5 kHz, respec-
tively, and compare to the desired level of 0.707.

40(1 � j 0.001q)
���
( j 0.001q)(1 � j 0.0002q)

(1 � j f /1000)(1 � j f /2000)
���

(1 � j f /3000)2

j f /1000
����
(1 � j f /1000)(1 � j f /10,000)

200
��
200 � j 0.1f

0.05
��
0.05 � j 100/f

8 �

0.39 mH

Llow 4.7 mH
Vi = 1 V∠ 0°

+

–

–3 dB

400 Hz0 dB

–3 dB

400 Hz0 dB

–3 dB

5 kHz

8 �

8 �

–3 dB

5 kHz0 dB

Lhigh

L1(mid)

8 �

L2(mid)

C1(mid) 39   F�

Clow

Chigh 2.7   F�

39   F�

0.39 mH

4.7 mH

C2(mid) 2.7   F�

FIG. 23.120

Problems 53 and 57.
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GLOSSARY

Active filter A filter that employs active devices such as tran-
sistors or operational amplifiers in combination with R, L,
and C elements.

Bode plot A plot of the frequency response of a system using
straight-line segments called asymptotes.

Decibel A unit of measurement used to compare power lev-
els.

Double-tuned filter A network having both a pass-band and
a stop-band region.

Filter Networks designed to either pass or reject the transfer
of signals at certain frequencies to a load.

High-pass filter A filter designed to pass high frequencies
and reject low frequencies.

Log-log paper Graph paper with vertical and horizontal log
scales.

Low-pass filter A filter designed to pass low frequencies and
reject high frequencies.

Microbar (�bar) A unit of measurement for sound pressure
levels that permits comparing audio levels on a dB scale.

Pass-band (band-pass) filter A network designed to pass
signals within a particular frequency range.

Passive filter A filter constructed of series, parallel, or
series-parallel R, L, and C elements.

Semilog paper Graph paper with one log scale and one lin-
ear scale.

Stop-band filter A network designed to reject (block) sig-
nals within a particular frequency range.

b. Calculate the ratio Vo /Vi for the woofer and tweeter at
a frequency of 3 kHz, where the midrange speaker is
designed to predominate.

c. Determine the ratio Vo /Vi for the midrange speaker at
a frequency of 3 kHz, and compare to the desired
level of 1.

SECTION 23.17 Computer Analysis

PSpice or Electronics Workbench

54. Using schematics, obtain the magnitude and phase
response versus frequency for the network of Fig. 23.104.

55. Using schematics, obtain the magnitude and phase
response versus frequency for the network of Fig. 23.107.

*56. Obtain the dB and phase plots for the network of Fig.
23.75, and compare with the plots of Figs. 23.76 and
23.77.

*57. Using schematics, obtain the magnitude and dB plot ver-
sus frequency for each filter of Fig. 23.120, and verify
that the curves drop off at 12 dB per octave.

Programming Language (C��, QBASIC, Pascal, etc.)

58. Write a program that will tabulate the gain of Eq. (23.14)
versus frequency for a frequency range extending from
0.1f1 to 2f1 in increments of 0.1f1. Note whether f � f1
when Vo /Vi � 0.707. Use R � 1 k� and C � 500 pF.

59. Write a program to tabulate AvdB
as determined from Eq.

(23.34) and AvdB 
as calculated by Eq. (23.35). For a fre-

quency range extending from 0.01f1 to f1 in increments of
0.01f1, compare the magnitudes, and note whether the
values are closer when f K f1 and whether AvdB

� �3 dB
at f � f1 for Eq. (23.34) and zero for Eq. (23.35).
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24.1 INTRODUCTION

Our analysis thus far has been limited to alternating waveforms that
vary in a sinusoidal manner. This chapter will introduce the basic ter-
minology associated with the pulse waveform and will examine the
response of an R-C circuit to a square-wave input. The importance of
the pulse waveform to the electrical/electronics industry cannot be over-
stated. A vast array of instrumentation, communication systems, com-
puters, radar systems, and so on, all employ pulse signals to control
operation, transmit data, and display information in a variety of for-
mats.

The response of the networks described thus far to a pulse signal is
quite different from that obtained for sinusoidal signals. In fact, we will
be returning to the dc chapter on capacitors (Chapter 10) to retrieve a
few fundamental concepts and equations that will help us in the analy-
sis to follow. The content of this chapter is quite introductory in nature,
designed simply to provide the fundamentals that will be helpful when
the pulse waveform is encountered in specific areas of application.

24.2 IDEAL VERSUS ACTUAL

The ideal pulse of Fig. 24.1 has vertical sides, sharp corners, and a flat
peak characteristic; it starts instantaneously at t1 and ends just as abruptly
at t2.

The waveform of Fig. 24.1 will be applied in the analysis to follow
in this chapter and will probably appear in the initial investigation of
areas of application beyond the scope of this text. Once the fundamen-
tal operation of a device, package, or system is clearly understood using
ideal characteristics, the effect of an actual (or true or practical) pulse
must be considered. If an attempt were made to introduce all the differ-
ences between an ideal and actual pulse in a single figure, the result
would probably be complex and confusing. A number of waveforms
will therefore be used to define the critical parameters.

Pulse Waveforms and 
the R-C Response
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The reactive elements of a network, in their effort to prevent instan-
taneous changes in voltage (capacitor) and current (inductor), establish
a slope to both edges of the pulse waveform, as shown in Fig. 24.2. The
rising edge of the waveform of Fig. 24.2 is defined as the edge that
increases from a lower to a higher level.

Amplitude

tp (pulse width)
t1 t2

Falling
or
trailing
edge

Rising
or

leading
edge

v

0 t

Ideal
pulse

FIG. 24.1

Ideal pulse waveform.

Falling
or
trailing
edge

Rising
or

leading
edge

v

0 ttp (pulse width)

Amplitude0.5V1

V1

FIG. 24.2

Actual pulse waveform.

The falling edge is defined by the region or edge where the waveform
decreases from a higher to a lower level. Since the rising edge is the
first to be encountered (closest to t � 0 s), it is also called the leading
edge. The falling edge always follows the leading edge and is
therefore often called the trailing edge.

Both regions are defined in Figs. 24.1 and 24.2.

Amplitude

For most applications, the amplitude of a pulse waveform is defined
as the peak-to-peak value. Of course, if the waveforms all start and
return to the zero-volt level, then the peak and peak-to-peak values are
synonymous.

For the purposes of this text, the amplitude of a pulse waveform is the
peak-to-peak value, as illustrated in Figs. 24.1 and 24.2.
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Pulse Width

The pulse width (tp), or pulse duration, is defined by a pulse level
equal to 50% of the peak value.

For the ideal pulse of Fig. 24.1, the pulse width is the same at any level,
whereas tp for the waveform of Fig. 24.2 is a very specific value.

Base-Line Voltage

The base-line voltage (Vb) is the voltage level from which the pulse is
initiated.

The waveforms of Figs. 24.1 and 24.2 both have a 0-V base-line volt-
age. In Fig. 24.3(a) the base-line voltage is 1 V, whereas in Fig. 24.3(b)
the base-line voltage is �4 V.

Amplitude  =  4 V

v

0 t

Vb  =  1 V

 5 V

(a)

Amplitude  =  – 6 V

v

0 t
Vb  =  – 4 V

(b)

–10 V

FIG. 24.3

Defining the base-line voltage.

Positive-Going and Negative-Going Pulses

A positive-going pulse increases positively from the base-line voltage,
whereas a negative-going pulse increases in the negative direction
from the base-line voltage.

The waveform of Fig. 24.3(a) is a positive-going pulse, whereas the
waveform of Fig. 24.3(b) is a negative-going pulse.

Even though the base-line voltage of Fig. 24.4 is negative, the wave-
form is positive-going (with an amplitude of 10 V) since the voltage
increased in the positive direction from the base-line voltage.

FIG. 24.4

Positive-going pulse.

tp

v

0 t

Amplitude  =  10 V

– 1 V

9 V

Vb
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Rise Time (tr ) and Fall Time (tf )

Of particular importance is the time required for the pulse to shift from
one level to another. The rounding (defined in Fig. 24.5) that occurs at
the beginning and end of each transition makes it difficult to define the
exact point at which the rise time should be initiated and terminated.
For this reason,

the rise time and the fall time are defined by the 10% and 90% levels,
as indicated in Fig. 24.5.

Note that there is no requirement that tr equal tf.

v

0 ttr

(90%) 0.9V1

V1

(10%) 0.1V1

tf

FIG. 24.5

Defining tr and tf .

Tilt

An undesirable but common distortion normally occurring due to a
poor low-frequency response characteristic of the system through which
a pulse has passed appears in Fig. 24.6. The drop in peak value is called
tilt, droop, or sag. The percentage tilt is defined by

(24.1)

where V is the average value of the peak amplitude as determined by

(24.2)

Naturally, the less the percentage tilt or sag, the more ideal the pulse.
Due to rounding, it may be difficult to define the values of V1 and V2. It
is then necessary only to approximate the sloping region by a straight-
line approximation and use the resulting values of V1 and V2.

Other distortions include the preshoot and overshoot appearing in
Fig. 24.7, normally due to pronounced high-frequency effects of a sys-
tem, and ringing, due to the interaction between the capacitive and
inductive elements of a network at their natural or resonant frequency.

EXAMPLE 24.1 Determine the following for the pulse waveform of
Fig. 24.8:
a. positive- or negative-going?
b. base-line voltage

V � �
V1 �

2

V2
�

% tilt � �
V1 �

V

V2
� � 100%

“Tilt”

v

0 t

V1

V2
V

FIG. 24.6

Defining tilt.

Overshoot

Ringing

Preshoot
t0

v

FIG. 24.7

Defining preshoot, overshoot, and ringing.
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c. pulse width
d. maximum amplitude
e. tilt

Solutions:

a. positive-going
b. Vb � �4 V
c. tp � (12 � 7) ms � 5 ms
d. Vmax � 8 V � 4 V � 12 V

e. V � � � � 11.5 V

% tilt � � 100% � � 100% � 8.696%

(Remember, V is defined by the average value of the peak amplitude.)

EXAMPLE 24.2 Determine the following for the pulse waveform of
Fig. 24.9:
a. positive- or negative-going?
b. base-line voltage
c. tilt
d. amplitude
e. tp
f. tr and tf

Solutions:

a. positive-going
b. Vb � 0 V
c. % tilt � 0%
d. amplitude � (4 div.)(10 mV/div.) � 40 mV
e. tp � (3.2 div.)(5 ms/div.) � 16 ms
f. tr � (0.4 div.)(5 ms/div.) � 2 ms

tf � (0.8 div.)(5 ms/div.) � 4 ms

24.3 PULSE REPETITION RATE 
AND DUTY CYCLE

A series of pulses such as those appearing in Fig. 24.10 is called a
pulse train. The varying widths and heights may contain information
that can be decoded at the receiving end.

12 V � 11 V
��

11.5 V

V1 � V2
�

V

23 V
�

2

12 V � 11 V
��

2

V1 � V2
�

2

FIG. 24.8

Example 24.1.

8

t (ms)0

v (V)

7

1 2 3 4 5 6 8 9 10 11 13 14 15

– 4

127

Vertical sensitivity  =  10 mV/div.

t0

v

tr

10%

90%

tf

Horizontal sensitivity  =  5 ms/div.

tp

FIG. 24.9

Example 24.2.
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If the pattern repeats itself in a periodic manner as shown in Fig.
24.11(a) and (b), the result is called a periodic pulse train.

The period (T) of the pulse train is defined as the time differential
between any two similar points on the pulse train, as shown in Figs.
24.11(a) and (b).

The pulse repetition frequency (prf), or pulse repetition rate
(prr), is defined by

(Hz or pulses/s) (24.3)

Applying Eq. (24.3) to each waveform of Fig. 24.11 will result in the
same pulse repetition frequency since the periods are the same. The
result clearly reveals that

the shape of the periodic pulse does not affect the determination of
the pulse repetition frequency.

prf (or prr) � �
T
1

�

0

v

t

FIG. 24.10

Pulse train.

The pulse repetition frequency is determined solely by the period of
the repeating pulse. The factor that will reveal how much of the period
is encompassed by the pulse is called the duty cycle, defined as fol-
lows:

Duty cycle � � 100%

or (24.4)

For Fig. 24.11(a) (a square-wave pattern),

Duty cycle � � 100% � 50%

and for Fig. 24.11(b),

Duty cycle � � 100% � 20%

The above results clearly reveal that

the duty cycle provides a percentage indication of the portion of the
total period encompassed by the pulse waveform.

0.2T
�

T

0.5T
�

T

Duty cycle � �
t

T
p
� � 100%

pulse width
��

period

0

v

t

tp

T

T

(a)

2
T T

(1 ms)
2T

(2 ms)
3T

(3 ms)

0

v

t

tp

T

T

(b)

2
T T

(1 ms)
2T

(2 ms)
3T

(3 ms)
0.2T

FIG. 24.11

Periodic pulse trains.
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EXAMPLE 24.3 Determine the pulse repetition frequency and the
duty cycle for the periodic pulse waveform of Fig. 24.12.

Solution:

T � (15 � 6) ms � 9 ms

prf � � �
9

1
ms
� � 111.11 kHz

1
�
T

0

v (mV)

–10

5 10 15 20 25 30

Vb  =  3 mV

t (ms)

FIG. 24.12

Example 24.3.

Vertical sensitivity  =  0.2 V/div.
v

div.
t

Horizontal sensitivity  =  1 ms/div.

FIG. 24.13

Example 24.4.

Solution:

T � (3.2 div.)(1 ms/div.) � 3.2 ms

tp � (0.8 div.)(1 ms/div.) � 0.8 ms

prf � � � 312.5 Hz

Duty cycle � � 100% � � 100% � 25%
0.8 ms
�
3.2 ms

tp
�
T

1
�
3.2 ms

1
�
T

Duty cycle � � 100% � �
(8 �

9 m
6
s
) ms
� � 100%

� � 100% � 22.22%

EXAMPLE 24.4 Determine the pulse repetition frequency and the
duty cycle for the oscilloscope pattern of Fig. 24.13 having the indi-
cated sensitivities.

2
�
9

tp
�
T
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EXAMPLE 24.5 Determine the pulse repetition rate and duty cycle
for the trigger waveform of Fig. 24.14.

Solution:

T � (2.6 div.)(10 ms/div.) � 26 ms

prf � � � 38,462 kHz

tp � (0.2 div.)(10 ms/div.) � 2 ms

Duty cycle � � 100% � � 100% � 7.69%

24.4 AVERAGE VALUE

The average value of a pulse waveform can be determined using one of
two methods. The first is the procedure outlined in Section 13.6, which
can be applied to any alternating waveform. The second can be applied
only to pulse waveforms since it utilizes terms specifically related to
pulse waveforms; that is,

(24.5)

In Eq. (24.5), the peak value is the maximum deviation from the ref-
erence or zero-volt level, and the duty cycle is in decimal form. Equa-
tion (24.5) does not include the effect of any tilt pulse waveforms with
sloping sides.

EXAMPLE 24.6 Determine the average value for the periodic pulse
waveform of Fig. 24.15.

Solution: By the method of Section 13.6,

G �

T � (12 � 2) ms � 10 ms

G � �

� � 4.4 mV
44 � 10�9

��
10 � 10�6

32 � 10�9 � 12 � 10�9

���
10 � 10�6

(8 mV)(4 ms) � (2 mV)(6 ms)
����

10 ms

area under curve
��

T

Vav � (duty cycle)(peak value) � (1 � duty cycle)(Vb)

2 ms
�
26 ms

tp
�
T

1
�
26 ms

1
�
T

Horizontal sensitivity  =  10 �s/div.

v

div.

t

0.5 V

V

0 �

FIG. 24.14

Example 24.5.
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By Eq. (24.5),

Vb � �2 mV

Duty cycle � � � � 0.4 (decimal form)

Peak value (from 0-V reference) � 8 mV

Vav � (duty cycle)(peak value) � (1 � duty cycle)(Vb)

� (0.4)(8 mV) � (1 � 0.4)(2 mV)

� 3.2 mV � 1.2 mV � 4.4 mV

as obtained above.

EXAMPLE 24.7 Given a periodic pulse waveform with a duty cycle
of 28%, a peak value of 7 V, and a base-line voltage of �3 V:
a. Determine the average value.
b. Sketch the waveform.
c. Verify the result of part (a) using the method of Section 13.6.

Solutions:

a. By Eq. (24.5),

Vav � (duty cycle)(peak value) � (1 � duty cycle)(Vb)
� (0.28)(7 V) � (1 � 0.28)(�3 V) � 1.96 V � (�2.16 V)
� �0.2 V

b. See Fig. 24.16.

c. G � � 1.96 V � 2.16 V

� �0.2 V

as obtained above.

Instrumentation

The average value (dc value) of any waveform can be easily determined
using the oscilloscope. If the mode switch of the scope is set in the ac
position, the average or dc component of the applied waveform will be
blocked by an internal capacitor from reaching the screen. The pattern
can be adjusted to establish the display of Fig. 24.17(a). If the mode
switch is then placed in the dc position, the vertical shift (positive or

(7 V)(0.28T) � (3 V)(0.72T)
���

T

4
�
10

(6 � 2) ms
��

10 ms

tp
�
T

8

T
t (�s)0

v (mV)

7

5 10 2015

6
5
4
3
2
1

Vav

�

FIG. 24.15

Example 24.6.

0

v

7 V

t–3 V
T

0.28T

FIG. 24.16

Solution to part (b) of Example 24.7.

Horizontal sensitivity  =  5 �s/div.

v

div.

t
0

Vertical sensitivity  =  5 mV/div.

ac mode

(a)

Horizontal sensitivity  =  5 �s/div.

v

div.

t
0

Vertical sensitivity  =  5 mV/div.

dc mode

(b)

Vav  =  4 mV

�

�

FIG. 24.17

Determining the average value of a pulse 
waveform using an oscilloscope.
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negative) will reveal the average or dc level of the input signal, as
shown in Fig. 24.17(b).

24.5 TRANSIENT R-C NETWORKS

In Chapter 10 the general solution for the transient behavior of an R-C
network with or without initial values was developed. The resulting
equation for the voltage across a capacitor is repeated below for conve-
nience.

(24.6)

Recall that Vi is the initial voltage across the capacitor when the
transient phase is initiated as shown in Fig. 24.18. The voltage Vf is the
steady-state (resting) value of the voltage across the capacitor when the
transient phase has ended. The transient period is approximated as 5t,
where t is the time constant of the network and is equal to the product
RC.

For the situation where the initial voltage is zero volts, the equation
reduces to the following familiar form, where Vf is often the applied
voltage:

Vi � 0 V (24.7)

For the case of Fig. 24.19, Vi � �2 V, Vf � �5 V, and

vC � Vi � (Vf � Vi)(1 � e�t/RC)
� �2 V � [5 V � (�2 V)](1 � e�t/RC)

vC � �2 V � 7 V(1 � e�t/RC)

For the case where t � t � RC,

vC � �2 V � 7 V(1 � e�t/t) � �2 V � 7 V(1 � e�1)
� �2 V � 7 V(1 � 0.368) � �2 V � 7 V(0.632)

vC � 2.424 V

as verified by Fig. 24.19.

EXAMPLE 24.8 The capacitor of Fig. 24.20 is initially charged to
2 V before the switch is closed. The switch is then closed.
a. Determine the mathematical expression for vC.
b. Determine the mathematical expression for iC.
c. Sketch the waveforms of vC and iC.

Solutions:

a. Vi � 2 V
Vf (after 5t) � E � 8 V
t � RC � (100 k�)(1 mF) � 100 ms

By Eq. (24.6),

vC � Vf � (Vi � Vf)e
�t/RC

� 8 V � (2 V � 8 V)e�t/t

and vC � 8 V � 6 V e�t/t

vC � Vf (1 � e�t/RC)

vC � Vf � (Vi � Vf)e
�t/RC

0

vC

Vf

t

Vi

Vf   –  Vi

5t

FIG. 24.18

Defining the parameters of Eq. (24.6).

0

vC

t5t

5 V

2.424 V

–2 V
t

FIG. 24.19

Example of the use of Eq. (24.6).

R

100 k�

C 1 mF 2 V
+

–
E 8 V

FIG. 24.20

Example 24.8.
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b. When the switch is first closed, the voltage across the capacitor can-
not change instantaneously, and VR � E � Vi � 8 V � 2 V � 6 V.
The current therefore jumps to a level determined by Ohm’s law:

IRmax
� � � 0.06 mA

The current will then decay to zero amperes with the same time con-
stant calculated in part (a), and

iC � 0.06 mAe�t/t

c. See Fig. 24.21.

EXAMPLE 24.9 Sketch vC for the step input shown in Fig. 24.22.
Assume that the �4 mV has been present for a period of time in excess
of five time constants of the network. Then determine when vC � 0 V
if the step changes levels at t � 0 s.

6 V
�
100 k�

VR�
R

0

vC  (V)

t (s)0.1

8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

5t

FIG. 24.21

vC and iC for the network of Fig. 24.20.
10 mV
vi

0 t
–4 mV

R

1 k�

C 0.01 mF vC

+

–+

–
4 mVvi

+

–

Solution:

Vi � �4 mV Vf � 10 mV

t � RC � (1 k�)(0.01 mF) � 10 ms

By Eq. (24.6),

vC � Vf � (Vi � Vf)e
�t/RC

� 10 mV � (�4 mV � 10 mV)e�t/10ms

and vC � 10 mV � 14 mV e�t/10ms

The waveform appears in Fig. 24.23.

FIG. 24.22

Example 24.9.

FIG. 24.23

vC for the network of Fig. 24.22.

10

vC (mV)

0 t (ms)
–4

10 20 30 40 50 60 70 80

5t

t   =  3.37 ms

0

iC  (mA)

t (s)0.1

0.1

0.06

0.2 0.3 0.4 0.5 0.6 0.7 0.8



The application of a dc voltage V1 in series with the square wave of
Fig. 24.24 can raise the base-line voltage from �V1 to zero volts and
the average value to V1 volts.

If a square wave such as developed in Fig. 24.25 is applied to an

1104  PULSE WAVEFORMS AND THE R-C RESPONSE

Substituting vC � 0 V into the above equation yields

vC � 0 V � 10 mV � 14 mV e�t/10ms

and � e�t/10ms

or 0.714 � e�t/10ms

but loge0.714 � loge(e
�t/10ms) �

and t � �(10 ms)loge0.714 � �(10 ms)(�0.377) � 3.37 ms

as indicated in Fig. 24.23.

24.6 R-C RESPONSE TO 
SQUARE-WAVE INPUTS

The square wave of Fig. 24.24 is a particular form of pulse waveform.
It has a duty cycle of 50% and an average value of zero volts, as calcu-
lated below:

Duty cycle � � 100% � � 100% � 50%

Vav � � � 0 V
0
�
T

(V1)(T/2) � (�V1)(T/2)
���

T

T/2
�

T

tp
�
T

�t
�
10 ms

10 mV
�
14 mV

FIG. 24.24

Periodic square wave.

v

0 tT T 2T 3T

V1

–V1

2

v

0 tT T 2T

2V1

2
T
2

–

v

V1

+

–

FIG. 24.25

Raising the base-line voltage of a square wave to zero volts.
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T/2 > 5t

The condition T/2 > 5t, or T > 10t, establishes a situation where the
capacitor can charge to its steady-state value in advance of t � T/2. The
resulting waveforms for vC and iC will appear as shown in Fig. 24.27.
Note how closely the voltage vC shadows the applied waveform and
how iC is nothing more than a series of very sharp spikes. Note also that
the change of Vi from V to zero volts during the trailing edge simply
results in a rapid discharge of vC to zero volts. In essence, when Vi �
0, the capacitor and resistor are in parallel and the capacitor simply dis-
charges through R with a time constant equal to that encountered dur-
ing the charging phase but with a direction of charge flow (current)
opposite to that established during the charging phase.

FIG. 24.26

Applying a periodic square-wave pulse train to an R-C network.

vi

0 tT T 2T
2

V

R

vi

+

–

vC

+

–

C

vC

0 tT T 2T
2

V

5t

5t
T
2

> 5t

(a)

iC

0 t

T

T 2T

2

5t

(b)

5t

V
R

V
R

–

FIG. 24.27

vC and iC for T/2 > 5t.

T/2 � 5t

If the frequency of the square wave is chosen such that T/2 � 5t or
T � 10t, the voltage vC will reach its final value just before beginning
its discharge phase, as shown in Fig. 24.28. The voltage vC no longer
resembles the square-wave input and, in fact, has some of the charac-
teristics of a triangular waveform. The increased time constant has
resulted in a more rounded vC, and iC has increased substantially in
width to reveal the longer charging period.

R-C circuit as shown in Fig. 24.26, the period of the square wave can
have a pronounced effect on the resulting waveform for vC.

For the analysis to follow, we will assume that steady-state condi-
tions will be established after a period of five time constants has
passed. The types of waveforms developed across the capacitor can
then be separated into three fundamental types: T/2 � 5t; T/2 � 5t; and
T/2 � 5t.
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T/2 < 5t

If T/2 < 5t or T < 10t, the voltage vC will not reach its final value dur-
ing the first pulse (Fig. 24.29), and the discharge cycle will not return
to zero volts. In fact, the initial value for each succeeding pulse will
change until steady-state conditions are reached. In most instances, it is
a good approximation to assume that steady-state conditions have been
established in five cycles of the applied waveform.

vC

0 tT T 2T
2

V

5t

5t
T
2

= 5t

(a)

iC

0 tT T 2T
2

5t

(b)

5t

V
R

V
R

–

FIG. 24.28

vC and iC for T/2 � 5t.

As the frequency increases and the period decreases, there will be a
flattening of the response for vC until a pattern like that in Fig. 24.30
results. Figure 24.30 begins to reveal an important conclusion regarding
the response curve for vC:

Under steady-state conditions, the average value of vC will equal the
average value of the applied square wave.

vC

0 tT T 2T
2

V
5t

T
2

< 5t

(a)

3T

iC

0 tT T 2T
2

(b)

5tV
R

V
R

–

3T

FIG. 24.29

vC and iC for T/2 < 5t.

FIG. 24.30

vC for T/2 K 5t or T K 10t.

vC

0 tT T 2T
2

V

T
2

<< 5t

3T
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Note in Figs. 24.29 and 24.30 that the waveform for vC approaches an
average value of V/2.

EXAMPLE 24.10 The 1000-Hz square wave of Fig. 24.31 is applied
to the R-C circuit of the same figure.
a. Compare the pulse width of the square wave to the time constant of

the circuit.
b. Sketch vC.
c. Sketch iC.

FIG. 24.31

Example 24.10.

5 k�

vi

0 tT T
2

V  =  10 mV

R

vi

+

–

vC

+

–
C

f  =  1000 Hz

0.01 mF

iC

Solutions:

a. T � � � 1 ms

tp � � 0.5 ms

t � RC � (5 � 103 �)(0.01 � 10�6 F) � 0.05 ms

� � 10 and 

tp � 10t � �
T
2

�

The result reveals that vC will charge to its final value in half the
pulse width.

b. For the charging phase, Vi � 0 V and Vf � 10 mV, and

vC � Vf � (Vi � Vf)e
�t/RC

� 10 mV � (0 � 10 mV)e�t/t

and vC � 10 mV(1 � e�t/t)

For the discharge phase, Vi � 10 mV and Vf � 0 V, and

vC � Vf � (Vi � Vf)e
�t/t

� 0 V � (10 mV � 0 V)e�t/t

and vC � 10 mVe�t/t

The waveform for vC appears in Fig. 24.32.
c. For the charging phase at t � 0 s, VR � V and IRmax

� V/R �
10 mV/5 k� � 2 mA, and

iC � Imaxe
�t/t � 2 mAe�t/t

For the discharge phase, the current will have the same mathemati-
cal formulation but the opposite direction, as shown in Fig. 24.33.

0.5 ms
�
0.05 ms

tp
�
t

T
�
2

1
�
1000

1
�
f

vC

0 tT T
2

10 mV

5t

tp  =  10t

FIG. 24.32

vC for the R-C network of Fig. 24.31.

iC

0 tT T
2

2 mA

5t
2T

–2 mA

FIG. 24.33

iC for the R-C network of Fig. 24.31.
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EXAMPLE 24.11 Repeat Example 24.10 for f � 10 kHz.

Solution:

T � � � 0.1 ms

and � 0.05 ms

with t � tp � � 0.05 ms

In other words, the pulse width is exactly equal to the time constant of
the network. The voltage vC will not reach the final value before the
first pulse of the square-wave input returns to zero volts.

For t in the range t � 0 to T/2, Vi � 0 V and Vf � 10 mV, and

vC � 10 mV(1 � e�t/t)

We recall from Chapter 10 that at t � t, vC � 63.2% of the final value.
Substituting t � t into the equation above yields

vC � (10 mV)(1 � e�1) � (10 mV)(1 � 0.368)
� (10 mV)(0.632) � 6.32 mV

as shown in Fig. 24.34.

T
�
2

T
�
2

1
�
10 kHz

1
�
f

vC

0 tT T
2

V  =  10 mV

(t)
(2t)

2T
(4t)(3t)

3T
(6t)(5t)

4T
(8t)(7t) (9t)

2.69 mV2.68 mV2.64 mV2.33 mV

7.31 mV7.29 mV7.18 mV6.32 mV 7.31 mV

2.69 mV

FIG. 24.34

vC response for tp � t � T/2.

For the discharge phase between t � T/2 and T, Vi � 6.32 mV and
Vf � 0 V, and

vC � Vf � (Vi � Vf)e
�t/t

� 0 V � (6.32 mV � 0 V)e�t/t

vC � 6.32 mVe�t/t

with t now being measured from t � T/2 in Fig. 24.34. In other words,
for each interval of Fig. 24.34, the beginning of the transient waveform
is defined as t � 0 s. The value of vC at t � T is therefore determined
by substituting t � t into the above equation, and not 2t as defined by
Fig. 24.34.

Substituting t � t,

vC � (6.32 mV)(e�1) � (6.32 mV)(0.368)
� 2.33 mV

as shown in Fig. 24.34.
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For the next interval, Vi � 2.33 mV and Vf � 10 mV, and

vC � Vf � (Vi � Vf)e
�t/t

� 10 mV � (2.33 mV � 10 mV)e�t/t

vC � 10 mV � 7.67 mV e�t/t

At t � t (since t � T � 2t is now t � 0 s for this interval),

vC � 10 mV � 7.67 mVe�1

� 10 mV � 2.82 mV
vC � 7.18 mV

as shown in Fig. 24.34.
For the discharge interval, Vi � 7.18 mV and Vf � 0 V, and

vC � Vf � (Vi � Vf)e
�t/t

� 0 V � (7.18 mV � 0)e�t/t

vC � 7.18 mVe�t/t

At t � t (measured from 3t of Fig. 24.34),

vC � (7.18 mV)(e�1) � (7.18 mV)(0.368)
� 2.64 mV

as shown in Fig. 24.34.
Continuing in the same manner, the remaining waveform for vC will

be generated as depicted in Fig. 24.34. Note that repetition occurs after
t � 8t, and the waveform has essentially reached steady-state condi-
tions in a period of time less than 10t, or five cycles of the applied
square wave.

A closer look will reveal that both the peak and the lower levels con-
tinued to increase until steady-state conditions were established. Since
the exponential waveforms between t � 4T and t � 5T have the same
time constant, the average value of vC can be determined from the
steady-state 7.31-mV and 2.69-mV levels as follows:

Vav � � � 5 mV

which equals the average value of the applied signal as stated earlier in
this section.

We can use the results of Fig. 24.34 to plot iC. At any instant of time,

vi � vR � vC or vR � vi � vC

and iR � iC �

At t � 0�, vC � 0 V, and

iR � � � 2 mA

as shown in Fig. 24.35.
As the charging process proceeds, the current iC will decay at a rate

determined by

iC � 2 mAe�t/t

At t � t,

iC � (2 mA)(e�t/t) � (2 mA)(e�1) � (2 mA)(0.368)
� 0.736 mA

as shown in Fig. 24.35.

10 mV � 0
��

5 k�

vi � vC�
R

vi � vC�
R

10 mV
�

2
7.31 mV � 2.69 mV
���

2
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For the trailing edge of the first pulse, the voltage across the capaci-
tor cannot change instantaneously, resulting in the following when vi

drops to zero volts:

iC � iR � � � �1.264 mA

as illustrated in Fig. 24.35. The current will then decay as determined
by

iC � �1.264 mAe�t/t

and at t � t (actually t � 2t in Fig. 24.35),

iC � (�1.264 mA)(e�t/t) � (�1.264 mA)(e�1)
� (�1.264 mA)(0.368) � �0.465 mA

as shown in Fig. 24.35.
At t � T (t � 2t), vC � 2.33 mV, and vi returns to 10 mV, resulting

in

iC � iR � � � 1.534 mA

The equation for the decaying current is now

iC � 1.534 mAe�t/t

and at t � t (actually t � 3t in Fig. 24.35),

iC � (1.534 mA)(0.368) � 0.565 mA

The process will continue until steady-state conditions are reached
at the same time they were attained for vC. Note in Fig. 24.35 that the
positive peak current decreased toward steady-state conditions while
the negative peak became more negative. It is also interesting and
important to realize that the current waveform becomes symmetrical
about the axis when steady-state conditions are established. The result
is that the net average current over one cycle is zero, as it should be
in a series R-C circuit. Recall from Chapter 10 that the capacitor under
dc steady-state conditions can be replaced by an open-circuit equiva-
lent, resulting in IC � 0 A.

10 mV � 2.33 mV
��

5 k�

vi � vC�
R

0 � 6.32 mV
��

5 k�

vi � vC�
R

FIG. 24.35

iC response for tp � t � T/2.

iC

0 tT T
2

2 mA

(t)
(2t)

2T
(4t)(3t)

3T
(6t)(5t)

4T
(8t)(7�) (9t)

0.538 mA0.539 mA0.542 mA0.565 mA

1.464 mA1.472 mA1.534 mA 1.462 mA

0.736 mA

–0.538 mA

–1.462 mA–1.462 mA–1.458 mA–1.436 mA–1.264 mA

–0.528 mA–0.465 mA –0.538 mA–0.537 mA
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Although both examples provided above started with an uncharged
capacitor, there is no reason that the same approach cannot be used
effectively for initial conditions. Simply substitute the initial voltage on
the capacitor as Vi in Eq. (24.6) and proceed as above.

24.7 OSCILLOSCOPE ATTENUATOR 
AND COMPENSATING PROBE

The �10 attenuator probe employed with oscilloscopes is designed to
reduce the magnitude of the input voltage by a factor of 10. If the input
impedance to a scope is 1 M�, the �10 attenuator probe will have an
internal resistance of 9 M�, as shown in Fig. 24.36.

0 V

200 V

–

+

Rs 1 M�

Vertical

Scope

20 V
0 V

Rp

9 M�

Probe

FIG. 24.36

�10 attenuator probe.

Applying the voltage divider rule,

Vscope � � Vi

In addition to the input resistance, oscilloscopes have some internal
input capacitance, and the probe will add an additional capacitance in
parallel with the oscilloscope capacitance, as shown in Fig. 24.37. The
probe capacitance is typically about 10 pF for a 1-m (3.3-ft) cable,
reaching about 15 pF for a 3-m (9.9-ft) cable. The total input capaci-
tance is therefore the sum of the two capacitive elements, resulting in
the equivalent network of Fig. 24.38.

1
�
10

(1 M�)(Vi)��
1 M� � 9 M�

Rs = 1 M�20 pFCs

Vscope

Scope
Cable

10 pF
(1 meter
cable)

Cc

Vi

9 M�

Rp

Probe

FIG. 24.37

Capacitive elements present in an attenuator probe arrangement.

Ci = Cc + Cs = 30 pF1 M�Rs

VscopeVi

9 M�

Rp

FIG. 24.38

Equivalent network of Fig. 24.37.

For the analysis to follow, let us determine the Thévenin equivalent
circuit for the capacitor Ci:

ETh � � Vi

and RTh � 9 M� � 1 M� � 0.9 MQ

1
�
10

(1 M�)(Vi)��
1 M� � 9 M�
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The Thévenin network is shown in Fig. 24.39.
For vi � 200 V (peak),

ETh � 0.1vi � 20 V (peak)

and for vC, Vf � 20 V and Vi � 0 V, with

t � RC � (0.9 � 106 �)(30 � 10�12 F) � 27 ms

For an applied frequency of 5 kHz,

T � � 0.2 ms and � 0.1 ms � 100 ms

with 5t � 135 ms > 100 ms, as shown in Fig. 24.40, clearly producing
a severe rounding distortion of the square wave and a poor representa-
tion of the applied signal.

To improve matters, a variable capacitor is often added in parallel
with the resistance of the attenuator, resulting in a compensated atten-
uator probe such as the one shown in Fig. 24.41. In Chapter 21, it was
demonstrated that a square wave can be generated by a summation of
sinusoidal signals of particular frequency and amplitude. If we there-
fore design a network such as the one shown in Fig. 24.42 that will
ensure that Vscope is 0.1vi for any frequency, then the rounding distortion
will be removed, and Vscope will have the same appearance as vi.

Applying the voltage divider rule to the network of Fig. 24.42,

(24.8)

If the parameters are chosen or adjusted such that

(24.9)

the phase angle of Zs and Zp will be the same, and Equation (24.8) will
reduce to

(24.10)

which is insensitive to frequency since the capacitive elements have
dropped out of the relationship.

In the laboratory, simply adjust the probe capacitance using a stan-
dard or known square-wave signal until the desired sharp corners of the
square wave are obtained. If you avoid the calibration step, you may
make a rounded signal look square since you assumed a square wave at
the point of measurement.

Too much capacitance will result in an overshoot effect, whereas too
little will continue to show the rounding effect.

24.8 APPLICATION

TV Remote

The TV remote, or “clicker,” is so much a part of our modern-day living
that we must all have wondered at one time or another how it looks
inside or how it works. In many ways it is similar to the garage door

Vscope � �
Rs

R

�
sV

R
i

p
�

RpCp � RsCs

Vscope � �
Zs

Z
�
sV

Z
i

p
�

T
�
2

1
�
f

–

+

RTh

0.9 M�

30 pFCivi
–

+
vCETh 0.1

FIG. 24.39

Thévenin equivalent for Ci of Fig. 24.38.

20 V

vscope

vs = 0.1vi

vC = vscope

0 t
127    s�

100    s�

FIG. 24.40

The scope pattern for the conditions of Fig.
24.38 with vi � 200 V peak.

FIG. 24.41

Commercial compensated 10 :1 
attenuator probe. (Courtesy of Tektronix, Inc.)
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FIG. 24.42

Compensated attenuator and input impedance
to a scope, including the cable capacitance.
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opener or the car alarm transmitter in that there is no visible connection
between the transmitter and the receiver, and each transmitter is linked
to its receiver with a special code. The only major difference between the
TV remote and the other controls is that the TV remote uses an infrared
frequency while the other two use a much lower radio frequency.

The TV remote of Fig. 24.43(a) has been opened to reveal the inter-
nal construction of its key pad and face in Fig. 24.43(b). The three com-
ponents of Fig. 24.43(b) were placed at a level that would permit match-
ing the holes in the cover with the actual keys in the switch membrane
and with the location that each button on the key pad would hit on face
of the printed circuit board. Note on the printed circuit board that there

FIG. 24.43

TV remote: (a) external appearance; (b) internal construction; (c) carbon key
pads; (d) enlarged view of S31 key pad.
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is a black pad to match each key on the membrane. The back side of the
switch membrane is shown in Fig. 24.43(c) to show the soft carbon con-
tacts that will make contact with the carbon contacts on the printed
board when the buttons are depressed. An enlarged view of one of the
contacts (S31) of Fig. 24.43(c) is shown in Fig. 24.43(d) to illustrate the
separation between circuits and the pattern used to ensure continuity
when the solid round carbon pad at the bottom of the key is put in place.

All the connections established when a key is pressed are passed on
to a relatively large switch-matrix-encoder IC chip appearing on the
back side of the printed circuit board as shown in Fig. 24.44. For the
pad (S31) of Fig. 24.43(d), three wires of the matrix appearing in Fig.
24.43(b) will be connected when the corresponding key (number 5) is
pressed. The encoder will then react to this combination and send out
the appropriate signal as an infrared (IR) signal from the IR LED
appearing at the end of the remote control, as shown in Fig. 24.43(b)
and Fig. 24.44. The second smaller LED (red on actual unit) appearing
at the top of Fig. 24.43(b) blinks during transmission. Once the batter-
ies are inserted, the CMOS electronic circuitry that controls the opera-
tion of the remote is always on. This is possible only because of the
very low power drain of CMOS circuitry. The power (PWR) button is
used only to turn the TV on and activate the receiver.

The signal sent out by the majority of remotes is one of the two types
appearing in Fig. 24.45. In each case there is a key pulse to initiate the
signal sequence and to inform the receiver that the coded signal is about
to arrive. In Fig. 24.45(a), a 4-bit binary-coded signal is transmitted
using pulses in specific locations to represent the “ones” and using the
absence of a pulse to represent the “zeros.” That coded signal can then
be interpreted by the receiver unit and the proper operation performed.
In Fig. 24.45(b), the signal is frequency controlled. Each key will have
a different frequency associated with it. The result is that each key will
have a specific transmission frequency. Since each TV receiver will
respond to a different pulse train, a remote must be coded for the TV
under control. There are fixed program remotes that can be used with

FIG. 24.45

Signal transmission: (a) pulse train; (b) variation.
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(crystal oscillator)

Switch-matrix-
encoder IC

Resistor

IR LED
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FIG. 24.44

Back side of TV remote of Fig. 24.43.
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only one TV. Then there are smart remotes that are preprogrammed
internally with a number of remote control codes. Remotes of this type
simply need to be told which TV is involved using a three-digit coding
system, and they will adapt accordingly. Learning remotes are those
that can use the old remote to learn the code and then store it for future
use. In this case, one remote is set directly in front of the other, and the
information is transferred from one to the other when both are ener-
gized. Remotes are also available that are a combination of the last two.

The remote of Fig. 24.43 uses four AAA batteries in series for a total
of 6 V. It has its own local crystal oscillator separate from the IC as
shown by the discrete elements to the top right and midleft of the
printed circuit board of Fig. 24.43(c). The crystal itself, which is rela-
tively large compared to the other elements, appears on the other side of
the board just above the electrolytic capacitor in Fig. 24.44. It is the
responsibility of the oscillator to generate the pulse signal required for
proper IC operation. Note how flush most of the discrete elements are
in Fig. 24.43(b), and note the rather large electrolytic capacitor on the
back of the printed circuit board in Fig. 24.44. The specifications on the
unit give it a range control of 25 ft with a 30° coverage arc as shown in
Fig. 24.46. The arc coverage of your unit can easily be tested by simply
pointing it directly at the TV and then moving it in any direction until
it no longer controls the TV.

24.9 COMPUTER ANALYSIS

PSpice

R-C Response Our analysis will begin with a verification of the
results of Example 24.10 which examined the response of the series R-
C circuit appearing on the schematic of Fig. 24.47. The source is one
used in Chapters 10 and 12 to replicate the action of a switch in series
with a dc source. The defining attributes for the pulse waveform are
repeated for convenience in Fig. 24.48. Recall that the PW was made
long enough so that the full transient period could be examined. In this
analysis the pulse width will be adjusted to permit viewing the transient
behavior of an R-C network between changing levels of the applied
pulse. Initially the PW will be set at 10 times the time constant of the
network so that the full transient response can occur between changes
in voltage level. The time constant of the network is t � RC �
(5 k�)(0.01 mF) � 0.05 ms, resulting in a PW of 0.5 ms in Fig. 24.47.
To establish a square-wave appearance, the period was chosen as twice
the pulse width or 1 ms as shown in the VPulse listing.

In the Simulation Settings dialog box, Time Domain(Transient) is
selected because we want a response versus time. The Run to time is
selected as 2 ms so that two full cycles will result. The Start saving
data after was left on the default value of 0 s, and the Maximum step
size was set at 2 ms/1000 � 2 ms. After simulation, Trace-Add Trace-
I(C)-OK, the bottom plot of Fig. 24.49 was the result. Note that the
maximum current is 2 mA as determined by ICmax

� 10 mV/5 k�, and
the full transient response appears within each pulse. Note also that the
current dropped below the axis to reveal a change in direction when the
applied voltage dropped from the 10-mV level to 0 V. Through Plot-
Add Plot to Window-Trace-Add Trace-V(Vpulse:�)-OK-Trace-
Add Trace-V(C:1)-OK, the plots of the applied voltage and the voltage
across the capacitor can be displayed in the upper graph of Fig. 24.49.

30° 25′

“Clicker”

FIG. 24.46

Range and coverage arc for TV remote 
of Fig. 24.43.
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First we select the upper graph of Fig. 24.49 to which to move the
SEL>>, and then we select the Toggle cursor key. Now we can left-
click on V(C:1) at the bottom right of the graph and set a cursor on the
graph with a left click of the mouse. Setting the cursor at five time con-
stants reveals that the transient voltage has reached 9.935 mV. Setting
the right-click cursor at ten time constants reveals that VC has essen-
tially reached the 10-mV level.

Setting tp � t � T/2 The parameters of the source will now be
modified by changing the frequency of the pulse waveform to 10 kHz
with a period of 0.1 ms and a pulse width of 0.05 ms. For Vpulse the
changes are PW � 0.05 ms and PER � 0.1 ms. The time constant of
the network remains the same at 0.05 ms, so we have a situation where
the pulse width equals the time constant of the circuit. The result is that
it will take a number of pulses before the voltage across the capacitor
will reach its final value of 10 mV. Under the Simulation Settings, the
Run to time will be changed to 0.5 ms � 500 ms or five cycles of
the applied voltage. The Maximum step size will be changed to
500 ms/1000 � 500 ns � 0.5 ms. Under the SCHEMATIC1 window,
Trace-Add Trace-V(C:1)-OK is selected to obtain the transient volt-
age across the capacitor, while Trace-Add Trace-V(Vpulse:�))-OK
will place the applied voltage on the same screen. Note in the resulting
plots of Fig. 24.50 that the voltage builds up from 0 V until it appears
to reach a fairly steady state after 400 ms. At 400 ms, a left cursor (A1)
was used to find the minimum point with 2.71 mV resulting—a close
match with the longhand calculation of Example 24.11 at 2.69 mV. At
450 ms, the right-click cursor (A2) provided a level of 7.29 mV which
is again a close match with the calculated level of 7.31 mV.

FIG. 24.48

Defining the PSpice Vpulse parameters.

PW

V2
TRV

TF

V1
0 PER

TD

t

FIG. 24.47

Using PSpice to verify the results of Example 24.10.



FIG. 24.49

Plot of vpulse, vC, and iC for the circuit of Fig. 24.47.
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FIG. 24.50

Plot of vC for the circuit of Fig. 24.47 with tp � t � T/2.
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PROBLEMS

SECTION 24.2 Ideal versus Actual

1. Determine the following for the pulse waveform of Fig.
24.51:
a. positive- or negative-going?
b. base-line voltage
c. pulse width
d. amplitude
e. % tilt

2. Repeat Problem 1 for the pulse waveform of Fig. 24.52.

v

0 t

div.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  2 ms/div.

FIG. 24.53

Problems 3, 4, 10, and 13.

v

0 t (ms)

20 mV

2 6 10 2220 26 30

FIG. 24.54

Problems 6 and 14.

3. Repeat Problem 1 for the pulse waveform of Fig. 24.53.

4. Determine the rise and fall times for the waveform of
Fig. 24.53.

5. Sketch a pulse waveform that has a base-line voltage of
�5 mV, a pulse width of 2 ms, an amplitude of 15 mV,
a 10% tilt, a period of 10 ms, and vertical sides, and that
is positive-going.

6. For the waveform of Fig. 24.54, established by straight-
line approximations of the original waveform:
a. Determine the rise time.
b. Find the fall time.
c. Find the pulse width.
d. Calculate the frequency.

7. For the waveform of Fig. 24.55:
a. Determine the period.
b. Find the frequency.
c. Find the maximum and minimum amplitudes.

v

0 tVertical sensitivity  =  0.2 V/div.
Horizontal sensitivity  =  50 ms/div.

FIG. 24.55

Problems 7 and 15.

v (V)

0
t (ms)

8

7.5

2

0.2 0.4 1.8 2.0 3.4 3.6

FIG. 24.51

Problems 1, 8, and 12.

v (mV)

0

t (ms)

7

–1
4 7 12 15 20 23

FIG. 24.52

Problems 2 and 9.



SECTION 24.3 Pulse Repetition Rate and

Duty Cycle

8. Determine the pulse repetition frequency and duty cycle
for the waveform of Fig. 24.51.

9. Determine the pulse repetition frequency and duty cycle
for the waveform of Fig. 24.52.

10. Determine the pulse repetition frequency and duty cycle
for the waveform of Fig. 24.53.

SECTION 24.4 Average Value

11. For the waveform of Fig. 24.56, determine the
a. period.
b. pulse width.
c. pulse repetition frequency.
d. average value.
e. effective value.

12. Determine the average value of the periodic pulse wave-
form of Fig. 24.51.

13. To the best accuracy possible, determine the average
value of the waveform of Fig. 24.53.

14. Determine the average value of the waveform of Fig.
24.54.

15. Determine the average value of the periodic pulse train of
Fig. 24.55.

SECTION 24.5 Transient R-C Networks

16. The capacitor of Fig. 24.57 is initially charged to 5 V,
with the polarity indicated in the figure. The switch is
then closed at t � 0 s.
a. What is the mathematical expression for the voltage vC?
b. Sketch vC versus t.
c. What is the mathematical expression for the current iC?
d. Sketch iC versus t.

17. For the input voltage vi appearing in Fig. 24.58, sketch
the waveform for vo. Assume that steady-state conditions
were established with vi � 8 V.
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v (mV)

0

t (ms)

6

–2

3 9 11 17 191

FIG. 24.56

Problem 11.

FIG. 24.57

Problem 16.

R

10 k�

C 0.02 mF

iC

5 V

–

+–

+
vCE 20 V

FIG. 24.58

Problem 17.

18. The switch of Fig. 24.59 is in position 1 until steady-state
conditions are established. Then the switch is moved (at
t � 0 s) to position 2. Sketch the waveform for the volt-
age vC.

19. Sketch the waveform for iC for Problem 18.

R

2 k�

C 10 mF vo

+

–
vi

+

–

4 V

vi

0 t

8 V

R

1 k�

C 1000 mF

iC

–

+
vC

10 V 2 V

21

FIG. 24.59

Problems 18 and 19.



SECTION 24.6 R-C Response to 

Square-Wave Inputs

20. Sketch the voltage vC for the network of Fig. 24.60 due
to the square-wave input of the same figure with a fre-
quency of
a. 500 Hz.
b. 100 Hz.
c. 5000 Hz.
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R

5 k�

C 0.04 mF vc

+

–
vi

+

–

ic

20 V

vi

0 tT
2

T

FIG. 24.60

Problems 20, 21, 23, 24, 27, and 28.

21. Sketch the current iC for each frequency of Problem 20.

22. Sketch the response vC of the network of Fig. 24.60 to
the square-wave input of Fig. 24.61.

23. If the capacitor of Fig. 24.60 is initially charged to 20 V,
sketch the response vC to the same input signal (of Fig.
24.60) at a frequency of 500 Hz.

24. Repeat Problem 23 if the capacitor is initially charged to
�10 V.

SECTION 24.7 Oscilloscope Attenuator and

Compensating Probe

25. Given the network of Fig. 24.42 with Rp � 9 M� and Rs �
1 M�, find Vscope in polar form if Cp � 3 pF, Cs � 18 pF,
Cc � 9 pF, and vi � �2�(100) sin 2p10,000t. That is,
determine Zs and Zp, substitute into Eq. (24.8), and com-
pare the results obtained with Eq. (24.10). Is it verified
that the phase angle of Zs and Zp is the same under the
condition RpCp � RsCs?

26. Repeat Problem 25 at q � 105 rad/s.

SECTION 24.9 Computer Analysis

PSpice or Electronics Workbench

27. Using schematics, obtain the waveforms for vC and iC for
the network of Fig. 24.60 for a frequency of 1 kHz.

*28. Using schematics, place the waveforms of vi, vC, and iC
on the same printout for the network of Fig. 24.60 at a
frequency of 2 kHz.

*29. Using schematics, obtain the waveform appearing on the
scope of Fig. 24.37 with a 20-V pulse input at a fre-
quency of 5 kHz.

*30. Place a capacitor in parallel with Rp in Fig. 24.37 that
will establish an in-phase relationship between vscope and
vi. Using schematics, obtain the waveform appearing on
the scope of Fig. 24.37 with a 20-V pulse input at a fre-
quency of 5 kHz.

FIG. 24.61

Problem 22.

20 V
vi

tT
2

T

–20 V

f  =  500 Hz



Programming Language (C��, QBASIC, Pascal, etc.)

31. Given a periodic pulse train such as that in Fig. 24.11,
write a program to determine the average value, given the
base-line voltage, peak value, and duty cycle.

32. Given the initial and final values and the network param-
eters R and C, write a program to tabulate the values of
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vC at each time constant (of the first five) of the transient
phase.

33. For the case of T/2 < 5t, as defined by Fig. 24.29, write
a program to determine the values of vC at each half-
period of the applied square wave. Test the solution by
entering the conditions of Example 24.10.

GLOSSARY

Actual (true, practical) pulse A pulse waveform having a
leading edge and a trailing edge that are not vertical, along
with other distortion effects such as tilt, ringing, or over-
shoot.

Amplitude of a pulse waveform The peak-to-peak value of
a pulse waveform.

Attenuator probe A scope probe that will reduce the
strength of the signal applied to the vertical channel of a
scope.

Base-line voltage The voltage level from which a pulse is
initiated.

Compensated attenuator probe A scope probe that can
reduce the applied signal and balance the effects of the
input capacitance of a scope on the signal to be displayed.

Duty cycle Factor that reveals how much of a period is
encompassed by the pulse waveform.

Fall time (tf) The time required for the trailing edge of a
pulse waveform to drop from the 90% to the 10% level.

Ideal pulse A pulse waveform characterized as having verti-
cal sides, sharp corners, and a flat peak response.

Negative-going pulse A pulse that increases in the negative
direction from the base-line voltage.

Periodic pulse train A sequence of pulses that repeats itself
after a specific period of time.

Positive-going pulse A pulse that increases in the positive
direction from the base-line voltage.

Pulse repetition frequency (pulse repetition rate) The fre-
quency of a periodic pulse train.

Pulse train A series of pulses that may have varying heights
and widths.

Pulse width (tp) The pulse width defined by the 50% voltage
level.

Rise time (tr) The time required for the leading edge of a
pulse waveform to travel from the 10% to the 90% level.

Square wave A periodic pulse waveform with a 50% duty
cycle.

Tilt (droop, sag) The drop in peak value across the pulse
width of a pulse waveform.
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25.1 INTRODUCTION

Any waveform that differs from the basic description of the sinusoidal
waveform is referred to as nonsinusoidal. The most obvious and famil-
iar are the dc, square-wave, triangular, sawtooth, and rectified wave-
forms of Fig. 25.1.
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t

v
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FIG. 25.1

Common nonsinusoidal waveforms: (a) dc; (b) square-wave; (c) triangular; 
(d) sawtooth; (e) rectified.

The output of many electrical and electronic devices will be non-
sinusoidal, even though the applied signal may be purely sinusoidal.
For example, the network of Fig. 25.2 employs a diode to clip off the
negative portion of the applied signal in a process called half-wave rec-
tification, which is used in the development of dc levels from a sinu-
soidal input. You will find in your electronics courses that the diode is
similar to a mechanical switch, but it is different because it can conduct
current in only one direction. The output waveform is definitely non-
sinusoidal, but note that it has the same period as the applied signal and
matches the input for half the period.

Nonsinusoidal Circuits



This chapter will demonstrate how a nonsinusoidal waveform like
the output of Fig. 25.2 can be represented by a series of terms. You will
also learn how to determine the response of a network to such an input.

25.2 FOURIER SERIES

Fourier series refers to a series of terms, developed in 1826 by Baron
Jean Fourier (Fig. 25.3), that can be used to represent a nonsinusoidal
periodic waveform. In the analysis of these waveforms, we solve for
each term in the Fourier series:

(25.1)

Depending on the waveform, a large number of these terms may be
required to approximate the waveform closely for the purpose of circuit
analysis.

As shown in Eq. (25.1), the Fourier series has three basic parts. The
first is the dc term A0, which is the average value of the waveform over
one full cycle. The second is a series of sine terms. There are no restric-
tions on the values or relative values of the amplitudes of these sine
terms, but each will have a frequency that is an integer multiple of the
frequency of the first sine term of the series. The third part is a series of
cosine terms. There are again no restrictions on the values or relative
values of the amplitudes of these cosine terms, but each will have a fre-
quency that is an integer multiple of the frequency of the first cosine
term of the series. For a particular waveform, it is quite possible that all
of the sine or cosine terms are zero. Characteristics of this type can be
determined by simply examining the nonsinusoidal waveform and its
position on the horizontal axis.

The first term of the sine and cosine series is called the fundamen-
tal component. It represents the minimum frequency term required to
represent a particular waveform, and it also has the same frequency as
the waveform being represented. A fundamental term, therefore, must
be present in any Fourier series representation. The other terms with
higher-order frequencies (integer multiples of the fundamental) are
called the harmonic terms. A term that has a frequency equal to twice
the fundamental is the second harmonic; three times, the third har-
monic; and so on.
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FIG. 25.2

Half-wave rectifier producing a nonsinusoidal waveform.
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f (t) � A0 �   A1 sin �t � A2 sin 2�t � A3 sin 3�t � . . . � An sin n�t

dc or
average value

sine terms

�  B1 cos �t � B2 cos 2�t � B3 cos 3�t � . . .� Bn cos n�t

cosine terms

French (Auxerre, 
Grenoble, Paris)

(1768–1830)

Mathematician,

Egyptologist, and
Administrator

Professor of 

Mathematics,

École
Polytechnique

Courtesy of the 
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Best known for an infinite mathematical series of
sine and cosine terms called the Fourier series
which he used to show how the conduction of heat
in solids can be analyzed and defined. Although he
was primarily a mathematician, a great deal of
Fourier’s work revolved around real-world physical
occurrences such as heat transfer, sunspots, and the
weather. He joined the École Polytechnique in Paris
as a faculty member when the institute first opened.
Napoleon requested his aid in the research of Egyptian
antiquities, resulting in a three-year stay in Egypt as
Secretary of the Institut d’Égypte. Napoleon made
him a baron in 1809, and he was elected to the
Académie des Sciences in 1817.

FIG. 25.3

Baron Jean Fourier.
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Average Value: A0

The dc term of the Fourier series is the average value of the waveform
over one full cycle. If the net area above the horizontal axis equals that
below in one full period, A0 � 0, and the dc term does not appear in the
expansion. If the area above the axis is greater than that below over one
full cycle, A0 is positive and will appear in the Fourier series represen-
tation. If the area below the axis is greater, A0 is negative and will
appear with the negative sign in the expansion.

Odd Function (Point Symmetry)

If a waveform is such that its value for �t is the negative of that for
�t, it is called an odd function or is said to have point symmetry.

Figure 25.4(a) is an example of a waveform with point symmetry.
Note that the waveform has a peak value at t1 that matches the magni-
tude (with the opposite sign) of the peak value at �t1. For waveforms
of this type, all the parameters B1→∞ of Eq. (25.1) will be zero. In fact,

waveforms with point symmetry can be fully described by just the dc
and sine terms of the Fourier series.

Note in Fig. 25.4(b) that a sine wave is an odd function with point sym-
metry.
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f (t)
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Average value  =  0
(A0  =  0)
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(about this
point)

t1 t

(a)

t

(b)

f (t)

Sine wave

Point
symmetry

Average value  =  0
(A0  =  0)

0

FIG. 25.4

Point symmetry.

For both waveforms of Fig. 25.4, the following mathematical rela-
tionship is true:

(odd function) (25.2)

In words, it states that the magnitude of the function at �t is equal to
the negative of the magnitude at �t [t1 in Fig. 25.4(a)].

f(t) � �f(�t)
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FIG. 25.5

Axis symmetry.

Mirror or Half-Wave Symmetry

If a waveform has half-wave or mirror symmetry as demonstrated by
the waveform of Fig. 25.6, the even harmonics of the series of sine
and cosine terms will be zero.

In functional form the waveform must satisfy the following relation-
ship:

f (t)

–T T
2

– T
2

T 3
2T t0 t1

T
2

t1 +

FIG. 25.6

Mirror symmetry.

Even Function (Axis Symmetry)

If a waveform is symmetric about the vertical axis, it is called an even
function or is said to have axis symmetry.

Figure 25.5(a) is an example of such a waveform. Note that the value of
the function at t1 is equal to the value at �t1. For waveforms of this
type, all the parameters A1→∞ will be zero. In fact,

waveforms with axis symmetry can be fully described by just the dc
and cosine terms of the Fourier series.

Note in Fig. 25.5(b) that a cosine wave is an even function with axis
symmetry.

For both waveforms of Fig. 25.5, the following mathematical rela-
tionship is true:

(even function) (25.3)

In words, it states that the magnitude of the function is the same at �t1
as at �t [t1 in Fig. 25.5(a)].

f(t) � f(�t)
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f(t) � �f �t � �
T
2

�� (25.4)

Equation (25.4) states that the waveform encompassed in one time
interval T/2 will repeat itself in the next T/2 time interval, but in the
negative sense (t1 in Fig. 25.6). For example, the waveform of Fig. 25.6
from zero to T/2 will repeat itself in the time interval T/2 to T, but below
the horizontal axis.

Repetitive on the Half-Cycle

The repetitive nature of a waveform can determine whether specific har-
monics will be present in the Fourier series expansion. In particular,

if a waveform is repetitive on the half-cycle as demonstrated by the
waveform of Fig. 25.7, the odd harmonics of the series of sine and
cosine terms are zero.
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t1 t1 + T
2
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FIG. 25.7

A waveform repetitive on the half-cycle.

In functional form the waveform must satisfy the following relation-
ship:

f(t) � f �t � �
T
2

�� (25.5)

Equation (25.5) states that the function repeats itself after each T/2
time interval (t1 in Fig. 25.7). The waveform, however, will also repeat
itself after each period T. In general, therefore, for a function of this
type, if the period T of the waveform is chosen to be twice that of the
minimum period (T/2), the odd harmonics will all be zero.

Mathematical Approach

The constants A0, A1→n, B1→n can be determined by using the following
integral formulas:

A0 � �
T
1

� �T

0
f(t) dt (25.6)

An � �
T
2

� �T

0
f(t) sin nqt dt (25.7)
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Bn � �
T
2

� �T

0
f(t) cos nqt dt (25.8)

These equations have been presented for recognition purposes only;
they will not be used in the following analysis.

Instrumentation

There are three types of instrumentation available that will reveal the
dc, fundamental, and harmonic content of a waveform: the spectrum
analyzer, wave analyzer, and Fourier analyzer. The purpose of such
instrumentation is not solely to determine the composition of a particu-
lar waveform but also to reveal the level of distortion that may have
been introduced by a system. For instance, an amplifier may be increas-
ing the applied signal by a factor of 50, but in the process it may have
distorted the waveform in a way that is quite unnoticeable from the
oscilloscope display. The amount of distortion would appear in the form
of harmonics at frequencies that are multiples of the applied frequency.
Each of the above instruments would reveal which frequencies are hav-
ing the most impact on the distortion, permitting their removal with
properly designed filters.

The spectrum analyzer has the appearance of an oscilloscope, as
shown in Fig. 25.8, but rather than display a waveform that is voltage
(vertical axis) versus time (horizontal axis), it generates a display scaled
off in dB (vertical axis) versus frequency (horizontal axis). Such a dis-
play is said to be in the frequency domain versus the time domain of the
standard oscilloscope. The height of the vertical line in the display of
Fig. 25.8 reveals the impact of that frequency on the shape of the wave-
form. Spectrum analyzers are unable to provide the phase angle associ-
ated with each component.

The wave analyzer of Fig. 25.9 is a true rms voltmeter whose fre-
quency of measurement can be changed manually. In other words, the
operator works through the frequencies of interest, and the analog dis-
play will indicate the rms value of each harmonic component present.
Of course, once the fundamental component is determined, the operator
can quickly move through the possible harmonic levels. The wave ana-
lyzer, like the spectrum analyzer, is unable to provide the angle associ-
ated with the various components.

The Fourier analyzer of Fig. 25.10 is similar in many respects to
the spectrum analyzer except for its ability to investigate all the fre-
quencies of interest at one time. The spectrum analyzer must review
the signal one frequency at a time. The Fourier analyzer has the dis-
tinct advantage of being able to determine the phase angle of each
component.

The following examples will demonstrate the use of the equations
and concepts introduced thus far in this chapter.

NON

FIG. 25.8

Spectrum analyzer. (Courtesy of Hewlett
Packard)

FIG. 25.9

Wave analyzer. (Courtesy of Hewlett 
Packard)

FIG. 25.10

Fourier analyzer. (Courtesy of Hewlett
Packard)



FOURIER SERIES  1129

Solutions:

a. The waveform has a net area above the horizontal axis and therefore
will have a positive dc term A0.

The waveform has axis symmetry, resulting in only cosine terms
in the expansion.

The waveform has half-cycle symmetry, resulting in only even
terms in the cosine series.

b. The waveform has the same area above and below the horizontal 
axis within each period, resulting in A0 � 0.

The waveform has point symmetry, resulting in only sine terms
in the expansion.

EXAMPLE 25.2 Write the Fourier series expansion for the waveforms
of Fig. 25.12.

NON

tTT
2

0

10 V

e

tTT
2

5 mA

i

(a)

–5 mA

(b)

FIG. 25.11

Example 25.1.

v
20 V

0

(a)

t

i

t

Sinusoidal
waveform

5 mA

0

(b)

v

t0

Vav  =  8 V

20 V

(c)

FIG. 25.12

Example 25.2.

EXAMPLE 25.1 Determine which components of the Fourier series
are present in the waveforms of Fig. 25.11.
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Solutions:

a. A0 � 20 A1→n � 0 B1→n � 0
u � 20

b. A0 � 0 A1 � 5 � 10�3 A2→n � 0 B1→n � 0
i � 5 � 10�3 sin q t

c. A0 � 8 A1�n � 0 B1 � 12 B2→n � 0
u � 8 � 12 cos q t

EXAMPLE 25.3 Sketch the following Fourier series expansion:

v � 2 � 1 cos a � 2 sin a

Solution: Note Fig. 25.13.

NON

v

4

3

2

1

v  =  2 + 1 cos � + 2 sin �

26.57°

0

2 sin �

1 cos �

�  =  qt

2.236 V

2

FIG. 25.13

Example 25.3.

The solution could be obtained graphically by first plotting all of the
functions and then considering a sufficient number of points on the hor-
izontal axis; or phasor algebra could be employed as follows:

1 cos a � 2 sin a � 1 V �90° � 2 V �0° � j 1 V � 2 V
� 2 V � j 1 V � 2.236 V �26.57°
� 2.236 sin(a � 26.57°)

and v � 2 � 2.236 sin(a � 26.57°)

which is simply the sine wave portion riding on a dc level of 2 V. That
is, its positive maximum is 2 V � 2.236 V � 4.236 V, and its minimum
is 2 V � 2.236 V � �0.236 V.

EXAMPLE 25.4 Sketch the following Fourier series expansion:

i � 1 sin qt � 1 sin 2qt

Solution: See Fig. 25.14. Note that in this case the sum of the two
sinusoidal waveforms of different frequencies is not a sine wave. Recall
that complex algebra can be applied only to waveforms having the same
frequency. In this case the solution is obtained graphically point by
point, as shown for t � t1.
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As an additional example in the use of the Fourier series approach,
consider the square wave shown in Fig. 25.15. The average value is
zero, so A0 � 0. It is an odd function, so all the constants B1→n equal
zero; only sine terms will be present in the series expansion. Since the
waveform satisfies the criteria for f(t) � �f(t � T/2), the even har-
monics will also be zero.

NON

i
i  =  1 sin qt + 1 sin 2qt

qt

1 sin 2qt
t1
(i  =  0)1 sin qt

FIG. 25.14

Example 25.4.

v

0

Vm

–Vm

�
T
2

2 �t

Odd function with
half-wave symmetry

��

FIG. 25.15

Square wave.

The expression obtained after evaluating the various coefficients
using Eq. (25.8) is

v � �
p

4
� Vm�sin qt � �

1
3

� sin 3qt � �
1
5

� sin 5qt � �
1
7

� sin 7qt � ⋅ ⋅ ⋅ � �
1
n

� sin nqt� (25.9)

Note that the fundamental does indeed have the same frequency as that
of the square wave. If we add the fundamental and third harmonics, we
obtain the results shown in Fig. 25.16.

Even with only the first two terms, a few characteristics of the
square wave are beginning to appear. If we add the next two terms (Fig.
25.17), the width of the pulse increases, and the number of peaks
increases.
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As we continue to add terms, the series will better approximate the
square wave. Note, however, that the amplitude of each succeeding term
diminishes to the point at which it will be negligible compared with those
of the first few terms. A good approximation would be to assume that the
waveform is composed of the harmonics up to and including the ninth.
Any higher harmonics would be less than one-tenth the fundamental. If
the waveform just described were shifted above or below the horizontal
axis, the Fourier series would be altered only by a change in the dc term.
Figure 25.18(c), for example, is the sum of Fig. 25.18(a) and (b). The
Fourier series for the complete waveform is, therefore,

v � v1 � v2 � Vm � Eq. (25.9)

� Vm � Vm�sin qt � sin 3qt � sin 5qt � sin 7qt � ⋅ ⋅ ⋅�1
�
7

1
�
5

1
�
3

4
�
p

NON

v

Vm

4
pVm

0

Fundamental

Fundamental + third harmonic

4
p

Vm
3

T
2

p

2

p
3
2

p
(T) 2p qt

Third harmonic

.

FIG. 25.16

Fundamental plus third harmonic.

v

Vm

Number of peaks  =  number of terms added

Fundamental + 3rd, 5th, 7th harmonics

Square wave

0 p
2

p 3
2

p 2p qt

FIG. 25.17

Fundamental plus third, fifth, and seventh harmonics.
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and v � Vm�1 � �sin qt � sin 3qt � sin 5qt � sin 7qt � ⋅ ⋅ ⋅��1
�
7

1
�
5

1
�
3

4
�
p

NON

v2 � 0.318Vm � 0.500Vm sin a � 0.212Vm cos 2a � 0.0424Vm cos 4a � ⋅ ⋅ ⋅

=+
v

2Vm

0 � �t

(c)

v2

0 �

Vm

–Vm
�t

(b)

v1

0

Vm

�t

(a)

� � �3�2�3�2�

FIG. 25.18

Shifting a waveform vertically with the addition of a dc term.

(a)

v1

a0
Vm
2

–

+

(b)

v2

a0

Vm

p

(c)

vT

a0
Vm
2

–

= Vm
2 p

2p 3p

3p2 p

FIG. 25.19

Lowering a waveform with the addition of a negative dc component.

The waveform in Fig. 25.19(c) is the sum of the two in Fig. 25.19(a) and
(b). The Fourier series for the waveform of Fig. 25.19(c) is, therefore,

vT � v1 � v2 � � � Eq. (25.10)
Vm
�
2

(25.10)

� �0.500Vm � 0.318Vm � 0.500Vm sin a � 0.212Vm cos 2a � 0.0424Vm cos 4a � ⋅ ⋅ ⋅

and vT � �0.182Vm � 0.5Vm sin a � 0.212Vm cos 2a � 0.0424Vm cos 4a � ⋅ ⋅ ⋅

If either waveform were shifted to the right or left, the phase shift
would be subtracted from or added to, respectively, the sine and cosine
terms. The dc term would not change with a shift to the right or left.

If the half-wave rectified signal is shifted 90° to the left, as in Fig.
25.20, the Fourier series becomes

v

p
2

– p
2

0 p 2p3
2

p 5
2

p 3p �

Vm

FIG. 25.20

Changing the phase angle of a waveform.

The equation for the half-wave rectified pulsating waveform of Fig.
25.19(b) is
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25.3 CIRCUIT RESPONSE TO A
NONSINUSOIDAL INPUT

The Fourier series representation of a nonsinusoidal input can be
applied to a linear network using the principle of superposition. Recall
that this theorem allowed us to consider the effects of each source of a
circuit independently. If we replace the nonsinusoidal input with the
terms of the Fourier series deemed necessary for practical considera-
tions, we can use superposition to find the response of the network to
each term (Fig. 25.21).

NON

v � 0.318Vm  � 0.500Vm sin(� � 90°) � 0.212Vm cos 2(� � 90°) � 0.0424Vm cos 4(� � 90°) � •   •   •

   � 0.318Vm  � 0.500Vm cos � � 0.212Vm cos(2� � 180°) � 0.0424Vm cos(4� � 360°) � •   •   •

   v � 0.318Vm  � 0.500Vm cos � � 0.212Vm cos 2� � 0.0424Vm cos 4�� •   •   •

cos �

and

e  =  A0 + A1 sin � + . . . + An sin n� + . . .
+ B1 cos � + . . . + Bn cos n� + . . .

+

–

e
Linear

network
Linear network

+

–
A1 sin �

+
–

+

–
An sin n�

+

–
B1 cos �

+

–
Bn cos n�

A0

FIG. 25.21

Setting up the application of a Fourier series of terms to a linear network.

The total response of the system is then the algebraic sum of the val-
ues obtained for each term. The major change between using this theo-
rem for nonsinusoidal circuits and using it for the circuits previously
described is that the frequency will be different for each term in the
nonsinusoidal application. Therefore, the reactances

XL � 2pfL and XC �

will change for each term of the input voltage or current.
In Chapter 13, we found that the rms value of any waveform was

given by

�� ��
T

0
�f 2�(t�)�d�t�

If we apply this equation to the following Fourier series:

1
�
T

1
�
2pfC
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v(a) � V0 � Vm1
sin a � ⋅ ⋅ ⋅ � Vmn

sin na � V ′m1
cos a � ⋅ ⋅ ⋅ � V ′mn

cos na

NON

then

Vrms � �V�2
0������ (25.11)

However, since

� � � � � � (V1rms
)(V1rms

) � V2
1rms

then

Vm1�
�2	

Vm1�
�2	

V2
m1�
2

V2
m1

� ⋅ ⋅ ⋅ � V2
mn

� V ′2m1
� ⋅ ⋅ ⋅ � V ′2mn

����
2

i(a) � I0 � Im1
sin a � ⋅ ⋅ ⋅ � Imn

sin na � I′m1
cos a � ⋅ ⋅ ⋅ � I′mn

cos na

we have

Irms � �I2
0� ����� (25.13)

and

Irms � �I2
0	 �	 I	2

1r
	

ms
	�	 ⋅	 ⋅	 ⋅	 �	 I	2

nr
	

ms
	�	 I	′21	

rm
	

s
	�	 ⋅	 ⋅	 ⋅	 �	 I	′2n	

rm
	

s
	 (25.14)

The total power delivered is the sum of that delivered by the corre-
sponding terms of the voltage and current. In the following equations,
all voltages and currents are rms values:

(25.15)

(25.16)

or (25.17)

with Irms as defined by Eq. (25.13), and, similarly,

(25.18)

with Vrms as defined by Eq. (25.11).

EXAMPLE 25.5

a. Sketch the input resulting from the combination of sources in Fig.
25.22.

PT � �
V

R

2
rms�

PT � I2
rmsR

PT � I2
0 R � I2

1 R � ⋅ ⋅ ⋅ � I2
n R � ⋅ ⋅ ⋅

PT � V0 I0 � V1 I1 cos v1 � ⋅ ⋅ ⋅ � Vn In cos vn � ⋅ ⋅ ⋅

I2
m1

� ⋅ ⋅ ⋅ � I2
mn

� I′2m1
� ⋅ ⋅ ⋅ � I′2mn����

2

v

+

4 V
–

+

–

6 sin �t�

FIG. 25.22

Example 25.5.

Vrms � �V	2
0	�	 V	2

1r
	

ms
	�	 ⋅	 ⋅	 ⋅	 �	 V	2

nr
	

ms
	 �	 V	′ 2

1	
rm
	

s
	�	 ⋅	 ⋅	 ⋅	 �	 V	′ 2

n	
rm
	

s
	 (25.12)

Similarly, for
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NON

b. Determine the rms value of the input of Fig. 25.22.

Solutions:

a. Note Fig. 25.23.
b. Eq. (25.12):

Vrms � �V�2
0�����

� �(4� V�)2� ���� � �1�6� ���� V � �3	4	 V

� 5.831 V

It is particularly interesting to note from Example 25.5 that the rms
value of a waveform having both dc and ac components is not simply
the sum of the effective values of each. In other words, there is a temp-
tation in the absence of Eq. (25.12) to state that Vrms � 4 V � 0.707
(6 V) � 8.242 V, which is incorrect and, in fact, exceeds the correct
level by some 41%.

Instrumentation

It is important to realize that not every DMM will read the rms value of
nonsinusoidal waveforms such as the one appearing in Fig. 25.23.
Many are designed to read the rms value of sinusoidal waveforms only.
It is important to read the manual provided with the meter to see if it is
a true rms meter that can read the rms value of any waveform.

We learned in Chapter 13 that the rms value of a square wave is the
peak value of the waveform. Let us test this result using the Fourier
expansion and Eq. (25.11).

EXAMPLE 25.6 Determine the rms value of the square wave of Fig.
25.15 with Vm � 20 V using the first six terms of the Fourier expansion,
and compare the result to the actual rms value of 20 V.

Solution:

36
�
2

(6 V)2

�
2

V2
m

�
26 V

4 V

v  =  4 V + 6 sin qt

0 qt

FIG. 25.23

Wave pattern generated by the source of
Fig. 25.22.

v � (20 V) sin qt � � �(20 V) sin 3qt � � �(20 V) sin 5qt � � �(20 V) sin 7qt
1
�
7

4
�
p

1
�
5

4
�
p

1
�
3

4
�
p

4
�
p

� � �(20 V) sin 9qt � � �(20 V) sin 11qt

v � 25.465 sin qt � 8.488 sin 3qt � 5.093 sin 5qt � 3.638 sin 7qt � 2.829 sin 9qt � 2.315 sin 11 qt

1
�
11

4
�
p

1
�
9

4
�
p

��(0� V�)2� �������
� 19.66 V

Vrms � �V�2
0������V2

m1
� V2

m2
� V2

m3
� V2

m4
� V2

m5
� V2

m6����
2

The solution differs less than 0.4 V from the correct answer of 20 V.
However, each additional term in the Fourier series will bring the result
closer to the 20-V level. An infinite number would result in an exact
solution of 20 V.

Eq. (25.11):

(25.465 V)2 � (8.488 V)2 � (5.093 V)2 � (3.638 V)2 � (2.829 V)2 � (2.315 V)2

���������
2
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NON

EXAMPLE 25.7 The input to the circuit of Fig. 25.24 is the fol-
lowing:

e � 12 � 10 sin 2t

a. Find the current i and the voltages vR and vC.
b. Find the rms values of i, vR, and vC.
c. Find the power delivered to the circuit.

Solutions:

a. Redraw the original circuit as shown in Fig. 25.25. Then apply
superposition:

e

vR

R  =  3 �
+

–
C  = F1

8 vC

i

FIG. 25.24

Example 25.7.

10 sin 2t

vR

R  =  3 �

+

–

vC

i+
–

XC  = 1
�C

1
(2 rad/s)(  F)= 1

8
=  4 �

12 V

FIG. 25.25

Circuit of Fig. 25.24 with the components of the Fourier series input.

1. For the 12-V dc supply portion of the input, I � 0 since the
capacitor is an open circuit to dc when vC has reached its final
(steady-state) value. Therefore,

VR � IR � 0 V and VC � 12 V

2. For the ac supply,

Z � 3 � � j 4 � � 5 � ��53.13°

and I � � � A ��53.13°

VR � (I �v)(R �0°) � � A ��53.13°�(3 � �0°)

� V ��53.13°
6

�
�2	

2
�
�2	

2
�
�2	

�
�
10

2	
� V �0°

——
5 � ��53.13°

E
�
Z

and

VC � (I �v)(XC ��90°) � � A ��53.13°� (4 � ��90°)

� V ��36.87°

In the time domain,

i � 0 � 2 sin(2t � 53.13°)

Note that even though the dc term was present in the expression
for the input voltage, the dc term for the current in this circuit is
zero:

vR � 0 � 6 sin(2 t � 53.13°)

and vC � 12 � 8 sin(2 t � 36.87°)

8
�
�2	

2
�
�2	
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b. Eq. (25.14): Irms � �(0�)2� ���� � �2	 V � 1.414 A

Eq. (25.12): VRrms
� �(0�)2� ���� � �1	8	 V � 4.243 V

Eq. (25.12): VCrms
� �(1�2� V�)2� ���� � �1	7	6	 V � 13.267 V

c. P � I2
rmsR � � A�

2

(3 �) � 6 W

EXAMPLE 25.8 Find the response of the circuit of Fig. 25.26 to the
input shown.

2
�
�2	

(8 V)2

�
2

(6 V)2

�
2

(2 A)2

�
2

NON

e

vR

R  =  6 �
+

–
vL

i

L  =  0.1 H

q  =  377 rad/s

Em  =  200

0 p 2p 3p qt

(b)

(a)

e

FIG. 25.26

Example 25.8.

e � 0.318Em � 0.500Em sin qt � 0.212Em cos 2qt � 0.0424Em cos 4qt � ⋅ ⋅ ⋅

Solution: For discussion purposes, only the first three terms will be
used to represent e. Converting the cosine terms to sine terms and sub-
stituting for Em gives us

e � 63.60 � 100.0 sin qt � 42.40 sin(2qt � 90°)

Using phasor notation, the original circuit becomes like the one shown
in Fig. 25.27. 

VR

6 �

+ –

I1 I2

L  =  0.1 H VL

+

–

I0
E0  =  63.6 V

+

–

E1  =  70.71 V ∠ 0°
+

–

E2  =  29.98 V ∠9 0°
+

–

q  =  377 rad/s

2q  =  754 rad/s

ZT

FIG. 25.27

Circuit of Fig. 25.26 with the components of the Fourier series input.

Applying Superposition For the dc term (E0 � 63.6 V):

XL � 0 (short for dc)

ZT � R �0° � 6 � �0°

I0 � � � 10.60 A

VR0
� I0R � E0 � 63.60 V

VL0
� 0

The average power is

P0 � I2
0R � (10.60 A)2(6 �) � 674.2 W

For the fundamental term (E1 � 70.71 V �0°, q � 377):

XL1
� qL � (377 rad/s)(0.1 H) � 37.7 �

63.6 V
�

6 �
E0�
R
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ZT1
� 6 � � j 37.7 � � 38.17 � �80.96°

I1 � � � 1.85 A ��80.96°

VR1
� (I1 �v)(R �0°) � (1.85 A ��80.96°)(6 � �0°)

� 11.10 V ��80.96°

VL1
� (I1 �v)(XL1 

�90°) � (1.85 A ��80.96°)(37.7 � �90°)

� 69.75 V �9.04°

The average power is

P1 � I2
1R � (1.85 A)2(6 �) � 20.54 W

For the second harmonic (E2 � 29.98 V ��90°, q � 754): The
phase angle of E2 was changed to �90° to give it the same polarity as
the input voltages E0 and E1.

XL2
� qL � (754 rad/s)(0.1 H) � 75.4 �

ZT2
� 6 � � j 75.4 � � 75.64 � �85.45°

I2 � � � 0.396 A ��174.45°

VR2
� (I2 �v)(R �0°) � (0.396 A ��174.45°)(6 � �0°)

� 2.38 V ��174.45°

VL2
� (I2 �v)(XL2 

�90°) � (0.396 A ��174.45°)(75.4 � �90°)

� 29.9 V ��84.45°

The average power is

P2 � I2
2R � (0.396 A)2(6 �) � 0.941 W

The Fourier series expansion for i is

29.98 V ��90°
��
75.64 � �85.45

E2�
ZT2

70.71 V �0°
��
38.17 � �80.96°

E1�
ZT1

NON

i � 10.6 � �2	(1.85) sin(377t � 80.96°) � �2	(0.396) sin(754t � 174.45°)

and

Irms � �(1	0	.6	 A	)2	 �	 (	1	.8	5	 A	)2	 �	 (	0	.3	9	6	 A	)2	 � 10.77 A

The Fourier series expansion for vR is

vR � 63.6 � �2	(11.10) sin(377t � 80.96°) � �2	(2.38) sin(754t � 174.45°)

and

VRrms
� �(6	3	.6	 V	)2	 �	 (	1	1	.1	0	 V	)2	 �	 (	2	.3	8	 V	)2	 � 64.61 V

The Fourier series expansion for vL is

vL � �2	(69.75) sin(377t � 9.04°) � �2	(29.93) sin(754t � 84.45°)

and VLrms
� �(6	9	.7	5	 V	)2	 �	 (	2	9	.9	3	 V	)2	 � 75.90 V

The total average power is

PT � I 2
rmsR � (10.77 A)2(6 �) � 695.96 W � P0 � P1 � P2

25.4 ADDITION AND SUBTRACTION OF
NONSINUSOIDAL WAVEFORMS

The Fourier series expression for the waveform resulting from the addi-
tion or subtraction of two nonsinusoidal waveforms can be found using
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phasor algebra if the terms having the same frequency are considered
separately.

For example, the sum of the following two nonsinusoidal waveforms
is found using this method:

v1 � 30 � 20 sin 20t � ⋅ ⋅ ⋅ � 5 sin(60t � 30°)

v2 � 60 � 30 sin 20t � 20 sin 40t � 10 cos 60t

1. dc terms:

VT0
� 30 V � 60 V � 90 V

2. q � 20:

VT1(max)
� 30 V � 20 V � 50 V

and vT1
� 50 sin 20t

3. q � 40:

vT2
� 20 sin 40t

4. q � 60:

5 sin(60t � 30°) � (0.707)(5) V �30° � 3.54 V �30°

10 cos 60t � 10 sin(60t � 90°) ⇒ (0.707)(10) V �90°
� 7.07 V �90°

VT3
� 3.54 V �30° � 7.07 V �90°
� 3.07 V � j 1.77 V � j 7.07 V � 3.07 V � j 8.84 V

VT3
� 9.36 V �70.85°

and vT3
� 13.24 sin(60t � 70.85°)

with

NON

vT � v1 � v2 � 90 � 50 sin 20t � 20 sin 40t � 13.24 sin(60t � 70.85°)

25.5 COMPUTER ANALYSIS

PSpice

Fourier Series The computer analysis will begin with a verification
of the waveform of Fig. 25.17, demonstrating that only four terms of a
Fourier series can generate a waveform that has a number of character-
istics of a square wave. The square wave has a peak value of 10 V at a
frequency of 1 kHz, resulting in the following Fourier series using Eq.
(25.9) (and recognizing that q � 2pf � 6283.19 rad/s):

v � (10 V)(sin qt � sin 3qt � sin 5qt � sin 7qt)

v � 12.732 sin qt � 4.244 sin 3qt � 2.546 sin 5qt � 1.819 sin 7qt

Each term of the Fourier series is treated as an independent ac source
as shown in Fig. 25.28 with its peak value and applicable frequency.
The sum of the source voltages will appear across the resistor R and
will generate the waveform of Fig. 25.29.

Each source used VSIN, and since we wanted to display the result
against time, we chose Time Domain(Transient) in the Simulation
Settings. For each source the Property Editor dialog box was called
up, and AC, FREQ, PHASE, VAMPL, and VOFF (at 0 V) were set,
although due to limited space only VAMPL, FREQ, and PHASE were

1
�
7

1
�
5

1
�
3

4
�
p
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FIG. 25.28

Using PSpice to apply four terms of the Fourier expansion of a 10-V square
wave to a load resistor of 1 k �.

FIG. 25.29

The resulting waveform of the voltage across the resistor R of Fig. 25.28.
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displayed in Fig. 25.28. Under Display the remaining quantitites were
all set on Do Not Display.

The Run to time was set at 2 ms so that two cycles of the funda-
mental frequency of 1 kHz would appear. The Start saving data after
will remain at the default value of 0 s, and the Maximum step size will
be 1 ms, even though 2 ms/1000 � 2 ms, because we want to have addi-
tional plot points for the complex waveform. Once the SCHEMATIC1
window appears, Trace-Add Trace-V(R:1)-OK will result in the wave-
form of Fig. 25.29. The horizontal line at 0 V was made heavier by
right-clicking on the line, selecting Properties, and then choosing the
green color and wider line. Click OK, and the wider line of Fig. 25.29
will result, making it a great deal clearer where the 0-V line is located.
Through the same process the curve was made yellow and wider as
shown in the same figure. Using the cursors, we find that the first peak
will reach 11.84 V and then drop to 8.920 V. The average value of the
waveform is clearly �10 V in the positive region as shown by the red
line entered using Plot-Label-Line. In every respect the waveform is
certainly beginning to have the characteristics of a periodic square wave
with a peak value of 10 V and a frequency of 1 kHz.

Fourier Components A frequency spectrum plot revealing the
magnitude and frequency of each component of a Fourier series can be
obtained by returning to Plot and selecting Axis Settings followed by
X Axis and then Fourier under Processing Options. Click OK, and a
number of spikes will appear on the far left of the screen, with a fre-
quency spectrum that extends from 0 Hz to 600 kHz. By selecting Plot-
Axis Settings again, going to Data Range, and selecting User Defined,

NON

FIG. 25.30

The Fourier components of the waveform of Fig. 25.29.



PROBLEMS

SECTION 25.2 Fourier Series

1. For the waveforms of Fig. 25.31, determine whether the
following will be present in the Fourier series representa-
tion:
a. dc term
b. cosine terms
c. sine terms
d. even-ordered harmonics
e. odd-ordered harmonics

NON

PROBLEMS  1143

you can change the range to 0 Hz to 10 kHz since this is the range of
interest for this waveform. Click OK, and the graph of Fig. 25.30
will result, giving the magnitude and frequency of the components of
the waveform. Using the left cursor, we find that the highest peak is
12.738 V at 1 kHz, comparing very well with the source V1 having a
peak value of 12.732 V at 1 kHz. Using the right-click cursor, we can
move over to 3 kHz and find a magnitude of 4.246 V, again comparing
very well with source V2 with a peak value of 4.244 V.

f (t)

–T T
2

– T
2

0 T t

Am

Am

(I)

f (t)

tT
2

– T
2

0 T

(II)

f (t)

–T 0 T t

A1

(III)

A2
3
4 T

T
4

T
4

–3
4

– T

f (t)

0 t

Am

(IV)

Am

T2
3 T

T
3

T
3

–

FIG. 25.31

Problem 1.
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2. If the Fourier series for the waveform of Fig. 25.32(a) is

i � �1 � cos 2qt � cos 4qt � cos 6qt � ⋅ ⋅ ⋅�2
�
35

2
�
15

2
�
3

2Im�
p

find the Fourier series representation for waveforms (b)
through (d).

(a)
0

i

tω

Im

(b)
0

i

tω

Im

0

(c)

Im—–
2

Im—–
2

tω

(d)

0

i i

tω

Im

FIG. 25.32

Problem 2.

3. Sketch the following nonsinusoidal waveforms with a �
qt as the abscissa:
a. v � �4 � 2 sin a b. v � (sin a)2

c. i � 2 � 2 cos a

4. Sketch the following nonsinusoidal waveforms with a as
the abscissa:
a. i � 3 sin a � 6 sin 2a

b. v � 2 cos 2a � sin a

5. Sketch the following nonsinusoidal waveforms with qt as
the abscissa:
a. i � 50 sin qt � 25 sin 3qt
b. i � 50 sin a � 25 sin 3a

c. i � 4 � 3 sin qt � 2 sin 2qt � 1 sin 3qt

SECTION 25.3 Circuit Response to a

Nonsinusoidal Input

6. Find the average and effective values of the following
nonsinusoidal waves:
a. v � 100 � 50 sin qt � 25 sin 2qt
b. i � 3 � 2 sin(qt � 53°) � 0.8 sin(2qt � 70°)

7. Find the rms value of the following nonsinusoidal waves:
a. v � 20 sin qt � 15 sin 2qt � 10 sin 3qt
b. i � 6 sin(qt � 20°) � 2 sin(2qt � 30°)

� 1 sin(3qt � 60°)

8. Find the total average power to a circuit whose voltage
and current are as indicated in Problem 6.
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e

vR

R  =  12 �
+

–
vL

i

L  =  0.02 H

FIG. 25.33

Problems 10, 11, and 12.

e

vR

R  =  15 �
+

–
vC

i

C  =  125 mF

FIG. 25.34

Problem 13.

9. Find the total average power to a circuit whose voltage
and current are as indicated in Problem 7.

10. The Fourier series representation for the input voltage to
the circuit of Fig. 25.33 is

e � 18 � 30 sin 400t

a. Find the nonsinusoidal expression for the current i.
b. Calculate the rms value of the current.
c. Find the expression for the voltage across the resistor.
d. Calculate the rms value of the voltage across the resis-

tor.
e. Find the expression for the voltage across the reactive

element.
f. Calculate the rms value of the voltage across the reac-

tive element.
g. Find the average power delivered to the resistor.

11. Repeat Problem 10 for

e � 24 � 30 sin 400t � 10 sin 800t

12. Repeat Problem 10 for the following input voltage:

e � �60 � 20 sin 300t � 10 sin 600t

13. Repeat Problem 10 for the circuit of Fig. 25.34.

*14. The input voltage of Fig. 25.35(a) to the circuit of Fig.
25.35(b) is a full-wave rectified signal having the follow-
ing Fourier series expansion:

e
100 V

p
2

– 0 p
2

3
2p qt

(a)

1 k�0.1 H
+
vo

–

1 mF

+
e
–

(b)

e � �1 � cos 2qt � cos 4qt � cos 6qt � ⋅ ⋅ ⋅�2
�
53

2
�
15

2
�
3

(2)(100 V)
��

p

where q � 377.

a. Find the Fourier series expression for the voltage vo

using only the first three terms of the expression.
b. Find the rms value of vo.
c. Find the average power delivered to the 1-k� resistor.

FIG. 25.35

Problem 14.

200 �1.2 mH
+
vo

–

200 mF

i

(b)

i

(a)

0 p 2p 3p
q
t–p

q  =  377
10 mA

FIG. 25.36

Problem 15.

*15. Find the Fourier series expression for the voltage vo of
Fig. 25.36.
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SECTION 25.4 Addition and Subtraction

of Nonsinusoidal Waveforms

16. Perform the indicated operations on the following non-
sinusoidal waveforms:
a.
[60 � 70 sin qt � 20 sin(2qt � 90°) � 10 sin(3qt � 60°)]
� [20 � 30 sin qt � 20 cos 2qt � 5 cos 3qt]
b.
[20 � 60 sin a � 10 sin(2a � 180°) � 5 cos(3a � 90°)]
� [5 � 10 sin a � 4 sin(3a � 30°)]

17. Find the nonsinusoidal expression for the current is of the
diagram of Fig. 25.37.

i2 � 10 � 30 sin 20t � 0.5 sin(40t � 90°)

i1 � 20 � 4 sin(20t � 90°) � 0.5 sin(40t � 30°)

i1

is

i2

FIG. 25.37

Problem 17.

e
+

–

v1+ –

v2

+

–

FIG. 25.38

Problem 18.

18. Find the nonsinusoidal expression for the voltage e of the
diagram of Fig. 25.38.

v1 � 20 � 200 sin 600t � 100 cos 1200t � 75 sin 1800t

v2 � �10 � 150 sin(600t � 30°) � 50 sin(1800t � 60°)

SECTION 25.5 Computer Analysis

PSpice or Electronics Workbench

19. Plot the waveform of Fig. 25.13 for two or three cycles.
Then obtain the Fourier components, and compare them
to the applied signal.

20. Plot a half-rectified waveform with a peak value of 20 V
using Eq. (25.10). Use the dc term, the fundamental term,
and four harmonics. Compare the resulting waveform to
the ideal half-rectified waveform.

21. Demonstrate the effect of adding two more terms to the
waveform of Fig. 25.29, and generate the Fourier spec-
trum.

Computer Language (C��, QBASIC, Pascal, etc.)

22. Write a program to obtain the Fourier expansion resulting
from the addition of two nonsinusoidal waveforms.

23. Write a program to determine the sum of the first 10
terms of Eq. (25.9) at qt � p/2, p, and (3/2)p, and com-
pare your results to the values determined by Fig. 25.15.
That is, enter Eq. (25.9) into memory, and calculate the
sum of the terms at the points listed above.
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24. Given any nonsinusoidal function, write a program that
will determine the average and rms values of the wave-
form. The program should request the data required from
the nonsinusoidal function.

25. Write a program that will provide a general solution for
the network of Fig. 25.24 for a single dc and ac term in

GLOSSARY

Axis symmetry A sinusoidal or nonsinusoidal function that
has symmetry about the vertical axis.

Even harmonics The terms of the Fourier series expansion
that have frequencies that are even multiples of the funda-
mental component.

Fourier series A series of terms, developed in 1826 by Baron
Jean Fourier, that can be used to represent a nonsinusoidal
function.

Fundamental component The minimum frequency term re-
quired to represent a particular waveform in the Fourier se-
ries expansion.

Half-wave (mirror) symmetry A sinusoidal or nonsinu-
soidal function that satisfies the relationship 

f (t) � �f � � t�T
�
2

Harmonic terms The terms of the Fourier series expansion
that have frequencies that are integer multiples of the fun-
damental component.

Nonsinusoidal waveform Any waveform that differs from
the fundamental sinusoidal function.

Odd harmonics The terms of the Fourier series expansion
that have frequencies that are odd multiples of the funda-
mental component.

Point symmetry A sinusoidal or nonsinusoidal function that
satisfies the relationship f(a) � �f(�a).

the applied voltage. In other words, the parameter values
are given along with the particulars regarding the applied
signal, and the nonsinusoidal expression for the current
and each voltage is generated by the program.
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26.1 INTRODUCTION

The growing number of packaged systems in the electrical, electronic,
and computer fields now requires that some form of system analysis
appear in the syllabus of the introductory course. Although the content
of this chapter will be a surface treatment at best, the material will
introduce a number of important terms and techniques employed in the
system analysis approach. The increasing use of packaged systems is
quite understandable when we consider the advantages associated with
such structures: reduced size, sophisticated and tested design, reduced
construction time, reduced cost compared to discrete designs, and so
forth. The use of any packaged system is limited solely to the proper
utilization of the provided terminals of the system. Entry into the inter-
nal structure is not permitted, which also eliminates the possibility of
repair to such systems.

System analysis includes the development of two-, three-, or multi-
port models of devices, systems, or structures. The emphasis in this
chapter will be on the configuration most frequently subject to model-
ing techniques: the two-port system of Fig. 26.1.

Device,
system,

structure,
etc.

1

1′

2

2′

FIG. 26.1

Two-port system.

System Analysis:
An Introduction
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1′,2′(a)

1 Single-
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configuration

2′2

4′4

3′
3Multiport

configuration

21

1′

1

1′

(b)
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Note that in Fig. 26.1 there are two ports of entry or interest, each
having a pair of terminals. For some devices, the two-port network of
Fig. 26.1 may appear as shown in Fig. 26.2(a). The block diagram of
Fig. 26.2(a) simply indicates that terminals 1′ and 2′ are in common,
which is a particular case of the general two-port network. A single-
port network and a multiport network appear in Fig. 26.2(b). The for-
mer has been analyzed throughout the text, while the characteristics of
the latter will be touched on in this chapter, with a more extensive cov-
erage left for a more advanced course.

The latter part of this chapter introduces a set of equations (and,
subsequently, networks) that will allow us to model the device or sys-
tem appearing within the enclosed structure of Fig. 26.1. That is, we
will be able to establish a network that will display the same terminal
characteristics as those of the original system, device, and so on. In
Fig. 26.3, for example, a transistor appears between the four external
terminals. Through the analysis to follow, we will find a combination
of network elements that will allow us to replace the transistor with a
network that will behave very much like the original device for a spe-
cific set of operating conditions. Methods such as mesh and nodal
analysis can then be applied to determine any unknown quantities. The
models, when reduced to their simplest forms as determined by the
operating conditions, can also provide very quick estimates of network
behavior without a lengthy mathematical derivation. In other words,
someone well-versed in the use of models can analyze the operation of
large, complex systems in short order. The results may be only
approximate in most cases, but this quick return for a minimum of
effort is often worthwhile.

The analysis of this chapter is limited to linear (fixed-value) systems
with bilateral elements. Three sets of parameters are developed for the
two-port configuration, referred to as the impedance (z), admittance
(y), and hybrid (h) parameters. Table 26.1 at the end of the chapter
relates the three sets of parameters.

26.2 THE IMPEDANCE PARAMETERS Zi AND Zo

For the two-port system of Fig. 26.4, Zi is the input impedance
between terminals 1 and 1′, and Zo is the output impedance between
terminals 2 and 2′. For multiport networks an impedance level can be
defined between any two (adjacent or not) terminals of the network.

The input impedance is defined by Ohm’s law in the following
form:

FIG. 26.2

(a) Two-port system; (b) single-port system
and multiport system.

B

1

1′

2

2′
E

C

FIG. 26.3

Two-port transistor configuration.

FIG. 26.4

Defining Zi and Zo.

1

1′

2

2′

Ei Eo

Ii Io

ZoZi

Two-port
system

+

–

+

–
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(ohms, �) (26.1)

with Ii the current resulting from the application of a voltage Ei.
The output impedance Zo is defined by

Ei � 0 V

(ohms, �) (26.2)

with Io the current resulting from the application of a voltage Eo to the
output terminals, with Ei set to zero.

Note that both Ii and Io are defined as entering the package. This is
common practice for a number of system analysis methods to avoid
concern about the actual direction for each current and also to define Zi

and Zo as positive quantities in Eqs. (26.1) and (26.2), respectively. If Io

were chosen to be leaving the system, Zo as defined in Eq. (26.2) would
have to have a negative sign.

An experimental setup for determining Zi for any two input termi-
nals is provided in Fig. 26.5. The sensing resistor Rs is chosen small
enough not to disturb the basic operation of the system or to require too
large a voltage Eg to establish the desired level of Ei. Under operating
conditions, the voltage across Rs is Eg � Ei, and the current through the
sensing resistor is

IRs
� �

But Ii � IRs
and Zi � �

Ei
�
IRs

Ei
�
Ii

Eg � Ei
�

Rs

VRs�
Rs

Zo � �
E
Io

o
�

Zi � �
E
Ii

i
�

FIG. 26.5

Determining Zi.

Ei

IRs
Rs

VRs Ii

+

–

+

–

Eg

Zi

Two-port
system

The sole purpose of the sensing resistor, therefore, was to determine Ii

using purely voltage measurements.
As we progress through this chapter, keep in mind that we cannot

use an ohmmeter to measure Zi or Zo since we are dealing with ac sys-
tems whose impedance may be sensitive to the applied frequency. Ohm-
meters can be used to measure resistance in a dc or an ac network, but
recall that ohmmeters are employed only on a de-energized network,
and their internal source is a dc battery.

The output impedance Zo can be determined experimentally using the
setup of Fig. 26.6. Note that a sensing resistor is introduced again, with
Eg being an applied voltage to establish typical operating conditions. In
addition, note that the input signal must be set to zero, as defined by Eq.
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(26.2). The voltage across the sensing resistor is Eg � Eo, and the current
through the sensing resistor is

IRs
� �

but Io � IRs
and Zo � �

Eo
�
IRs

Eo
�
Io

Eg � Eo
�

Rs

VRs�
Rs

Two-port
system

VRs

Rs

Ei  =  0 V

+

–

Eo

Zo

IRs

Eg

+

–

+–
Io

FIG. 26.6

Determining Zo.

For the majority of situations, Zi and Zo will be purely resistive, result-
ing in an angle of zero degrees for each impedance. The result is that either
a DMM or a scope can be used to find the required magnitude of the
desired quantity. For instance, for both Zi and Zo, VRs

can be measured
directly with the DMM, as can the required levels of Eg, Ei, or Eo. The cur-
rent for each case can then be determined using Ohm’s law, and the imped-
ance level can be determined using either Eq. (26.1) or Eq. (26.2).

If we use an oscilloscope, we must be more sensitive to the common
ground requirement. For instance, in Fig. 26.4, Eg and Ei can be mea-
sured with the oscilloscope since they have a common ground. Trying
to measure VRs

directly with the ground of the oscilloscope at the top
input terminal of Ei would result in a shorting effect across the input
terminals of the system due to the common ground between the supply
and oscilloscope. If the input impedance of the system is “shorted out,”
the current Ii can rise to dangerous levels because the only resistance in
the input circuit is the relatively small sensing resistor Rs. If we use the
DMM to avoid concern about the grounding situation, we must be sure
that the meter is designed to operate properly at the frequency of inter-
est. Many commercial units are limited to a few kilohertz.

If the input impedance has an angle other than zero degrees (purely
resistive), a DMM cannot be used to find the reactive component at the
input terminals. The magnitude of the total impedance will be correct if
measured as described above, but the angle from which the resistive and
reactive components can be determined will not be provided. If an
oscilloscope is used, the network must be hooked up as shown in Fig.
26.7. Both the voltage Eg and VRs

can be displayed on the oscilloscope
at the same time, and the phase angle between Eg and VRs

can be deter-
mined. Since VRs

and Ii are in phase, the angle determined will also be
the angle between Eg and Ii. The angle we are looking for is between Ei

and Ii, not between Eg and Ii, but since Rs is usually chosen small
enough, we can assume that the voltage drop across Rs is so small com-
pared to Eg that Ei � Eg. Substituting the peak, peak-to-peak, or rms
values from the oscilloscope measurements, along with the angle just
determined, will permit a determination of the magnitude and angle for
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Zi, from which the resistive and reactive components can be determined
using a few basic geometric relationships. The reactive nature (induc-
tive or capacitive) of the input impedance can be determined when the
angle between Ei and Ii is computed. For a dual-trace oscilloscope, if
Eg leads VRs

(Ei leads Ii), the network is inductive; if the reverse is true,
the network is capacitive.

To determine the angle associated with Zo, the sensing resistor must
again be moved to the bottom to form a common ground with the sup-
ply Eg. Then, using the approximation Eg � Eo, the magnitude and
angle of Zo can be determined.

EXAMPLE 26.1 Given the DMM measurements appearing in Fig.
26.8, determine the input impedance Zi for the system if the input
impedance is known to be purely resistive.

Solution:

VRs
� Eg � Ei � 100 mV � 96 mV � 4 mV

Ii � IRs
� � � 40 mA

Zi � Ri � �
E

Ii

i
� � �

9

4

6

0

m

mA

V
� � 2.4 k�

EXAMPLE 26.2 Using the provided DMM measurements of Fig.
26.9, determine the output impedance Zo for the system if the output
impedance is known to be purely resistive.

4 mV
�
100 �

VRs�
Rs

FIG. 26.7

Determining Zi using an oscilloscope.

Ei

Ii

Rs

Ii

+

–

Eg
Two-port
system

+

+

– –

RedBlack

Red

Black

Channel 2: VRsChannel 1: Es

Share common
ground

Ei  =  96 mV

100 �

Rs

+

–

+

–

Eg

Zi

Two-port
system100 mV

FIG. 26.8

Example 26.1.

Two-port
system

Rs

2 k�

Ei  =  0 V

+

–

Zo

Eo  =  1.92 V 2 V

+

–

Eg

FIG. 26.9

Example 26.2.
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Solution:

VRs
� Eg � Eo � 2 V � 1.92 V � 0.08 V � 80 mV

Io � IRs
� � � 40 mA

Zo � �
E

Io

o
� � �

1

4

.

0

92

mA

V
� � 48 k�

EXAMPLE 26.3 The input characteristics for the system of Fig.
26.10(a) are unknown. Using the oscilloscope measurements of Fig.
26.10(b), determine the input impedance for the system. If a reactive
component exists, determine its magnitude and whether it is inductive
or capacitive.

80 mV
�
2 k�

VRs�
Rs

Ei

Zi

Rs

+

–

Eg
Two-port
system

+

+

–
–

Channel 2

10 �Channel 1

50 mV ∠ 0°
(p-p)

(a)

150°

VRs

Eg

   Eg: Vertical sensitivity  =  10 mV/div.
VRs

: Vertical sensitivity  =  1 mV/div.

(b)

FIG. 26.10

Example 26.3.

Solution: The magnitude of Zi:

Ii( p-p) � IRs( p-p)
� � � 200 mA

Zi � � � �
2

5

0

0

0

m

m

V

A
� � 250 �

The angle of Zi: The phase angle between Eg and VRs
(or IRs

� Ii) is

180° � 150° � 30°

with Eg leading Ii, so the system is inductive. Therefore,

Zi � 250 � �30°

� 216.51 � � j 125 � � R � j XL

Eg
�
Ii

Ei
�
Ii

2 mV
�
10 �

VRs( p-p)
�

Rs
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26.3 THE VOLTAGE GAINS AvNL
, Av, AND AvT

The voltage gain for the two-port system of Fig. 26.11 is defined by

(26.3)

The capital letter A in the notation was chosen from the term amplifi-
cation factor, with the subscript v selected to specify that voltage levels
are involved. The subscript NL reveals that the ratio was determined
under no-load conditions; that is, a load was not applied to the output
terminals when the gain was determined. The no-load voltage gain is
the gain typically provided with packaged systems since the applied
load is a function of the application.

The magnitude of the ratio can be determined using a DMM or an
oscilloscope. The oscilloscope, however, must be used to determine the
phase shift between the two voltages.

In Fig. 26.12 a load has been introduced to establish a loaded gain
that will be denoted simply as Av and defined by

(26.4)Av � �
E
E

o

i
�

with RL

AvNL
� �

E
E

o

i
�

FIG. 26.11

Defining the no-load gain AvNL.

+

–

+

–

EoEi AvNL

Ei

Rg

+

–

+

–

Eg Av
Eo

+

–

RL VL  =  Eo

+

–

FIG. 26.12

Defining the loaded voltage gain Av (and AvT
).

For all two-port systems the loaded gain Av will always be less than
the no-load gain.

In other words, the application of a load will always reduce the gain
below the no-load level.

A third voltage gain can be defined using Fig. 26.12 since it has an
applied voltage source with an associated internal resistance—a situa-
tion often encountered in electronic systems. The total voltage gain of
the system is represented by AvT

and is defined by

(26.5)

It is the voltage gain from the source Eg to the output terminals Eo. Due
to loss of signal voltage across the source resistance,

the voltage gain AvT
is always less than the loaded voltage gain Av or

unloaded gain AvNL
.

AvT
� �

E
E

o

g
�
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If we expand Eq. (26.5) as follows:

AvT
� � (1) � � � � ⋅

then AvT
� Av (if loaded)

or AvT
� AvNL

(if unloaded)

The relationship between Ei and Eg can be determined from Fig.
26.12 if we recognize that Ei is across the input impedance Zi and thus
apply the voltage divider rule as follows:

Ei �

or �

Substituting into the above relationships will result in

(if loaded) (26.6)

(if unloaded) (26.7)

A two-port equivalent model for an unloaded system based on the
definitions of Zi, Zo, and AvNL

is provided in Fig. 26.13. Both Zi and Zo

appear as resistive values since this is typically the case for most elec-
tronic amplifiers. However, both Zi and Zo can have reactive compo-
nents and not invalidate the equivalency of the model.

AvT
� AvNL

�
Zi �

Zi

Rg
�

AvT
� Av�Zi �

Zi

Rg
�

Zi
�
Zi � Rg

Ei
�
Eg

Zi(Eg)
�
Zi � Rg

Ei
�
Eg

Ei
�
Eg

Ei
�
Eg

Eo
�
Ei

Ei
�
Ei

Eo
�
Eg

Eo
�
Eg

Eo
�
Eg

+

–

+

–

I2Ii

Ei EoZi Ri

Zo

Ro

+

–
AvNL

Ei

FIG. 26.13

Equivalent model for two-port amplifier.

The input impedance is defined by Zi � Ei /Ii and the voltage Eo �
AvNL

Ei in the absence of a load, resulting in AvNL
� Eo/Ei as defined.

The output impedance is defined with Ei set to zero volts, resulting in
AvNL

Ei � 0 V, which permits the use of a short-circuit equivalent for the
controlled source. The result is Zo � Eo/Io, as defined, and the parame-
ters and structure of the equivalent model are validated.

If a load is applied as in Fig. 26.14, an application of the voltage
divider rule will result in

Eo

Ro

+

–

RL

+

–

AvNL
Ei

FIG. 26.14

Applying a load to the output of Fig. 26.13.
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Eo �

and (26.8)

For any value of RL or Ro, the ratio RL /(RL � Ro) must be less than
1, mandating that Av is always less than AvNL

as stated earlier. Further,

for a fixed output impedance (Ro), the larger the load resistance (RL),
the closer the loaded gain to the no-load level.

An experimental procedure for determining Ro can be developed if
we solve Eq. (26.8) for the output impedance Ro:

Av � AvNL

or Av(RL � Ro) � RLAvNL

AvRL � AvRo � RLAvNL

and AvRo � RLAvNL
� AvRL

with Ro �

or (26.9)

Equation (26.9) reveals that the output impedance Ro of an amplifier
can be determined by first measuring the voltage gain Eo/Ei without a
load in place to find AvNL

and then measuring the gain with a load RL to
find Av. Substitution of AvNL

, Av, and RL into Eq. (26.9) will then pro-
vide the value for Ro.

EXAMPLE 26.4 For the system of Fig. 26.15(a) employed in the
loaded amplifier of Fig. 26.15(b):

Ro � RL��
A

A

v

v

NL� � 1�

RL(AvNL
� Av)

��
Av

RL
�
RL � Ro

Av � �
E
E

o

i
� � AvNL

�
RL

R

�
L

Ro
�

RL(AvNL
Ei)

��
RL � Ro

+

–

+

–

Ei  =  4 mV AvNL

(a)

Eo  =  –20 V Ei

Rg

+

–

Eg Eo

+

–

RL VL

+

–
Av

1 k�

Zi  =  1 k�

(b)

2.2 k�

Zo =  50 k�

FIG. 26.15

Example 26.4.

a. Determine the no-load voltage gain AvNL
.

b. Find the loaded voltage gain Av.
c. Calculate the loaded voltage gain AvT

.
d. Determine Ro from Eq. (26.9), and compare it to the specified value

of Fig. 26.15.
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Solutions:

a. AvNL
� � � �5000

�20 V
�
4 mV

Eo
�
Ei

� (�5000)(0.0421) � �210.73

c. AvT
� Av � (�210.73)� �1 k�

��
1 k� � 1 k�

Zi
�
Zi � Rg

Ei

Rg

+

–

Eg Eo

+

–

RLAv

Zi Zo

Ig Ii

+

–

Io

FIG. 26.16

Defining Ai and AiT.

� (�210.73)� � � �105.36

d. Ro � RL� � 1� � 2.2 k�� � 1�
� 2.2 k�(23.727 � 1) � 2.2 k�(22.727)

� 50 k� as specified

26.4 THE CURRENT GAINS Ai AND AiT
, AND

THE POWER GAIN AG

The current gain of two-port systems is typically calculated from volt-
age levels. A no-load gain is not defined for current gain since the
absence of RL requires that Io � Eo /RL � 0 A and Ai � Io /Ii � 0.

For the system of Fig. 26.16, however, a load has been applied,
and

Io � �

with Ii �
Ei
�
Zi

Eo
�
RL

�5000
�
�210.73

AvNL
�
Av

1
�
2

Note the need for a minus sign when Io is defined, because the
defined polarity of Eo would establish the opposite direction for Io

through RL.
The loaded current gain is

Ai � � � � � �Zi
�
RL

Eo
�
Ei

�Eo/RL
�

Ei /Zi

Io
�
Ii

b. Av � AvNL
� (�5000)� �2.2 k�

��
2.2 k� � 50 k�

RL
�
RL � Ro
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and (26.10)

In general, therefore, the loaded current gain can be obtained
directly from the loaded voltage gain and the ratio of impedance levels,
Zi over RL.

If the ratio AiT � Io/Ig were required, we would proceed as follows:

Io � �

with Ii �

and AiT � � � �� �� �

or (26.11)

The result obtained with Eq. (26.10) or (26.11) will be the same
since Ig � Ii, but the option of which gain is available or which you
choose to use is now available.

Returning to Fig. 26.13 (repeated in Fig. 26.17), an equation for the
current gain can be determined in terms of the no-load voltage gain.

AiT
� �

I

I
o

g
� � �AvT��

Rg

R

�

L

Zi
��

Rg � Zi
�

RL

Eo
�
Eg

�Eo/RL
��
Eg /(Rg � Zi)

Io
�
Ig

Eg
�
Rg � Zi

Eo
�
RL

Ai � �Av�
R

Z

L

i
�

+

–

+

–

IoIi

Ei EoRi

Ro

+

–
AvNL

Ei RL

FIG. 26.17

Developing an equation for Ai in terms of AvNL
.

Through Ohm’s law:

Io � �

but Ei � IiRi

and Io � �

so that (26.12)

The result is an equation for the loaded current gain of an amplifier
in terms of the nameplate no-load voltage gain and the resistive ele-
ments of the network.

Ai � �
I
I
o

i
� � �AvNL

�
RL

R

�
i

Ro
�

AvNL
(IiRi)

��
RL � Ro

AvNL
Ei

�
RL � Ro
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Recall an earlier conclusion that the larger the value of RL, the larger
the loaded voltage gain. For current levels, Equation (26.12) reveals that

the larger the level of RL, the less the current gain of a loaded
amplifier.

In the design of an amplifier, therefore, one must balance the desired
voltage gain with the current gain and the resulting ac output power
level.

For the system of Fig. 26.17, the power delivered to the load is
determined by E2

o/RL, whereas the power delivered at the input termi-
nals is E2

i /Ri. The power gain is therefore defined by

AG � � � � � �
2

and (26.13)

Expanding the conclusion,

AG � (Av)�Av � � (Av)(�Ai)

so (26.14)

Don’t be concerned about the minus sign. Av or Ai will be negative
to ensure that the power gain is positive, as obtained from Eq. (26.13).

If we substitute Av � �AiRL/Ri [from Eq. (26.10)] into Eq. (26.14),
we will find

AG � �AvAi � �� �Ai

or (26.15)

which has a format similar to that of Eq. (26.13), but now AG is given
in terms of the current gain of the system.

The last power gain to be defined is the following:

AGT
� � � � � �

2

� �

or (26.16)

Expanding:

AGT
� AvT�AvT

�
Rg

R

�

L

Ri
��

and (26.17)AGT
� �AvT

AiT

AGT
� A2

vT��
Rg

R

�

L

Ri
��

Rg � Ri
�

RL

Eo
�
Eg

E2
o/RL

��
E2

g /(Rg � Ri)

E2
o/RL

�
EgIg

PL
�
Pg

AG � A2
i �
R

R
L

i
�

�AiRL
�

Ri

AG � �AvAi

Ri
�
RL

AG � A2
v�
R

R

L

i
�

Ri
�
RL

Eo
�
Ei

Ri
�
RL

E2
o

�
E2

i

E2
o/RL

�
E2

i /Ri

Po
�
Pi
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EXAMPLE 26.5 Given the system of Fig. 26.18 with its nameplate
data:

Rg

Eg Eo

+

–

RL  =  4.7 k�
AvNL

  =  –960
Zi  =  2.7 k�
Zo  =  40 k�

Ig

+

–

Io

Ei

+

–

Ii

1 k�

FIG. 26.18

Example 26.5.

a. Determine Av.
b. Calculate Ai.
c. Increase RL to double its current value, and note the effect on Av and

Ai.
d. Find AiT.
e. Calculate AG.
f. Determine Ai from Eq. (26.1), and compare it to the value obtained

in part (b).

Solutions:

a. Av � AvNL
� (�960)� � � �100.94

b. Ai � �AvNL
� �(�960)� � � 57.99

c. RL � 2(4.7 k�) � 9.4 k�

Av � AvNL� � � (�960)� �
� �182.67 versus �100.94, which is a significant increase

Ai � �AvNL� � � �(�960)� �
� 52.47 versus 57.99

which is a drop in level but not as significant as the change in Av.
d. AiT � Ai � 57.99 as obtained in part (b)

However, AiT � �AvT� �
� ��Av �� �
� �Av � �(�100.94)� �
� 57.99 as well

e. AG � A2
v � (100.94)2� � � 5853.19

2.7 k�
�
4.7 k�

Ri
�
RL

2.7 k�
�
4.7 k�

Ri
�
RL

(Rg � Ri)
��

RL

Ri
��
(Ri � Rg)

Rg � Ri
�

RL

2.7 k�
��
40 k� � 9.4 k�

Ri
�
RL � Ro

9.4 k�
��
9.4 k� � 40 k�

RL
�
RL � Ro

2.7 k�
��
4.7 k� � 40 k�

Ri
�
RL � Ro

4.7 k�
��
4.7 k� � 40 k�

RL
�
RL � Ro
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f. AG � �AvAi

or Ai � � �

� 57.99 as found in part (b)

26.5 CASCADED SYSTEMS

When considering cascaded systems, as in Fig. 26.19, the most impor-
tant fact to remember is that

the equations for cascaded systems employ the loaded voltage and
current gains for each stage and not the nameplate unloaded levels.

(5853.19)
��
(�100.94)

AG
�
Av

RL

Ii1

Ei1
Eo3

+

–

Io3

Eo1
  =  Ei2

Eo2
  =  Ei3

Zi1
Zi2

Zi3

+

–

Av3
, Ai3

Av2
, Ai2

Av1
, Ai1

FIG. 26.19

Cascaded system.

Too often the labeled no-load gains are employed, resulting in enor-
mous overall gains and unreasonably high expectations for the system.
In addition, bear in mind that the input impedance of stage 3 may affect
the input impedance of stage 2 and, therefore, the load on stage 1.

In general, therefore, the equations for cascaded systems initially
appear to offer a high level of simplicity to the analysis. Simply be
aware, however, that each term of the overall equations must be care-
fully evaluated before using the equation.

The total voltage gain for the system of Fig. 26.19 is

(26.18)

where, as noted above, the amplification factor of each stage is deter-
mined under loaded conditions.

The total current gain for the system of Fig. 26.19 is

(26.19)

where, again, the gain of each stage is determined under loaded (con-
nected) conditions.

The current gain between any two stages can also be determined
using an equation developed earlier in the chapter. For cascaded sys-
tems, the equation has the following general format:

(26.20)

where Av is the loaded voltage gain corresponding to the desired loaded
current gain. That is, if the gain is from the first to the third stages, then

Ai � Av�
R

Z

L

i
�

AiT � Ai1 ⋅ Ai2 ⋅ Ai3

AvT
� Av1

⋅ Av2
⋅ Av3
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the voltage gain substituted is also from the first to third stages. The
input impedance Zi is for the first stage of interest, and RL is the load-
ing on the last stage of interest.

For example, for the three-stage amplifier of Fig. 26.19,

AiT � AvT

whereas for the first two stages

A′ i � A ′v

where A′ i � and A′v �

The total power gain is determined by

(26.21)

whereas the gain between specific stages is simply the product of the
voltage and current gains for each section. For example, for the first two
stages of Fig. 26.19,

A′G � A′v2
⋅ A′ i2

where A′v2
� Av1

⋅ Av2
and A′i2

� Ai1 ⋅ Ai2

EXAMPLE 26.6 For the cascaded system of Fig. 26.20, with its
nameplate no-load parameters:

AGT
� AvT

AiT

Eo2
�
Ei1

Io2
�
Ii1

Zi1
�
Zi3

Zi1
�
RL

–

+

Ei1

Ii1

AvNL
  =  1

Zi  =  50 k�
Zo  =  25 �

Eo2
  =  Ei3

–

+

Io

Eo1
  =  Ei2 3.3 k�Eo3

RL

AvNL
  =  –600

Zi  =  1.8 k�
Zo  =  40 k�

AvNL
  =  –1200

Zi  =  1.2 k�
Zo  =  50 k�

–

+

–

+

FIG. 26.20

Example 26.6.

a. Determine the load voltage and current gain for each stage, and
redraw the system of Fig. 26.20 with the loaded parameters.

b. Calculate the total voltage and current gain.
c. Find the total power gain of the system using Eq. (26.21).
d. Calculate the voltage and current gain for the first two stages using

Eqs. (26.18) and (26.19).
e. Determine the current gain for the first two stages using Eq. (26.20),

and compare your answer with the result of part (d).
f. Calculate the power gain for the first two stages using Eq. (26.21).
g. Determine the power gain for the first two stages using Eq. (26.13).

Compare this answer with the result of part (f ).
h. Calculate the incorrect voltage gain for the entire system using Eq.

(26.18) and the no-load nameplate level for each stage. Compare this
answer to the result of part (b).
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Solutions:

a. Av1
� AvNL1

� AvNL1
� (1)

� 0.986

Av2
� AvNL2

� (�600) � �17.476

Av3
� AvNL3

� (�1200) � �74.296

Ai1 � �AvNL
� �AvNL1

� �(1)

� �27.397

Ai2 � �AvNL2
� �(�600) � 26.214

Ai3 � �AvNL3
� �(�1200) � 27.017

Note Fig. 26.21.

1.2 k�
��
3.3 k� � 50 k�

Zi3
�
RL � Ro3

1.8 k�
��
1.2 k� � 40 k�

Zi2
�
Zi3 � Ro2

50 k�
��
1.8 k� � 25 �

Zi1
�
Zi2 � Ro1

Ri
�
RL � Ro

3.3 k�
��
3.3 k� � 50 k�

RL
�
RL � Ro3

1.2 k�
��
1.2 k� � 40 k�

Zi3
�
Zi3 � Ro2

1.8 k�
��
1.8 k� � 25 �

Zi2
�
Zi2 � Ro1

RL
�
RL � Ro

–

+

Ei1

Ii1

Av1
  =  0.986

Ai 1 
 =  –27.397 Eo2

  =  Ei3

–

+

Io

Eo1
  =  Ei2

Eo3
RL  =  3.3 k�

Av2
  =  –17.476

Ai 2 
 =  26.214

Av3
  =  –74.296

Ai 3 
 =  27.017

FIG. 26.21

Solution to Example 26.6.

b. AvT
� � Av1

⋅ Av2
⋅ Av3

� (0.986)(�17.476)(�74.296)

� 1280.22

AiT � � Ai1 ⋅ Ai2 ⋅ Ai3 � (�27.397)(26.214)(27.017)

� �19,403.20

c. AGT
� �AvT

⋅ AiT � �(1280.22)(�19,403.20) � 24.84 � 106

d. A′v2
� Av1

⋅ Av2
� (0.986)(�17.476) � �17.231

A′ i2 � Ai1 ⋅ Ai2 � (�27.397)(26.214) � �718.185

e. A′ i2 � Av � A′v2
� (�17.231)

� �717.958 versus �718.185

with the difference due to the level of accuracy carried through the
calculations.

f. A′G2
� A′v2

⋅ A′ i2 � (�17.231)(�718.185) � 12,375.05

g. A′G2
� A2

v � (A′v2
)2 � (�17.231)2 � 12,371.14

50 k�
�
1.2 k�

Ri1
�
Zi3

Ri
�
RL

50 k�
�
1.2 k�

Zi1
�
Zi 3

Zi
�
RL

Io3
�
Ii1

Eo3
�
Ei1
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+

–

E2

+

–

I1 I2
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h. AvT
� Av1

⋅ Av2
⋅ Av3

� (1)(�600)(�1200) � 7.2 � 105

720,000 : 1280.22 � 562.40 : 1
which is certainly a significant difference in results.

26.6 IMPEDANCE (z) PARAMETERS

For the two-port configuration of Fig. 26.22, four variables are speci-
fied. For most situations, if any two are specified, the remaining two
variables can be determined. The four variables can be related by the
following equations:

(26.22a)

(26.22b)

The impedance parameters z11, z12, and z22 are measured in ohms.
To model the system, each impedance parameter must be determined

by setting a particular variable to zero.

z11

For z11, if I2 is set to zero, as shown in Fig. 26.23, Equation (26.22a)
becomes

E1 � z11I1 � z12(0)

and
I2 � 0

(ohms, �) (26.23)

Equation (26.23) reveals that with I2 set to zero, the impedance param-
eter is determined by the resulting ratio of E1 to I1. Since E1 and I1 are both
input quantities, with I2 set to zero, the parameter z11 is formally referred
to in the following manner:

z11 � open-circuit, input-impedance parameter

z12

For z12, I1 is set to zero, and Equation (26.22a) results in

I2 � 0

(ohms, �) (26.24)

For most systems where input and output quantities are to be com-
pared, the ratio of interest is usually that of the output quantity divided
by the input quantity. In this case, the reverse is true, resulting in the
following:

z12 � open-circuit, reverse-transfer impedance parameter

The term transfer is included to indicate that z12 will relate an input
and output quantity (for the condition I1 � 0). The network configura-
tion for determining z12 is shown in Fig. 26.24.

z12 � �
E
I2

1
�

z11 � �
E
I1

1
�

E2 � z21I1 � z22I2

E1 � z11I1 � z12I2

FIG. 26.22

Two-port impedance parameter configuration.

E1

+

–

I1 I2  =  0

System

FIG. 26.23

Determining z11.

E1

+

–

I2I1  =  0

System E2

+

–

FIG. 26.24

Determining z12.
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For an applied source E2, the ratio E1/I2 will determine z12 with I1

set to zero.

z21

To determine z21, set I2 to zero and find the ratio E2/I1 as determined by
Eq. (26.22b). That is,

I2 � 0

(ohms, �) (26.25)

In this case, input and output quantities are again the determining
variables, requiring the term transfer in the nomenclature. However, the
ratio is that of an output to an input quantity, so the descriptive term
forward is applied, and

z21 � open-circuit, forward-transfer impedance parameter

The determining network is shown in Fig. 26.25. For an applied
voltage E1, it is determined by the ratio E2/I1 with I2 set to zero.

z22

The remaining parameter, z22, is determined by

I1 � 0

(ohms, �) (26.26)

as derived from Eq. (26.22b) with I1 set to zero. Since it is the ratio of
the output voltage to the output current with I1 set to zero, it has the ter-
minology

z22 � open-circuit, output-impedance parameter

The required network is shown in Fig. 26.26. For an applied voltage
E2, it is determined by the resulting ratio E2/I2 with I1 � 0.

EXAMPLE 26.7 Determine the impedance (z) parameters for the T
network of Fig. 26.27.

Solution: For z11, the network will appear as shown in Fig. 26.28,
with Z1 � 3 � �0°, Z2 � 5 � �90°, and Z3 � 4 � ��90°:

I1 �

Thus z11 �
I2 � 0

and (26.27)

For z12, the network will appear as shown in Fig. 26.29, and

E1 � I2Z3

z11 � Z1 � Z3

E1
�
I1

E1
�
Z1 � Z3

z22 � �
E
I2

2
�

z21 � �
E
I1

2
�

E1

+

–

I1 I2  =  0

System E2

+

–

FIG. 26.25

Determining z21.

I2I1  =  0

System E2

+

–

FIG. 26.26

Determining z22.

1
R

3 �

4 �

1′

XL

5 �

XC

2

2′

FIG. 26.27

T configuration.
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Thus z12 �
I1 � 0

�

and (26.28)

For z21, the required network appears in Fig. 26.30, and

E2 � I1Z3

Thus, z21 �
I2 � 0

�

and (26.29)

For z22, the determining configuration is shown in Fig. 26.31, and

I2 �

Thus z22 �
I1 � 0

�

and (26.30)

Note that for the T configuration, z12 � z21. For Z1 � 3 � �0°, 
Z2 � 5 � �90°, and Z3 � 4 � ��90°, we have

z11 � Z1 � Z3 � 3 � � j 4 �

z12 � z21 � Z3 � 4 � ��90° � �j 4 �

z22 � Z2 � Z3 � 5 � �90° � 4 � ��90° � 1 � �90° � j 1 �

For a set of impedance parameters, the terminal (external) behavior
of the device or network within the configuration of Fig. 26.22 is deter-
mined. An equivalent circuit for the system can be developed using the
impedance parameters and Eqs. (26.22a) and (26.22b). Two possibili-
ties for the impedance parameters appear in Fig. 26.32.

Applying Kirchhoff’s voltage law to the input and output loops of
the network of Fig. 26.32(a) results in

E1 � z11I1 � z12I2 � 0

and E2 � z22I2 � z21I1 � 0

z22 � Z2 � Z3

I2(Z2 � Z3)
��

I2

E2
�
I2

E2
�
Z2 � Z3

z21 � Z3

I1Z3
�

I1

E2
�
I1

z12 � Z3

I2Z3
�

I2

E1
�
I2

1

1′

E1

+

–

I1 I2  =  0
2

2′

Z2Z1

Z3

FIG. 26.28

Determining z11.

1

1′

E1

+

–

I1  =  0 I2

2

2′

Z2Z1

Z3 E2

+

–

E1

+

–

FIG. 26.29

Determining z12.

1

1′

E1

+

–

I1
I2   =  0

2

2′

Z2Z1

Z3

+

–

E2

+

–

E2

FIG. 26.30

Determining z21.

1

1′

I1  =  0 I2

2

2′

Z2Z1

Z3 E2

+

–

FIG. 26.31

Determining z22.
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which, when rearranged, become

E1 � z11I1 � z12I2 E2 � z21I1 � z22I2

matching Eqs. (26.22a) and (26.22b).
For the network of Fig. 26.32(b),

E1 � I1(z11 � z12) � z12(I1 � I2) � 0

and E2 � I1(z21 � z12) � I2(z22 � z12) � z12(I1 � I2) � 0

which, when rearranged, are

E1 � I1(z11 � z12 � z12) � I2z12

E2 � I1(z21 � z12 � z12) � I2(z22 � z12 � z12)

and E1 � z11I1 � z12I2

E2 � z21I1 � z22I2

Note in each network the necessity for a current-controlled voltage
source, that is, a voltage source the magnitude of which is determined
by a particular current of the network.

The usefulness of the impedance parameters and the resulting equiv-
alent networks can best be described by considering the system of Fig.
26.33(a), which contains a device (or system) for which the impedance

I11

+

1′

–

E1

I2 2

+

2′

–

E2z21I
1

z12I2

+

–

+

–

z11 z22

I11

+

1′

–

E1

I2 2

+

2′

–

E2

+
z11 – z12 z22 – z12

–

(z21 – z12)I1

z12

(b)(a)

FIG. 26.32

Two possible two-port, z-parameter equivalent networks.

1

1′

2

2′

+

–

Device,
network,
system

(z)

1

1′

2

2′

+

–

z11

I1 I2

z21I1z12I2

+

–

+

–

z22

(b)(a)

FIG. 26.33

Substitution of the z-parameter equivalent network into a complex system.
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26.7 ADMITTANCE (y) PARAMETERS

The equations relating the four terminal variables of Fig. 26.22 can also
be written in the following form:

(26.31a)

(26.31b)

Note that in this case each term of each equation has the units of cur-
rent, compared to voltage for each term of Eqs. (26.22a) and (26.22b).
In addition, the unit of each coefficient is siemens, compared with the
ohm for the impedance parameters.

The impedance parameters were determined by setting a particular
current to zero through an open-circuit condition. For the admittance
(y) parameters of Eqs. (26.31a) and (26.31b), a voltage is set to zero
through a short-circuit condition.

The terminology applied to each of the admittance parameters fol-
lows directly from the descriptive terms applied to each of the
impedance parameters. The equations for each are determined
directly from Eqs. (26.31a) and (26.31b) by setting a particular volt-
age to zero.

I2 � y21E1 � y22E2

I1 � y11E1 � y12E2

+

–

+

–

I2I1

E1 E2

R

3 �

+

–
4I1 ∠ –90°

2

2′

+

–
4I2 ∠ –90°

1

1′

XC

4 �

XL

1 �

FIG. 26.34

Example 26.8.

parameters have been determined. As shown in Fig. 26.33(b), the equiv-
alent network for the device (or system) can then be substituted, and
methods such as mesh analysis, nodal analysis, and so on, can be
employed to determine required unknown quantities. The device itself
can then be replaced with an equivalent circuit and the desired solutions
obtained more directly and with less effort than is required using only
the characteristics of the device.

EXAMPLE 26.8 Draw the equivalent circuit in the form shown in Fig.
26.32(b) using the impedance parameters determined in Example 26.7.

Solution: The circuit appears in Fig. 26.34.
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y11

E2 � 0
(siemens, S) (26.32)

y11 � short-circuit, input-admittance parameter

The determining network appears in Fig. 26.35.

y11 � �
E
I1

1
�

E1 E2  =  0

+

–
System

I1

1

1′

2

2′

I2

FIG. 26.35

y11 determination.

y12

E1 � 0
(siemens, S) (26.33)

y12 � short-circuit, reverse-transfer admittance parameter

The network for determining y12 appears in Fig. 26.36.

y12 � �
E
I1

2
�

E2E1  =  0

+

–
System

I1

2

2′

1

1′

I2

FIG. 26.36

y12 determination.

y21

E2 � 0
(siemens, S) (26.34)

y21 � short-circuit, forward-transfer admittance parameter

The network for determining y21 appears in Fig. 26.37.

y21 � �
E
I2

1
�

E1 E2  =  0

+

–
System

I1

1

1′

2

2′

I2

FIG. 26.37

y21 determination.



The determining network for y12 appears in Fig. 26.41. Y1 is short
circuited; so IY2

� I1, and

IY2
� I1 � �E2Y2

The minus sign results because the defined direction of I1 in Fig. 26.41 is
opposite to the actual flow direction due to the applied source E2; that is,

y12 �
E1 � 0

I1�
E2

ADMITTANCE (y) PARAMETERS  1171

y22

E1 � 0
(siemens, S) (26.35)

y22 � short-circuit, output-admittance parameter

The required network appears in Fig. 26.38.

y22 � �
E
I2

2
�

E2E1  =  0

+

–
System

I1

2

2′

1

1′

I2

FIG. 26.38

y22 determination.

EXAMPLE 26.9 Determine the admittance parameters for the p net-
work of Fig. 26.39.

Solution: The network for y11 will appear as shown in Fig. 26.40,
with

Y1 � 0.2 mS �0° Y2 � 0.02 mS ��90° Y3 � 0.25 mS �90°

We use I1 � E1YT � E1(Y1 � Y2)

with y11 �
E2 � 0

and (26.36)y11 � Y1 � Y2

I1�
E1

I1

G 0.2 mS

1′

1
+

–

E1

I2

2′

2
+

–

E20.25 mS

0.02 mS

BL

BC

FIG. 26.39

p network.

E1 E2  =  0
+

–

I1

1

1′

2

2′

Short circuited
Y2

Y1 Y3

FIG. 26.40

Determining y11.
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and (26.37)

The network employed for y21 appears in Fig. 26.42. In this case, Y3

is short circuited, resulting in

IY2
� I2 and IY2

� I2 � �E1Y2

with y21 �
E2 � 0

and (26.38)y21 � �Y2

I2�
E1

y12 � �Y2

1

1′

E2E1  =  0
+

–

I1

2

2′

Short circuited
Y2

Y1 Y3

I2
IY2

FIG. 26.41

Determining y12.

E1 E2  =  0
+

–

I1

1

1′

2

2′

Short circuited
Y2

Y1 Y3

IY2
I2

FIG. 26.42

Determining y21.

Note that for the p configuration, y12 � y21, which was expected
since the impedance parameters for the T network were such that z12 �
z21. A T network can be converted directly to a p network using the 
Y-D transformation.

The determining network for y22 appears in Fig. 26.43, and

Y2

Y1 Y3

I1
IY2 I2

2

2′

1

1′

E1 = 0 E2

+

–

Short circuited

FIG. 26.43

Determining y22.



ADMITTANCE (y) PARAMETERS  1173

YT � Y2 � Y3 and I2 � E2(Y2 � Y3)

Thus y22 �
E1 � 0

and (26.39)

Substituting values, we have

Y1 � 0.2 mS �0°

Y2 � 0.02 mS ��90°

Y3 � 0.25 mS �90°

y11 � Y1 � Y2

� 0.2 mS � j 0.02 mS (L)

y12 � y21 � �Y2 � �(�j 0.02 mS)

� j 0.02 mS (C)

y22 � Y2 � Y3 � �j 0.02 mS � j 0.25 mS

� j 0.23 mS (C)

Note the similarities between the results for y11 and y22 for the p net-
work compared with z11 and z22 for the T network.

Two networks satisfying the terminal relationships of Eqs. (26.31a)
and (26.31b) are shown in Fig. 26.44. Note the use of parallel branches

y22 � Y2 � Y3

I2�
E2

E1

I1

y11

a

y12E2

b

y21E1 y22

+

–
1′

1

1′

1
+

–

E1

–y12

y11 + y12 y22 + y12

(y22 – y12)I1

I2 I2

E2

+

–
2′

2

E2

+

–
2′

2

(a) (b)

I1

FIG. 26.44

Two possible two-port, y-parameter equivalent networks.

since each term of Eqs. (26.31a) and (26.31b) has the units of current,
and the most direct route to the equivalent circuit is an application of
Kirchhoff’s current law in reverse. That is, find the network that satis-
fies Kirchhoff’s current law relationship. For the impedance parame-
ters, each term had the units of volts, so Kirchhoff’s voltage law was
applied in reverse to determine the series combination of elements in
the equivalent circuit of Fig. 26.44(a).

Applying Kirchhoff’s current law to the network of Fig. 26.44(a), we
have
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which, when rearranged, are Eqs. (26.31a) and (26.31b).
For the results of Example 26.9, the network of Fig. 26.45 will result

if the equivalent network of Fig. 26.44(a) is employed.

Node a:   I1 � y11E1 � y12E2

Node b:   I2 � y22E2 � y21E1

Entering Leaving

+

–

+

–

I2I1

E1 E2
BL 0.02 mS

0.02 mS ∠ 90° E2

BC 0.23 mS

0.02 mS ∠ 90° E1

FIG. 26.45

Equivalent network for the results of Example 26.9.

26.8 HYBRID (h) PARAMETERS

The hybrid (h) parameters are employed extensively in the analysis of
transistor networks. The term hybrid is derived from the fact that the
parameters have a mixture of units (a hybrid set) rather than a single
unit of measurement such as ohms or siemens, used for the z and y
parameters, respectively. The defining hybrid equations have a mixture
of current and voltage variables on one side, as follows:

(26.40a)

(26.40b)

To determine the hybrid parameters, it will be necessary to establish
both the short-circuit and the open-circuit condition, depending on the
parameter desired.

h11

E2 � 0

(ohms, �) (26.41)

h11 � short-circuit, input-impedance parameter

The determining network is shown in Fig. 26.46.

h11 � �
E
I1

1
�

I2 � h21I1 � h22E2

E1 � h11I1 � h12E2

E1 E2  =  0
+

–
System

I1

1

1′

2

2′

I2

FIG. 26.46

h11 determination.
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h12

I1 � 0

(dimensionless) (26.42)

h12 � open-circuit, reverse-transfer voltage ratio parameter

The network employed in determining h12 is shown in Fig. 26.47.

h12 � �
E
E

1

2
�

E2E1

+

–
System

I1  =  0
1

1′

2

2′

I2

+

–

FIG. 26.47

h12 determination.

h21

E2 � 0

(dimensionless) (26.43)

h21 � short-circuit, forward-transfer current ratio parameter

The determining network appears in Fig. 26.48.

h21 � �
I
I

2

1
�

E1 E2  =  0
+

–
System

I1

1

1′

2

2′

I2

FIG. 26.48

h21 determination.

h22

(siemens, S) (26.44)
I1 � 0

h22 � open-circuit, output admittance parameter

The network employed to determine h22 is shown in Fig. 26.49.
The subscript notation for the hybrid parameters is reduced to the

following for most applications. The letter chosen is that letter appear-
ing in boldface in the preceding description of each parameter:

h11 � hi h12 � hr h21 � h f h22 � ho

h22 � �
E
I2

2
�
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The hybrid equivalent circuit appears in Fig. 26.50. Since the unit of
measurement for each term of Eq. (26.40a) is the volt, Kirchhoff’s volt-
age law was applied in reverse to obtain the series input circuit indi-
cated. The unit of measurement of each term of Eq. (26.40b) has the
units of current, resulting in the parallel elements of the output circuit
as obtained by applying Kirchhoff’s current law in reverse.

E2E1

+

–
System

I1  =  0
1

1′

2

2′

I2

+

–

FIG. 26.49

h22 determination.

I1

1
+

1′
–

E1

I2

2
+

2′
–

E2h21I1h12E2

+

–

h11

h22

FIG. 26.50

Two-port, hybrid-parameter equivalent network.

Note that the input circuit has a voltage-controlled voltage source
whose controlling voltage is the output terminal voltage, while the out-
put circuit has a current-controlled current source whose controlling
current is the current of the input circuit.

EXAMPLE 26.10 For the hybrid equivalent circuit of Fig. 26.51:

Rs

I2

+

–

E2hf I1hrE2

+

–

hi

I1

+

–

E1

Es

+

–

Zi

ZL
1
ho

FIG. 26.51

Example 26.10.

a. Determine the current ratio (gain) Ai � I2 /I1.
b. Determine the voltage ratio (gain) Av � E2 /E1.
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Solutions:

a. Using the current divider rule, we have

I2 � �

and (26.45)

b. Applying Kirchhoff’s voltage law to the input circuit gives us

E1 � hiI1 � hrE2 � 0 and I1 �

Apply Kirchhoff’s current law to the output circuit:

I2 � h fI1 � hoE2

However, I2 � �

so � � h fI1 � hoE2

Substituting for I1 gives us

� � h f � � � hoE2

or hiE2 � �h fZLE1 � hrh fZLE2 � hihoZLE2

and E2(h i � hrh fZL � h ihoZL) � �h fZLE1

with the result that

Av � �
E
E1

2
� � (26.46)

EXAMPLE 26.11 For a particular transistor, hi � 1 k�, hr � 4 �
10�4, hf � 50, and ho � 25 ms. Determine the current and the voltage
gain if ZL is a 2-k� resistive load.

Solution:

Ai � �

� � � 47.62

Av �

�

� � � � �99

The minus sign simply indicates a phase shift of 180° between E2 and
E1 for the defined polarities in Fig. 26.51.

100
�
1.01

�100 � 103

����
(1.050 � 103) � (0.04 � 103)

�(50)(2 k�)
����
(1 k�)(1.050) � (4 � 10�4)(50)(2 k�)

�h fZL
���
hi(1 � hoZL) � hrh fZL

50
�
1.050

50
��
1 � (50 � 10�3)

50
��
1 � (25 mS)(2 k�)

h f
��
1 � hoZL

�h fZL
���
hi(1 � hoZL) � hrh fZL

E1 � hrE2
��

hi

E2
�
ZL

E2
�
ZL

E2
�
ZL

E1 � hrE2
��

hi

Ai � �
I
I

2

1
� � �

1 �

h

h
f

oZL
�

h fI1
��
1 � hoZL

(1/ho)h fI1
��
(1/ho) � ZL



26.9 INPUT AND OUTPUT IMPEDANCES

The input and output impedances will now be determined for the hybrid
equivalent circuit and a z-parameter equivalent circuit. The input imped-
ance can always be determined by the ratio of the input voltage to the
input current with or without a load applied. The output impedance is
always determined with the source voltage or current set to zero. We
found in the previous section that for the hybrid equivalent circuit of Fig.
26.51,

E1 � hiI1 � hrE2

E2 � �I2ZL

and �

By substituting for I2 in the second equation (using the relationship
of the last equation), we have

E2 � �� �ZL

so the first equation becomes

E1 � hiI1 � hr�� �
and E1 � I1�hi � �

Thus, (26.47)

For the output impedance, we will set the source voltage to zero but
preserve its internal resistance Rs as shown in Fig. 26.52.

Zi � �
E
I1

1
� � hi � �

1

h

�

rh

h
fZ

oZ
L

L
�

hr h f ZL
��
1 � hoZL

h f I1ZL
��
1 � hoZL

h f I1
��
1 � hoZL

hf
��
1 � hoZL

I2
�
I1
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hiRs

1

Es  =  0

I1

hrE2

1′

hf I1
1
ho

I2

Zo

+

–

2

2′

E2 ZL

+

–

FIG. 26.52

Determining Zo for the hybrid equivalent network.

Since Es � 0

then I1 � �

From the output circuit,

I2 � h f I1 � hoE2

or I2 � h f �� � � hoE2
hrE2
�
hi � Rs

hrE2
�
hi � Rs
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and I2 � �� � ho�E2

Thus, Zo � � (26.48)

EXAMPLE 26.12 Determine Zi and Zo for the transistor having the
parameters of Example 26.11 if Rs � 1 k�.

Solution:

Zi � hi � � 1 k� �

� 1 � 103 � 0.0381 � 103 � 961.9 �

Zo � �

� �

Zo � 66.67 k�

For the z-parameter equivalent circuit of Fig. 26.53,

1
��
15 � 10�6

1
���
25 � 10�6 � 10 �10�6

1
———
25 mS ��

(4

1

�

k�

1

�

0�

1

4)(

k

5

�

0)
�

1
——

ho � �
hi

h

�

rhf

Rs
�

0.04 k�
�

1.050

hrh fZL
��
1 � hoZL

1
——

ho � �
hi

h

�

rhf

Rs
�

E2
�
I2

hrh f
�
hi � Rs

FIG. 26.53

Determining Zi for the z-parameter equivalent network.

Rs

I1

z12I2

I2

+

–

2

2′

E2 ZL

+

–

+

–

Es

E1

z11 z22

ZoZi

z21I1

+

–
+

–

I2 � �

and I1 �

or E1 � z11I1 � z12I2 � z11I1 � z12�� �

and (26.49)

For the output impedance, Es � 0, and

Zi � �
E
I1

1
� � z11 � �

z2

z

2

12

�

z2

Z
1

L
�

z21I1
�
z22 � ZL

E1 � z12I2
��

z11

z21I1
�
z22 � ZL



I1 � � and I2 �

or E2 � z22I2 � z21I1 � z22I2 � z21�� �
and E2 � z22I2 �

Thus, (26.50)

26.10 CONVERSION BETWEEN PARAMETERS

The equations relating the z and y parameters can be determined
directly from Eqs. (26.22) and (26.31). For Eqs. (26.31a) and (26.31b),

I1 � y11E1 � y12E2

I2 � y21E1 � y22E2

The use of determinants will result in

�I1 y12�
�I2 y22� y22I1 � y12I2E1 � –––––––– � –––––––––––––––––
�y11 y12� y11y22 � y12y21

�y21 y22�

Substituting the notation

Dy � y11y22 � y12y21

we have E1 � I1 � I2

which, when related to Eq. (26.22a),

E1 � z11I1 � z12I2

indicates that

z11 � and z12 � �

and, similarly,

z21 � � and z22 �

For the conversion of z parameters to the admittance domain, determi-
nants are applied to Eqs. (26.22a) and (26.22b). The impedance param-
eters can be found in terms of the hybrid parameters by first forming the
determinant for I1 from the hybrid equations:

E1 � h11I1 � h12E2

I2 � h21I1 � h22E2

That is,

�E1 h12�
�I2 h22� h22 h12I1 � –––––––– � ––– E1 � –––– I2
�h11 h12� Dh Dh
�h21 h22�

y11
�
Dy

y21
�
Dy

y12
�
Dy

y22
�
Dy

y12
�
Dy

y22
�
Dy

Zo � �
E
I2

2
� � z22 � �

R

z

s

1

�
2z2

z
1

11
�

z12z21I2�
Rs � z11

z12I2
�
Rs � z11

E2 � z21I1
��

z22

z12I2
�
Rs � z11
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and E1 � I1 � I2

or E1 � � I2

which, when related to the impedance-parameter equation,

E1 � z11I1 � z12I2

indicates that

z11 � and z12 �

The remaining conversions are left as an exercise. A complete table
of conversions appears in Table 26.1.

h12�
h22

Dh
�
h22

h12
�
h22

DhI1
�
h22

h12
�
Dh

h22
�
Dh

TABLE 26.1

Conversions between z, y, and h parameters.

From
z y h

To

z11 z12

z
z21 z22

y11 y12

y
y21 y22

h11 h12

h
h21 h22

Dy
�
y11

y21�
y11

1
�
z22

�z21�
z22

�y12�
y11

1
�
y11

z12�
z22

Dz
�
z22

Dh�
h11

h21�
h11

z11�
Dz

�z21
�
Dz

�h12�
h11

1
�
h11

�z12
�
Dz

z22
�
Dz

1
�
h22

�h21
�

h22

y11
�
Dy

�y21
�
Dy

h12
�
h22

Dh
�
h22

�y12
�
Dy

y22
�
Dy

→

→

26.11 COMPUTER ANALYSIS

PSpice

Hybrid Equivalent Network—Voltage Gain The computer
analysis of this section will be limited to a practice session in the use of
controlled sources. The system to be analyzed will be the hybrid equiv-
alent network of Fig. 26.54. Both the voltage gain and the output
impedance will be determined using schematics.

Using Eq. (26.46), the magnitude and the phase of the output volt-
age are determined in the following manner:

Av �

�

� � � �99.01
�100 � 103

��
1050 � 40

�100 � 103

����
(1 k�)(1 � 50 � 10�3) � 40

�(50)(2 k�)
������
(1 k�)(1 � (25 � 10�6 S)(2 k�)) � (4 � 10�4)(50)(2 k�)

�hf RL
���
hi(1 � ho RL) � hrhf RL



and Av � �

so that VL � AvE1 � (�99.01)(1 V �0°)

� 99.01 V �180°

The schematic representation has been established as shown in Fig.
26.55. Note that both a CCCS and a VCVS must be used along with
the ac source VSIN. Most of the construction and setting up of the var-
ious components through the Property Editor dialog box is quite
straightforward. However, you must be very careful when setting up the
connections for the controlling variables. When you cross a line, be
absolutely sure that a small circular dot does not appear where you
cross the line; otherwise, a connection is being made. Simply click the
wire in place before crossing the line, and then click the wire construc-
tion again after crossing the line.

VL�
E1

E2�
E1
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FIG. 26.55

Using PSpice to analyze the network of Fig. 26.54.

hi

+

–

E2 RL  =  2 k�

+

–

E1  =  1 V ∠ 0°

I1

50I1
hf I1

4 × 10–4
+

–
hrE2

1
ho

40 k� VL

+

–

1 k�

E2

FIG. 26.54

Hybrid equivalent model to be investigated under loaded conditions using PSpice.
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FIG. 26.56

Output file for the voltage across the load resistor of Fig. 26.55.

FIG. 26.57

Modification of the schematic of Fig. 26.55 to determine the output 
impedance of the network.

The Simulation Settings were AC Sweep, Start and End Frequen-
cies at 1 kHz, and 1 data Point/Decade. Select PSpice-View Output
File, click OK, and run the simulation. The AC ANALYSIS listing of
Fig. 26.56 results. There is an exact match between the theoretical solu-
tion provided above and the computer analysis.

Hybrid Equivalent Network—Output Impedance For the out-
put impedance, the applied source VSIN is set to 0 V by replacing it
with a direct 0-� connection. Then a 1-A current source is applied as
shown in Fig. 26.57. The ISRC current source was selected because it
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has the arrow in the symbol. Everything else in the network remains the
same, so there is no need to rebuild the entire network. Simply make
the changes and run the simulation. Even the simulation does not have
to be changed since the chosen parameters will remain the same. The
current source was given a magnitude of 1 A so that the magnitude of
the VPRINT1 voltage would also be the magnitude of the output
impedance. The results of Fig. 26.58 indicate an output impedance of
200 k�. The following theoretical analysis reveals that the output
impedance is indeed 200 k�:

Zo � �

� � � 200 k�
1

��
5 � 10�6 S

1
���
25 � 10�6 S � 20 � 10�6 S

1
————
25 � 10�6 S ��

(4 �
1 k

1
�

0�

�

4)(
0
50)

�

1
——
ho � �

hi

h
�
rhf

Rs
�

FIG. 26.58

Output file for the voltage across the 1-A current source (and output
impedance) of the network of Fig. 26.57.

PROBLEMS

SECTION 26.2 The Impedance Parameters Zi and Zo

1. Given the indicated voltage levels of Fig. 26.59, deter-
mine the magnitude of the input impedance Zi.

Ei  =  1 V

Rs

+

–

+

–

Eg System

47 �

Zi

1.05 V

FIG. 26.59

Problem 1.
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Multi-port
system Eo

+

–

RL

+

–

Ei1

Ii1

Zi  =  2 k�

Ei2
  =  1.8 V +–

Zi2

Zi3
  =  4.6 k�

+ –Ei3

Ii3
  =  1.5 mA

Ii2
  =  0.4 mA

FIG. 26.60

Problem 3.

4. Given the indicated voltage levels of Fig. 26.61, deter-
mine Zo.

5. For the configuration of Fig. 26.61, determine Zo if eg�
2 sin 377t and vR � 40 � 10�3 sin 377t, with Rs � 0.91
k�.

6. Determine Zo for the system of Fig. 26.61 if Eg �
1.8 V (p-p) and Eo � 0.6 V rms.

Eo  =  3.8 V ( p–p)

Rs

+

–

+

–

Eg  =  4 V ( p–p)System

2 k�

Zo

FIG. 26.61

Problems 4 through 6.

2. For a system with 

Ei � 120 V �0° and Ii � 6.2 A ��10.8°

determine the input impedance in rectangular form. At a
frequency of 60 Hz, determine the nameplate values of
the parameters.

3. For the multiport system of Fig. 26.60:
a. Determine the magnitude of Ii1 if Ei1 � 20 mV.
b. Find Zi2 using the information provided.
c. Calculate the magnitude of Ei3.
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Ii  =  10 mA �0°

+

–

SystemEi

Zi  =  1.8 k� �0°

Eo  =  4.05 V (p�p) �180°

+

–

FIG. 26.63

Problem 8.

SECTION 26.3 The Voltage Gains AvNL
, Av, and AvT

8. Given the system of Fig. 26.63, determine the no-load
voltage gain AvNL

.

7. Determine the output impedance for the system of Fig.
26.62 given the indicated scope measurements.

vR

eg

eg: Vertical sensitivity  —  0.2 V/div.
 vRs

: Vertical sensitivity  —  10 mV/div.

Eo

Io

Rs

+

–

System

Channel 2

Eg

+

–

1 k�

VR+ –
Channel 1

FIG. 26.62

Problem 7.

9. For the system of Fig. 26.64:
a. Determine Av � Eo /Ei.
b. Find AvT

� Eo /Eg.

Rg

Eg Eo

+

–

RL  =  5.6 k�
AvNL

  =  –3200
Zi  =  2.2 k�
Zo  =  40 k�

Ig

+

–

Io

Ei

+

–

Ii

0.5 k�

FIG. 26.64

Problems 9, 12, and 13.
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10. For the system of Fig. 26.65(a), the no-load output volt-
age is �1440 mV, with 1.2 mV applied at the input ter-
minals. In Fig. 26.65(b), a 4.7-k� load is applied to the
same system, and the output voltage drops to �192 mV,
with the same applied input signal. What is the output
impedance of the system?

Ei  =  1.2 mV Eo  =  –1440 mVSystem

+

–

+

–

(a)

System

+

(b)

4.7 k�Eo

+

–

VL  =  –192 mV

+

–

Ei  =  1.2 mV

FIG. 26.65

Problem 10.

*11. For the system of Fig. 26.66, if 

Av � �160 Io � 4 mA �0° Eg � 70 mV �0°

a. Determine the no-load voltage gain.
b. Find the magnitude of Ei.
c. Determine Zi.

Rg

Eg 2 k�
Zi  =  0.75 k�

+

–

Io

Ei

+

–

Ii

0.4 k�

Eo

+

–

RL

Zi

Av  =  –160

FIG. 26.66

Problems 11 and 14.

SECTION 26.4 The Current Gains Ai and AiT
, and

the Power Gain AG

12. For the system of Fig. 26.64:
a. Determine Ai � Io /Ii.
b. Find AiT � Io/Ig.
c. Compare the results of parts (a) and (b), and explain

why the results compare as they do.

13. For the system of Fig. 26.64:
a. Determine AG using Eq. (26.13), and compare the

value with the result obtained using Eq. (26.14).
b. Find AGT

using Eq. (26.16), and compare the value to
the result obtained using Eq. (26.17).

14. For the system of Fig. 26.66:
a. Determine the magnitude of Ai � Io /Ii.
b. Find the power gain AGT

� PL /Pg.
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SECTION 26.5 Cascaded Systems

15. For the two-stage system of Fig. 26.67:
a. Determine the total voltage gain AvT

� VL /Ei.
b. Find the total current gain AiT � Io /Ii.
c. Find the current gain of each stage Ai1 and Ai2.
d. Determine the total current gain using the results of

part (c), and compare it to the result obtained in part (b).

SECTION 26.6 Impedance (z) Parameters

17. a. Determine the impedance (z) parameters for the p

network of Fig. 26.69.
b. Sketch the z-parameter equivalent circuit (using either

form of Fig. 26.32).

Ei

+

–

Av2
  =  –50 RL  =  8 k�Eo

+

–

Av1
  =  –30 VL

+

–

Ii

Zi1
  =  1 k� Zi2

  =  2 k�

Io

FIG. 26.67

Problem 15.

*16. For the system of Fig. 26.68:
a. Determine Av2

if AvT
� �6912.

b. Determine Zi2 using the information provided.
c. Find Ai3 and AiT using the information provided in

Fig. 26.68.

Ei1

+

–

2.2 k�

Av1
  =  –12

Ai1
  =  4

Zi1
  =  1 k�

Ii1

Eo3

Io3

RL

Av2
  =  ?

Ai2
  =  26

Zi2
  =  ?

Av3
  =  –32

Ai3
  =  ?

Zi3
  =  2 k�

+

–

FIG. 26.68

Problem 16.

FIG. 26.69

Problems 17 and 21.

Z2

Z1 Z3E1 E2

+

–

+

–

I1 I2
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FIG. 26.70

Problems 18 and 22.

R4

R1

R2 R3I1 I2

E1 E2

+

–

+

–

FIG. 26.71

Problems 19 and 23.

E1 E2

+

–

+

–

I1 I2

Y1 Y2

Y3

18. a. Determine the impedance (z) parameters for the net-
work of Fig. 26.70.

b. Sketch the z-parameter equivalent circuit (using either
form of Fig. 26.32).

SECTION 26.7 Admittance (y) Parameters

19. a. Determine the admittance (y) parameters for the T
network of Fig. 26.71.

b. Sketch the y-parameter equivalent circuit (using either
form of Fig. 26.44).

20. a. Determine the admittance (y) parameters for the net-
work of Fig. 26.72.

b. Sketch the y-parameter equivalent circuit (using either
form of Fig. 26.44).

SECTION 26.8 Hybrid (h) Parameters

21. a. Determine the h parameters for the network of Fig.
26.69.

b. Sketch the hybrid equivalent circuit.

22. a. Determine the h parameters for the network of Fig.
26.70.

b. Sketch the hybrid equivalent circuit.

23. a. Determine the h parameters for the network of Fig.
26.71.

b. Sketch the hybrid equivalent circuit.

24. a. Determine the h parameters for the network of Fig.
26.72.

b. Sketch the hybrid equivalent circuit.

25. For the hybrid equivalent circuit of Fig. 26.73:
a. Determine the current gain Ai � I2/I1.
b. Determine the voltage gain Av � E2/E1.

FIG. 26.72

Problems 20 and 24.

Y2

Y1 Y3E1 E2

+

–

+

–

I1 I2

Y4

hi

+

I1

hrE2 hf I1
50I1

1
ho

I2

Zo

+

–

40 k� E2 RL  =  2 k�

+

–

–

1 k�

Zi

E1 4 � 10–4E2

FIG. 26.73

Problems 25 and 26.
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SECTION 26.9 Input and Output Impedances

26. For the hybrid equivalent circuit of Fig. 26.73:
a. Determine the input impedance.
b. Determine the output impedance.

27. Determine the input and output impedances for the z-
parameter equivalent circuit of Fig. 26.74.

FIG. 26.74

Problems 27, 32, and 34.

(z11)I1

(z12I2)
10 � 103I1
(z21I1) 1 k�

+

–

1 k�

Zi

5 � 103 ∠ 90°I2

I2

Zo

+

–

E2 RL

2 k�

(z22)

+

–

E1

1 k�Rg

Eg

+

–

+

–

4 k�

28. Determine the expression for the input and output imped-
ance of the y-parameter equivalent circuit.

SECTION 26.10 Conversion between Parameters

29. Determine the h parameters for the following z param-
eters:

z11 � 4 k�

z12 � 2 k�

z21 � 3 k�

z22 � 4 k�

30. a. Determine the z parameters for the following h param-
eters:

h11 � 1 k�

h12 � 2 � 10�4

h21 � 100

h22 � 20 � 10�6 S

b. Determine the y parameters for the hybrid parameters
indicated in part (a).

SECTION 26.11 Computer Analysis

PSpice or Electronics Workbench

31. For E1 � 4 V �30°, determine E2 across a 2-k� resis-
tive load between 2 and 2′ for the network of Fig.
26.34.

32. For Eg � 2 V �0°, determine E2 for the network of Fig.
26.74.

33. Determine Zi for the network of Fig. 26.34 with a 2-k�
resistive load from 2 to 2′.

34. Determine Zi for the network of Fig. 26.74.
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GLOSSARY

Admittance (y) parameters A set of parameters, having the
units of siemens, that can be used to establish a two-port
equivalent network for a system.

Hybrid (h) parameters A set of mixed parameters (ohms,
siemens, some unitless) that can be used to establish a two-
port equivalent network for a system.

Impedance (z) parameters A set of parameters, having the
units of ohms, that can be used to establish a two-port
equivalent network for a system.

Input impedance The impedance appearing at the input ter-
minals of a system.

Output impedance The impedance appearing at the output
terminals of a system with the energizing source set to zero.

Single-port network A network having a single set of access
terminals.

Two-port network A network having two pairs of access
terminals.
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Appendix A

PSpice, Electronics Workbench,
Mathcad, and C��

A.1 PSpice

The PSpice software package employed throughout this text is derived
from programs developed at the University of California at Berkeley
during the early 1970s. SPICE is an acronym for Simulation Program
with Integrated Circuit Emphasis. Although a number of companies
have customized SPICE for their particular use, Cadence Design Sys-
tems offers both a commercial and a demo version of OrCAD. The
commercial or professional versions employed by engineering compa-
nies can be quite expensive, so Cadence offers free distribution of the
demo version to provide an introduction to the power of the simulation
package. For this tenth edition of the text, the OrCAD family release
9.2 Lite Edition (the latest) was employed. A free copy can be obtained
by calling 1-888-671-9500 or by writing to Cadence Design Systems at
13221 SW 68th Parkway, Suite 200, Portland, OR 97223. It can also
be ordered on the Internet at http://www.pcb.cadence.com/Product/
Schematic/evalrequest.asp

Minimum system requirements are the following:

Pentium 90MHz PC
32MB RAM
Hard disk space:

Capture CIS 89MB
Layout Plus 66MB
PSpice A/D 46MB

800 � 600, 256 color VGA display
Microsoft Windows 95/98, or Windows NT 4.0 Service Pack 3
4�CD-ROM drive
16-bit audio (recommended)

A.2 Electronics Workbench

Multisim is a product of Electronics Workbench. For this edition of the
text, the Multisim 2001 Education Version was employed (the 6.2 des-
ignation has been dropped and replaced by 2001). Individuals wishing
to purchase one copy of the Student Edition of this version from Elec-
tronics Workbench can do so by calling 1-800-263-5552 or writing to
the company at 111 Peter Street, Suite 801, Toronto, Ontario, Canada
M5V 2H1. Instructors who need to purchase multiple Student Edition
copies should contact their local Prentice Hall sales representative or
visit the Prentice Hall Website at http://www.prenhall.com.

Minimum system requirements for the Student Version are as
follows:

Pentium 166 or greater PC
Windows 95/98/NT
32MB RAM (64MB RAM recommended)
100MB hard disk space (minimum)
CD-ROM drive
800 � 600 minimum screen resolution
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A.3 Mathcad

Mathcad is a product of MathSoft Engineering & Education, Inc., located
at 101 Main Street, Cambridge, MA 02142-1521. The Internet address is
http://www.mathsoft.com. For this edition of the text, Mathcad 2000
was employed. Although the program lists at $99.95, special discount
pricing is available for colleges and universities. A professor or a buyer
for the institution can inquire about the discount pricing by calling
1-800-628-4223 or by writing to sales-info@mathsoft.com. Students
can also order by using the same e-mail address, or they can order
online at http://www.mathcad.com/buy/ or http:www.edu.com.

Minimum system requirements for Mathcad 2000 Professional
are as follows:

Pentium 90 or higher processor
Windows 95/98/NT 4.0 or higher
32MB RAM minimum (48MB or higher recommended)
CD-ROM drive
SVGA or higher graphics
160MB disk space (minimum) with 290MB for full installation

A.4 C��

The C�� version employed in this text is Borland C�� 4.0, produced
by Borland Software Corporation of Scotts Valley, CA. The Internet
address for this company is http://www.borland.com.

Minimum system requirements for C�� are as follows:

Windows 3.1 or higher
4MB RAM minimum (8MB or higher recommended)
2MB disk space (minimum) with 90MB for complete installation
CD-ROM drive
SVGA or higher graphics
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Appendix B

CONVERSION FACTORS

To Convert from To Multiply by

Btus Calorie-grams 251.996
Ergs 1.054 � 1010

Foot-pounds 777.649
Hp-hours 0.000393
Joules 1054.35
Kilowatthours 0.000293
Wattseconds 1054.35

Centimeters Angstrom units 1 � 108

Feet 0.0328
Inches 0.3937
Meters 0.01
Miles (statute) 6.214 � 10�6

Millimeters 10

Circular mils Square centimeters 5.067 � 10�6

Square inches 7.854 � 10�7

Cubic inches Cubic centimeters 16.387
Gallons (U.S. liquid) 0.00433

Cubic meters Cubic feet 35.315

Days Hours 24
Minutes 1440
Seconds 86,400

Dynes Gallons (U.S. liquid) 264.172
Newtons 0.00001
Pounds 2.248 � 10�6

Electronvolts Ergs 1.60209 � 10�12

Ergs Dyne-centimeters 1.0
Electronvolts 6.242 � 1011

Foot-pounds 7.376 � 10�8

Joules 1 � 10�7

Kilowatthours 2.777 � 10�14

Feet Centimeters 30.48
Meters 0.3048

Foot-candles Lumens/square foot 1.0
Lumens/square meter 10.764

Foot-pounds Dyne-centimeters 1.3558 � 107

Ergs 1.3558 � 107

Horsepower-hours 5.050 � 10�7

Joules 1.3558
Newton-meters 1.3558
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To Convert from To Multiply by

Gallons (U.S. liquid) Cubic inches 231
Liters 3.785
Ounces 128
Pints 8

Gauss Maxwells/square centimeter 1.0
Lines/square centimeter 1.0
Lines/square inch 6.4516

Gilberts Ampere-turns 0.7958

Grams Dynes 980.665
Ounces 0.0353
Pounds 0.0022

Horsepower Btus/hour 2547.16
Ergs/second 7.46 � 109

Foot-pounds/second 550.221
Joules/second 746
Watts 746

Hours Seconds 3600

Inches Angstrom units 2.54 � 108

Centimeters 2.54
Feet 0.0833
Meters 0.0254

Joules Btus 0.000948
Ergs 1 � 107

Foot-pounds 0.7376
Horsepower-hours 3.725 � 10�7

Kilowatthours 2.777 � 10�7

Wattseconds 1.0

Kilograms Dynes 980,665
Ounces 35.2
Pounds 2.2

Lines Maxwells 1.0

Lines/square centimeter Gauss 1.0

Lines/square inch Gauss 0.1550
Webers/square inch 1 � 10�8

Liters Cubic centimeters 1000.028
Cubic inches 61.025
Gallons (U.S. liquid) 0.2642
Ounces (U.S. liquid) 33.815
Quarts (U.S. liquid) 1.0567

Lumens Candle power (spher.) 0.0796

Lumens/square centimeter Lamberts 1.0

Lumens/square foot Foot-candles 1.0
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To Convert from To Multiply by

Maxwells Lines 1.0
Webers 1 � 10�8

Meters Angstrom units 1 � 1010

Centimeters 100
Feet 3.2808
Inches 39.370
Miles (statute) 0.000621

Miles (statute) Feet 5280
Kilometers 1.609
Meters 1609.344

Miles/hour Kilometers/hour 1.609344

Newton-meters Dyne-centimeters 1 � 107

Kilogram-meters 0.10197

Oersteds Ampere-turns/inch 2.0212
Ampere-turns/meter 79.577
Gilberts/centimeter 1.0

Quarts (U.S. liquid) Cubic centimeters 946.353
Cubic inches 57.75
Gallons (U.S. liquid) 0.25
Liters 0.9463
Pints (U.S. liquid) 2
Ounces (U.S. liquid) 32

Radians Degrees 57.2958

Slugs Kilograms 14.5939
Pounds 32.1740

Watts Btus/hour 3.4144
Ergs/second 1 � 107

Horsepower 0.00134
Joules/second 1.0

Webers Lines 1 � 108

Maxwells 1 � 108

Years Days 365
Hours 8760
Minutes 525,600
Seconds 3.1536 � 107
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Appendix C

DETERMINANTS

Determinants are employed to find the mathematical solutions for the
variables in two or more simultaneous equations. Once the procedure
is properly understood, solutions can be obtained with a minimum of
time and effort and usually with fewer errors than when using other
methods.

Consider the following equations, where x and y are the unknown
variables and a1, a2, b1, b2, c1, and c2 are constants:

(C.1a)
(C.1b)

It is certainly possible to solve for one variable in Eq. (C.1a) and
substitute into Eq. (C.1b). That is, solving for x in Eq. (C.1a),

x �

and substituting the result in Eq. (C.1b),

a2 � � � b2y � c2

It is now possible to solve for y, since it is the only variable remain-
ing, and then substitute into either equation for x. This is acceptable for
two equations, but it becomes a very tedious and lengthy process for
three or more simultaneous equations.

Using determinants to solve for x and y requires that the following
formats be established for each variable:

c1 � b1y
�

a1

c1 � b1y
�

a1

Col. 1 Col. 2 Col. 3
a1x � b1y � c1

a2x � b2y � c2

Col. Col. Col. Col.
1 2 1 2

�c1 b1 � �a1 c1 �
�c2 b2 � �a2 c2 �

x � –––––––– y � –––––––
(C.2)

�a1 b1 � �a1 b1 �
�a2 b2 � �a2 b2 �

First note that only constants appear within the vertical brackets and
that the denominator of each is the same. In fact, the denominator is
simply the coefficients of x and y in the same arrangement as in Eqs.
(C.1a) and (C.1b). When solving for x, replace the coefficients of x in
the numerator by the constants to the right of the equal sign in Eqs.
(C.1a) and (C.1b), and simply repeat the coefficients of the y variable.
When solving for y, replace the y coefficients in the numerator by the
constants to the right of the equal sign, and repeat the coefficients of x.

Each configuration in the numerator and denominator of Eqs. (C.2)
is referred to as a determinant (D), which can be evaluated numerically
in the following manner:
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(C.3)

The expanded value is obtained by first multiplying the top left ele-
ment by the bottom right and then subtracting the product of the lower
left and upper right elements. This particular determinant is referred to
as a second-order determinant, since it contains two rows and two
columns.

It is important to remember when using determinants that the
columns of the equations, as indicated in Eqs. (C.1a) and (C.1b), must
be placed in the same order within the determinant configuration. That
is, since a1 and a2 are in column 1 of Eqs. (C.1a) and (C.1b), they must
be in column 1 of the determinant. (The same is true for b1 and b2.)

Expanding the entire expression for x and y, we have the following:

(C.4a)

(C.4b)

EXAMPLE C.1 Evaluate the following determinants:

�2 2�
a. � (2)(4) � (3)(2) � 8 � 6 � 2�3 4�

�4 �1�
b. � (4)(2) � (6)(�1) � 8 � 6 � 14�6 �2�

� 0 �2�
c. � (0)(4) � (�2)(�2) � 0 � 4 � �4��2 �4�

�0 10�
d. � (0)(10) � (3)(0) � 0�3 10�

EXAMPLE C.2 Solve for x and y:

2x � y � 3
3x � 4y � 2

Solution:

�3 1�
x � � � � � 2

�3 4�

10
�
5

12 � 2
�
8 �3

(3)(4) � (2)(1)
��
(2)(4) � (3)(1)

�2 4�
��2 1�

�a1 c1 �
�a2 c2 � a1c2 � a2c1y � –––––––– � ––––––––––
�a1 b1 � a1b2 � a2b1

�a2 b2 �

�c1 b1 �
�c2 b2 � c1b2 � c2b1x � –––––––– � ––––––––––
�a1 b1 � a1b2 � a2b1

�a2 b2 �

Col. Col.
1 2

Determinant � D �

––––––––

� a1b2 � a2b1
�a1 b1 �
�a2 b2 �
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2 3

y � � � � � �1

Check:

2x � y � (2)(2) � (�1)
� 4 � 1 � 3 (checks)

3x � 4y � (3)(2) � (4)(�1)
� 6 � 4 � 2 (checks)

EXAMPLE C.3 Solve for x and y:

�x � 2y � 3
3x � 2y � �2

Solution: In this example, note the effect of the minus sign and the
use of parentheses to ensure that the proper sign is obtained for each
product:

��3 �2�

x � �

��3 �2�

� � �

��1 �3�
y � �

� � �

EXAMPLE C.4 Solve for x and y:

x � 3 � 4y
20y � �1 � 3x

Solution: In this case, the equations must first be placed in the for-
mat of Eqs. (C.1a) and (C.1b):

x � 4y � 3
�3x � 20y � �1

��3 04�

x � �
(3)(20) � (�1)(4)
��
(1)(20) � (�3)(4)

��1 20�
��
��1 24�

7
–
4

�7
�
�4

2� 9
�
�4

(�1)(�2) � (3)(3)
��

�4

��3 �2�
��

�4

1
–
2

�2
�
�4

�6 � 4
�

2 � 6

(3)(�2) � (�2)(2)
��
(�1)(�2) � (3)(2)

��2 �2�
��
��1 �2�

�5
�

5
4 � 9
�

5
(2)(2) � (3)(3)
��

5

�3 2�
�

5

��3 20�

� � � 2

��1 �3�

y � �

� � �
1
–
4

8
�
32

�1 � 9
�

32

(1)(�1) � (�3)(3)
��

32

��3 �1�
��

32

64
�
32

60 � 4
�
20 � 12
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The use of determinants is not limited to the solution of two simul-
taneous equations; determinants can be applied to any number of simul-
taneous linear equations. First we will examine a shorthand method that
is applicable to third-order determinants only, since most of the prob-
lems in the text are limited to this level of difficulty. We will then inves-
tigate the general procedure for solving any number of simultaneous
equations.

Consider the three following simultaneous equations:

Col. 1 Col. 2 Col. 3 Col. 4

a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

a3x � b3y � c3z � d3

in which x, y, and z are the variables, and a1,2,3, b1,2,3, c1,2,3, and d1,2,3 are
constants.

The determinant configuration for x, y, and z can be found in a man-
ner similar to that for two simultaneous equations. That is, to solve for
x, find the determinant in the numerator by replacing column 1 with the
elements to the right of the equal sign. The denominator is the determi-
nant of the coefficients of the variables (the same applies to y and z).
Again, the denominator is the same for each variable.

 d1 b1 c1  a1 d1 c1  a1 b1 d1
 d2 b2 c2  a2 d2 c2  a2 b2 d2

x � , y � , z �

 a1 b1 c1
where D �  a2 b2 c2

 a3 b3 c3
A shorthand method for evaluating the third-order determinant con-

sists simply of repeating the first two columns of the determinant to the
right of the determinant and then summing the products along specific
diagonals as shown below:

The products of the diagonals 1, 2, and 3 are positive and have the
following magnitudes:

�a1b2c3 � b1c2a3 � c1a2b3

The products of the diagonals 4, 5, and 6 are negative and have the
following magnitudes:

�a3b2c1 � b3c2a1 � c3a2b1

The total solution is the sum of the diagonals 1, 2, and 3 minus the
sum of the diagonals 4, 5, and 6:

(C.5)�(a1b2c3 � b1c2a3 � c1a2b3) � (a3b2c1 � b3c2a1 � c3a2b1)

D �  
a1
a2
a3

b1
b2
b3

a1
a2
a3

b1
b2
b3

c1
c2
c3

4(�) 5(�) 6(�)

1(�) 2(�) 3(�)

 a3 b3 d3
��

D
 a3 d3 c3
��

D
 d3 b3 c3 
��

D
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Warning: This method of expansion is good only for third-order
determinants! It cannot be applied to fourth- and higher-order systems.

EXAMPLE C.5 Evaluate the following determinant:

Solution:

[(1)(1)(2) � (2)(0)(0) � (3)(�2)(4)]
�[(0)(1)(3) � (4)(0)(1) � (2)(�2)(2)]

� (2 � 0 � 24) � (0 � 0 � 8) � (�22) � (�8)
� �22 � 8 � �14

EXAMPLE C.6 Solve for x, y, and z:

1x � 0y � 2z � �1
0x � 3y � 1z � �2
1x � 2y � 3z � 0

Solution:

    1
�2
   0

2
1
4

2
1
4

1
�2

0

3
0
2

    1
�2
   0

2
1
4

3
0
2

(�) (�) (�)

(�) (�) (�)

�
[(�1)(3)(3) � (0)(1)(0) � (�2)(2)(2)] � [(0)(3)(�2) � (2)(1)(�1) � (3)(2)(0)]
���������

[(1)(3)(3) � (0)(1)(1) � (�2)(0)(2)] � [(1)(3)(�2) � (2)(1)(1) � (3)(0)(0)]

�

� � �
15
-
13

�17 �2
�

9 � 4

(�9 � 0 � 8) � (0 � 2 � 0)
����
(9 � 0 � 0) � (�6 � 2 � 0)

�

�

� �
9
-
13

5 � 4
�

13

(6 � 1 � 0) � (�4 � 0 � 0)
����

13

[(1)(2)(3) � (�1)(1)(1) � (�2)(0)(0)] � [(1)(2)(�2) � (0)(1)(1) � (3)(0)(�1)]
���������

13

 1
 0
 1

�1
   2
   0

 1
 0
 1

�1
   2
   0

�2
   1
    3

y �
13

 �1
   2
   0

0
3
2

 �1
   2
   0

0
3
2

�2
   1
    3

 1
 0
 1

 1
 0
 1

0
3
2

0
3
2

�2
   1
    3

x �
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 1
 0
 1

0
3
2

0
3
2

 1
 0
 1

�1
   2
    0

z �
13

a1
a2
a3

b1
b2
b3

c1
c2
c3

b2
b3

c2
c3D � � a1 � b1

Multiplying
factor

Multiplying
factor

Minor

Cofactor

a2
a3

c2
c3

Minor

Cofactor

� � c1

Multiplying
factor

a2
a3

b2
b3

Minor

Cofactor

��

� �

�

��

�

�

�

�

�

�

� � �
1
-
13

0 � 1
�

13

(0 � 0 � 0) � (�3 � 4 � 0)
����

13

[(1)(3)(0) � (0)(2)(1) � (�1)(0)(2)] � [(1)(3)(�1) � (2)(2)(1) � (0)(0)(0)]
��������

13

or from 0x � 3y � 1z � �2,

z � 2 � 3y � 2 � 3 � � � � � �

Check:

1x � 0y � 2z � �1 � � 0 � � �1 � � �1 �

0x � 3y � 1z � �2 0 � � � �2 � �2 �

1x � 2y � 3z � 0 � � � � 0 � � � 0 �

The general approach to third-order or higher determinants
requires that the determinant be expanded in the following form.
There is more than one expansion that will generate the correct result,
but this form is typically employed when the material is first intro-
duced.

This expansion was obtained by multiplying the elements of the
first row of D by their corresponding cofactors. It is not a requirement
that the first row be used as the multiplying factors. In fact, any row
or column (not diagonals) may be used to expand a third-order deter-
minant.

The sign of each cofactor is dictated by the position of the mul-
tiplying factors (a1, b1, and c1 in this case) as in the following stan-
dard format:

18
�
13

18
�
13

�3
�
13

18
�
13

15
�
13

26
�
13

�1
�
13

27
�
13

13
�
13

2
�
13

15
�
13

1
-
13

27
�
13

26
�
13

9
�
13
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Note that the proper sign for each element can be obtained by simply
assigning the upper left element a positive sign and then changing sign
as you move horizontally or vertically to the neighboring position.

For the determinant D, the elements would have the following signs:

 a1
(�) b1

(�) c1
(�)

 a2
(�) b2

(�) c2
(�)

 a3
(�) b3

(�) c3
(�)

The minors associated with each multiplying factor are obtained by
covering up the row and column in which the multiplying factor is
located and writing a second-order determinant to include the remain-
ing elements in the same relative positions that they have in the third-
order determinant.

Consider the cofactors associated with a1 and b1 in the expansion of
D. The sign is positive for a1 and negative for b1 as determined by the
standard format. Following the procedure outlined above, we can find
the minors of a1 and b1 as follows:

It was pointed out that any row or column may be used to expand the
third-order determinant, and the same result will still be obtained.
Using the first column of D, we obtain the expansion

The proper choice of row or column can often effectively reduce the
amount of work required to expand the third-order determinant. For
example, in the following determinants, the first column and third row,
respectively, would reduce the number of cofactors in the expansion:

EXAMPLE C.7 Expand the following third-order determinants:

 1 2 3  2 1  2 3  2 3a. D �  3 2 1 � 1� � � � 3 � � � �2 ��    �
 2 1 3  1 3  1 3  2 1

a1(minor) � a2 b2 c2

a3 b3 c3

a1 b1 c1

�
b2 c2

b3 c3

� a2 b2 c2

a3 b3 c3

a1 b1 c1

b1(minor) �
a2 c2

a3 c3

� a2 b2 c2
a3 b3 c3

a1 b1 c1
a1� �

b2 c2
b3 c3

D a2� �
b1 c1
b3 c3

a3� �
b1 c1
b2 c2

0 4 5
0 6 7

2 3 �2
2� � �

4 5
6 7

D � 0 � 0 � 2(28 � 30)

� 2 6 8
2 0 3

1 4 7
2� �

2(32 � 42) � 3(6 � 8) � 2(�10) � 3(�2)�
�

�
4 7
6 8

D �
1 4
2 6

� 0 � 3

� �4

�26



APPENDIX C  1205

� 1[6 � 1] � 3[�(6 � 3)] � 2[2 � 6]
� 5 � 3(�3) � 2(�4)
� 5 � 9 � 8
� �12

 0 4 6  4 6  4 6b. D �  2 0 5 � 0 � 2 �� � � 8�� �
 8 4 0  4 0  0 5

� 0 � 2[�(0 � 24)] � 8[(20 � 0)]
� 0 � 2(24) � 8(20)
� 48 � 160
� 208
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Appendix D

COLOR CODING OF MOLDED TUBULAR
CAPACITORS (PICOFARADS)

Significant Decimal Tolerance
Color Figure Multiplier �%

Black 0 1 20
Brown 1 10 —
Red 2 100 —
Orange 3 1000 30
Yellow 4 10,000 40
Green 5 105 5
Blue 6 106 —
Violet 7 — —
Gray 8 — —
White 9 — 10

Note: Voltage rating is identified by a single-digit number for ratings up to 900 V and a two-digit num-
ber above 900 V. Two zeros follow the voltage figure.

1st
2nd

Capacitance
significant

figure

Tolerance

Multiplier

in pF

1st
2nd

Voltage
significant

figure

(If required)

FIG. D.1
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Appendix E

THE GREEK ALPHABET

Letter Capital Lowercase Used to Designate

Alpha A a Area, angles, coefficients
Beta B b Angles, coefficients, flux density
Gamma G g Specific gravity, conductivity
Delta D d Density, variation
Epsilon E e Base of natural logarithms
Zeta Z z Coefficients, coordinates, impedance
Eta H h Efficiency, hysteresis coefficient
Theta V v Phase angle, temperature
Iota I i

Kappa K k Dielectric constant, susceptibility
Lambda L l Wavelength
Mu M m Amplification factor, micro,

permeability
Nu N n Reluctivity
Xi Y y

Omicron O o

Pi P p 3.1416
Rho R r Resistivity
Sigma � j Summation
Tau T t Time constant
Upsilon � v
Phi � f Angles, magnetic flux
Chi X x

Psi W w Dielectric flux, phase difference
Omega 	 q Ohms, angular velocity



1208

Appendix F

MAGNETIC PARAMETER CONVERSIONS

SI (MKS) CGS English

� webers (Wb) maxwells lines
1 Wb � 108 maxwells � 108 lines

B Wb/m2 gauss lines/in.2

(maxwells/cm2)
1 Wb/m2 � 104 gauss � 6.452 � 104 lines/in.2

A 1 m2 � 104 cm2 � 1550 in.2

mo 4p � 10�7 Wb/Am � 1 gauss/oersted � 3.20 lines/Am

� NI (ampere-turns, At) 0.4pNI (gilberts) NI (At)
1 At � 1.257 gilberts 1 gilbert � 0.7958 At

H NI/l (At/m) 0.4pNI/l (oersteds) NI/l (At/ in.)
1 At/m � 1.26 � 10�2 oersted � 2.54 � 10�2 At/ in.

Hg 7.97 � 105Bg Bg (oersteds) 0.313Bg (At/ in.)
(At/m)
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Derivation of maximum power transfer conditions for the situation
where the resistive component of the load is adjustable but the load
reactance is set in magnitude.*

For the circuit of Fig. G.1, the power delivered to the load is deter-
mined by

P �
V2

RL�
RL

Appendix G

MAXIMUM POWER TRANSFER CONDITIONS

ZTh

ZLRL

I

ZT

RTh

ETh

+

–

IXTh

XL

Applying the voltage divider rule:

VRL
�

The magnitude of VRL
is determined by

VR
L

�

and V 2
RL

�

with P � �

Using differentiation (calculus), maximum power will be transferred
when dP/dRL � 0. The result of the preceding operation is that

RL � �R�2
Th� �� (�X�Th� �� X�L)�2� [Eq. (18.21)]

The magnitude of the total impedance of the circuit is

ZT � �(R�Th� �� R�L)�2��� (�X�Th� �� X�L)�2�
Substituting this equation for RL and applying a few algebraic

maneuvers will result in

ZT � 2RL(RL � RTh)

RL E2
Th

���
(RL � RTh)

2 � (XTh � XL)2

V2
RL�

RL

R2
L E2

Th
���
(RL � RTh)2 � (XTh � XL)2

RLETh
����
�(R�L��� R�Th�)2� �� (�X�Th� �� X�L)�2�

RLETh
����
RL � RTh � XTh �90° � XL �90°

FIG. G.1

*With sincerest thanks for the input of Professor Harry J. Franz of the Beaver Campus of
Pennsylvania State University.
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and the power to the load RL will be

P � I2RL � RL �

�

�

with Rav �
RL � RTh
�

2

E2
Th

�
4Rav

E2
Th

��

4 ��RL �

2

RTh
��

E2
ThRL

��
2RL(RL � RTh)

E2
Th

�
Z2

T



13. 0.5 A
15. 1.194 A > 1 A (yes)
17. (a) 1.248 million

(b) 0.936 million, sol. � (a)
19. 252 J
21. 4 C
23. 3.533 V
25. 5 A
27. 25 h
29. 0.773 h
31. 60 Ah:40 Ah � 1.5:1, 50% more

with 60 Ah
33. 545.45 mA, 129.6 kJ
43. 600 C

Chapter 3

1. (a) 500 mils (b) 10 mils
(c) 4 mils (d) 1000 mils
(e) 240 mils (f) 3.937 mils

3. (a) 0.04 in. (b) 0.03 in.
(c) 0.2 in. (d) 0.025 in.
(e) 0.00278 in. (f) 0.009 in.

5. 73.33 �
7. 3.581 ft
9. (a) Rsilver > Rcopper > Raluminum

(b) silver 9.9 �,
copper 1.037 �,
aluminum 0.34 �

11. (a) 21.71 m� (b) 35.59 m�
(c) increases (d) decreases

13. 942.28 m�
15. (a) #8: 1.1308 �. #18: 11.493 �

(b) #18: #8 � 10.1641:1 � 10:1.
#18: #8 � 1:10.164 � 1:10

17. (a) 1.087 mA/CM
(b) 1.384 kA/in.2

(c) 3.6127 in.2

19. (a) 21.71 m� (b) 35.59 m�
21. 0.15 in.
23. 2.409 �
25. 3.67 �
27. 0.046 �
29. (a) 40.29°C (b) �195.61°C
31. (a) a20 � 0.00393

(b) 83.61°C
33. 1.751 �
35. 142.86
41. �30°C: 10.2 k�.

100°C: 10.15 k�
43. 6.5 k�
47. (a) Red Red Brown Silver

(b) Yellow Violet Red Silver

Appendix H

ANSWERS TO SELECTED
ODD-NUMBERED PROBLEMS

Chapter 1

5. 3 h
7. CGS
9. MKS � CGS � 20°C

K � SI � 293.15
11. 45.72 cm
13. (a) 15 � 103 (b) 30 � 10�3

(c) 7.4 � 106 (d) 6.8 � 10�6

(e) 402 � 10�6 (f) 200 � 10�12

15. (a) 104 (b) 10
(c) 109 (d) 10�2

(e) 10 (f) 1031

17. (a) 10�1 (b) 10�4

(c) 109 (d) 10�9

(e) 1042 (f) 103

19. (a) 106 (b) 10�2

(c) 1032 (d) 10�63

21. (a) 10�6 (b) 10�3

(c) 10�8 (d) 109

(e) 10�16 (f) 10�1

23. (a) 0.006 (b) 400
(c) 5000, 5, 0.005
(d) 0.0003, 0.3, 300

25. (a) 90 s (b) 144 s
(c) 50 � 103 ms
(d) 160 mm (e) 120 ns
(f) 41.898 days (g) 1.02 m

27. (a) 2.54 m (b) 1.219 m
(c) 26.7 N (d) 0.1348 lb
(e) 4921.26 ft
(f) 3.2187 m (g) 8530.17 yd

29. 670.62 � 106 mph
31. 2.045 s
33. 67.06 days
35. $900
37. 345.6 m
39. 47.29 min/mile
41. (a) 4.74 � 10�3 Btu

(b) 7.098 � 10�4 m3

(c) 1.2096 � 105 s
(d) 2113.38 pints

43. 5.000
45. 2.949

Chapter 2

3. (a) 18 mN (b) 2 mN
(c) 180 mN

7. (a) 72 mN
(b) Q1 � 20 mC, Q2 � 40 mC

9. 3.1 A
11. 90 C

(c) Blue Gray Orange Silver
(d) White Brown Green Silver

49. yes
51. (a) 0.1566 S (b) 0.0955 S

(c) 0.0219 S
57. (a) 10 fc: 3 k�. 100 fc: 0.4 k�

(b) neg. (c) no—log scales
(d) �321.43 �/fc

Chapter 4

1. 15 V
3. 4 k�
5. 72 mV
7. 54.55 �
9. 28.571 �

11. 1.2 k�
13. (a) 12.632 � (b) 4.1 MJ
17. 800 V
19. 1 W
21. (a) 57,600 J

(b) 16 � 10�3 kWh
23. 2 s
25. 196 mW
27. 4 A
29. 9.61 V
31. 0.833 A, 144.06 �
33. (a) 0.133 mA (b) 66.5 mAh
35. (c) � 70.7 mA
37. (a) 12 kW

(b) 10,130 W < 12,000 W (yes)
39. 16.34 A
41. (a) 238 W (b) 17.36%
43. (a) 1657.78 W

(b) 15.07 A
(c) 19.38 A

45. 65.25%
47. 80%
49. (a) 17.9%

(b) 76.73%, 328.66% increase
51. (a) 1350 J

(b) W doubles, P the same
53. 6.67 h
55. (a) 50 kW (b) 240.38 A

(c) 90 kWh
57. $2.19

Chapter 5

1. (a) 20 �, 3 A
(b) 1.63 M� , 6.135 mA
(c) 110 �, 318.2 mA
(d) 10 k�, 12 mA

1211
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3. (a) 16 V (b) 4.2 V
5. (a) 0.388 A (CW)

(b) 2.087 A (CCW)
7. (a) 5 V (b) 70 V
9. 3.28 mA, 7.22 V

11. (a) 70.6 �, 85 mA (CCW),
V1 � 2.8045 V,
V2 � 0.4760 V,
V3 � 0.850 V,
V4 � 1.870 V

(b)–(c) P1 � 0.2384 W,
P2 � 0.0405 W,
P3 � 0.0723 W,
P4 � 0.1590 W

(d) all �� W
13. (a) 225 �, 0.533 A

(b) 8 W
(c) 15 V

15. All Vab
��

(a) 66.67 V (b) �8 V
(c) 20 V (d) 0.18 V

17. (a) 12 V (b) 24 V
(c) 60 � (d) 0.4 A
(e) 60 �

19. (a) Rs � 80 �
(b) 0.2 W < ��� W

21. R1 � 3 k�, R2 � 15 k�
23. (a) R1 � 0.4 k�, R2 � 1.2 k�,

R3 � 4.8 k�
(b) R1 � 0.4 M�,

R2 � 1.2 M�,
R3 � 4.8 M�

25. (a) I (CW) � 6.667 A,
V � 20 V

(b) I (CW) � 1 A,
V � 10 V

27. (a) 20 V, 26 V, 35 V,
�12 V, 0 V

(b) �6 V, �47 V, 9 V
(c) �15 V, �38 V

29. V0 � 0 V, V4 � 10 V,
V7 � 4 V, V10 � 20 V,
V23 � 6 V, V30 � �8 V,
V67 � 0 V, V56 � �6 V,
I(up) � 1.5 A

31. 2 �
33. 100 �
35. 1.52%

Chapter 6

1. (a) 2, 3, 4 (b) 2, 3 (c) 1, 4
3. (a) 6 �, 0.1667 S

(b) 1 k�, 1 mS
(c) 2.076 k�, 0.4817 mS
(d) 1.333 �, 0.75 S
(e) 9.948 �, 100.525 mS
(f) 0.6889 �, 1.4516 S

(b) series: E and R1,
parallel: R2 and R3

(c) series: E, R1, and R5;
R3 and R4

parallel: none
(d) series: R6 and R7,

parallel: E, R1, and R4;
R2 and R5

3. (a) yes (KCL) (b) 3 A
(c) yes (KCL) (d) 4 V
(e) 2 � (f) 5 A
(g) P1 � 12 W, P2 � 18 W,

Pdel � 50 W
5. (a) 4 �

(b) Is � 9 A, I1 � 6 A, I2 � 3 A
(c) 6 V

7. I1 � 6 A, I2 � 16 A, I3 � 0.8 A,
I � 22 A

9. (a) 4 A
(b) I2 � 1.333A, I3 � 0.6665A
(c) Va � 8 V, Vb � 4 V

11. (a) 5 �, 16 A
(b) IR2

� 8 A, I3 � I9 � 4 A
(c) I8 � 1 A (d) 14 V

13. (a) VG � 1.9 V, Vs � 3.65 V
(b) I1 � I2 � 7.05 mA,

ID � 2.433 mA
(c) 6.268 V
(d) 8.02 V

15. (a) 0.6 A
(b) 28 V

17. (a) I2 � 1.667 A, I6 = 1.111 A,
I8 � 0 A

19. (a) 1.882 �
(b) V1 � V4 � 32 V
(c) 8 A ←
(d) 1.882 �

21. (a) 6.75 A
(b) 32 V

23. 8.333 �
25. (a) 24 A

(b) 8 A
(c) V3 � 48 V, V5 � 24 V,

V7 � 16 V
(d) P(R7) � 128 W,

P(E) � 5760 W
27. 4.44 W
29. (a) 64 V

(b) RL2
� 4 k�,

RL3
� 3 k�

(c) R1 � 0.5 k�,
R2 � 1.2 k�,
R3 � 2 k�

31. (a) yes (b) R1 � 750 �, 
R2 � 250 �

(c) R1 � 745 �, R2 � 255 �
33. (a) 1 mA (b) Rshunt � 5 m�
35. (a) Rs � 300 k�

(b) 20,000
37. 0.05 mA

5. (a) 18 � (b) R1 � R2 � 24 �
7. 120 �
9. (a) 0.8571 �, 1.1667 S

(b) Is � 1.05 A, I1 � 0.3 A,
I2 � 0.15 A, I3 � 0.6 A

(d) P1 � 0.27 W,
P2 � 0.135 W,
P3 � 0.54 W,
Pdel � 0.945 W

(e) R1, R2 � �� W, R3 � 1 W
11. (a) 66.67 mA (b) 225 �

(c) 8 W
13. (a) Is � 7.5 A, I1 � 1.5 A

(b) Is � 9.6 mA, I1 � 0.8 mA
15. 1260 W
17. (a) 4 mA (b) 24 V

(c) 18.4 mA
19. (a) I1 � 3 mA, I2 � 1 mA,

I3 � 1.5 mA
(b) I2 � 4 mA, I3 � 1.5 mA,

I4 � 5.5 mA, I1 � 6 mA
21. (a) R1 � 5 �, R2 � 10 �

(b) E � 12 V, I2 � 1.333 A,
I3 � 1 A, R3 � 12 �,
I � 4.333 A

(c) I1 � 64 mA, I3 � 16 mA,
I2 � 20 mA, R � 3.2 k�,
I � 36 mA

(d) E � 30 V, I1 � 1 A,
I2 � I3 � 0.5 A,
R2 � R3 � 60 �,
PR2

� 15 W
23. (a) I1 � 4 A, I2 � 8 A

(b) I1 � 2 A, I2 � 4 A,
I3 � 1 A, I4 � 1.333 A

(c) I1 � 272.73 mA,
I2 � 227.27 mA,
I3 � 90.91 mA,
I4 � 500 mA

(d) I2 � 4.5 A, I3 � 8.5 A,
I4 � 8.5 A

25. (a) I � 4 A, I2 � 4 A,
I1 � 3 A

27. R1 � 6 k�, R2 � 1.5 k�,
R3 � 0.5 k�

29. I � 3 A, R � 2 �
31. (a) 6.13 V

(b) 9 V
(c) 9 V

33. (a) 4 V (b) 3.997 V
(c) 3.871 V (d) 3 V
(e) Rm large as possible

35. No! 4-V supply reversed

Chapter 7

1. (a) series: E, R1, and R4,
parallel: R2 and R3
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(b) All CW,
I1 � 3.8 A, I2 � �4.2 A, 
I3 � 0.2 A

33. (I) (b) V1 � �14.86 V,
V2 � �12.57 V

(c) VR1
� VR4

�
V1 � �14.86 V,
VR2

� V2 � �12.57 V,
VR3

� 9.71 V (� �)
(II) (b) V1 � �2.556 V,

V2 � 4.03 V
(c) VR1

� V1 � �2.556 V,
VR2

� VR5
� V2 �4.03V,

VR4
� VR3

� V2 � V1

� 6.586 V
35. (I) V1 � 7.238 V, 

V2 � �2.453 V,
V3 � 1.405 V

(II) V1 � �6.64 V,
V2 � 1.288 V,
V3 � 10.676 V

37. (a) V1 � 10.083 V,
V2 � 6.944 V,
V3 � �17.056 V

(b) V1 � 48 V, V2 � 64 V
39. (b) (I) V1 � �14.86 V,

V2 � �12.57 V
(II) V1 � �2.556 V,

V2 � 4.03 V
(c) (I) VR1

� VR4
� �14.86 V,

VR2
� �12.57 V

VR3
� V1 � 12 � V2

� 9.71 V
(II) VR1

� �2.556 V,
VR2

� VR5
� 4.03 V

VR3
� VR4

� V2 � V1

� 6.586 V
41. (I) V1 � �5.311 V,

V2 � �0.6219 V,
V3 � 3.751 V
V�5A � �5.311 V

(II) V1 � �6.917 V,
V2 � 12 V,
V3 � 2.3 V
V5A � V2 � V1 � 18.917 V,
V2A � V3 � V2 � �9.7 V

43. (b) VR5
� 0.1967 V

(c) no
(d) no

45. (b) IRs
� 0 A

(c) no
(d) no

47. (a) 3.33 mA
(b) 1.177 A

49. (a) 133.33 mA
(b) 7 A

51. (b) 0.833 mA
53. 4.2 �

Chapter 8

1. 28 V
3. (a) I1 � 12 A, Is � 11 A

(b) Vs � 24 V, V3 � 6 V
5. (a) 3 A, 6 � (b) 4.091 mA,

2.2 k�
7. (a) 8 A (b) 8 A
9. 9.6 V, 2.4 A

11. (a) 5.4545 mA, 2.2 k�
(b) 17.375 V (c) 5.375 V
(d) 2.443 mA

13. (I) CW: IR1
� 1.445 mA;

down: IR3
� 9.958 mA;

CCW: IR2
� 8.513 mA

(II) CW: IR1
� 2.0316 mA;

left: IR2
� 0.8 mA;

CW: IR3
� IR4

� 1.2316 mA
15. (d) left: 63.694 mA
17. (a) CW: IR1 

� � �� A;
CW: IR2

� � ��� A
IR3

� ��� A (down)
(b) CW: IR1

� �3.0625 A;
CW: IR3

� 0.1875 A
IR2

� 3.25 A (up)
19. (I) CW: I1 � 1.8701 A;

CW: I2 � �8.5484 A;
Vab � �22.74 V

(II) CW: I2 � 1.274 A;
CW: I3 � 0.26 A;
Vab � �0.904 V

21. (a) 72.16 mA, �4.433 V
(b) 1.953 A, �7.257 V

23. (a) All CW
I1 � 0.0321 mA
I2 � �0.8838 mA
I3 � �0.968 mA
I4 � �0.639 mA

(b) All CW
I1 � �3.8 A
I2 � �4.2 A
I3 � 0.2 A

25. (a) CW,
I1 � � �� A, I2 � � �� A

(b) CW,
I1 � �3.0625 A,
I2 � 0.1875 A

27. (I) (a) CW
(b) I1 � 1.871 A,

I2 � �8.548 A
(c) IR1

� 1.871 A,
IR2

� �8.548 A,
IR3

� 10.419 A
29. I5� (CW) � 1.9535 A,

Va � �7.26 V
31. (a) All CW,

I1 � 0.0321 mA,
I2 � �0.8838 mA,
I3 � �0.968 mA,
I4 � �0.639 mA

Chapter 9

1. (a) CW: IR1
� ��	 A, IR2

� 0 A,
CW: IR3

� ��	 A
(b) E1: 5.33 W, E2: 0.333 W
(c) 8.333 W (d) no

3. (a) down: 4.4545 mA
(b) down: 3.11 A

5. (a) 6 �, 6 V
(b) 2 �: 0.75 A, 

30 �: 0.1667 A,
100 �: 0.0566 A

7. (I) 2 �, 84 V (II) 1.579 k�,
�1.149 V

9. (I) 45 �, �5 V (II) 2.055 k�,
16.772 V

11. 4.041 k�, 9.733 V
13. (I): 14 �, 2.571 A,

(II): 7.5 �, 1.333 A
15. (a) 9.756 �, 0.95 A

(b) 2 �, 30 A
17. (a) 10 �, 0.2 A

(b) 4.033 k�, 2.9758 mA
19. (I) (a) 14 �

(b) 23.14 W
(II) (a) 7.5 �

(b) 3.33 W
21. (a) 9.756 �, 2.2 W

(b) 2 �, 450 W
23. 0 �
25. 500 �
27. 39.3 mA, 220 mV
29. 2.25 A, 6.075 V
35. (a) 0.357 mA (b) 0.357 mA

(c) yes

Chapter 10

1. 9 � 103 N/C
3. 70 mF
5. 50 V/m
7. 8 � 103 V/m
9. 937.5 pF

11. mica
13. (a) 106 V/m (b) 4.96 mC

(c) 0.0248 mF
15. 29,035 V
17. (a) 0.5 s (b) 20(1 � e�t/0.5)

(c) 1t : 12.64 V, 3t : 19 V,
5t: 19.87 V

(d) iC � 0.2 � 10�3e�t/0.5

vR � 20e�t/0.5

19. (a) 5.5 ms
(b) 100(1 � e�t/(5.5�10�3))
(c) 1t : 63.21 V, 3t : 95.02 V,

5t : 99.33 V
(d)

iC � 18.18 �10�3e�t/(5.5�10�3)

vR � 60e�t/(5.5�10�3)

21. (a) 10 ms
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(b) 50(1 � e�t/(10�10�3))
(c) 10 � 10�3e�t/(10�10�3)

(d) vC � 50 V, iC � 0 A
(e) vC � 50e�t/(4�10�3)

iC � �25 � 10�3e�t/(4�10�3)

23. (a) 80(1 � e�t/(1�10�6))
(b) 0.8 � 10�3e�t/(1�10�6)

(c) vC � 80e�t/(4.9�10�6)

iC � 0.163 � 10�3e�t/(4.9�10�6)

25. (a) 10 ms (b) 3 kA (c) yes
27. (a) vC � 52 V � 40 V e�t/123.8ms

iC � 2.198 mA e�t/123.8ms

29. 1.386 ms
31. R � 54.567 k�
33. (a) vC � 60(1 � e�t/0.2s),

0.5 s: 55.07 V, 1 s: 59.596 V
iC � 60 � 10�3 e�t/0.2s

0.5 s: 4.93 mA,
1 s: 0.404 mA
vR1

� 60 e�t/0.2s

0.5 s: 4.93 V, 1 s: 0.404 V
(b) t � 0.405 s, 1.387 s longer

35. (a) 19.634 V
(b) 2.31 s
(c) 1.155 s

37. (a) vC � 3.275(1 � e�t/52.68ms)
iC � 1.216 � 10�3 e�t/52.68ms

39. (a) vC � 27.2 � 25.2 e�t/18.26ms

iC � 3.04 mA e�t/18.26ms

41. 0–4 ms: 0.3 mA,
4–6 ms: 0.9 mA,
6–7 ms: 3 mA,
7–10 ms: 0 mA,

10–13 ms: �3.2 mA,
13–15 ms: 1.8 mA

43. 0–4 ms: 0 V,
4–6 ms: �8 V,
6–16 ms: 20 V,

16–18 ms: 0 V,
18–20 ms: �12 V,
20–25 ms: 0 V

45. V1 � 10 V, Q1 � 60 mC,
V2 � 6.67 V, Q2 � 40 mC,
V3 � 3.33 V, Q3 � 40 mC

47. (a) 56.54 V
(b) 42.405 V
(c) 14.135 V
(d) 43.46 V
(e) 433.44 ms

49. 8640 pJ
51. (a) 5 J

(b) 0.1 C
(c) 200 A
(d) 10 kW
(e) 10 s

(b) 2.825 mA, 1.2186 V
(c) iL � 2.825 �

10�3e�t/2.128ms

vL � �13.27 e�t/2.128ms

25. (a) 0.243 V
(b) 29.47 V
(c) 18.96 V
(d) 2.025 ms

27. (a) 20 V
(b) 12 mA
(c) 5.376 ms
(d) 0.366 V

29. iL � �3.478 mA �
7.432 mA e�t/173.9ms

vL � 51.28 V e�t/173.9ms

31. (a) 8 H
(b) 4 H

33. L: 4 H, 2 H
R: 5.7 k�, 9.1 k�

35. V1 � 16 V, V2 � 0 V,
I1 � 4 mA

37. V1 � 10 V
I1 � 2 A
I2 � 1.33 A

39. WC � 360 mJ
WL � 12 J

Chapter 13

1. (a) 10 ms (b) 2 (c) 100 Hz
(d) amplitude � 5 V,

Vp-p � 6.67 V
3. 10 ms, 100 Hz
5. (a) 60 Hz (b) 100 Hz

(c) 29.41 Hz (d) 40 kHz
7. 0.25 s
9. T � 50 ms

11. (a) p/4 (b) p/3 (c) 
�p

(d) �� p (e) 0.989p (f) 1.228p

13. (a) 3.14 rad/s
(b) 20.94 � 103 rad/s
(c) 1.57 � 106 rad/s
(d) 157.1 rad/s

15. (a) 120 Hz, 8.33 ms
(b) 1.34 Hz, 746.27 ms
(c) 954.93 Hz, 1.05 ms
(d) 9.95 � 10�3 Hz, 100.5 s

17. 104.7 rad/s
23. 0.4755 A
25. 11.537°, 168.463°
29. (a) v leads i by 10°

(b) i leads v by 70°
(c) i leads v by 80°
(d) i leads v by 150°

31. (a) v � 25 sin(qt � 30°)
(b)
i � 3 � 10�3 sin(6.28 � 103t � 60°)

33. �� ms
35. 0.388 ms
37. (a) 0.4 ms

Chapter 11

1. �: 5 � 104 maxwells,
5 � 104 lines. B: 8 gauss,
51.616 lines

3. (a) 0.04 T
5. 952.4 � 103 At/Wb
7. 2624.67 At/m
9. 2.133 A

11. (a) N1 � 60 t
(b) 13.34 � 10�4 Wb/Am

13. 2.687 A
15. 1.35 N
17. (a) 2.028 A (b) �2 N
19. 6.1 � 10�3 Wb
21. (a) B � 1.5(1 � e�H/700At/m)

(c) H � �700 loge(1 � B/1.5 T)
(e) Eq: 40.1 mA

Chapter 12

1. 4.25 V
3. 14 turns
5. 15.65 mH
7. (a) 2.5 V (b) 0.3 V

(c) 200 V
9. 0�3 ms: 0 V. 3�8 ms: 1.6 V.

8�13 ms: �1.6 V.
13�14 ms: 0 V.
14�15 ms: 8 V.
15�16 ms: –8 V.
16�17 ms: 0 V.

11. 0�5 ms: 4 mA. 10 ms: �8 mA.
12 ms: 4 mA. 12�16 ms: 4 mA.
24 ms: 0 mA.

13. (a) 2.27 ms
(b) 5.45 � 10�3(1 � e�t/2.27ms)
(c) vL � 12e�t/2.27ms

vR � 12(1 � e�t/2.27ms)
(d) iL: 1t � 3.45 mA,

3t � 5.179 mA,
5t � 5.413 mA.
vL: 1t � 4.415 V,
3t � 0.598 V,
5t � 0.081 V.

15. (a) iL � 4.186 mA � 
3.814 mA e�t/13.95ms)

vL � �32.8 V e�t/13.95ms

17. (a) vL � 20 V e�t/1ms

iL � 2 mA(1 � e�t/1ms)
(b) iL � 2 mA e�t/0.5ms

vL � �40 V e�t/0.5ms

19. (a) iL � 6 mA(1 � e�t/0.5ms)
vL � 12 V e�t/0.5ms

(b) iL � 5.188 mA e�t/83.3ns

vL � �62.256 V e�t/83.3ns

21. 25.68 ms
23. (a) iL � 3.638 �

10�3 (1 � e�t/6.676ms)
vL � 5.45 e�t/6.676ms
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33. 40 sin(qt � 50°)
35. (a) 2 sin(157t � 60°)

(b) 318.47 mH (c) 0 W
37. (a) i1 � 2.828 sin(104t � 150°),

i2 � 11.312 sin(104t � 150°)
(b) is � 14.14 sin(104t � 150°)

39. (a) 5 �36.87°
(b) 2.83 �45°
(c) 16.38 �77.66°
(d) 806.23 �82.87°
(e) 1077.03 �21.80°
(f) 0.00658 �81.25°
(g) 11.78 ��49.82°
(h) 8.94 �153.43°
(i) 61.85 ��104.04°
(j) 101.53 ��39.81°
(k) 4326.66 �123.69°
(l) 25.495 � 10�3 ��78.69°

41. (a) 15.033 �86.19°
(b) 60.208 �4.76°
(c) 0.30 �88.09°
(d) 2002.5 ��87.14°
(e) 86.182 �93.73°
(f) 38.694 ��94°

43. (a) 11.8 � j 7
(b) 151.9 � j 49.9
(c) 4.72 � 10�6 � j 71
(d) 5.2 � j 1.6
(e) 209.3 � j 311
(f) �21.2 � j 12
(g) 7.03 � j 9.93
(h) 95.698 � j 22.768

45. (a) 6 ��50°
(b) 0.2 � 10�3 �140°
(c) 109 ��230°
(d) 76.471 ��80°
(e) 4 �0°
(f) 0.71 ��16.49°
(g) 4.21 � 10�3 �161.1°
(h) 18.191 ��50.91°

47. (a) x � 4, y � 3
(b) x � 4
(c) x � 3, y � 6 or 

x � 6, y � 3
(d) 30°

49. (a) 56.569 sin(377t � 20°)
(b) 169.68 sin 377t
(c)
11.314 � 10�3 sin(377t � 120°)
(d) 7.07 sin(377t � 90°)
(e) 1696.8 sin(377t � 120°)
(f) 6000 sin(377t � 180°)

51.
i1 � 2.537 � 10�5 sin(qt � 96.79°)

53. iT � 18 � 10�3 sin 377t

Chapter 15

1. (a) 6.8 � �0°
(b) 754 � �90°

(b) 2.5 kHz
(c) �25 mV

39. (a) 1.875 V (b) �4.778 mA
41. (a) 40 ms

(b) 25 kHz
(c) 17.13 mV

43. (a) 2 sin 377t
(b) 100 sin 377t
(c) 84.87 � 10�3 sin 377t
(d) 33.95 � 10�6 sin 377t

45. 2.16 V
47. 0 V
49. (a) T � 40 ms, f � 25 kHz,

Vav � 20 mV,
Vrms � 34.6 mV

(b) T � 100 ms, f � 10 kHz,
Vav � �0.3 V,
Vrms � 367 mV

Chapter 14

3. (a) 3770 cos 377t
(b) 452.4 cos(754t � 20°)
(c) 4440.63 cos(157t � 20°)
(d) 200 cos t

5. (a) 210 sin 754t
(b) 14.8 sin(400t � 120°)
(c) 42 � 10�3 sin(qt � 88°)
(d) 28 sin(qt � 180°)

7. (a) 1.592 H (b) 2.654 H
(c) 0.8414 H

9. (a) 100 sin(qt � 90°)
(b) 8 sin(qt � 150°)
(c) 120 sin(qt � 120°)
(d) 60 sin(qt � 190°)

11. (a) 1 sin(qt � 90°)
(b) 0.6 sin(qt � 70°)
(c) 0.8 sin(qt � 10°)
(d) 1.6 sin(377t � 130°)

13. (a) � � (b) 530.79 �
(c) 265.39 � (d) 17.693 �
(e) 1.327 �

15. (a) 9.31 Hz (b) 4.66 Hz
(c) 18.62 Hz (d) 1.59 Hz

17. (a) 6 � 10�3 sin(200t � 90°)
(b) 33.96 � 10�3 sin(377t � 90°)
(c) 44.94 � 10�3 sin(374t � 300°)
(d) 56 � 10�3 sin(qt � 160°)

19. (a) 1334 sin(300t � 90°)
(b) 37.17 sin(377t � 90°)
(c) 127.2 sin 754t
(d) 100 sin(1600t � 170°)

21. (a) C (b) L � 254.78 mH
(c) R � 5 �

25. 318.47 mH
27. 5.067 nF
29. (a) 0 W (b) 0 W

(c) 122.5 W
31. 192 W

(c) 15.7 � �90°
(d) 265.25 � ��90°
(e) 318.47 � ��90°
(f) 200 � �0°

3. (a) 88 � 10�3 sin qt
(b) 9.045 sin(377t � 150°)
(c) 2547.02 sin(157t � 50°)

5. (a) 4.24 � ��45°
(b) 3.04 k� �80.54°
(c) 1617.56 � �88.33°

7. (a) 10 � �36.87°
(c) I �10 A ��36.87°‚

VR � 80 V ��36.87°,
VL � 60 V �53.13°

(f) 800 W (g) 0.8 lagging
9. (a) 1660.27 � ��73.56°

(b) 8.517 mA �73.56°
(c) VR � 4.003 V �73.56°,

VL � 13.562 V ��16.44°
(d) 34.09 mW, 0.283 leading

11. (a) 3.16 k� �18.43°
(c) 3.18 mF, 6.37 H
(d) I � 1.3424 mA �41.57°,

VR � 4.027 V �41.57°,
VL � 2.6848 V �131.57°,
VC � 1.3424 V ��48.43°

(g) 5.406 mW
(h) 0.9487 lagging

13. (a) 40 mH (b) 220 �
15. (a) V1 � 37.97 V ��51.57°,

V2 � 113.92 V �38.43°
(b) V1 � 55.80 V �26.55°,

V2 � 12.56 V ��63.45°
17. (a) I � 39 mA �126.65°,

VR � 1.17 V �126.65°,
VC � 25.86 V �36.65°

(b) 0.058 leading
(c) 45.63 mW
(g) ZT � 30 � � j 512.2 �

19. ZT � 3.2 � � j 2.4 �
25. (a) ZT � 3 � � j 8 �, 

YT � 41.1 mS � j 109.5 mS
(b) ZT � 60 � � j 70 �, 

YT � 7.1 mS � j 8.3 mS
(c) ZT � 200 � � j 100 �,

YT � 4 mS � j 2 mS
27. (a) YT � 538.52 mS ��21.8°

(c) E � 3.71 V �21.8°, 
IR � 1.855 A �21.8°, 
IL � 0.742 A ��68.2°

(f) 6.88 W
(g) 0.928 lagging
(h) e � 5.25 sin(377t � 21.8°), 

iR � 2.62 sin(377t � 21.8°),
iL � 1.049 sin(377t � 68.2°),
is � 2.828 sin 377t

29. (a) YT � 129.96 mS ��50.31°
(c) Is � 7.8 A ��50.31°,

IR � 5 A �0°
IL � 6 A ��90°
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(f) 300 W
(g) 0.638 lagging
(h) e � 84.84 sin 377t,

iR � 7.07 sin 377t,
iL � 8.484 sin(377t � 90°),
is � 11.03 sin(377t � 50.31°)

31. (a) YT � 0.416 mS �36.897°
(c) L � 10.61 H, C � 1.326 mF
(d) E � 8.498 V ��56.897°,

IR � 2.833 mA ��56.897°,
IL � 2.125 mA ��146.897°,
IC � 4.249 mA �33.103°

(g) 24.078 mW
(h) 0.8 leading
(i)
e � 12.016 sin(377t � 56.897°),
iR � 4 sin(377t � 56.897°),
iL � 3 sin(377t � 146.897°),
iC � 6 sin(377t � 33.103°)

33. (a) I1 � 18.09 A �65.241°,
I2 � 8.528 A ��24.759°

(b) I1 � 11.161 A �0.255°,
I2 � 6.656 A �153.690°

39. (a) Rp � 94.73 �, 
Xp � 52.1 � (C)

(b) Rp � 4 k�, 
Xp � 4 k� (C)

41. (a) E � 176.68 V �36.44°‚
IR � 0.803 A �36.44°,
IL � 2.813 A ��53.56°

(b) 0.804 lagging
(c) 141.86 W
(f) IC � 1.11 A �126.43°
(g) ZT � 142.15 � � j 104.96 �

43. R � 4 �, XL � 3.774 �

Chapter 16

1. (a) 1.2 � �90°
(b) 10 A ��90°
(c) 10 A ��90°
(d) I2 � 6 A ��90°,

I3 � 4 A ��90°
(e) 60 V �0°

3. (a) ZT � 3.87 � ��11.817°,
YT � 0.258 S �11.817°

(b) 15.504 A �41.817°
(c) 3.985 A �82.826°
(d) 47.809 V ��7.174°
(e) 910.71 W

5. (a) 0.375 A �25.346°
(b) 70.711 V ��45°
(c) 33.9 W

7. (a) 1.423 A �18.259°
(b) 26.574 V �4.763°
(c) 54.074 W

9. (a) YT � 0.099 S ��9.709°
(b) V1 � 20.4 V �30°,

V2 � 10.887 V �58.124°
(c) 1.933 A �11.109°

17. (a) ZTh � 4.472 k� ��26.565°
ETh � 31.31 V ��26.565°

(b) I � 6.26 mA �63.435°
19. ZTh � 4.44 k� ��0.031°

ETh � �444.45 � 103I �0.255°
21. ZTh � 5.099 k� ��11.31°

ETh � �50 V �0°
23. ZTh � �39.215 � �0°

ETh � 20 V �53°
25. ZTh � 607.42 � �0°

ETh � 1.62 V �0°
27. (a) ZN � 21.312 � �32.196°,

IN � 0.1 A �0°
(b) ZN � 6.813 � ��54.228°,

IN � 8.506 A �65.324°
29. (a) ZN � 9.66 � �14.93°,

IN � 2.15 A ��42.87°
(b) ZN � 4.37 � �55.67°,

IN � 22.83 A ��34.65°
31. (a) ZN � 9 � �0°,

IN � 1.333 A � 2.667 A �0°
(b) 12 V � 2.65 V ��83.66°

33. ZN � 5.1 k� ��11.31°,
IN � �1.961 � 10�3 V �11.31°

35. ZN � 5.1 k� ��11.31°,
IN � 9.81 mA �11.31°

37. ZN � 6.63 k� �0°
IN � 0.792 mA �0°

39. (a) ZL � 8.32 � �3.18°,
1198.2 W

(b) ZL � 1.562 � ��14.47°,
1.614 W

41. 40 k�, 25 W
43. (a) 9 � (b) 20 W
45. (a) 1.414 k� (b) 0.518 W
49. 25.77 mA �104.4°

Chapter 19

1. (a) 120 W
(b) QT � 0 VAR, ST � 120 VA
(c) 0.5 A
(d) I1 � 1⁄6 A, I2 � 1⁄3 A

3. (a) 400 W, �400 VAR (C),
565.69 VA, 0.7071 leading

(c) 5.66 A �135°
5. (a) 500 W, �200 VAR (C),

538.52 VA
(b) 0.928 leading
(d) 10.776 A �21.875°

7. (a) R: 200 W, L,C: 0 W
(b) R: 0 VAR, C: 80 VAR,

L: 100 VAR
(c) R: 200 VA, C: 80 VA,

L: 100 VA
(d) 200 W, 20 VAR (L),

200.998 VA, 0.995 (lagging)
(f) 10.05 A ��5.73°

11. 33.201 A �38.89°
13. 139.71 mW

Chapter 17

3. (a) Z � 21.93 � ��46.85°,
E � 10.97 V �13.15°

(b) Z � 5.15 � �59.04°,
E � 10.3 V �179.04°

5. (a) 5.15 A ��24.5°
(b) 0.442 A �143.48°

7. (a) 13.07 A ��33.71°
(b) 48.33 A ��77.57°

9. �3.165 � 10�3 V �137.29°
11. I1k� � 10 mA �0°

I2k� � 1.667 mA �0°
13. IL � 1.378 mA ��56.31°
15. (a) V1 � 19.86 V �43.8°,

V2 � 8.94 V �106.9°
(b) V1 � 19.78 V �132.48°,

V2 � 13.37 V �98.78°
17. V1 � 220 V �0°

V2 � 96.664 V ��12.426°
V3 � 100 V �90°

19. (left) V1 � 14.62 V ��5.86°
(top) V2 � 35.03 V ��37.69°
(right) V3 � 32.4 V ��73.34°
(middle) V4 � 5.677 V �23.53°

21. V1 � 4.372 V ��128.66°
V2 � 2.253 V �17.628°

23. V1 � �10.667 V �0°
V2 � �6 V �0°

25. �2451.92Ei

27. (a) No
(b) 1.76 mA ��71.54°
(c) 7.03 V ��18.46°

29. Balanced
31. Rx � R2R3/R1

Lx � R2L3/R1

33. (a) 11.57 A ��67.13°
(b) 36.9 A �23.87°

Chapter 18

1. (a) 6.095 A ��32.115°
(b) 3.77 A ��93.8°

3. i � 0.5A � 1.581 sin(qt � 26.565°)
5. 6.261 mA ��63.43°
7. �22.09 V �6.34°
9. 19.62 V �53°

11. Vs � 10 V �0°
13. (a) ZTh � 21.312 � �32.196°

ETh � 2.131 V �32.196°
(b) ZTh � 6.813 � ��54.228°

ETh � 57.954 V �11.099°
15. (a) ZTh � 4 � �90°

ETh � 4 V � 10 V �0°
(b) I�0.5 A�

1.11A��26.565°
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7. (a) Qs � 10
(b) XL � 20 �
(c) L � 1.59 mH, C � 3.98 mF
(d) f2 � 2100 Hz, f1 � 1900 Hz

9. L � 13.26 mH, C � 27.07 nF
f2 � 8460 Hz, f1 � 8340 Hz

11. (a) fs � 1 MHz
(b) BW � 160 kHz
(c) R � 720 �, L � 0.7162 mH,

C � 35.37 pF
(d) Rl � 56.25 �

13. (a) fp � 159.155 kHz
(b) VC � 4 V
(c) IL � IC � 40 mA
(d) Qp � 20

15. (a) fs � 11,253.95 Hz
(b) Ql � 1.77 (no)
(c) fp � 9,280.24 Hz,

fm � 10,794.41 Hz
(d) XL � 5.83 �, XC � 8.57 �
(e) ZTp

� 12.5 �
(f) VC � 25 mV
(g) Qp � 1.46, BW � 6.356 kHz
(h) IC � 2.92 mA, IL � 3.54 mA

17. (a) XC � 30 �
(b) ZTP

� 225 �
(c) IC � 0.6 A �90°,

IL � 0.6 A ��86.19°
(d) L � 0.239 mH,

C � 265.26 nF
(e) Qp � 7.5, BW � 2.67 kHz

19. (a) fs � 7.118 kHz,
fp � 6.647 kHz, fm � 7 kHz

(b) XL � 20.88 �, XC � 23.94 �
(c) ZTP

� 55.56 �
(d) Qp � 2.32, BW � 2.865 kHz
(e) IL � 99.28 mA,

IC � 92.73 mA
(f) VC � 2.22 V

21. (a) fp � 3558.81 Hz
(b) VC � 138.2 V
(c) P � 691 mW
(d) BW � 575.86 Hz

23. (a) XL � 98.54 �
(b) Ql � 8.21
(c) fp � 8.05 kHz
(d) VC � 4.83 V
(e) f2 � 8.55 kHz, 

f1 � 7.55 kHz
25. Rs � 3.244 k�, C � 31.66 nF
27. (a) fp � 251.65 kHz

(b) ZTp
� 4.444 k�

(c) Qp � 14.05
(d) BW � 17.91 kHz
(e) 20 nF: fp � 194.93 kHz,

ZTp
� 49.94 �, Qp � 2.04,

BW � 95.55 kHz
(f) 1 nF: fp � 251.65 kHz,

ZTp
� 13.33 k�, Qp � 21.08,

BW � 11.94 kHz

9. (a) R: 38.99 W, L: 0 W, C: 0 W
(b) R: 0 VAR, L: 126.74 VAR,

C: 46.92 VAR
(c) R: 38.99 VA, L: 126.74 VA,

C: 46.92 VA
(d) 38.99 W, 79.82 VAR (L),

88.83 VA, 0.439 (lagging)
(f) 0.31 J
(g) WL � 0.32 J, WC � 0.12 J

11. (a) Z � 2.30 � � j 1.73 �
(b) 4000 W

13. (a) 900 W, 0 VAR, 900 VA, 1
(b) 9 A �0°
(d) Z1: R � 0 �, XC � 20 �

Z2: R � 2.83 �, X � 0 �
Z3: R � 5.66 �, XL � 4.717 �

15. (a) 1100 W, 2366.26 VAR,
2609.44 VA, 0.4215 (leading)

(b) 521.89 V ��65.07°
(c) Z1: R � 1743.38 �,

XC � 1307.53 �
Z2: R � 43.59 �, XC � 99.88 �

17. (a) 7.81 kVA
(b) 0.640 (lagging)
(c) 65.08 A
(d) 1105 mF
(e) 41.67 A

19. (a) 128.14 W
(b) a–b: 42.69 W, b–c: 64.03 W,

a–c: 106.72 W, a–d: 106.72 W,
c–d: 0 W, d–e: 0 W,
f–e: 21.34 W

21. (a) 5 �, 132.03 mH
(b) 10 �
(c) 15 �, 262.39 mH

Chapter 20

1. (a) qs � 250 rad/s, 
fs � 39.79 Hz

(b) qs � 3535.53 rad/s,
fs � 562.7 Hz

(c) qs � 21,880 rad/s,
fs � 3482.31 Hz

3. (a) XL � 40 �
(b) I � 10 mA
(c) VR � 20 mV, VL � 400 mV,

VC � 400 mV
(d) Qs � 20 (high)
(e) L � 1.27 mH, C � 0.796 mF
(f) BW � 250 Hz
(g) f2 � 5.125 kHz,

f1 � 4.875 kHz
5. (a) BW � 400 Hz

(b) f2 � 6200 Hz, 
f1 � 5800 Hz

(c) XL � XC � 45 �
(d) PHPF � 375 mW

(g) Network: L/C � 100 � 103

part (e): L/C � 1 � 103

part (f): L/C � 400 � 103

(h) yes, L/C , BW

Chapter 21
1. (a) 0.2 H

(b) ep � 1.6 V, es � 5.12 V
(c) ep � 15 V, es � 24 V

3. (a) 158.02 mH
(b) ep � 24 V, es � 1.8 V
(c) ep � 15 V, es � 24 V

5. (a) 3.125 V (b) 391.02 mWb
7. 56.31 Hz
9. 400 �

11. 12,000t
13. (a) 3

(b) 2.78 W
15. (a) 360.56 � �86.82°

(b) 332.82 mA ��86.82°
(c) VRe

� 6.656 V ��86.82°,
VXe

� 13.313 V �3.18°,
VXL

� 106.50 V �3.18°
19. 1.354 H
21. I1(R1 � j XL1

) � I2( j Xm) � E1

I1( j Xm) � I2( j XL2
� RL) � 0

23. (a) 20 (b) 83.33 A (c) 4.167 A
(d) a � �
� , Is � 4.167 A,

Ip � 83.33 A
25. (a) 25 V �0°, 5 A �0°

(b) 80 � �0° (c) 20 � �0°
27. (a) E2 � 40 V �60°,

I2 � 3.33 A �60°,
E3 � 30 V �60°,
I3 � 3 A �60°

(b) R1 � 64.52 �
29. [Z1�XL1

]I1�ZM12
I

2
�ZM13

I3� E1,
ZM12

I1 � [Z2 � Z3 � XL2
]I2 �

Z2I3 � 0, 
ZM13

I1 � Z2I2 � [Z2 � Z4 �
XL3

]I3 � 0

Chapter 22

1. (a) 120.1 V (b) 120.1 V
(c) 12.01 A (d) 12.01 A

3. (a) 120.1 V (b) 120.1 V
(c) 16.98 A (d) 16.98 A

5. (a) v2 � �120°, v3 � 120°
(b) Van � 120 V �0°,

Vbn � 120 V ��120°,
Vcn � 120 V �120°

(c) Ian � 8 A ��53.13°,
Ibn � 8 A ��173.13°,
Icn � 8 A �66.87°

(e) 8 A (f) 207.85 V
7. Vf � 127 V, If � 8.98 A,

IL � 8.98 A
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9. (a) EAN � 12.7 kV ��30°,
EBN � 12.7 kV ��150°,
ECN � 12.7 kV �90°

(b) Ian � 11.285 A ��97.54°,
Ibn � 11.285 A ��217.54°,
Icn � 11.285 A �22.46°

(c) IL � If

(d) Van � 12,154.28 V ��29.34°,
Vbn�12,154.28V��149.34°,
Vcn � 12,154.28 V �90.66°

11. (a) 120.1 V (b) 208 V
(c) 13.364 A (d) 23.15 A

13. (a) v2 � �120°, v3 � �120°
(b) Vab � 208 V �0°,

Vbc � 208 V ��120°,
Vca � 208 V �120°

(d) Iab � 9.455 A �0°,
Ibc � 9.455 A ��120°,
Ica � 9.455 A �120°

(e) 16.376 A (f) 120.1 V
15. (a) v2 � �120°, v3 � 120°

(b) Vab � 208 V �0°,
Vbc � 208 V ��120°,
Vca � 208 V �120°

(d) Iab � 86.67 A ��36.87°,
Ibc � 86.67 A ��156.87°,
Ica � 86.67 A �83.13°

(e) 150.11 A (f) 120.1 V
17. (a) Iab � 15.325 A ��73.30°,

Ibc � 15.325 A ��193.30°,
Ica � 15.325 A �46.7°

(b) IAa � 26.54 A ��103.31°,
IBb � 26.54 A �136.68°,
ICc � 26.54 A �16.69°

(c) EAB � 17,013.6 V ��0.59°,
EBC � 17,013.77 V

��120.59°,
ECA � 17,013.87 V �119.41°

19. (a) 208 V (b) 120.09 V
(c) 7.076 A (d) 7.076 A

21. Vf � 69.28 V, If � 2.89 A,
IL � 2.89 A

23. Vf � 69.28 V, If � 5.77 A,
IL � 5.77 A

25. (a) 440 V (b) 440 V
(c) 29.33 A (d) 50.8 A

27. (a) v2 � �120°, v3 � �120°
(b) Vab � 100 V �0°,

Vbc � 100 V ��120°,
Vca � 100 V �120°

(d) Iab � 5 A �0°,
Ibc � 5 A ��120°,
Ica � 5 A �120°

(e) 8.66 A
29. (a) v2 � �120°, v3 � 120°

(b) Vab � 100 V �0°,
Vbc � 100 V ��120°,
Vca � 100 V �120°

(b) 0.1fc: �5.71°, 0.5fc: �26.57°,
fc: �45°, 2fc: �63.43°,
10fc: �84.29°

21. C � 0.265 mF,
250 Hz: Av � 0.895,
v � �26.54°, 
1000 Hz: Av � 0.4475,
v � �63.41°

23. (a) fc � 3.617 kHz,
fc: Av � 0.707, v � 45°,
2fc: Av � 0.894, v � 26.57°
0.5fc: Av � 0.447, v � 63.43°
10fc: Av � 0.995, v � 5.71°
1⁄10 fc: Av � 0.0995, 
v � 84.29°

25. R � 795.77 � → 797 �,
fc: Av � 0.707, v � 45°
1 kHz: Av � 0.458, v � 63.4°
4 kHz: Av � 0.9, v � 26.53°

27. (a) fc1
� 795.77 Hz, 

fc2
� 1989.44 Hz

fc1
: Vo � 0.656Vi,

fc2
: Vo � 0.656Vi

fcenter � 1392.60 Hz: 
Vo � 0.711Vi

500 Hz: Vo � 0.516Vi,
4 kHz: Vo � 0.437Vi

(b) BW � 2.9 kHz,
fcenter � 1.94 kHz

29. (a) fs � 100.658 kHz
(b) Qs� 18.39, BW � 5473.52 Hz
(c) fs: Av � 0.93

f1 � 97,921.24 Hz, 
f2 � 103,394.76 Hz,
f � 95 kHz: Av � 0.392,
f � 105 kHz: Av � 0.5

(d) f � fs, Vo � 0.93 V,
f � f1 � f2, Vo � 0.658 V

31. (a) Qs � 12.195
(b) BW � 410 Hz, 

f2 �5205 Hz,
f1 � 4795 Hz

(c) fs: Vo � 0.024Vi

(d) fs: Vo still 0.024Vi

33. (a) fp � 726.44 kHz (stop-band)
f � 2.013 MHz (pass-band)

35. (a–b) fc � 6772.55 Hz
(c) fc: �3 dB, �� fc: �6.7 dB,

2fc: �0.969 dB, 
�
1
1
0
�fc: �20.04 dB, 

10fc: �0.043 dB
(d) fc: 0.707, �� fc: 0.4472,

2fc: 0.894
(e) fc: 45°, �� fc: 63.43°, 2fc: 26.57°

37. (a–b) fc � 13.26 kHz
(c) fc: �3 dB, �� fc: �0.97 dB,

2fc: �6.99 dB

(d) Iab � 7.072 A �45°,
Ibc � 7.072 A ��75°,
Ica � 7.072 A �165°

(e) 12.25 A
31. 2160 W, 0 VAR, 2160 VA,

Fp � 1
33. 7210.67 W, 7210. 67 VAR (C),

10,197.42 VA, 0.707 leading
35. 7.263 kW, 7.263 kVAR,

10.272 kVA, 0.707 lagging
37. 287.93 W, 575.86 VAR (L),

643.83 VA, 0.4472 lagging
39. 900 W, 1200 VAR (L), 1500 VA,

0.6 lagging
41. Zf � 12.98 � � j 17.31 �
43. (a) 9237.6 V (b) 80 A

(c) 1276.8 kW
(d) 0.576 lagging
(e) IAa � 80 A ��54.83°
(f) Van � 7773.45 V��4.87°
(g) Zf � 62.52 � � j 74.38 �
(h) Fp (entire system) � 0.576,

Fp (load) � 0.643 (both
lagging)

(i) 93.98%
45. (b) PT � 5899.64 W,

Pmeter � 1966.55 W
49. (a) 120.09 V

(b) Ian � 8.492 A, Ibn � 7.076 A,
Icn � 42.465 A

(c) 4928.5 W, 4928.53 VAR (L),
6969.99 VA, 0.7071 lagging

(d) Ian � 8.492 A ��75°
Ibn � 7.076 A ��195°
Icn � 42.465 A �45°

(e) IN � 34.712 A ��42.972°

Chapter 23

1. (a) left: 1.54 kHz,
right: 5.623 kHz

(b) bottom: 0.2153 V,
top: 0.5248 V

3. (a) 1000 (b) 1012

(c) 1.585 (d) 1.096
(e) 1010 (f) 1513.56
(g) 10.023 (h) 1,258,925.41

5. 1.681
7. �0.301
9. (a) 1.845

(b) 18.45
11. 13.01
13. 38.49
15. 24.08 dBs

19. (a) 0.1fc: 0.995, 0.5fc: 0.894,
fc: 0.707, 2fc: 0.447, 
10fc: 0.0995
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9. prf � 125 kHz,
duty cycle � 62.5%

11. (a) 8 ms
(b) 2 ms
(c) 125 kHz
(d) 0 V
(e) 3.464 mV

13. 18.88 mV
15. 117 mV
17. vo � 4(1 � e�t/20ms)
19. iC � �8 � 10�3e�t

21. iC � 4 � 10�3e�t/0.2ms

(a) 5t � T/2 (b) 5t � ��(T/2)
(c) 5t � 10(T/2)

23. 0 � T/2: vC � 20 V,
T/2 � T : vC � 20e�t/t,
T � �� T : vC � 20(1 � e�t/t)
�� T � T : vC � 20e�t/t

25. Zp � 4.573 M� ��59.5°,
Zs � 0.507 M� ��59.5°

Chapter 25

1. (I) a. no b. no c. yes d. no 
e. yes 
(II) a. yes b. yes c. yes d. yes 
e. no
(III) a. yes b. yes c. no d. yes
e. yes 
(IV) a. no b. no c. yes d. yes
e. yes

7. (a) 19.04 V (b) 4.53 A
9. 71.872 W

11. (a) i � 2 � 2.08 sin(400t �
33.69) � 0.5 sin(800t �
53.13°)

(b) 2.508 A
(c) vR � 24 �

24.96 sin(400t �
33.69°) �
6 sin(800t � 53.13°)

(d) 30.092 A
(e) vL � 16.64 sin(400t �

56.31°) � 8 sin(800t �
36.87°)

(f) 13.055 V (g) 75.481 W
13. (a) i � 1.2 sin(400t � 53.13°)

(b) 0.848 A
(c) vR � 18 sin(400t � 53.13°)
(d) 12.73 V
(e) vC � 18 �

23.98 sin(400t �
36.87°)

(f) 24.73 V (g) 10.79 W
15. vo � 2.257 � 10�3 sin(377t �

93.66°) � 1.923 � 10�3

sin(754t � 1.64°)

�
1
1
0
�fc: �0.043 dB,

10fc: �20.04 dB
(d) fc: 0.707, �� fc: 0.894,

2fc: 0.447
(e) fc: �45°, �� fc: �26.57°,

2fc: �63.43°
39. (a) f1 � 663.15 Hz, fc � 468.1 Hz

0 < f < fc: �6 dB/octave,
f > fc: �3.03 dB

(b) f1: 45°, fc: 54.78°, �� f1: 63.43°,
2f1: 84.29°

41. (a) f1 � 19,894.37 Hz
fc � 1,989.44 Hz
0 < f <  fc: 0 dB,
fc < f < f1: �6 dB/octave,
f > f1: �20 dB

(b) fc: �39.29°, 
10 kHz: �52.06°,
f1: �39.29°

43. (a) f1 � 964.58 Hz,
fc � 7,334.33 Hz
0 < f < f1: �17.62 dB,
f1 < f < fc: �6 dB/octave,
f > fc: 0 dB

(b) f1: 39.35°, 1.3 kHz: 43.38°,
fc: 39.35°

45. (a) f � 180 Hz � �3 dB,
f � 18 kHz: �3.105 dB

(b) 100 Hz: 97°,
1.8 kHz: 0.12° � 0°,
18 kHz: �61.8°

47. Av � �120/[(1 � j 50/f )(1 �
j 200/f )(1 � j f/36 kHz)]

49. fc � 2 kHz, 0 < f < fc: 0 dB,
f > fc: �6 dB/octave

51. f1 � 1 kHz, f2 � 2 kHz,
f3 � 3 kHz
0 < f < f1: 0 dB,
f1 < f < f2: �6 dB/octave
f 2 < f < f3: �12 dB/octave,
f > f3 : 13.06 dB

53. (a) woofer: 0.673, tweeter: 0.678
(b) woofer: 0.015, tweeter: 0.337
(c) mid-range: 0.998 � 1

Chapter 24

1. (a) positive-going (b) 2 V
(c) 0.2 ms (d) 6 V (e) 6.5%

3. (a) positive-going
(b) 10 mV
(c) 3.2 ms (d) 20 mV
(e) 3.4%

5. V2 of (V1 � V2)/V � 0.1 is
13.571 mV

7. (a) 120 ms (b) 8.333 kHz
(c) maximum � 440 mV,

minimum � 80 mV

17. iT � 30 � 30.27 sin(20t � 7.59°)
� 0.5 sin(40t � 30°)

Chapter 26

1. Zi � 986.84 �
3. (a) Ii1

� 10 mA
(b) Zi2

� 4.5 k�
(c) Ei3

� 6.9 V
5. Zo � 44.59 k�
7. Zo � 10 k�
9. (a) Av � �392.98

(b) AvT
� �320.21

11. (a) AvNL
� �2398.8

(b) Ei � 50 mV
(c) Zi � 1 k�

13. (a) AG � 6.067 � 104

(b) AGT
� 4.94 � 104

15. (a) AvT
� 1500

(b) AiT
� 187.5

(c) Ai1
� 15, Ai2

� 12.5
(d) AiT

� 187.5
17. (a) z11 � (Z1Z2 � Z1Z3)/

(Z1 � Z2 � Z3),
z12 � Z1Z3/(Z1 � Z2 � Z3),
z21 � z12,
z22 � (Z1Z3 � Z2Z3)/

(Z1 � Z2 � Z3)
19. (a) y11 � (Y1Y2 � Y1Y3)/

(Y1 � Y2 � Y3),
y12 � �Y1Y2/(Y1 � Y2 � Y3),
y21 � y12,
y22 � (Y1Y2 � Y2Y3)/

(Y1 � Y2 � Y3)
21. h11 � Z1Z2/(Z1 � Z2),

h21 � �Z1/(Z1 � Z2),
h12 � Z1/(Z1 � Z2),
h22 � (Z1 � Z2 � Z3)/

(Z1Z3 � Z2Z3)
23. h11 � (Y1 � Y2 � Y3)/

(Y1Y2 � Y1Y3),
h21 � �Y2/(Y2 � Y3),
h12 � Y2/(Y2 � Y3),
h22 � Y2Y3/(Y2 � Y3)

25. (a) 47.62 (b) �99
27. Zi � 9,219.5 � ��139.4° ,

Zo � 29.07 k� ��86.05°
29. h11 � 2.5 k�, h12 � 0.5,

h21 � �0.75, h22 � 0.25 mS
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